3Roots San Diego Project

 Environmental Impact Report SCH No. 2018041065; Project No. 587128Appendix Q
Preliminary Drainage Report

June 2019

PRELIMINARY DRAINAGE REPORT 3 ROOTS

City of San Diego, CA

March 13, 2019
VTM PTS \# 587128

Prepared For:
Mesa Community Partners
16465 Via Esprillo, Suite 150
San Diego, California 92127
Phone: 858-618-4933
Prepared By:

PROJECT DESIGN CONSULTANTS

Planning | Landscape Architecture | Engineering | Survey

701 B Street, Suite 800
San Diego, CA 92101
619.235.6471 Tel
619.234.0349 Fax

Prepared by: S. Li
Under the supervision of

Debby Reece, P世 RCE 56148
Registration Expires 12/31/20

TABLE OF CONTENTS

1. INTRODUCTION 1
2. EXISTING AND PROPOSED DRAINAGE PATTERNS 2
2.1 Existing Drainage Patterns 3
2.2 Proposed Drainage Patterns and Storm Drain Improvements 4
3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS 4
3.1 Hydrology Criteria 5
3.2 Hydrology Methodology 5
3.3 Hydrology Results 6
4. CONCLUSION 8
FIGURES
Figure 1: Project Vicinity Map 2
TABLES
Table 1: Hydrology Criteria 5
Table 2: Summary of Hydrology Results 8

APPENDICES

1 Supporting Documentation (IDF Curve, Runoff Coefficients, FEMA Firmette)
2 Existing Conditions 100-year Rational Method Computer Output
3 Proposed Conditions 100-year Rational Method Computer Output
4 Rick Engineering Drainage Report
5 Detention Basin Routing Analysis
6 Exhibits

1. INTRODUCTION

This preliminary drainage report has been prepared in support of a Vesting Tentative Map Entitlement submittal for the 3 Roots San Diego Project (the Project), which is located in the City of San Diego, California. The purpose of this report is to determine the hydrologic impact, if any, to the existing storm drain facilities or natural drainage, and to provide peak 100-year discharge values for the project.

The drainage analysis presented herein reflects a Vesting Tentative Map level-of-effort, which includes peak 100-year storm event hydrologic analyses using preliminary grades. Hydraulic analyses for inlets, pipe sizes and inverts, and HGL's will be provided during final engineering. Therefore, the purpose of this report submittal is to acquire from the City of San Diego: 1) concept approval of the proposed storm drain layout, 2) approval of the methodology used in the evaluation of the project storm drain system hydrology, and 3) identification of critical path drainage issues that need to be addressed during final engineering.

The 3Roots San Diego Project is a proposed mixed-use community located in the City of San Diego. The site is approximately 413 acres in size and is located east of Camino Santa Fe, approximately halfway between Mira Mesa Boulevard and Miramar Road, and west of Carroll Canyon Rd and Parkdale Avenue. The Property was formerly operated as a sand and gravel mining site and is currently owned by Mesa Community Partners. The Proposed Project includes approximately 256 acres of open space (including approximately 181 acres of natural open space, landscaped slopes and 76 acres of parkland), a total of 1800 residential units, and a proposed 1.5 -acre on-site Transit Center adjacent to the intersection of Camino Santa Fe and Carroll Canyon Road. The vicinity map is shown in Figure 1.

Figure 1: Project Vicinity Map

The site contained a quarry and associated operations and was operated by Hanson Aggregates Pacific Southwest, Inc. (Hanson). Redevelopment of the site will involve regrading of the site to a usable condition compatible with future land uses. The work also includes reserving and enlargement of the Carroll Canyon Creek channel to accommodate the 100 -year flow. The enlargement and restoration of Carroll Canyon Creek will require environmental permitting, including a 401 Certification and army Corps of Engineers 404 permit. For a preliminary hydraulic analysis of the creek, refer to the project's floodplain study prepared by Chang Consultants. A blend of mixed use development, multi-family homes and single family houses is to be constructed including all associated landscaping, hardscaping, and utilities.

From a regional drainage perspective, the project's storm drain system will discharge into Carroll Canyon Creek. FEMA shaded Zone AE, Zone A and Zone X areas exist along the northern and
southern boundary of the project site. Project redevelopment will include re-mapping the floodplains through the development, and will ensure the proposed developments are elevated above the floodplain elevations.

Treatment of onsite storm water prior to discharging into the downstream systems will be facilitated by several biofiltration basins. Treatment of offsite Carroll Canyon Road storm water will be facilitated by modular wetland units, bio-retention median, and underground storage vault. For a detailed discussion of the project's stormwater quality BMPs and hydromodification management approach, refer to the Preliminary Stormwater Quality Management Plan (SWQMP) report. For the Southern California Coastal Water Research Project (SCCWRP) channel screening report for the project, refer to the SCCWRP report prepared by Chang Consultants and submitted under a separate cover. The SCCWRP report documents the channel erosivity analysis, which was used to document the low flow threshold to be used for design of the proposed hydromodification management facilities. The final post-construction BMP design will be provided during final engineering.

2. EXISTING AND PROPOSED DRAINAGE PATTERNS

2.1 Existing Drainage Patterns

As the site is undergoing ongoing mining operations, the current existing conditions may not represent the historical drainage patterns. Carroll Canyon Creek drains through the property in an east-west direction. Generally the site drains towards the middle of the creek via sheetflow, or via multiple concentration points. A portion of the site drains to an existing storm drain within Camino Santa Fe.

Canyons with steep slopes border the southern and northern edges of the project site, and drain down from project site boundary to downstream creeks. There are a couple of fragments of runon areas outsite the project boundary which drains onto the site.

There are several existing storm drain systems within Camino Santa Fe. The major two systems include a 60 -inch storm drain per Drawing 31390-6-D and a $4-14^{\prime} \times 12^{\prime}$ culvert box per Drawing $31390-14-D$. The 60 -inch storm drain is located at the northwest corner of the project site, i.e.
intersection of Camino Santa Fe and Miratech Drive / Spine Road. There are two additional smaller size ($30^{\prime \prime}$ and $24 "$) storm drain stubs along Camino Santa Fe, which were previously designed for ultimate built-out conditions, based on the Preliminary Drainage Study for Fenton Carroll Canyon prepared by Rick Engineering dated August 23, 1999. Refer to excerpts in Appendix 4 for the backbone study and As-built drawings.

Onsite, under existing conditions, the site generally sheetflows into one of two storm drain systems conveying flows into downstream channels.

See Exhibit A in Appendix 5 for an existing conditions drainage map. Note that for some of the systems, the downstream limits of the onsite drainage areas were set to approximate the downstream limits of the proposed drainage areas, in order to compare pre-project and postproject flows.

2.2 Proposed Drainage Patterns and Storm Drain Improvements

Redevelopment will disturb approximately 262 acres of the project site. Proposed development will not significantly alter ultimate discharge points of onsite and offsite runoff. Flows generated at slopes south and north of the Project site will primarily be collected in inlets, prior to entering the developed area and will be conveyed through storm drain systems to the downstream channels. Generally, proposed onsite drainage patterns will mimic existing drainage patterns. Some local re-direction of runoff occurs onsite, however most flows converge in the storm drain system on the west side of Camino Santa Fe and ultimately discharge into Carroll Canyon Creek.

The major part of the project site will continue to discharge to the downstream channel at the west side of the Camino Santa Fe through a public storm drain culvert box with a 100 -year design flow of 4500 cfs . The proposed drainage improvements include private storm drains collecting rooftop and surface drainage and public storm drains in public roads. Refer to Exhibit B in Appendix 5 for the proposed condition drainage map.

3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS

3.1 Hydrology Criteria

Table 1 summarizes the key hydrology assumptions and criteria used for the hydrologic modeling.

Table 1: Hydrology Criteria

Existing and Proposed Hydrology:	100 -year storm frequency
Soil Type:	Hydrologic Soil Group D per Drainage Design Manual requirements
Runoff coefficients:	Based on land use in sub-drainage area, from C=0.45 to 0.95. See Rational Method output.
Rainfall intensity:	Based on the City of San Diego Intensity Frequency Duration Curves presented in the 2017 City of San Diego Drainage Design Manual.

3.2 Hydrology Methodology

Hydrology calculations were completed for existing and proposed conditions accounting for all areas draining to the onsite storm drain systems. Drainage areas were defined from existing and proposed topographic maps of the area. Hydrologic analysis was completed utilizing the Rational Method, outlined in the 2017 City of San Diego Drainage Design Manual. The goal of the Rational Method analysis was to determine the peak 100-year flow rates for the storm drain pipes by developing a node link model of the contributing drainage area and applying the intensity-duration-frequency (IDF) curve to the areas. See Appendix 1 for the City of San Diego IDF curve.

The Civil-D computer program was used to obtain peak flow rates for the offsite and onsite drainage areas in existing and proposed conditions. The Civil-D Modified Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models for each interior watershed and linking these sub-models together at confluence points creates the node link model. The
intensity-duration-frequency relationships are applied to each of the drainage areas in the model to get the peak flow rates at each point of interest.

The project drainage areas were split into multiple systems representing different outfall areas of concern. For the proposed condition, System 1000 represents the northwest corner of project site conveyed to Biofiltration Basin 1 (See Exhibits in Appendix 5 for details). System 2000 includes the drainage area southwest of Spine Road and Street E, which drains to Biofiltration Basin 2. System 3000 generally bounded by System 1000 to the west, System 2000 to the south and Street D to the east, and drains to Biofiltration Basin 3. System 1000, 2000 and 3000 all discharge into the same 60 " RCP stub location on Camino Santa Fe per Drawing 31390-6-D.

System 5000 includes a large portion of the northern slope and residential areas along Street D and Street E, draining to Basin 5. System 6000 includes the drainage area along southeast ends of Street D and Street B, draining to Basin 6 and to Carroll Canyon Creek. System 7000 includes multifamily units and park area along Spine Road, draining to Basin 7 and to Carroll Canyon Creek. System 8000 includes southern areas of the project site along Carroll Canyon Road. It is composed mainly of residential areas, driveways and a 28 -acre community park, draining to Basin 8 and to Carroll Canyon Creek. System 9000 includes residential areas west of Spine Road, draining to Basin 9 and to Carroll Canyon Creek. System 5000-9000 will be piped downstream of the treatment basins to the existing 4-14'x12' box culvert (per Drawing 31390-14-D). Offsite systems 4200 and 4400 will drain to offsite pipes and to Carroll Canyon Creek.

For comparison purposes, existing condition drainage systems are named similarly to the postproject drainage systems. For example, System 800 for existing conditions corresponds to System 8000 for proposed conditions. System 500 and 900 are draining to the same outfall location, however, they are separated to mimic post-project systems 5000 and 9000. City of San Diego Drainage Design Manual runoff coefficients, based on land use, were assigned for each drainage sub-basin within CivilD.

3.3 Hydrology Results

The results of the Rational Method hydrology modeling are provided in Appendices 2 and 3 and the results are summarized in this section. Redevelopment of the project site increased the $100-$
year runoff from the site, but peak flows after detention are less than either backbone storm drain system capacity or existing condition peak flow at the project outfall.

For outfall \#1 near the northwest corner of the site, note that peak flows increase over existing conditions, but the combined post-project flows are less than the ultimate condition design flows per Drawing 31390-6-D and 31390-9-D. For outfall \#1, the 100-year post-project flow rate (65.9 cfs) is less than the ultimate condition total backbone design flow of 119 cfs per Drawing 31390-6-D and 31390-9-D. For outfall \#2 (which represents all of the other outfalls for the project), the 100-year post-project flow rates are increased from 272 cfs to 348 cfs . However, since all onsite flows drain ultimately to the same creek, with the backbone stubs previously designed for ultimate build-out conditions of 160.70 cfs (98.4 cfs of $60^{\prime \prime} \mathrm{RCP}$ per Drawing 31390-6-D ; 20.6 cfs of $24 "$ RCP per Drawing $31390-9-\mathrm{D}$ and 41.7 cfs of 30 " RCP per Drawing 31390-10-D), the proposed condition total flows of 414 cfs is in the acceptable range of the sum of the existing flows and backbone flows of 392 cfs (5.6% increase). Moreover, detention modeling was performed for representative basins, peak flows after detention are significantly less than the sum of the existing flows and back flows of 392 cfs . Therefore, there will be no adverse impact from a peak flow perspective.

For the results of the analysis, see Exhibit A for the existing conditions hydrology map and Exhibit B for the proposed conditions hydrology map in Appendix 5. Refer to the appendices for the hydrology calculations. Table 2 summarizes the hydrology results and compares existing and proposed conditions.

Table 2: Summary of Hydrology Results
PRELIMINARY MEADOWOOD HYDROLOGY SUMMARY

3.4 Detention Basins

There are eight detention basins proposed for the project site for water quality treatment and hydromodification management. From the Rational Method results for each of the systems draining to a basin, the proposed condition peak inflow hydrographs were generated with Rick Engineering Rational Method Hydrograph Generator. This program develops a synthetic hydrograph per the 2003 County Hydrology Manual using the results of the Rational Method output.

The inflow hydrograph for each system was then entered into Haestad Method's PondPack software and the detention routing was performed with the design of the detention basin and the proposed outlet structure. The 100-year hydrograph was routed through the basin to demonstrate that the post-development peak flow rate will comply with the detention requirements and that the detention facility will not overtop during the 100-year peak event. The time of concentration coinciding with the basin outflow peak was established by adding the inflow hydrograph time of concentration plus the lag time of the detained flow within the basin. This combined time of concentration accounts for the time of concentration to get to the basin and the detention time within the basin. The riser for each basin was designed to ensure that riser size, rim elevation, and orifice placement will work in conjunction to properly mitigate the increased flow rate.

Detention modeling has been done for representative basins Basin 5 and Basin 9. Complete set of detention models will be included during final engineering. The hydrograph routing calculations and detention models are included in Appendix 5. With detention the proposed 100-year flow rates at the project outfalls are less than the existing flow rates.

3.5 Water Quality Calculations

The water quality calculations are included, under separate cover, in the Storm Water Quality Management Plan (SWQMP) prepared by PDC. The biofiltration basins will be combined hydromodification/biofiltration/detention basins.

3.6 Hydromodification Analysis

The biofiltration basins also address hydromodification requirements, since both biofiltration basins and hydromodification basins produce similar alterations to the flow regime for the smaller, more frequent storm events. Flow duration control is the most common form of hydromodification management. The majority of all onsite water will be treated with biofiltration/hydromodification basins, which will detain the smaller, more frequent events and therefore will mitigate the post-development onsite flows. Refer to the stand alone Hydromodification report prepared by PDC for detailed calculations.

4. CONCLUSION

This drainage report supports the VTM for the proposed 3 Roots development. This report was prepared to ensure that project development would not adversely affect existing drainage patterns. Hydrology calculations indicate that redevelopment will result in an overall increase in flows from the site, but the total flow rates are similar to the ultimate condition backbone design flow of downstream storm drain systems. Small onsite re-direction of flows does not alter general drainage patterns as onsite storm drain systems ultimately discharge to the same location downstream of the project. As such, the project redevelopment should not have an adverse effect on local or global drainage patterns. The drainage system will be designed appropriately to accommodate the peak-flow conditions for the site. Detention calculations will be included during final engineering.

APPENDIX 1

Supporting Documentation

 (IDF Curve, Runoff Coefficients, FEMA Firmette)
APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

Figure A-1. Intensity-Duration-Frequency Design Chart

Table A-1. Runoff Coefficients for Rational Method

L-Tinloge	RImoficosifigunt (O) sonllutue
Residential:	
Single Family	0.55
Multi-Units	0.70
Mobile Homes	0.65
Rural (lots greater than $1 / 2$ acre)	0.45
Commercial (2)	
80\% Impervious	0.85
Industrial (2)	${ }_{3}$
90\% Impervious	0.95

Note:

${ }^{(1)}$ Type D soil to be used for all areas.
${ }^{(2)}$ Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50 . For example: Consider commercial property on D soil.

Actual imperviousness	$=50 \%$
Tabulated imperviousness	$=80 \%$
Revised C $=(50 / 80) \times 0.85$	$=0.53$

The values in Table A-1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A.1.3. Rainfall Intensity

The rainfall intensity (1) is the rainfall in inches per hour (in/hr.) for a duration equal to the T_{c} for a selected storm frequency. Once a particular storm frequency has been selected for design and a T_{c} calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration-Frequency Design Chart (Figure A-1).

Abstract

APPENDIX 2 Existing Conditions 100-year Rational Method Computer Output

P:44182.30EngrtReport DDrainageHYOROEXISTINGIS100E100.out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study
Date: 05/08/17

PROJECT CANTERA

EXISTING CONDITIONS
S100E100
********* Hydrology Study Control Information *********

Progran License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Factor (to multiply * intensity) = 1.000
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
```

$++4 t+4$
Process from Point/Station
100.000 to Point/Station 100.000 to Point/Station
01.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Initial subarea flow distance $=$
Highest elevation $=392.000$ (Ft.)
Aighest elevation $=366.000(\mathrm{Ft}$.)
Elevation difference $=26.000($ Ft. $)$
Time of concentration calculated by the urban
areas overland flow method (App $X-C$) $=6.89 \mathrm{~min}$.
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance (Ft.)^.5)/(8 slope^(1/3)]
$T C=\left[1.8^{*}(1.1-0.4500) *\left(195.000^{\wedge} .5\right) /\left(13.333^{\wedge}(1 / 3)\right]=6.89\right.$
Rainfall intensity (I) $=3.869$ (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area ($Q=K C I A$) is $C=0.450$
Subarea runoff $=0.540$ (CES)
Total initial stream area $=\quad 0.310(A C$.

Process from Point/Station 101.000 to Point/Station
105.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation $\left.=\quad \begin{array}{l}366.000(F t .) \\ 306.000(F t\end{array}\right)$

P:14182 30LEngTRepots SDrainageLHYDROIEXISTINGIS100E100. out

Channel length thru subarea $=771.000$ (Ft.)
Channel base width
$=$ 3.000 (Ft.
lope or in of left channel bank $=2.000$
lope or ' Z ' of right channel bank $=2.000$
stimated mean flow rate at midpoint of channel
Manning's ' N ' $=0.015$
1.000 (Et.)

Gaximum depth of channe
2.455 (CES)

Depth of flow $=0.120(F t$.$) , Average velocity =6.332(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=3.479(F t$.
Elow Velocity $=6.33(\mathrm{Ft} / \mathrm{s})$
Travel time $=2.03 \mathrm{~min}$.
rime of concentration $=8.92 \mathrm{~min}$.
Critical depth $=0.258(\mathrm{Ft}$
Adding area flow to channel
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[RURAL(greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfali intensity $=\quad 3.517(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=\quad 3.482$ (CFS) for 2.200 (Ac.)
Total runoff $=\quad 4.021$ (CFS) Total area $=\quad$ 2.51(Ac.)
$++$
Process from Point/Station 102.000 to Point/Station
*** SUBAPEA PLOW ADDTITON ****
ecimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
RURAI (raction soil group D $=1.0$ area type]
Time of concentration $=8.92 \mathrm{~min}$.
Rainfall intensity $=\quad 3.517(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.450$ Subarea runoff $=\quad 1.488$ (CFS) for 0.940 (Ac.)
Total runoff $=\quad 5.509(\mathrm{CFS})$ Total area $=3.45(\mathrm{Ac}$.
$++$
Process from Point/Station
**** SUBAREA FLOW ADDTTION
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Time of concentration $=8.92 \mathrm{~min}$.
Rainfall intensity $=\quad 3.517(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.450$
$\begin{array}{lc}\text { Subarea runoff }= & 3.513 \text { (CFS) for } 2.220(\mathrm{Ac.}) \\ \text { Total runoff }= & 9.023 \text { (CFS) Total area }=\end{array}$
rotal runoff $=$
End of computations, total study area $=$$\quad 5.670(\mathrm{Ac}$.

P:4482:30EEngTReportSDrainage HYDROEXISTINGIS200E100.ou

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/08/17

PROJECT CANTERA

EXISTING CONDITOINS
S200E100

Program License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) \(=1.000\)
Only used if inside City of San Diego
San Diego hydrology manual 'C' values use
```



```
*** INITTAL AREA EVALUATION **** 2000 to
01.000
```

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Initial subarea flow distance $=151.000($ Ft.)
Highest elevation $=352.000(\mathrm{Et}$.
Elevation difference $=38.000(F t$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=4.91 \mathrm{~min}$.
TC $\left.=\left[1.8^{*}(1.1-C) * \text { distance }(E t .)\right)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$T C=\left[1.8^{*}(1.1-0.4500) *\left(151.000^{\wedge} .5\right) /\left(25.166^{\wedge}(1 / 3)\right]=4.91\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.450$
Subarea runoff $=0.533$ (CFS)
Total initial stream area $=0.270(A C$.
$+++++++++++++++++++++++$
Process from Point/Station 201.000 to Point/Station
202.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation $=314.000(F t$.

Downstream point elevation $=292.000(F t$.)
Channel length thru subarea $=753.000(\mathrm{Ft}$.
hannel base width $=3.000(\mathrm{Ft}$.)
lope or ' 2 ', of left channel bank $=2.000$
stimated mean flow rate at midpoint of channel $=1.521$ (CFS)
Manning's ' N ' $=0.015$
Maximum depth of channel $=1.000(E t$.
Flow(q) thru subarea $=\quad 1.521$ (CFS)
Depth of flow $=0.120(\mathrm{Ft}$.$) , Average velocity =3.895(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=3.482(\mathrm{Et}$.
Flow Velocity $=3.90(\mathrm{Ft} / \mathrm{s})$
Travel time $=3.22 \mathrm{~min}$.
rime of concentration $=8.22 \mathrm{~min}$.
Critical depth $=0.191($ Ft.
Adding area flow to channel
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[RURAL (greater than 0.5 Ac, 0.2 ha) area type]
Rainfall intensity $=\quad 3.623(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=1.630$ (CES) for $1.000(\mathrm{AC}$.
Total runoff $=\quad 2.164$ (CFS) Total area $=1.27$ (Ac.)
End of computations, total study area $=1.270$ (Ac.)

P:4482.30 EngrRepors DrainageHYOROIEXISTNGGIS420E100.out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on Rational Hydrology Study Date: 10/25/18

PROJECT CANTERA
XISTING CONDITIONS
S420E100
********* Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-1b) input data units used
English (in) rainfall data. used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
only used if inside City of San Diego
unf coeficients by rational method used
Runoff coefficients by rational method
+++4
Process from Point/Station $\quad 420.000$ to Point/Station 421.000
420.00

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Highest elevation $=430.000(\mathrm{Ft}$.
towest elevation $=380.000(\mathrm{Ft}$)
Elevation difference $=50.000(\mathrm{Ft}$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=4.10 \mathrm{~min}$.
$\mathrm{C}=\left(1.8^{*}(1.1-C) *\right.$ distance (Ft.) . 5)/(. slope ${ }^{\wedge}(1 / 3)$)
$\mathrm{TC}=\left[1.8^{*}(1.1-0.4500) *\left(136.000^{\wedge} .5\right) /\left(36.765^{\wedge}(1 / 3)\right]=4.10\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area $(Q=K C I A)$ is $C=0.450$
Subarea runoff $=0.889$ (CFS)
Total initial stream area $=0.450$ (Ac.)
$++\quad 422.000$ **** IMPROVED CHANNEI TRAVEL TIME ****

Upstream point elevation $=380.000(F t$.

P:14182.30EngrIReportsDrainageHYDROEXISTINGIS420E100.0ut

Downstream point elevation $=326.000(\mathrm{Ft}$.
Channel length thru subarea $=880.000(\mathrm{Ft}$.
Channel base width $=10.000(\mathrm{Ft}$.)
Slope or ' Z ' of left channel' bank $=1.000$
slope or ' Z ' of right channel bank $=1.000$
Estimated mean flow rate at midpoint of channel $=5.283$ (CES)
Manning's 'N' $=0.015$
Maximum depth of channel $=2.000(\mathrm{Ft}$.)
Flow (q) thru subarea $=\quad 5.283(\mathrm{CFS})$
Depth of flow $=0.100(\mathrm{Ft}$.$) , Average velocity =5.227(\mathrm{Ft} / \mathrm{s}$
Channel flow top width $=10.200(\mathrm{Ft}$.
Flow Velocity $=5.23(\mathrm{Ft} / \mathrm{s})$
Travel time $=2.81 \mathrm{~min}$.
Time of concentration $=7.81 \mathrm{~min}$.
Critical depth $=0.203$ (Ft
Decimal fraction soil group $A=0.00$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[RURAL(greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfall intensity $=3.693(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=7.395$ (CFS) for $4.450(\mathrm{Ac}$.)
Total runoff $=\quad 8.284$ (CES) Total area $=$ (Ac.) 4.90 (Ac.)
End of computations, total study area $=\quad 4.900$ (Ac.)

P:4182.30EngIREportsDrainageLHYDROEXISTINGIS440E100.out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: $10 / 24 / 18$

PROJECT CANTERA
EXISTING CONDITIONS
S440E100
********* Hydrology Study Control Information *************

Program License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
```

Standard intensity of Appendis I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside City of San Diego
San Diego hydrology manual ' C ' values used
Runoff coefficients by rational method
$+++4+4++4+4++++++++++++++++$
Process from Point/Station $\quad 440.000$ to Point/Station
41.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Initial subarea flow distance $=129.280(\mathrm{Ft}$.)
Highest elevation $=259.000(\mathrm{Ft}$.
Elevation difference $=2.500(\mathrm{Ft}$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=2.46 \mathrm{~min}$.
TC $=\left[1.8^{*}(1.1-C) *\right.$ distance $\left.(E t .)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.9500)^{*}\left(129.280^{\wedge} .5\right) /\left(1.934^{\wedge}(1 / 3)\right]=2.46\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.950$
Subarea runoff $=0.792$ (CFS)
Total initial stream area $=\quad 0.190(\mathrm{Ac}$.)
++t+++++++++++++++++++++++
Process from Point/Station \qquad
442.000 to Point/Station
441.000
**** SUBAREA ELOW ADDITION ${ }^{442}$

Decimal fraction soil group $A=0.000$

P:14182:30 EngrReportSDrainagelHYDROEXISTINGIS440E100.out
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
ime of concentration $=\quad 5.00 \mathrm{~min}$.
Rainfall intensity $=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=\quad 9.164$ (CFS) for 4.640 (AC.)
Total runoff $=\quad 9.957$ (CFS) Total area $=\quad 4.83($ Ac. $)$
End of computations, total study area $=$
4.830 (Ac.)

P:14182.30EEngIReportsDrainagelHYDROEXISTINGIS450E100.out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: $10 / 24 / 18$

PROJECT CANTERA

EXISTING CONDITIONS
S450E100
********* Hydrology Study Control Information **********

Program License Serial Number 4049

$$
\begin{aligned}
& \text { Rational hydrology study storm event year is } 100.0 \\
& \text { English (in-ib) input data Units used }
\end{aligned}
$$

English (in) rainfall data used
Standard intensity of Appendix $I-B$ used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside City of San Diego
解
Runoff coefficients by rational method

Process from Point/Station $\quad 450.000$ to Point/Station 450.000 to Point/Station
**** INITIAL AREA EVALUATION ****

Decimal fraction soil group $A=0.000$

Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
RURAL(greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Highest elevation $=312.000$ (Ft.)
owest elevation $=288.000(\mathrm{Ft})$
Elevation difference $=24.000(F t$.
Time of concentration calculated by the urban
areas overland flow method (App $X-C)=3.19 \mathrm{~min}$.
$C=\left[1.8^{*}(1.1-C) *\right.$ distance (Ft.) .5$) /(8$ slope $(1 / 3)]$
$\mathrm{Cc}=\left[1.8^{*}(1.1-0.4500) *\left(75.000^{\wedge} .5\right) /\left(32.000^{\wedge}(1 / 3)\right]=3.19\right.$
Setting time of concentration to 5 minutes
Rainfall intensity $(I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.450$ Subarea runoff $=0.257$ (CFS)
Total initial stream area $=0.130(A C$.
$++$
Process from Point/Station 451.000 to Point/Station
453.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation $=288.000($ Et.)

P:14182.30EngrTReportsDrainagelHYDROIEXISTINGIS450E100.0ut

```
ownstream point elevation \(=210.000(\mathrm{Ft}\).)
Channel length thru subarea \(=1695.000(\mathrm{Ft}\).)
Channel base width \(=3.000(F t\).)
Slope or ' \(Z\) ', of left channel bank \(=1.000\)
stimated mean flow rate at midpoint of channel \(=12.236\) (CES)
Manning's ' N ' \(=0.015\)
Maximum depth of channel \(=1.000\) (Ft.
Elow \((\mathrm{q})\) thru subarea \(=12.236\) (CFS)
Depth of flow \(=0.373\) (Ft.), Average velocity \(=9.735(\mathrm{Ft} / \mathrm{s})\)
Channel flow top width \(=3.745(\mathrm{Ft}\).
Flow Velocity \(=9.73(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=2.90 \mathrm{~min}\).
Time of concentration \(=7.90 \mathrm{~min}\).
Adding depth \(=0.734\) (Ft
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Detion \(=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
Rainfali intensity \(=3.676(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\)
Subarea runoff \(=20.067\) (CFS) for \(12.130(\mathrm{Ac}\).
Total runoff \(=\quad 20.324\) (CES) Total area \(=12.26(\mathrm{Ac}\).
End of computations, total study area \(=\quad 12.260\) (Ac.)
```

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/30/17
PROJECT CANTERA
EXISTING CONDITIONS
S500E100
********* Hydrology Study Control Information $* * * * * * * * * *$

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
actor (Lo if iniply *intensity) $=1.000$
San died hydrolde City of San Diego
unoff coefficients by
kunoff coefficients by rational method

Process from Point/Station 500.000 to Point/Station 500.000 to Point/Station
**** initial area evaluation ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
rnal area type
Highest elevation $=396.000(\mathrm{Ft}$.
Lowest elevation $=340.000(\mathrm{Ft}$.)
Elevation difference $=56.000(\mathrm{Ft}$)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=3.63$ min.
TC $\left.=\left[1.8^{*}(1.1-C)^{*} \text { distance(Ft. }\right)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$T C=\left[1.8^{*}(1.1-0.4500) *\left(123.000^{\wedge} .5\right) /\left(45.528^{\wedge}(1 / 3)\right]=3.63\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.450$
Subarea runoff $=1.027$ (CFS)
Total initial stream area $=0.520($ Ac. $)$

Process from Point/Station 501.000 to Point/Station 502.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation $=340.000($ Et. $)$
4. , - P/A18230IEngTRepotsLDrainagelHYDROEXISTINGIS500E100.out

Downstream point elevation $=299.800(\mathrm{Ft}$.)
Channel length thru subarea $=1715.000($ Ft. $)$
Channel base width $=12.000$ (Ft.
Slope or ' Z ' of left channel bank $=1.000$
slope or ' Z ' of right channel bank $=1.000$
Estimated mean flow rate at midpoint of channel
Maximum depth of channel $=1.000$ (Et.
Flow (q) thru subarea $=\quad 27.858$ (CFS)
Depth of flow $=0.541$ (Ft.), Average velocity $=4.104(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=13.083(\mathrm{Ft}$.
Flow Velocity $=4.10(\mathrm{Ft} / \mathrm{s}$
Travel time $=6.96 \mathrm{~min}$.
Time of concentration $=11.96 \mathrm{~min}$.
Critical depth $=0.543($ Et.)
decimal fraction soil group
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfall intensity $=\quad 3.162(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=38.655$ (CFS) for 27.170 (AC.)
Total runoff $=\quad 39.682$ (CFS) Total area $=\quad 27.69$ (AC.)
End of computations, total study area $=$

:14182:30:EngrRepotisDrainage HY DROEXXISTINGIS600E100.out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study
Date: 08/30/17
PROJECT CANTERA
EXISTING CONDITIONS
S600E100

Program License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) = 1.000
Only used if inside City of San Diego
San
Runoff coefficients by rational method
```

++
Process from Point/Station 600.000 to Point/Station
Process from Point/Station ${ }_{* * *}$ INITIAI AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Initial subarea flow distance $=74.000(\mathrm{Ft}$.
Highest elevation $=412.000(\mathrm{Ft}$)
Elevation difference $=2.000$ (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=7.23 \mathrm{~min}$.
$\left.\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) * \text { distance (Et. }\right)^{\wedge} .5\right) /\left(\%\right.$ slope $\left.^{\wedge}(1 / 3)\right]$
$T C=\left[1.8^{*}(1.1-0.4500) *\left(74.000^{\wedge} .5\right) /\left(2.703^{\wedge}(1 / 3)\right]=7.23\right.$
Rainfall intensity $(I)=3.801(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.450$
Subarea runoff $=0.496(\mathrm{CES})$
Total initial stream area $=\quad 0.290(\mathrm{Ac}$.

- +++++++++++++++++サ+++
Process from Point/Station 601.000 to Point/Station
Process from Point/Station $\quad 601.000$
$* * *$ IMPROVED CHANNEL TRAVEL TIME
Upstream point elevation $=$
Downstream point elevation $=$
$=210.000($ Ft. $)$
$225.000(F t$.

:14182:30 EngIRepots Drainagel H YOROEXISTINGIS800E100.ou

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Sational method hydrology program based on Rational Hydrology Study Date: 10/16/18

PROJECT CANTERA
EXISTING CONDITION
S800E100
********* Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-1b) input data units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
nly used if inside City of San Diego
unoff
Runoff coefficients by rational method

Process from Point/Station 801.000 to Point/Station 801.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
RURAL (greater than 0.5 Ac, 0.2 ha) area type]
Highest elevation $=430.000$ (Ft .)
Lowest elevation $=428.000(\mathrm{Ft}$.
Elevation difference $=2.000(\mathrm{Et}$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=7.87 \mathrm{~min}$.
$\left.\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) * \text { distance (Ft. }\right)^{\wedge} .5\right) /(\%$ slope $(1 / 3)]$
$T C=\left[1.8^{*}(1.1-0.4500)^{*}\left(82.000^{\wedge} .5\right) /\left(2.439^{\wedge}(1 / 3)\right]=7.87\right.$
Rainfall intensity (I) $=3.682(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.450$
Subarea runoff $=$ 0.596 (CFS)

Total initial stream area $=0.360$ (Ac.)
$++++++++++++$
rocess from Point/Station 802.000 to Point/Station
803.000

Jpstream point elevation $=$ 428.000(Ft.
Downstream point elevation $=298.000(\mathrm{Ft}$.

P:418230IEngrReportSDrainageHYDROIEXISTINGIS800E100,out

Channel length thru subarea $=2000.000(\mathrm{Ft}$.)
Channel base width
$12.000(\mathrm{Ft}$.
lope or ' Z ' of left channel bank $=1.000$
Slope or ' Z ' of right channel bank $=1.000$
Estimated mean flow rate at midpoint of channel
Maximum depth of channel $=1.000$ (Ft.)
Flow (q) thru subarea $=\quad 21.132$ (CFS)
Depth of flow $=0.337$ (Ft.), Average velocity $=5.078(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=12.675(\mathrm{Ft}$.
Flow Velocity $=5.08(\mathrm{Ft} / \mathrm{s})$
Travel time $=6.56 \mathrm{~min}$.
Time of concentration $=14.44 \mathrm{~min}$.
Critical depth $=0.453(\mathrm{Ft}$
ndaing areation soil
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfall intensity $=\quad 2.948(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=$ 32.887 (CFS) for 24.790 (Ac.)

Total runoff $=33.483$ (CFS) Total area $=\quad$. $25.15(\mathrm{Ac}$.

Process from Point/Station 803.000 to Point/Station
803.000

Jpstream point elevation $=298.000($ Ft. $)$
Upstream point elevation $=\quad 298.000$ (Ft.)
Channel length thru subarea $=\begin{gathered}253.000 \text { (Ft.) } \\ 4016.000(F t .)\end{gathered}$
Channel base width $=\quad 6.000$ (Ft.)
Slope or ' Z ' of left channel bank $=1.000$
Slope or ' Z ' of right channel bank $=1.00$
Estimated mean flow rate at midpoint of channel $=71.194$ (CFS)
Manning's ' N ' $=0.020$
Maximum depth of channel $=2.000(\mathrm{Ft}$.)
Elow (q) thru subarea $=71.194$ (CFS)
Depth of flow $=1.274$ (Ft.), Average velocity $=7.681(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=8.548(\mathrm{Ft}$.)
low velocity $=8.71 \mathrm{~min}$.
Time of concentration $=23.15 \mathrm{~min}$.
Critical depth $=\quad 1.500($ Et.)
Adding area flow to channel
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type
Rainfall intensity $=\quad 2.411(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.450$ Subarea runoff $=\quad 61.462$ (CFS) for 56.650 (AC.)
Total runoff $=\quad 94.945(\mathrm{CFS})$ Total area $=\quad 81.80$ (AC.)
End of computations, total study area $=$

Printed: 10/24/2018 10:33:18 AM AM
Modified: 10/16/2018 3:04:45 PM PM
Page 1 of 2

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
Rational method hydrology program based on
an Diego County Flood Control Division 1985 hydrology
Rational Hydrology Study
Date: $08 / 31 / 17$

```
PROJECT CANTERA
EXISTING CONDITIONS
```

S900E100

Program License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
nglish (in-lb) input data Units used
nglish (in) rainfall data used
```

Standard intensity of Appendix I-B used for year and Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
only used if inside City of San Diego
unoff coefficients by rational method used
+++
Process from Point/Station 900.000 to Point/Station 901.000
$* * * *$ INITIAL AREA EVALUATION $* * * *$

Decimal fraction soil group $A=0.00$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Highest elevation $=395.000(F t$.
Lowest elevation $=372.000(\mathrm{Ft}$.
Elevation difference $=23.000$ (Ft.
Time of concentration calculated by the urban
areas overland flow method (App $X-C)=11.13 \mathrm{~min}$.
$C=\left[1.8^{*}(1.1-\mathrm{C})^{\star}\right.$ distance (Ft.)^. 5) (\% slope ^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.4500)^{*}\left(330.000^{\wedge} .5\right) /\left(6.970^{\wedge}(1 / 3)\right]=11.13\right.$
Rainfall intensity (I) $=\quad 3.246(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($Q=$ KCIA) is $C=0.450$
Subarea runoff $=0.336$ (CPS)
Total initial stream area $=\quad 0.230(\mathrm{Ac}$.
Process from Point/Station 901.000 to Point/Station $\quad 902.000$
$* * * *$ IMPROVED CHANNEL TRAVEL TIME $* * * *$

P:4182:30 EngrIReporsi Drainage IHYDROLEXISTINGIS900E 100:out

Channel length thru subarea $=139.000(\mathrm{Ft}$.) Channel base width \qquad $=139.0$
$5.000(\mathrm{Et}$.
slope or '2' of left channel bank $=1.000$
Slope or ' Z ' of right channel bank $=1.00$
Estimated mean flow rate at midpoint of chan
Manning's 'N' $=0.035=1.000(\mathrm{Ft}$.
Flow (q) thru subarea $=0.614$ (CNS)
Depth of flow $=0.040(\mathrm{Ft}$.$) , Average velocity =3.022(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=5.081$ (Ft.)
Flow Velocity $=3.02(\mathrm{Ft} / \mathrm{s})$
Travel time $=0.77 \mathrm{~min}$.
Time of concentration $=11.89 \mathrm{~min}$.
Critical depth $=\quad 0.077(F t$.
Adding area flow to channel
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfall intensity $=\quad 3.168(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=0.542$ (CFS) for $0.380(A C$.
Total runoff $=0.878(\mathrm{CFS})$ Total area $=0.61(\mathrm{Ac}$.

Process from Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Time of concentration $=11.89 \mathrm{~min}$.
Rainfall intensity $=\quad 3.168(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ CIA, $C=0.450$
Subarea runoff $=1.326$ (CFS) for $0.930(A C$.
Total runoff $=\quad 2.204$ (CFS) Total area $=(\mathrm{AC}$.) 1.54(Ac.)
+++
Process from Point/Station 902.000 to Point/Station
Process from Point/Station 902.000

Upstream point elevation $=320.000(E t$.
Downstream point elevation $=299.000(\mathrm{Ft}$.)
Channel length thru subarea $=1382.000(\mathrm{Ft}$.
Channel base width $=6.000(F t$.
Slope or 'Z' of left channel bank $=1.000$
Slope or 'Z' of right channel bank $=1.000$
Estimated mean flow rate at midpoint of channel = 6.440 (CPS)
Manning's ' N ' $=0.025$
$\begin{aligned} & \text { Maximum depth of channel } \\ & \text { Flow (q) thru subarea }=\end{aligned}=\frac{2.000(F t .)}{6.440(\mathrm{CFS})}$
Flow (q) thru subarea $=\quad \begin{aligned} & 6.440(\mathrm{CFS}) \\ & \text { Depth of flow }=0.317(\mathrm{Ft} .), \text { Average velocity }=3.214(\mathrm{Ft} / \mathrm{s})\end{aligned}$
Channel flow top width $=\quad 6.634$ (Ft.$)$
Flow Velocity $=3.21(\mathrm{Ft} / \mathrm{s})$
Travel time $=7.17 \mathrm{~min}$.
Time of concentration $=19.06 \mathrm{~min}$.
Critical depth $=0.324(E t$.
Adding area flow to channel
Decimal fraction soil group $A=0.000$

Printed: 10/24/2018 10:33:18 AM AM
Modified: 8/312017 8:31:05 AM AM
Page 1 of 4

P:1482.30E EngTReportsDrainagelHYDROEXXSTINGIS900E100.out

Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
dRunat iraction soll group $\mathrm{D} \cdot 1.000$
號
作 100.0 year storm
, 7 . 20 (CFS) for Rational method, $\mathrm{Q}=$ KCIA, $\mathrm{C}=0.450$
Total runoff $=\quad 9.224(C F S)$ Total area $=$ (AC.) $7.46(\mathrm{Ac}$.

process from Point/Station \qquad

Decimal fraction soil group $A=0.000$

Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
ecimal fraction soil group $D=1.000$
RURAL (greater than $=$ ac, 0.2 ha) area typel
ime of concensity $=2.635(\mathrm{In} / \mathrm{H}$
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{LKCIA}, \mathrm{C}=0.450$ Subarea runoff $=10.021$ (CFS) for $8.450(\mathrm{AC})$.15.91 (Ac.)
Total runoff =
19.245(CFS) Total area $=$
15.91 (AC.)

905.000 to Point/Station
 908.000

Process from Point/Station
(pstrean point elevation $=0$
Upstream point elevation $=299.000(\mathrm{Ft}$.
Downstream point elevation $=240.000$ (Ft.)
Cannel base width $=$ 6.000(Ft.)
Channel base width $=\quad 6.000$ (Ft.
slope or ' Z ' of right channel bank $=1.000$
Estimated mean flow rate at midpoint of channel $=42.440$ (CFS)
Manning's ' N ' $=0.020$
Maximum depth of channel $=1.000$ (Et.
Flow(q) thru subarea $=42.440$ (CFS)
Depth of flow $=0.774(\mathrm{Ft}$.$) , Average velocity =8.095(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=7.548(\mathrm{Ft}$.
Flow Velocity $=8.09(\mathrm{Ft} / \mathrm{s})$
Travel time $=5.65 \mathrm{~min}$.
fime of concentration $=24.71 \mathrm{~min}$
Adding area flow to channel
Adding area flow to channel
ecimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Rainfall intensity $=2.334(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ Subarea runoff $=40.280(C F S)$ for $38.350(A C$.
Total runoff $=\quad 59.525($ CFS $)$ Total area $=$ (AC.) 54.26(Ac.)

Process from Point/Station \qquad 907.000 to Point/Station
908.000

* Subabea fiow addition

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.00$

P:14182,30EngrRepots Drainage IHYDROEXISTINGIS900E 100 out

Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$) area type]
Rainfall intensity $=\quad 2.334(\mathrm{In} / \mathrm{Hr})$ for
Runoff coefficient used for sub-area, Rational 100.0 year storm $=0.450$ Subarea runoff $=\quad 9.022$ (CFS) for $\quad 8.590$ (AC.)
68.548(CFS) Total area
62.850 (AC.)

Abstract

APPENDIX 3 Proposed Conditions 100-year Rational Method Computer Output

P:14182.30 EngrRepporis DrainagelHYOROPROPOSED11000P 100:out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on Rational Hydrology Study

Date: 10/03/18
PROJECT CANTERA
PROROSED CONDITIONS
1000 P 100

Program License Serial Number 4049

```
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and Elevation 0-1500 feet
Factor (to multiply * intensity) \(=1.000\)
Only used if inside City of San Diego
Runoff coefficients by rational method
```

Process from Point/Station $+4+4++,+\frac{1}{2}$ 1023.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Highest elevation $=315.300(\mathrm{Ft}$
Hist
Highest elevation $=315.300(\mathrm{Ft}$.)
Elevation difference $=\quad 0.800(\mathrm{Ft}$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=2.11 \mathrm{~min}$.
$T C=\left[1.8^{*}(1.1-C)^{*}\right.$ distance (Ft.)^.5)/(\% slope^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.9500)^{*}\left(68.000^{\wedge} .5\right) /\left(1.176^{\wedge}(1 / 3)\right]=2.11\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=4.389(\mathrm{In} / \mathrm{Hr}$) for a 100.0 year storm Effective runoff coefficient used for area ($Q=\mathrm{KCIA}$) is $\mathrm{C}=0.950$ Subarea runoff $=0.417$ (CFS)
Total initial stream area $=0.100(\mathrm{Ac}$.
$+4+++++++++++++++++++++4$ **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation $=314.500(\mathrm{Ft}$.

P:4182:301EngrReportS Drainage HYYDROPROPOSED 1000 P 100.0 out

End of street segment elevation $=305.800(\mathrm{Ft}$.
Length of street segment $=782.000$ (Ft.)
idth of half street (curb to crown) $=26.000(\mathrm{In}$.)
Distance from crown to crossfall grade break $=10.000$ (Ft.
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
slope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500$ (In.
Manning's N in gutter $=0.0150$
Maning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
stimated mean flow rate at midpoint of street $=$ 2.460(CFS)
Halfstreet flow width $=10.629(\mathrm{Ft}$.
Halfstreet flow width $=10.62$
Flow velocity $=\quad 2.05(\mathrm{Ft} / \mathrm{s})$
Travel time $=6.36$ min. $\quad T C=11.36 \mathrm{~min}$.
Adding area flow to street
$=0.000$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type $\quad 3.222(\mathrm{In} / \mathrm{Hr})$ for
Rainfall intensity $=\quad 3.222(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Subarea runofe $=2.999$ (CFS) for 0.980 (Ac.)
Street flow at end of street $=\begin{array}{r}3.416(\mathrm{CFS}) \\ \text { Total area }= \\ 3.416(\mathrm{CFS})\end{array}$
Half street flow at end of street $=\quad 3.416$ (CFS)
Depth of flow $=0.338$ (Ft.), Average velocity $=2.212(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=12.136$ (Ft.)

Process from Point/Station 1025.000 to Point/Station
**** SUBAREA FTOW ADDTTION
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 11.36 \mathrm{~min}$.
Rainfall intensity $=\quad 3.222(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCLA}, \mathrm{C}=0.550$ Subarea runoff $=0.762$ (CFS) for 0.430 (Ac.)
Total runoff $=\quad 4.178$ (CES) Total area $=\quad 1.51$ (Ac.)

Process from Point/Station 1026.000 to Point/Station
**** SUBAREA FLOW ADDITION
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 11.36 \mathrm{~min}$.
Rainfall intensity $=\quad 3.222(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm

P:4182301EngrRepots DrainagelHYOROPROPOSED1000P 100.out

Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Subarea runoff $=\quad 0.851$ (CFS) for $0.480(\mathrm{Ac})$ Total runoff $=5.029$ (CFS) Total area $=$

Process from Point/Statio \qquad 005.000 to Point/Station subarea fiow additio 1004.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 11.36 \mathrm{~min}$.
Rainfall intensity $=\quad 3.222(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ 6.905 (CES) $1.110(\mathrm{Ac}$.)

Total runoff $=6.995(\mathrm{CES})$ Total area $=\quad 3.10(\mathrm{Ac}$.

Process from Point/Station 1004.000 to Point/Station
$* * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) $* * * *$
1003.000

Upstream point/station elevation $=305.500$ (Ft.)
Downstream point/station elevation $=302.500(\mathrm{Ft}$.
Pipe length $=24.50(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
$\begin{array}{ll}\text { No. Of pipes }=1 & \text { Required pipe flow } \\ \text { Nearest computed pipe diameter } & = \\ 12.00(\mathrm{In} \text {. } & \text { (CFS) }\end{array}$
Nearest computed pipe diameter $=612.00$ (In.)
Calculated 1 ndividual pipe flow $=$ 6.995(CFS)
Flow top width inside pipe $=11.97$ (In.
Critical depth could not be calculated.
Pipe flow velocity $=16.33(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.03 \mathrm{~min}$
Time of concentration $(T C)=11.39 \mathrm{~min}$.
+++
Process from Point/Station 1004.000 to Point/Station 1003.000 t*** CONFLUENCE OF MINOR STREAMS $* * * *$

```
Along Main Stream number: I in normal stream number 
Stream flow area = 3.100(Ac.)
6.995(CFS)
ime of concentration = 11.39 min.
Rainfall intensity = 3.219(In/Hr)
```

. 000 to Point/Station
*** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
INDUSTRIAL area type
Initial subarea flow distance $=$
Highest elevation $=322.500(\mathrm{Ft}$.
Lowest elevation $=322.000$ (Ft.)
Elevation difference $=0.500$ (Et.)
Time of concentration calculated by the urban

PL4182.30EngrReportsDanageUHYDRO PROPOSED1000P100.0u

areas overland flow method (App X-C) $=7.71 \mathrm{~min}$
$C=\left(1.8 *(1.1-C)\right.$ distance (Ft.) ${ }^{\circ}$. $) /(8$ slope $(1 / 3)]$
$C=11.8 *(1.1-0.9500) *($ ($3.710(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm ($\mathrm{F}=\mathrm{KCIA}$) is $\mathrm{C}=0.950$
0.634 (CES)
0.180 (Ac.)
process from Point/Station 1002.000 to Point/Statio
*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITTON ****

Top of street segment elevation $=322.000$ (Ft.

End of street segment elevation $=303.000(\mathrm{Ft}$.
Length of street segment $=343.000$ (Ft.
Tidth of half street (curb to crown) $=20.00$ (In.)
Distance from crown to crossfall grade break $=18.000$ (Ft .
Slope from gutter to grade break (v/hz) $=0.063$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000(\mathrm{Ft}$.
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=2.000$ (Ft.
Gutter hike from flowline $=2.000$ (In.)
Manning's N in gutter $=0.0170$
Manning's N from gutter to grade break $=0.0170$
Manning's N from grade break to crown $=0.0170$
Estimated mean flow rate at midpoint of street $=$
Depth flow $=0.297(\mathrm{Ft})$, Avera $=4.333(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=8.528(F t$.
Travel time $=1.32 \mathrm{~min} . \quad \mathrm{TC}=9.03 \mathrm{~min}$
Adding area flow to stree
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
Rainfall intensity $=3.501(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.700$ Subarea runoff $=\quad 4.264$ (CFS) for $\quad 1.740$ (Ac.)
otal runoff $=$ 4.899(CFS) Total area $=$ (AC. $\quad 1.92$ (AC.)
Street flow at end of street $=\quad 4.899$ (CFS
Depth of flow $=0.320(\mathrm{Ft}$.$) , Average velocity =4.613(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=9.670$ (Et.

Process from Point/Station 1002.000 to Point/Station S ****
003.000

Along Main Stream number: 1 in normal stream number 2
Stream flow area $=\quad 1.920$ (Ac.)
Runoff from this stream $=04.899$ (CFS)
Rainfall intensity $=3.9 .03 \mathrm{~min}$.
Summary of stream data:
No
low rate
TC
(min)
Rainfall Intensity
No
(CES)
(n / Hr)

Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:12:27 PM PM
Page 3 of 8

Printed: 10/24/2018 10:37:59 AM AM
Modified: 1013/2018 1:12:27 PM PM

1	6.995	11.39				3.219	
2	4.899	9.03				3.501	
(max (1)	=						
	1.000	*	1.000	*	$6.995)$	+	
	0.919	*	1.000	*	4.899)	$+$	11.500
Qmax (2)	$=$						
	1.000	*	0.793	*	$6.995)$		
	1.000	*	1.000	*	4.899)	+ $=$	10.446

Total of 2 streams to confluence:
Flow rates before confluence point:
6.995 4.899

Maximum flow rates at confluence using above data:
Area of streams before confluence
Results of confluence: 92
Total flow rate $=11.500$ (CFS)
Time of concentration $=11.500$ (CES $) \mathrm{min}$
Effective stream area after confluence $=\quad 5.020(\mathrm{Ac}$.

Process from Point/Station 1003.000 to Point/Station
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area $=$
Bunoff from this strean
Runoff from this stream $=$
Rainfall intensity $=3.11 .39 \mathrm{~min}$.
Program is now starting with Main Stream No. 2

朝
**** INITIAL AREA EVALUATION ****

```
Decimal fraction soil group A =0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Initial subarea flow distance = 223.000(Ft.)
Highest elevation = 310.600(Ft.)
Elevation difference = 1.600(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 12.01 min.
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.7000)* (223.000^.5)/( 0.717^(1/3)]= 12.01
Rainfall intensity (I) = 323.157(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area ( }Q=\textrm{KCIA})\mathrm{ is C = 0.700
Subarea runoff = 1.216(CES)
Total initial stream area =
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Top of street segment elevation \(=309.000(\mathrm{Ft}\).
nd of street segment elevation \(=303.000(\mathrm{Ft}\). \()\)
ength of street segment \(=361.000(\mathrm{Ft}\).)
lidth of curb above gutter to crown) \(=12.0(\mathrm{In}\).)
Distance from crown to crossfall grade break \(=1.000(\mathrm{Ft}\).
slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
slope from grade break to crown ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=10.000\) (Et.)
Slope from curb to property line (v/hz) \(=0.025\)
Gutter width = 2.000 (Et.)
Gutter hike from flowline \(=2.000\) (In.
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0150\)
Manning's N from grade break to crown \(=0.0150\)
stimated mean flow rate at midpoint of street \(=\quad\) 4.519(CFS
epthtil \(3.138(\mathrm{Ft} / \mathrm{s})\)
Halfstreet flow width \(=11.461(\mathrm{Ft}\).
Flow velocity \(=3.14(\mathrm{Ft} / \mathrm{s})\)
Travel time = 1.92 min .
\(\mathrm{TC}=\)
13.93 min.

Adding area flow to stree Decimal fraction soil group \(B=0.000\) Decimal fraction soil group \(\mathrm{C}=0.000\) Decimal fraction soil group \(D=1.000\)
Rainfall intensity \(=\) 2.988(In/Hr) for
Runoff coefficient used \(2.988(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700\) Subarea runoff \(=\quad 6.255\) (CFS) for 2.990 (AC.)
Street flow at end of street \(=\quad 7.470\) (CFS)
Half street flow at end of street \(=\quad 7.470\) (CFS)
Depth of flow \(=0.402(\mathrm{Ft}\).\() , Average velocity =3.763(\mathrm{Ft} / \mathrm{s}\) Note: depth of flow exceeds top of street crown. Elow width (from curb towards crown) \(=12.000(\mathrm{Ft}\).
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1015.000 to Point/Station 1014.000
\(* * * *\) SUBAREA FLOW ADDITION \(* * *\)
**** Ss from Point/Station
Decimal fraction soil group \(=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(D=1.000\)
COMMERCTAL area
Time of concentration \(=\quad 13.93 \mathrm{~min}\)
Rainfall intensity \(=2.988(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.850\) Subarea runoff \(=\quad 2.210\) (CFS) for 0.870 (Ac.
Total runoff \(=\quad 9.680(\) CFS \()\) Total area \(=\quad\) 4.41(AC.)
\(+++++++++++++++++++++++++++++++++++++++++4+4++++++++++++++++++4+++++\)
Process from Point/Station 1014.000 to Point/Station
1020.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data insid
Stream flow area \(=\quad 4.410\) (Ac.)
Runoff from this stream \(=9.680\) (CFS
Time of concentration \(=13.93 \mathrm{~min}\).

Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:12:27 PM PN

\section*{P:4482:301EngrReportsDrainageHYOROPROPOSED11000P100.out}


\section*{P:A4182.30EngrReporsibrainagelHYOROPROPOSED11230P100.out}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/03/18

PROJECT CANTERA
PROPOSED CONDITIONS
1230P100
\(\qquad\)

Program License Serial Number 4049
\begin{tabular}{l} 
Rational hydrology study storm event year is 100.0 \\
English (in-lb) input data Units used \\
English (in) rainfall data used \\
Standard intensity of Appendix I-B used for year and \\
Elevation \(0-1500\) feet \\
Factor (to multiply \(*\) intensity) \(=1.000\) \\
Only used if inside City of San Diego \\
San Diego hydrology manual 'C' values used \\
Runoff coefficients by rational method \\
\multicolumn{1}{l}{} \\
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \\
Process from Point/Station 3010.000 to Point//Station 3010.000 \\
**** USER DEFINED ELOW INFORMATION AT A POINT ****
\end{tabular}
** USER DEFINED FLOW INFORMATION AT A POINT ****
User specified 'C' value of 0.430 given for subarea
Rainfall intensity (I) \(=\)
3.103 (In/Hr) for a 100.0 year storm Rainfall intensity (I) \(=\) as follows:
\(\begin{array}{ll}\text { User specified values are as follows: } \\ \mathrm{TC}=12.59 \mathrm{~min} \text {. Rain intensity }= & 3.10(\mathrm{In} / \mathrm{Hr})\end{array}\)
\(\begin{array}{lll}\mathrm{TC}=12.59 \mathrm{~min} . & \text { Rain intensity }= & 3.10(\mathrm{In} / \mathrm{Hr}) \\ \text { Total area }= & 13.980(\mathrm{Ac} .) & \text { Total runoff }= \\ 24.300(\mathrm{CFS})\end{array}\)

Process from Point/Station \(\quad 3010.000\) to Point/Station
1021.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

\section*{upstream point/station elevation \(=302.000(\mathrm{Fc}\). . \\ Pipe length \(=47.00(E t\).\() \quad Manning's \mathrm{N}=0.013\)}

No. of pipes \(=1\) Required pipe flow \(=24.300\) (CFS)
Nearest computed pipe diameter \(=\quad 24.00(\) In. \()\)
Calculated individual pipe flow \(=24.300\) (CFS
Normal flow depth in pipe \(=15.30(\mathrm{In}\).
Flow top width inside pipe \(=23.07\) (In.
Pipe flow velocity \(=11.48(\mathrm{Et} / \mathrm{s})\)
Travel time through pipe \(=0.07 \mathrm{~min}\).
Time of concentration \((T C)=12.66 \mathrm{~min}\)


\section*{Process from Point/Station 1021.000 to Point/Station \\ 1022.000}
*** PIPEFIOW TRAVEI TTME (Program estimated size) ****
```

pstream point/station elevation $=301.000(\mathrm{Ft}$.)
ipe length $=465.00$ (Et.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=24.300$ (CFS)
Nearest computed pipe diameter $=24.00$ (In.)
Calculated individual pipe flow $=24.300$ (CFS
Normal flow depth in pipe $=16.52$ (In.)
low top width inside pipe $=22.23(\mathrm{In}$.
Critical Depth $=20.91$ (In.)
Pipe flow velocity $=10.54(\mathrm{Ft} / \mathrm{s})$
ravel time through pipe $=0.74 \mathrm{~min}$
Time of concentration (TC) $=13.39 \mathrm{~min}$.
rocess from Point/Station 1021.000 to Point/Station 1022.000
*** CONFLUENCE OF MINOR STREAMS ****

```
Along Main Stream number: 1 in normal stream number 1
stream flow area \(=13.980\) (Ac.)
Runoff from this stream = 24.300 (CFS
Time of concentration \(=13.39 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.033(\mathrm{In} / \mathrm{Hr})\)
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4\) rocess from Point/Station 2012.000 to Point/Station
*** USER DEFINED FLOW INFORMATION AT A POINT ****

*** CONFLUENCE OF MINOR STREAMS ****
Stream flow area \(=\quad 8.810(\mathrm{Ac}\).

\section*{W418230E Eng|Reports Drainage HYDROPRROPOSED11230P100.out}

Runoff from this stream \(=\quad 18.300\) (CES)
Time of concentration \(=\)
12.86 min.
Time of concentration \(=\)
Rainfall intensity \(=\)
\(3.079(\mathrm{In} / \mathrm{Hr})\)

*** USER DEfined flow information at A point ****
User specified 'C' value of 0.520 given for subarea
Rainfall intensity (I) \(=\)
2.991 (In/Hr) for a 100.0 year storm User specified values are as follows.
\(\begin{array}{lll}\mathrm{TC}= & 13.90 \mathrm{~min} . & \text { Rain intensity }= \\ \text { Total area }= & 2.99(\mathrm{In} / \mathrm{Hr}) \\ 12.150(\mathrm{Ac} .) & \text { Total runoff }= & 24.300 \text { (CFS) }\end{array}\)
 Process from Point/Station 1020.000 to Point/Station **** PIPEFIOW TRAVEI TTME (Program estimated size) ****

Upstream point/station elevation \(=294.000(\) Ft. \()\)
Downstream point/station elevation \(=293.000(\mathrm{Ft}\).

Nearest computed pipe diameter \(=24.00\) (In.)
Calculated individual pipe flow \(=24.300\) (CFS)
Normal flow depth in pipe \(=16.92\) (In.)
Flow top width inside pipe \(=21.89\) (In.)
Critical Depth \(=20.91\) (In.)
Pipe flow velocity \(=10.26(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.10 \mathrm{~min}\).
Time of concentration \((T C)=14.00 \mathrm{~min}\)
000 to Point/Station 1022.000 *** CONEUENCE 1020.000 to Point/station 1022.000

Along Main Stream number: 1 in normal stream number 3
Stream flow area \(=12.150(\) Ac. \()\)
Runoff from this stream \(=\quad 24.300\) (CFS)
Time of concentration \(=14.00 \mathrm{~min}\).
Rainfall intensity \(=\)
Summary of stream data:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stream No. & Elow rate (CES) & \[
\underset{(\min )}{T C}
\] & \multicolumn{3}{|r|}{\[
\begin{aligned}
& \text { Rainfall Intensity } \\
& \text { (In/Hr) }
\end{aligned}
\]} \\
\hline 1 & 24.300 & 13.39 & & 3.03 & \\
\hline 2 & 18.300 & 12.86 & & 3.0 & \\
\hline 3 & 24.300 & 14.00 & & 2.9 & \\
\hline \multicolumn{6}{|l|}{Qmax (1)} \\
\hline & 1.000 * & 1.000 & 24.300) & \(+\) & \\
\hline & 0.985 * & 1.000 * & 18.300) & \(+\) & \\
\hline & 1.000 & 0.957 * & 24.300) & + = & 65.573 \\
\hline \multicolumn{6}{|l|}{\(2 \max (2)\)} \\
\hline & 1.000 * & 0.960 * & 24.300) & + & \\
\hline & 1.000 * & 1.000 & 18.300) & \(+\) & \\
\hline & 1.000 * & 0.919 * & \(24.300)\) & \(+\) & 63.957 \\
\hline \multicolumn{6}{|l|}{\(0 \max (3)\)} \\
\hline & 0.983 * & 1.000 * & \(24.300)\) & \(+\) & \\
\hline & 0.969 * & 1.000 * & 18.300) & + & \\
\hline & 1.000 & 1.000 * & 24.300) & + = & 65.927 \\
\hline
\end{tabular}

\section*{P:A182301EngrReportsDrainageHYOROPROPOSED11230P100.out}

Total of 3 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
Area of streams before confluence: 65.92
\(\begin{array}{lll}13.980 & 8.810 & 12.150\end{array}\)
Results of confluence.
otal flow rate \(=\)
65.927 (CFS

Time of concentration \(=14.001 \mathrm{~min}\).
ffective stream area after confluence \(=34.940(\mathrm{Ac}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 1022.000 to Point/Station

Upstream point/station elevation \(=293.000(\) Ft. \()\)
Downstream point/station elevation \(=289.500(\mathrm{Ft}\).
Pipe length \(=545.00(F t\).\() Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=65.927\) (CFS
Nearest computed pipe diameter \(=39.00(\operatorname{In}\).
Calculated individual pipe flow \(=\quad 65.927\) (CFS
Normal flow depth in pipe \(=31.83(\mathrm{In}\).)
Flow top width inside pipe \(=30.22\) (In.
Critical Depth \(=31.02\) (In.)
Pipe flow velocity \(=\quad 9.09(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 1.00 \mathrm{~min}\).
End of computations, total study area \(=\)
34.940 (Ac.)

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on Rational Hydrology Study Date: 10/01/18

\section*{ROPOSED CANERA \\ OOPDED CONDITIONS}

2000P100
********* Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-1b) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to \(=1.000\)
San diego hydrology City or Jan Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method

Process from Point/Station 2001.000 to Point/Station 2002.000 **** INITIAL AREA EVALUATION ****

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
MULTI - UNXTS area type
nitial subarea llow distance \(=100.000(\mathrm{Ft}\),
ighest elevation \(=310.500(\mathrm{Ft}\).
Elevation difference \(=0.500\) (Et.
Time of concentration calculated by the urban
areas overland flow method \((\) App \(X-C)=9.07 \mathrm{~min}\).
C \(=\left[1.8^{*}(1.1-C) *\right.\) distance (Ft.) .5\() /\left(8\right.\) slope \(\left.^{\wedge}(1 / 3)\right]\)
\(T C=\left[1.8^{*}(1.1-0.7000) *\left(100.000^{\wedge} .5\right) /\left(0.500^{\wedge}(1 / 3)\right]=9.07\right.\)
Rainfall intensity (I) \(=3.495\) (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area ( \(\mathrm{Q}=\mathrm{NCLI}\) ) is \(\mathrm{C}=0.70\)
Subarea runoff \(=0.269\) (CES)
rotal initial stream area \(=\quad 0.110(\mathrm{Ac}\).)
2002.000 to Point/Station 2003.000
rocess from Point/Station 

Decimal fraction soil group A \(=0.000\)
Decimal fraction soil group \(B=0.000\)

\section*{P: 4182:30 EngrRepots DrainagelHYDROPROPOSED 2000 P 100.0 u}

Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
MULTI - UNITS area type
Time of concentration \(=\quad 9.07 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.495(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700\) Sotal runoff \(=\quad 9.763\) (CFS) for \(\quad 3.990\) (AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4
Process from Point/Station
Along Main Stream number: 1 in normal stream number 1
Stream flow area =
4.100 (Ac.)
\(=\quad 10.032\) (CFS)

Time of concentration \(=9.07 \mathrm{~min}\).
Rainfall intensity \(=3.495(\mathrm{In} / \mathrm{Hr})\)
\(++++++++++++4+++++++++++++++++++++++++++++++++++++++++++++++++++++++4\)
Erocess from Point/Station 2000.000 to Point/Station
2009.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group
Initial subarea flow distance =
Highest elevation \(=310.000(\mathrm{Ft}\).
Lowest elevation \(=308.000(\mathrm{Ft}\).)
Elevation difference \(=2.000(\) Ft.)
Time of concentration calculated by the urban
areas overland flow method (App \(X-C\) ) \(=1.89 \mathrm{~min}\).
IC \(\left.=\left[1.8^{*}(1.1-C)^{*} \text { distance (Ft. }\right)^{\wedge} .5\right) /\left(\frac{\text { f }}{8}\right.\) slope^( \(\left.\left.1 / 3\right)\right]\)
\(T C=\left[1.8^{*}(1.1-0.9500)^{*}\left(86.000^{\wedge} .5\right) /\left(2.326^{\wedge}(1 / 3)\right]=1.89\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity \((I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area ( \(Q=K C I A\) ) is \(C=0.950\) Subarea runoff \(=\quad 0.417\) (CES)
Total initial stream area \(=\quad 0.100\) (Ac.)
\(+++++++++++++++++++++++++++++++++++++++++++++4+++++++++++++++++++++++\) **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION \(* * * *\)

Top of street segment elevation \(=308.000\) (Ft.)
End of street segment elevation \(=300.600(\mathrm{Ft}\).
Length of street segment \(=817.000(\mathrm{Ft}\).
Height of curb above gutter flowline \(=6.0\) (In.)
Width of half street (curb to crown) \(=26.000(\mathrm{Ft}\).)
Distance from crown to crossfall grade break \(=10.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown \((\mathrm{v} / \mathrm{hz})=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(F t\).
Slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.020\)
Gutter width \(=1.500(E t\).
Gutter hike from flowline \(=1.500\) (In.)
Manning's \(N\) in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0180\)

\section*{}

Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
2.960(CFS)

Streetflow hydraulics at midpoint of street travel.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=11.941\) (Ft.)
Flow velocity \(=1.98(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=6.89\) min.
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Rainfall intensity \(=\quad 3.169(\mathrm{In} / \mathrm{Hr})\) for \(a^{3} 100.0\) year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.95\) Subarea runoff \(=\quad 3.673\) (CFS) for 1.220 (Ac.)
Total runoff \(=4.090\) (CFS) Total area \(=1.32\) (AC.
Street flow at end of street \(=\quad 4.090\) (CFS)
Half street flow at end of street \(=4.090\) (CFS)
Depth of flow \(=0.367\) (Ft.), Average velocity \(=2.135(\mathrm{Ft} / \mathrm{s})\) Flow width (from curb towards crown) \(=13.581(F t\).
Process from Point/Station 2010.000 to Point/Station 2012.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
2012.000

Upstream point/station elevation \(=300.600(\) Ft. \()\)
Downstream point/station elevation \(=294.000\) (Ft.)
Pipe length \(=347.00(\) Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=04.090\) (CES)
Nearest computed pipe diameter \(=12.00(\mathrm{In}\). \()\)
Calculated individual pipe flow \(=4.090(C F S)\)
Normal flow depth in pipe \(=\quad 8.37(\operatorname{In}\).
Flow top width inside pipe \(=11.03(1)\)
Critical Depth \(=10.27\) (In.)
Pipe flow velocity \(=\quad 7.00(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.83 \mathrm{~min}\).
Time of concentration (TC) \(=12.71 \mathrm{~min}\)

Process from Point/Station
Along Main

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream No. & Flow rate (CFS) & \[
\underset{(\mathrm{min})}{\mathrm{TC}}
\] & & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\operatorname{In} / \mathrm{Hr})
\end{gathered}
\]} \\
\hline 1 & 10.032 & \multicolumn{2}{|l|}{9.07} & \multicolumn{3}{|c|}{3.495} \\
\hline 2 & 4.090 & \multicolumn{2}{|l|}{12.71} & \multicolumn{3}{|c|}{3.092} \\
\hline \multirow[t]{3}{*}{Qmax (1)} & \(=\) & & & & & \multirow[b]{3}{*}{12.950} \\
\hline & 1.000 * & 1.000 & * & 10.032) & + & \\
\hline & 1.000 * & 0.714 & * & 4.090) & \(+\) & \\
\hline \multirow[t]{3}{*}{Qmax (2)} & \(=\) & & & & & \multirow[b]{3}{*}{12.964} \\
\hline & 0.885 * & 1.000 & * & 10.032) & + & \\
\hline & 1.000 * & 1.000 & * & 4.090) & & \\
\hline
\end{tabular}

P:14182301EngrReportSDrainageLHYDROPROPOSED 2000P 100.0ut

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data:
Area of streams before confluence:
sults \(4.100 \quad 1.320\)
Total flow rate \(=12.964\) (CFS)
rime of concentration \(=12.713 \mathrm{~min}\).
ffective stream area after confluence \(=\quad 5.420(\mathrm{Ac}\).
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2012.000 to Point/Station 2012.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group
RURALeater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
Time of concentration \(=\quad 12.71 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.092(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\) Subarea runoff \(=1.308\) (CFS) for 0.940 (Ac.)
Total runoff \(=14.272\) (CFS) Total area \(=\quad 6.36\) (Ac.)

Process from Point/Station
2013.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
ecimal fraction soll group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
Time of concentration \(=12.71 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.092(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.450\) Subarea runoff \(=\quad 1.739\) (CFS) for \(\quad 1.250\) (Ac.)
Total runoff \(=16.011(\mathrm{CFS})\) Total area \(=\quad 7.61(\mathrm{Ac}\).
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 2014.000 to Point/Station *
ecimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soll group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
ime of concentration \(=\quad 12.71 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.092(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCLA}, \mathrm{C}=0.450\)
Subarea runoff
0.810 (AC.)
17.138 (CFS) Total area \(=\quad 8.42(\mathrm{Ac}\).
\(+++++++++++\)
Process from Point/Station
2015.000 to Point/Station
2012.000

Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/1/2018 5:28:17 PM PM
Page 4 of 5

\section*{}
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group \(A=0.000\) Decimal fraction soil group \(\mathrm{B}=0.000\) Decimal fraction soil group \(C=0.000\) Decimal fraction soil group \(D=1.000\) [INDUSTRIAL area type
Time of concentration \(=12.71 \mathrm{~min}\).
Runoff coefficient used for sub-area, for a 100.0 year \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 1.146\) (CFS) for \(\quad 0.390(\mathrm{Ac}\).)
Total runoff \(=\quad 18.283\) (CES) Total area \(=\)
End of computations, total study area \(=\quad 8.810\) (Ac.)

\section*{P:14182.30 Eng R Reports DrainagelH YOROPROPOSEDI3000P 100 .out}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
\[
\begin{array}{ll}
\text { jo County Flood Control Division } & 1985 \text { hydrology } \\
\text { Rational Hydrology Study } & \text { Date: } 10 / 03 / 18
\end{array}
\]

PROJECT CANTERA
PROPOSED CONDITIONS
3000P100


Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) \(=1.000\)
Only used if inside City of San Diego
San Diego hydrology manual ' \(C\) ' values used
Runoff coefficients by rational method
+++++++++++++++++++++++++++++++++++++.000
Process
to
Point/Station
3021.002
**** INITIAL AREA EVALJATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Initial subarea flow distance \(=128.000(\mathrm{Ft}\).
Highest elevation \(=325.000(E t\).
Elevation difference \(=\quad 2.000\) (Ft.
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=9.65 \mathrm{~min}\)
\(\mathrm{TC}=\left(1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /\left(\frac{8}{8}\right.\) slope \(^{\wedge}(1 / 3)\)
\(T C=\left[1.8^{*}(1.1-0.5500)^{*}\left(128.000^{\wedge} .5\right) /\left(1.563^{\wedge}(1 / 3)\right]=9.65\right.\)
Rainfall intensity (I) \(=\quad 3.418(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area ( \(Q=\mathrm{KCIA}\) ) is \(C=0.550\) Subarea runoff \(=0.207\) (CFS)
Total initial stream area \(=0.110(A C\).
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4++++++++ Process from Point/Station 3022.000 to Point/Station

\section*{}

Length of street segment \(=253.000(5 \mathrm{EL}\).)
Height of curb above gutter flowline \(=6.0(\) In. \()\)
Distance from crown to crossfall grade break \(=1.000(\mathrm{Ft}\).)
slope from gutter to grade break (v/hz) \(=0.020\)
slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=12.000(\) Et. \()\)
Slope from curb to property line (v/hz) \(=0.025\)
Gutter width \(=2.000(\mathrm{Ft}\).
Gutter hike from flowline \(=2.000\) (In.)
Manning's N in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0150\)
Manning's N from grade break to crown \(=0.0150\)
stimated mean flow rate at midpoint of street \(=\quad 0.930\) (CFS \()\)
epth of \(110 w\). 231 ( \(\mathrm{Ft} / \mathrm{s}\) )
alfstreet flow width \(=5.249(F t\).
Travel time \(=1.82 \mathrm{~min} . \quad T C=11.47 \mathrm{~min}\)
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Rainfall intensity \(=3.210(\mathrm{In} / \mathrm{Hr})\) for ]
\(3.210(\mathrm{In} / \mathrm{Hr}\) ) for a 100.0 year storm
coerficient used for sub-area, Rational method \(Q=\) KCIA, \(C=0.550\)
Subarea runoff \(=1.359\) (CFS) for \(0.770(A C\).
Total runotf \(=\) end of street \(=\quad 1.566(\) CFS \()\)
Half street flow at end of street \(=1.566\) (CFS)
Depth of flow \(=0.266(\mathrm{Ft}\).\() , Average velocity =2.548(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=6.987\) (Ft.)

Process from Point/Station 3019.000 to Point/Station
3018.000

位
Upstream point/station elevation \(=318.000(F t\).
Downstream point/station elevation \(=317.000\) ( Et .)
lpe lengh = 1 R 1.566 (CFS)
o. of pipes \(\quad 9.00\) (In)

Calculated individual pipe flow \(=\quad 1.566\) (CFS
Normal flow depth in pipe \(=4.69(\mathrm{In}\).)
Flow top width inside pipe \(=8.99\) (In.
Critical Depth \(=6.91\) (In.)
Pipe flow velocity \(=6.73(\mathrm{Ft} / \mathrm{s})\)
rravel time through pipe \(=0.08 \mathrm{~min}\).
Time of concentration \((T C)=11.55 \mathrm{~min}\).

Process from Roint/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Decimal fraction soil gro
Time of concentration \(=11.55 \mathrm{~min}\)

\section*{P:14182,301 EngrReportsDrainage HYDROPROPOSED 13000P100.out}

Rainfall intensity
\(3.202(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year stor
Runofr coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55\) Subarea runoff \(=\quad 1.744\) (CFS) for \(\quad 0.990\) (Ac.
Total runoff \(=\quad 3.310(\mathrm{CES})\) Total area \(=1.87(\mathrm{Ac}\).
++++++++++++++++++++++++++
Process from Point/Station \(\qquad\) 3013.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
•
Time of concentration \(=\quad 11.55 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.202(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=0.793\) (CFS) for 0.450 (AC.)
Total runoff \(=\quad 4.102(C E S)\) Total area \(=\quad 2.32(\mathrm{Ac}\).

Process from Point/Station \(\qquad\) 3014.000 to Point/Station

Process from point/Station
\(* * *\) SUBAREA FLOW ADDITION 30

Decimal fraction soil group \(A=0.000\)
fraction soil group \(B=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Time of concentration \(=\quad 11.55 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.202(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.550\) Subarea runoff \(=\quad 5.0 .9(\mathrm{CFS}\) ) for 0.560 (Ac.)
Total runoff \(=\quad 5.089(C F S)\) Total area \(=\quad 2.88(\mathrm{Ac}\).
++++++++++++++++++++++++++
Process from Point/Station
3018.000 to Point/Station
3027.000

Process from Point/Station 3018.000 to Point/Station
Upstream point/station elevation \(=317.000\) (Ft.)
Downstream point/station elevation \(=309.000(\mathrm{Ft}\).)
Pipe length \(=353.00\) ( Et. ) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=5.089\) (CFS)
Nearest computed pipe diameter \(=\quad 12.00\) (In.)
Calculated individual pipe flow \(=\quad 5.089\) (CFS
Normal flow depth in pipe \(=\quad 9.33\) (In.)
Critical Depth \(=11.05\) (In.)
Pipe flow velocity \(=7.77(\mathrm{Ft} / \mathrm{s})\)

\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t\)
Process from Point/Station 3018.000 to Point/Station 3027.000
\(* * * *\) CONLLUENCE OF MINOR STREAMS \(\star * * *\)
**** CONFLUENCE OF MINOR STREAMS \(* * * *\)
Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 2.880(\mathrm{Ac}\).
Runoff from this stream \(=\quad 5.089\) (CES)
Time of concentration \(=12.31\) min.

\section*{P:448230EngrReportsDrainageiHYOROPROPOSED 3000 P 100.0 ut}

Rainfall intensity \(=3.129(\mathrm{In} / \mathrm{Hr})\)
roces
rocess from Point/Station 30
\(* * * *\)

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=1.000\)
SINGLE FAMILY area type
nitial subarea flow distance \(=50.000(\mathrm{Ft}\).
Highest elevation \(=319.000(\mathrm{Ft}\).
Lowest elevation \(=318.500\) ( Ft .)
levation difference \(=0.500(F t\).
ime of concentration calculated by the urban
reas overland flow method (App X-C) \(=\quad 7.00 \mathrm{~min}\),
\(T C=\left[1.8^{*}(1.1-0.5500) *\left(50.000^{\wedge} .5\right) /\left(1.000^{\wedge}(1 / 3)\right]=7.00\right.\)
Rainfall intensity \((I)=3.846(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area ( \(Q=\) KCIA) is \(C=0.550\) Subarea runoff \(=0.106\) (CES)
Total initial stream area \(=\)
0.050 (Ac.)

地
+++++++++++++++++++++++++++++++++1024
Process from Point/Station 3024.000 to Point/Station 3026.000
*** S
Top of street segment elevation \(=318.500(F t\).
End of street segment elevation \(=310.000(\mathrm{Ft}\).)
ength of street segment \(=377.000\) (Ft.)
Height of curb above qutter flowline \(=6.0\) (In.)
lidth of half street (curb to crown) \(=10.000(F t\).)
Distance from crown to crossfall grade break \(=1.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=12.000\) (Ft.)
lope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.025\)
Gutter width \(=2.000(\mathrm{Ft}\).
Gutter hike from flowline \(=2.000\) (In.
Maning s \(N\) from gutter to grade break \(=0.0150\)
Manning s \(N\) from grade break to crown \(=0.0150\)
Depth of flow \(=0.112\) (Ft.). Average velocity \(=0.156(\mathrm{CES})\)
streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=2.000(\mathrm{Ft}\).
Elow velocity \(=2.06(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=3.05 \mathrm{~min} . \quad T C=30.05 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
 Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 1.760\) (CFS) for 0.950 (Ac.) \(\quad 1.00\) (Ac.)
\(\begin{array}{ll}\text { Total runoff }= & 1.866(C F S) \\ \text { Street flow at end of street }= & \text { Total area }= \\ 1.866(C F S)\end{array}\)
Half street flow at end of street \(=1.866\) (CFS)
Printed: 10/24/2018 10:37:59 AM AM

Modified: 10/3/2018 1:21:54 PM PM
Page 4 of 12

\section*{P:1182301EngrReportiS rainage LHYDROIPROPOSED13000P100.out}

Depth of flow \(=0.270\) (Ft.), Average velocity \(=2.902(\mathrm{Et} / \mathrm{s})\) Flow width (from curb towards crown) \(=7.186(\mathrm{Ft}\).
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ process from Point/Station 3026.000 to Point/Station
Upstream point/station elevation \(=309.500(E t\).
Downstream point/station elevation \(=308.000(\) Ft.
Ripe length \(=25.25(\mathrm{Ft}\).) Manning's \(\mathbb{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=1.866(C F S)\)
Nearest computed pipe diameter \(=9.00\) (In.)
Calculated individual pipe flow \(=1.866\) (CFS)
Normal flow depth in pipe \(=4.30(\mathrm{In}\).)
Flow top width inside pipe \(=\quad 8.99(\mathrm{In}\).

Critical Depth \(=\quad 7.49(\) In. \()\)
Pipe flow velocity \(=\quad 8.95(\mathrm{Ft} / \mathrm{s})\)
Pipe flow velocity \(=\quad 8.95(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.05 \mathrm{~min}\).
Time of concentration \((T C)=10.09 \mathrm{~min}\).

Process from Point/Station *

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Time of concentration \(=\)
Rainfall intensity \(=\)
\(\quad 3.363(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Rainfall intensity \(=\quad 3.363(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 2.441\) (CFS) for \(\quad 1.320\) (Ac.)
Total runoff \(=\)
4.307 (CFS) Total area \(=\)
2.32 (Ac.)

Process from Point/Statio
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Along Main Stream number: 1 in normal stream number 2
Stream flow area \(=\quad 2.320\) (Ac.)}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Runoff from this stream \(=4.307\) (CFS)} \\
\hline \multicolumn{7}{|l|}{Time of concentration \(=10.09 \mathrm{~min}\).} \\
\hline \multicolumn{7}{|l|}{Rainfall intensity \(=3.363(\mathrm{In} / \mathrm{Hr})\)} \\
\hline \multicolumn{7}{|l|}{Summary of stream data:} \\
\hline Stream No. & Elow rate (CFS) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{TC} \\
& (\mathrm{~min})
\end{aligned}
\]} & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
\text { (In/Hr) }
\end{gathered}
\]} \\
\hline 1 & 5.089 & 12.31 & & \multicolumn{3}{|c|}{3.129} \\
\hline 2 & 4.307 & 10.09 & & & 3.3 & \\
\hline \multicolumn{7}{|l|}{\(Q \max (1)=\)} \\
\hline & 1.000 * & * 1.000 & * & 5.089) & + & \\
\hline & 0.930 * & * 1.000 & * & 4.307) & \(t=\) & 9.096 \\
\hline \multirow[t]{3}{*}{Qmax (2)} & & & & & & \\
\hline & 1.000 * & * 0.820 & * & 5.089) & & \\
\hline & 1.000 * & * 1.000 & & 4.307) & + = & 8.479 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point:

\(\quad\)\begin{tabular}{l}
5.089
\end{tabular}\(\quad 4.307\)
Maximum flow rates at confluence using above data:
9.096
Area of streams before confluence:
\(\begin{array}{cc}\text { Area of streams before confluence: } \\ 2.880 & 2.320\end{array}\)
Results of confluence:
Total flow rate \(=\quad 9.096(\mathrm{CFS})\)
Time of concentration \(=12.311 \mathrm{~min}\).
Effective stream area after confluence \(=5.200(\mathrm{Ac}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 3027.000 to Point/Station

Upstream point/station elevation \(=308.000(\mathrm{Ft}\).
Downstream point/station elevation \(=307.500\) (Ft.
No. of pipes \(=1\) Required pipe flow \(=9.096\) (CES
o. of pipes \(=1\) Required pipe low \(=18.00\) (In. \({ }^{\text {( }}\) (CES

Nearest computed pipe diameter \(=\quad 18.00\) (In.)
Normal flow depth in pipe \(=14.51(\mathrm{In}\).)
Flow top width inside pipe \(=14.24\) (In.
Critical Depth \(=13.99(\) In. \()\)
ipe flow velocity \(=\quad 5.96(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.18 \mathrm{~min}\).
Time of concentration \((T C)=12.49 \mathrm{~min}\).
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
following data inside
Stream flow area \(=\quad 5.200\) (Ac.)
Runoff from this stream \(=\quad 9.096\) (CFS
Time of concentration \(=12.49 \mathrm{~min}\).
Rainfall intensity \(=3.112(\operatorname{In} / \mathrm{Hr}\)
Program is now starting with Main Stream No. 2
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 3011.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
initial subarea flow distance \(=155.000\) (Ft.
Highest elevation \(=336.000(\mathrm{Ft}\).
Lowest elevation \(=328.000(\mathrm{Ft}\).)
Elevation difference \(=8.000\) (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=7.13 \mathrm{~min}\)
\(T C=\left[1.8^{*}(1.1-0.5500)^{*}\left(155.000^{\wedge} .5\right) /\left(5.161^{\wedge}(1 / 3)\right]=7.13\right.\)
Rainfall intensity \((I)=3.819(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm ffective runoff coefficient used for area ( \(Q=K C I A\) ) is \(C=0.550\) Subarea runoff \(=0.546\) (CFS)
Total initial stream area \(=\)
0.260 (AC.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3012.000 to Point/Station 3015.000
Process from Point/Station 3012.000 to Point/Station
\(\begin{array}{ll}\text { Top of street segment elevation }= & 328.000 \text { (Ft. } \\ \text { End of }\end{array}\)
End of street segment elevation \(=320.500\)
Length of street segment \(=388.000\) (Ft.)
Height of curb above gutter flowline \(=\quad 6.0(\mathrm{In}\).
Width of half street (curb to crown) \(=10.000\) ( Ft .
Distance from crown to crossfall grade break \(=1.000\) (Ft.)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=12.000\) (Ft.)
Slope from curb to property line ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.025\)
Gutter width \(=2.000(\mathrm{Ft}\).
Gutter hike from flowline \(=2.000\) (In.)
Manning's \(N\) in gutter \(=0.0150\)
hanning's from grade break to break \(=0.0150\)
Estimated mean flow rate at midpoint of street \(=\)
Depth of flow \(=0.282(\mathrm{Ft}\).), Average velocity \(=\)
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width \(=7.746\) (Ft.)
Elow velocity \(=2.77(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=2.33 \mathrm{~min} . \quad \mathrm{TC}=9.46 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE EAMILY area type
(SINGLE EAMILY area type \(3.442(\mathrm{In} / \mathrm{Hr})\) for
100.0 year storm

Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\)
Subarea runoff \(=\quad 2.651\) (CFS) for \(1.400(\mathrm{Ac}) \quad .1.66(\mathrm{Ac}\).
Street flow at end of street \(=\quad 3.197\) (CFS)
1.66 (AC.)

Half street flow at end of street \(=3.197\) (CFS
Depth of flow \(=0.318(\mathrm{Ft}\).\() , Average velocity =3.071(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=9.562\) (Ft.)

Process from Point/Station \(\quad 3015.000\) to Point/Station
+++++++++
3017.000

\section*{Upstream point/station elevation \(=320.000(\mathrm{Ft}\).}

Downstream point/station elevation \(=319.500\) (Ft.
ipe length \(=1\) Required. Manning's \(\mathrm{N}=0.013\)

Calculated individual pipe flow \(=3.197\) (CFS)
Normal flow depth in pipe \(=4.83(I n\).
Flow top width inside pipe \(=8.98\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=13.23(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\)
Time of concentration \((T C)=0.01 \mathrm{~min}\).
9.47 min .

Process from point/station
**** SUBAREA FLOW ADDITION
3016.000 to Point/Station
3017.000

P:14182.30EngrReportsDrainage \(H Y\) DROPROPOSED 13000 P 100 .out

\section*{Decimal fraction soil group \(A=0.000\)}
ecimal fraction soil group \(B=0.000\)
decimal fraction soil group \(D=1.000\)
SINGIE FAMILY area type
Time of concentration \(=\quad 9.47 \mathrm{~min}\)
Rainfall intensity \(=\quad 3.442(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.550\) Subarea runoff \(=\quad 2.347\) (CFS) for 1.240 (AC.)
rotal runoff \(=\) 5.544(CFS) Total area \(=\) 2.90(Ac.)

Process from Point/Station 3017.000 to Point/Station
\(++++++++\)
*** PIPEFIOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=319.500(F t\).
Downstream point/station elevation \(=312.000\) ( Ft .)
Pipe length \(=450.00\) (Ft.) Manning's \(\mathrm{N}=5.013(\mathrm{CFS})\)
Nearest computed pipe diameter \(=15.00\) (In.)
Calculated individual pipe flow \(=5.544\) (CFS)
Normal flow depth in pipe \(=\) 8.94(In.)
Flow top width inside pipe \(=14.72\) (In.
Critical Depth \(=11.45\) (In.)
ipe flow velocity \(=\quad 7.27(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 1.03 \mathrm{~min}\)
ime of concentration \((T C)=10.50 \mathrm{~min}\)
```

Process from Point/Station
3008.000 to Point/Station
*** SUBAREA FLOW ADDITION

```
\(++++++++++++4+++++++++++++++++++++++++++++++++++++++++{ }^{+1}\)

Decimal fraction soil group \(A=0.000\)
Decimal fraction soli group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[MULTI - UNITS area type
Time of concentration \(=\)
\(=\) 0.50 min .
Rainfall intensity \(=\quad 3.315(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700\)
Subarea runof \(0.290(A c\).
(

Process from Point/Station 3033.000 to Point/Station
3002.000
rocess from Point/station (Program estimated size) \(k * * *\)
Jpstream point/station elevation \(=312.000(\mathrm{Ft}\).
Downstream point/station elevation \(=311.000(\mathrm{Ft}\).
Pipe length \(=84.00(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=6.217\) (CFS
Nearest computed pipe diameter \(=\quad 15.00\) (In.)
Calculated
Calculated lndila in pipe flow ( 6.21
low width inside pipe \(=13.32\) (In
Critical Depth \(=12.08\) (In.) \(13.32(\) In
Pipe flow velocity \(=6.48(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.22 \mathrm{~min}\).
Time of concentration ( TC ) \(=10.72 \mathrm{~min}\).
 Process from Point/Station 3017.000 to Point/Station 3002.000 \(* * * *\) CONFLUENCE OF MAIN STREAMS \(* * * *\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{fe following data inside Main Stream is li} \\
\hline \multicolumn{6}{|l|}{In Main Stream number: 2} \\
\hline \multicolumn{6}{|l|}{Stream flow area \(=3.190\) (Ac.)} \\
\hline \multicolumn{6}{|l|}{Runoff from this stream \(=6.217\) (CFS)} \\
\hline \multicolumn{6}{|l|}{Time of concentration \(=10.72 \mathrm{~min}\).} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Rainfall intensity \(=\quad 3.291(\mathrm{In} / \mathrm{Hr})\)}} \\
\hline \multicolumn{4}{|l|}{Summary of stream data:} & & \\
\hline Stream No. & Elow rate (CES) & \[
\begin{aligned}
& \text { TC } \\
& (\mathrm{min})
\end{aligned}
\] & \multicolumn{3}{|r|}{```
Rainfall Intensity
    (In/Hr)
```} \\
\hline 1 & 9.096 & 12.49 & & 3.1 & \\
\hline 2 & 6.217 & 10.72 & & 3.2 & \\
\hline \multicolumn{6}{|l|}{\(Q \max (1)=\)} \\
\hline & 1.000 * & * 1.000 & 9.096) & + & \\
\hline & 0.946 * & * 1.000 & * 6.217) & \(+=\) & 14.975 \\
\hline \multicolumn{6}{|l|}{\(0 \max (2)=\)} \\
\hline & 1.000 * & * 0.858 * & * 9.096) & & \\
\hline & 1.000 * & * 1.000 & 6.217) & + = & 14.019 \\
\hline
\end{tabular}

Total of 2 main streams to confluence
Flow rates before confluence point:
Maximum 9.096 6.217
Maximura rates at confluence using above data:
Area of streams before confluence:
5.200
3.190

Results of confluence
Total flow rate \(=14.975(\) CFS \()\)
Time of concentration \(=12.492 \mathrm{~min}\).
Effective stream area after confluence \(=8.390\) (Ac.)
 *** \({ }^{2}\)
3032.000

Upstream point/station elevation \(=311.000(\) Ft.
Downstream point/station elevation \(=303.000\) (Ft.)
Pipe length \(=68.00\) (Ft.) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=14.975\) (CFS)
Nearest computed pipe diameter \(=\quad 15.00\) (In.)
Normal flow depth in pipe \(=9.04\) (In.)
Flow top width inside pipe \(=14.68\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=19.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.06 \mathrm{~min}\).
Time of concentration \((T C)=12.55 \mathrm{~min}\)

Process from point/Station
rocess SUBAREA FLOW ADDTTIO
3031.000 to Point/Station
3032.000

Decimal fraction soil group \(A=0.000\)

\section*{P:4182.30 EngrReporisD Dranage HYDROPROPOSED13000P 100.0 u}

Decimal fraction soil group \(B=0.000\)
Decimal fraction soll group \(\mathrm{C}=0.000\)
SINGEIE FAMTIY area type
Time of concentration \(=\)
Rainfall intensity \(=\quad 3.107(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 2.324\) (CFS) for 1.360 (Ac.)
Total runoff \(=17.298(\mathrm{CFS})\) Total area \(=\quad 9.75(\mathrm{Ac}\).

Process from Point/Station 3032.000 to Point/Station
3005.000

Jpstream point/station elevation \(=303.000(\mathrm{Ft}\))
Downstream point/station elevation \(=302.800\) (Ft.
Pipe lencth \(=10.00(\mathrm{Ft}\)) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=17.298\) (CES
Nearest computed pipe diameter \(=21.00\) (In.)
Calculated individual pipe flow \(=17.298\) (CFS
Normal flow depth in pipe \(=13.85\) (In.)
Flow top width inside pipe \(=19.90\) (In.)
Critical Depth \(=18.26\) (In.)
Pipe flow velocity \(=10.28(\mathrm{Et} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
Time of concentration \((T C)=12.57 \mathrm{~min}\).

Process from Point/Station 3032.000 to Point/Statio
3005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: \(\quad\) in normal stream number 1
Stream flow area \(=\quad 9.750\) (Ac.)
Runoff from this stream \(=\quad 17.298\) (CFS)
Time of concentration \(=\)
Rainfall intensity \(=\quad 3.57 \mathrm{~min}\).
in)

Rainfall intensity \(=3.105(\mathrm{In} / \mathrm{Hr})\)
process from
**** TNITIAL AREA
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.00\)
SSINGLE EAMILY area type
fighest elevation 322.600 (Ft.)
Lowest elevation \(=320.600(\mathrm{Ft}\).
Elevation difference \(=\) 2.000(Et.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=\quad 6.93 \mathrm{~min}\).
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft}.) \wedge 5\right) /(8 \mathrm{~s})\)
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(8\) slope^(1/3)]
\(\mathrm{C}=[1.8 \times 1.10 .93\)
Rainfall intensity (I) \(=3.861(\mathrm{In} / \mathrm{Hr}\)) for a 100.0 year storm (0.234 (CES)

\section*{P:1482.30 EnglReportsDrainagelHYDROPROPOSED13000P100.out}

Process from Point/Station 3001.000 to Point/Station \(* * * *\) STREET FLOW TRAVEI TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation \(=320.600\) (Ft .
End of street segment elevation \(=\quad 308.870(\mathrm{Ft})\)
Length of street segment \(=\) flowline \(=6.0\) (In.
Width of half street (curb to crown) \(=20.000(\mathrm{Ft}\))
Distance from crown to crossfall grade break \(=1.000(\mathrm{Ft}\).)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (\(\mathrm{v} / \mathrm{hz}\)) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=26.000(F t\).
Slope from curb to property line (\(\mathrm{v} / \mathrm{hz}\)) \(=0.025\)
Gutter width \(=2.000\) (Ft.)
Gutter hike from flowline \(=2.000\) (In.)
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0150\)
Manning's N from grade break to crown \(=0.0150\)
Estimated mean flow rate at midpoint of street \(=\quad 3.844(\mathrm{CFS})\)
Depth of flow \(\quad 2.985(\mathrm{Ft} / \mathrm{s})\)
Halfstreet flow width \(=10.776(\mathrm{Ft}\).
Elow velocity \(=2.98(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=4.07 \mathrm{~min} . \quad \mathrm{TC}=11.00 \mathrm{~min}\).
Adding area flow to street
\(=0.000\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGIE FAMILY area type
Rainfall intensity \(=\quad 3.260(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 6.096\) (CFS) for \(\quad 3.400(\mathrm{Ac}\).)
Total runoff \(=6.329\) (CFS) Total area \(=\)
Half street flow at end of street \(=6.329 .329\) (CFS)
Depth of flow \(=0.392(\mathrm{Et}\).\() , Average velocity =3.356(\mathrm{Ft} / \mathrm{s})\)
Elow width (from curb towards crown) \(=13.264\) (Ft.)

Process from Point/Station **** CONELUENCE OF MINOR STREAMS \(* * * *\)

\section*{:1448230 EngrIReportsDrainageHYDROPROPOSED13000P100.out}

Total of 2 streams to confluence:
Flow rates before confluence point
17.298
6.329
aximum flow rates at confluence using above data:
Area of streams before confluence:
\(9.750 \quad 3.510\)
Results of confluence
rotal flow rate \(=\quad 23.327\) (CFS)
rime of concentration \(=12.567 \mathrm{~min}\).
Effective stream area after confluence \(=13.260(\mathrm{Ac}\).
\(++++++++++++++++4++4+++++++\)
Process from Point/Station 3005.000 to Point/Station
upstream point/station elevation \(=302.500(F t\).

Downstream point/station elevation \(=302.000\) (Et.
Pipe length \(=18.00(\mathrm{Ft}\).) Manning's \(\mathrm{N}=0.013\)
No. Of pipes \(=1\) Required pipe flow \(=23.327(\mathrm{CFS})\)
Nearest computed pipe diameter m \(21.00(1 \mathrm{n}\).)
Calculated individual pipe flow \(=23.327\) (CFS
Normal flow depth in pipe \(=15.33(\mathrm{In}\).
Elow top width inside pipe \(=18.65(\mathrm{In}\).
Critical Depth \(=19.90(\) In. \()\)
Pipe flow velocity \(=12.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
time of concentration \((T C)=12.59 \mathrm{~min}\).

Process from Point/Station \(\quad 3010.000\) to Point/Station 3010.000
process from Point/Station 3010.000 to Point/station

Decimal fraction soil group \(\mathrm{A}=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type]
Time of concentration \(=12.59 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.103(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\) Subarea runoff \(=24.005\) (CFS) for 0.720 (Ac.)
nd of computations, total study area \(=\)
nd of computations, total study area \(=\quad 13.980\) (Ac.)

\section*{P: 14182.301 EngrReport 1 DrainageHYOROPROPOSEDI4200P100.out}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study

PROJECT CANTERA
PROPOSED CONDITION
4200P100
\(\qquad\) Hydrology Study Control Information **

Program License Serial Number 4049

otal initial stream area

地 Process from Point/Station
4207.000 to Point/Station
4208.000 **** TMPROVED CHANNEL TRAVEL TIME ****

Upstream point elevation \(=\)
Downstream point elevation \(=\)
\(\left.=\begin{array}{l}430.000(F t .) \\ 326.000(E t .\end{array}\right)\)

\section*{P:14182.30LEngrIReportiDrainagelHYDROPROPOSED4200P100.out}

Channel length thru subarea \(=404.920\) (Ft.
Channel base width
\(=10.000(\mathrm{Ft}\).
slope or ' Z ' of left channel bank \(=1.000\)
lope or ' \(Z\) ' of right channel bank \(=1.000\)
stimated mean flow rate at midpoint of channel \(=1.638\) (CES)
Manning's 'N' \(=0.015\)
Maximum depth of channel \(=2.000(\mathrm{Ft}\).
Flow(q) thru subarea \(=1.638\) (CFS)
Depth of flow \(=0.032(\mathrm{Ft}\).\() , Average velocity =5.066(\mathrm{Ft} / \mathrm{s})\)
Channel flow top width \(=10.064(\mathrm{Ft}\).
Flow Velocity \(=5.07(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=1.33 \mathrm{~min}\).
Time of concentration \(=7.83 \mathrm{~min}\).
Critical depth \(=0.094\) (Et
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL(greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type]
Rainfall intensity \(=\quad 3.689(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.450\) Subarea runoff \(=2.424(\mathrm{CFS}\)) for \(1.460(\mathrm{Ac})\).
Total runoff \(=\quad 2.762(\) CFS \()\) Total area \(=1.65(\) Ac. \()\)

Process from Point/Station 4208.000 to Point/Station
4209.000

Upstream point/station elevation \(=322.000(\) Ft. \()\)
Downstream point/station elevation \(=320.000\) (Ft.
Pipe length \(=\quad \begin{aligned} & 24.74(E t .) \quad \text { Manning's } N=0.015 \\ & \text { Required pipe flow }=\end{aligned}\)
Nearest computed pipe diameter \(=9.00\) (In.)
Calculated individual pipe flow \(=2.762\) (CFS
Normal flow depth in pipe \(=5.43(\mathrm{In}\).
Flow top width inside pipe \(=8.81\) (In.
Critical Depth \(=8.51\) (In.)
Pipe flow velocity \(=\quad 9.91(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.04 \mathrm{~min}\).
ime of concentration \((T C)=7.87 \mathrm{~min}\)
Process from Point/Station
rocess from point/Station 4208.0
Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 1.650\) (AC.)
Runoff from this stream \(=\quad 2.762\) (CFS)
Time of concentration \(=7.87 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.682(\mathrm{In} / \mathrm{Hr}\)

Process from Point/Station
4200.000 to Point/Station
4201.000
**** INITIAI AREA EVALUATION ****

\footnotetext{
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type
}

\section*{P: \(: 41882.30\) EngrReport 1 Drainagel \(Y\) YROPPROPOSEDI4200P100.out}

Initial subarea flow distance \(=103.000\) (Ft.
Highest elevation \(=425.500(F t\).
Lowest elevation \(=425.000(\mathrm{Ft}\).)
Time of concentration calculated by
Time of concentration calculated by the urban
areas overland low method (App X-C) \(=15.11 \mathrm{~min}\).
\(T C=\left[1.8^{*}(1.1-0.4500) *\left(103.000^{\wedge} .5\right) /\left(0.485^{\wedge}(1 / 3)\right]=15.11\right.\)
Rainfall intensity (I) \(=2.897(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area (\(Q=\mathrm{KCIA}\)) is \(\mathrm{C}=0.450\) Subarea runoff \(=0.300\) (CFS)
Total initial stream area \(=\quad 0.230(\mathrm{Ac}\).

Process from Point/Station 4201.000 to Point/Station
4202.000

Process from Point/Station 4201.000
\(* * * *\) TMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation \(=\) 425.000(Ft.)
Downstream point elevation \(=384.000(\) Et.)
Channel length thru subarea \(=281.000(\mathrm{Et}\).)
Channel base width \(=5.000(\mathrm{Ft}\).)
Slope or ' \(Z\) ' of left channel bank \(=1.000\)
Slope or ' \(Z\) ' of right channel bank \(=1.000\)
Estimated mean flow rate at midpoint of channel \(=1.688\) (CFS)
Manning's ' N ' \(=0.015\)
Maximum depth of channel \(=1.000(\mathrm{Ft}\).)
Flow (q) thru subarea \(=1.688\) (CFS)
Depth of flow \(=0.059(\mathrm{Ft})\)), Average velocity \(=5.655(\mathrm{Ft} / \mathrm{s})\)
Channel flow top width \(=5.118\) (Et.)
Flow Velocity \(=5.66(\mathrm{Ft} /\)
Time of concentration \(=\quad 15.94 \mathrm{~min}\)
Critical depth \(=0.150(E t\).
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type]
Rainfall intensity \(=\quad 2.837(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\) \(\begin{array}{ll}\text { Runofr coefficient used } \\ \text { Subarea runoff }=\quad 2.719 \text { (CFS) for } & 2.130(\mathrm{Ac} \text {.) }\end{array}\)
Total runoff \(=3.019(\mathrm{CFS})\) Total area \(=\quad 2.36(\mathrm{Ac}\).
\(+4+++++++++++++++++++++++\)
rocess from Point/Station 4202.000 to Point/Station
4204.000

Upstream point/station elevation \(=384.000(\mathrm{Ft}\).
Downstream point/station elevation \(=322.000\) (Ft.
Pipe length \(=125.00\) (Ft.) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=3.019(C E S)\)
Nearest computed pipe diameter \(=6.00\) (In.)
Calculated individual pipe flow \(=3.019\) (CFS
Normal flow depth in pipe \(=3.93(\mathrm{In}\).
low top width inside pipe \(=5.71\) (In.
Cripe flow velocity \(=0\) not be calculated
Travel time through pipe \(=0.09 \mathrm{~min}\)
Time of concentration \((\mathrm{TC})=16.03 \mathrm{~min}\).

\section*{P:14182.30EngrReports DrainageHYDROPROPOSED14200P100.out}
\(++++++++\ddagger+++\dagger\)
Process from Point/Station
4203.000 to Point/Station
4204.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type]
Time of concentration \(=16.03 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.830(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=\mathrm{FCLA}, \mathrm{C}=0.450\) Subarea runoff \(=\quad 1.108\) (CFS) for 0.870 (A.C.)
Total runoff \(=\quad 4.127\) (CFS) Total area \(=(\mathrm{Ac}) \quad 3.23(\mathrm{Ac}\).
\(++\)
Process from point/Station 4204.000 Lo Point/Station
4209.000

Upstream point/station elevation \(=322.000(F t\).
Downstream point/station elevation \(=320.000(\mathrm{Ft}\).
Pipe length \(=301.00\) (Ft.) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=\) 4.127(CFS)
Nearest computed pipe diameter \(=15.00\) (In.)
Calculated individual pipe flow \(=4.127\) (CFS)
Normal flow depth in pipe \(=10.00(\mathrm{In}\).
Flow top width inside pipe \(=14.14\) (In.)
Critical Depth \(=9.87(\mathrm{In}\).
Pipe flow velocity \(=\) 4.75(Ft/s)
Time of concentration (TC) \(=17.09 \mathrm{~min}\)

Process from Point/Station \(\qquad\) 4204.000 to Point/Station

Total of 2 streams to confluence:
Elow rates before confluence point
Maximum flow rates at confluence using above data
\(4.663 \quad 6.197\)
Area of streams before confluence:
1.650

Results of confluence:
Total flow rate \(=\)
Time of concentration \(=\quad 6.197\) (CFS)
Effective stream area after confluence \(=\)
4.880 (Ac.)
4.880 (Ac.)

\section*{P:4182.301EngrReporsiDrainageHYOROPROPOSEDI4400P100.ou}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology
Rational Hydrology Study

PROJECT CANTERA
PROPOSED CONDITIONS
4400 P 100
\(\qquad\)
ydrology Study Control Infonmation

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-1b) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0 - 1500 fee
Eactor (to multiply intensity) \(=1.00\)
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
Process from Point/Station 4401.000 to Point/Station 4402.000
**** INITIAL Point/Station
4401.000 to Point/Station
402.000

Decimal fraction soil group \(\mathrm{A}=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soll group \(D=1.000\)
[INDUSTRIAL area type
Initial subarea flow distance \(=86.230(\mathrm{Ft}\).
Highest elevation \(=259.000(\mathrm{Ft}\).)
Lowest elevation difference \(=3.000(\mathrm{Ft})\)
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=1.65 \mathrm{~min}\)
areas overland flow method (App \(X-C)=1.65\) min
\(\mathrm{TC}=\left[1.8 *(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(8\) slope^ \((1 / 3)]\)

Setting time of concentration to 5 minutes
Rainfall intensity (I) \(=\quad 4.389(\mathrm{In} / \mathrm{Hr}\)) for a 100.0 year storm Effective runoff coefficient used for area (\(Q=\) KCIA) is \(C=0.950\) Subarea runoff \(=0.417\) (CFS)
Total initial stream area \(=0.100(A C\).
+ + + + + + + + + + + + + + + + + +++ Process from Point/Station 4402.000 to Point/Station

\footnotetext{
Top of street segment elevation \(=256.000(\) Et.)
}

\section*{P:44182:30EngtReportSDrainagetHYDROPROPOSED 4400 P 100 .out}

End of street segment elevation \(=229.500\) (Ft.)
Length of street segment \(=1088.560(\mathrm{Ft}\).
height of curb above gutter flowline \(=6.0\) (In.)
Distance from crown to crossfall grade break \(=10.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.02\)
Street flow is on [1] side(s) of the stree
Distance from curb to property line \(=15.000(F t\). .
slope from curb to property line (\(\mathrm{v} / \mathrm{hz}\)) \(=0.020\)
Gutter width \(=1.500(\) Ft.)
Gutter hike from flowline \(=1.500(\mathrm{In}\).
Manning's N in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
stimated mean Rlow rate at midpoint of street 3.127 (CFS
\(=2.926(\mathrm{Et} / \mathrm{s})\)
解
Halfstreet flow width \(=9.988(\mathrm{Ft}\).
Flow velocity \(=\begin{aligned} & 2.93(\mathrm{Ft} / \mathrm{s}) \\ & \text { Travel time }= \\ & 6.20 \mathrm{~min} .\end{aligned} \quad \mathrm{TC}=11.20 \mathrm{~min}\).
Adding area flow to street
\(=0.00\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type \(3.238(\mathrm{In} / \mathrm{Hr})\) for]
Rainfall intensity \(=\quad 3.238(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\) KCIA, \(\mathrm{C}=0.950\) ubarea runoff \(=3.999(\mathrm{CFS})\) for \(1.300(\mathrm{Ac}\).
treet flow at end of street \(=\quad\) Total area \(=\)
Half street flow at end of street \(=\) 4.416(CFS)
Depth of flow \(=0.325(\mathrm{Ft}\).\() , Average velocity =3.170(\mathrm{Ft} / \mathrm{s})\) Flow width (from curb towards crown) \(=11.497\) (Ft.) Process from Point/Station 4403.000 to Point/Station *** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation = 229.500(Ft.)
Downstream point/station elevation = 228.000(Ft.)
To. Of pipes = 1 Required pipe flow = 4.416(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 4.416(CFS
Normal flow depth in pipe = 7.10(In.)
Flow top width inside pipe = 11.80(In.
Critical Depth = 10.57(In.)
Pipe flow velocity = 9.12(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 11.26 min.

```

Process from Point/Station
4403.000 to Point/Station
Along Main Stream number: 1 in normal stream number 1
Stream flow area = \(1.400(\mathrm{Ac}\).
Runoff from this stream \(=\quad 4.416(\mathrm{CES})\)
Time of concentration \(=\)
Rainfall intensity \(=\quad 3.26 \mathrm{~min}\).

Runoff from this stream
Rainfall intensity \(=\quad 3.232(\mathrm{In} / \mathrm{Hr})\)

Process from Point/Station
4405.000 to Point/Station
4406.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Initial subarea flow distance \(=86.230\) (Et.)
Highest elevation \(=256.000(\) Ft.)
Lowest elevation \(=254.500(\mathrm{Ft}\).
Elevation difference \(=1.500\) (Ft.
Time of concentration calculated by the urban
areas overland flow method (App \(X-C\)) \(=2.08 \mathrm{~min}\).
\(T C=\left[1.8^{*}(1.1-0.9500)^{*}\left(86.230^{\wedge} .5\right) /\left(1.740^{\wedge}(1 / 3)\right]=2.08\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity \((I)=4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year stor
Effective runoff coefficient used for area (\(\mathrm{Q}=\mathrm{KCIA}\)) is \(\mathrm{C}=0.950\)
Subarea runoff \(=0.417\) (CFS)
Total initial stream area \(=0.100(A C\).

Process from Point/Station
4406.000 to Point/Station
4407.000
(
Top of street segment elevation \(=254.500\) (Ft .)
End of street segment elevation \(=229.400(\mathrm{Ft}\).)
Lengent on street segment 1107.270 (Ft
Width of half street (curb to crown) \(=40.000\) (Ft .)
Distance from crown to crossfall grade break \(=38.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [2] side(s) of the street
Distance from curb to property line \(=100.000(\mathrm{Ft}\).
Slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=2.000\) (Et.)
Gutter hike from flowline \(=0.000\) (In.)
Manning's N in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0150\)
Manning s \(N\) from grade break co crown - stret \(=\)
Depth of flow \(=0.119(\mathrm{Ft}\).\() , Average velocity =\)
Streetflow hydraulics at midpoint of street travel:

Halfstreet flow width \(=7.960(F t\).
Flow velocity \(=\begin{gathered}2.62(\mathrm{Ft} / \mathrm{s}) \\ 7.05 \mathrm{~min} .\end{gathered} \quad T C=12.05 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
\(3.153(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Rainfall intensity \(=\) for sub-area, \(\quad 3.153(\mathrm{na} / \mathrm{Ar}\) for a 100.0 year storm \(=0.950\) \(\begin{array}{ll}\text { Runoff coefficient used for sub-area, Rational met } \\ \text { Subarea runoff }= & 3.864 \text { (CFS) for } \\ 1.290(\mathrm{Ac} \text {.) }\end{array}\) Total runoff \(=\quad 4.281(\mathrm{CFS})\) Total area \(=(\mathrm{AC}) \quad .1.39(\mathrm{Ac}\).
Street flow at end of street \(=\quad 4.281\) (CFS)
Half street flow at end of street \(=\quad 2.140\) (CFS)

\section*{P:14182:30 EngrReporis DrainagelHYDROPROPOSED14400P100.0u}

Depth of flow \(=0.138\) (Ft.), Average velocity \(=2.844(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=8.904(\mathrm{Ft}\).

Process from Point/Station 4407.000 to Point/Station
\(* * * *\) PIPEFLOW TRAVEL TIME (Program estimated size)
\(+4++++++++\)

Upstream point/station elevation \(=229.400\) (Ft.)
(Ftastream point/station elevation \(=228.000\) (Ft.
No. of pipes \(=1\) Required pipe flow \(=4.281\) (CFS)
Nearest computed pipe diameter \(=12.00\) (In.)
Calculated individual pipe flow \(=4.281\) (CFS)
Normal flow depth in pipe \(=6.76(\mathrm{In}\).
Flow top width inside pipe \(=11.90(\mathrm{In}\).
Critical Depth \(=10.44\) (In.
Travel time through pipe \(=9.40(F t / \mathrm{s})\)
ime of concentration \((\mathrm{TC})=12.10 \mathrm{~min}\).

Process from Point/Station 4407.000 to Point/Station
4404.000
**** CONFLUENCE OF MINOR STREAMS \(* * * *\)

Total of 2 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
\(8.399 \quad 8.583\)
Area of streams before confluence:
4 sults 1.400 1.390
Results of confluence
Total flow rate \(=\)
8.583 (CFS)

Effective stream area after confluence \(=2.790(\mathrm{Ac}\).
\(+++\) **** PIPEFLOW TRAVEL TIME (Program estimated size) ****
4408.000

Upstream point/station elevation \(=228.000(F t\).

Printed: 10/24/2018 10:37:59 AM AM

\section*{P:14182.30EEngrRepotsD DrainageHYDROPROPOSED 4400P100.0u}

Downstream point/station elevation \(=199.300(\mathrm{Ft}\).)
Pipe length \(=614.00(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.015\)
No. of pipes \(=1\) Required pipe flow \(=8.583\) (CES Nearest computed pipe diameter \(=\quad 15.00\) (In.) Calculated individual pipe \(9.33(\mathrm{In}\)). Normai 1455 (In.) Fritical \(=13.68(\mathrm{Tn}\))
Pipe flow velocity \(=\quad 10.70(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.96 \mathrm{~min}\)
Time of concentration \((T C)=13.06 \mathrm{~min}\).

Process from Point/Station

Process from Point/Station
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\) Decimal fraction soil group \(C=0.000\) Decimal fraction soil group \(D=1.000\)

Time of con area type \(=\quad 13.06 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.061(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 3.170\) (CFS) for 1.090 (Ac.)
Total runoff \(=\quad 11.753(\mathrm{CFS})\) Total area \(=\quad 3.88\) (Ac.)
++
Process from Point/Station 4409.000 to Point/Station 4408.000

Process from Point/Station
4409.000 to Point/Station
4408.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soli group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimustrial area type
Time of concentration \(=33.06 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.061(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 2.763\) (CFS) for \(\quad 0.950\) (Ac.)
Total runoff \(=\quad 14.516(\mathrm{CFS})\) Total area \(=\quad\) 4.83(Ac.
\(+++++++++++++++++++++++++++++++++4++++++++++++++++++++++++++++++++++\) Process from Point/Station 4408.000 to Point/Station
**** PIPEFIOW TRAVET TTME (Program estimated size) ****

Upstrearn point/station elevation \(=197.000(F t\).
Downstream point/station elevation \(=196.000\) (Ft.
No. of pipes \(=1\) Required pipe flow \(=14.516\) (CES)
Nearest computed pipe diameter \(=18.00\) (In.)
Calculated individual pipe flow \(=14.516(\mathrm{CFS})\)
Normal flow depth in pipe \(=14.39\) (In.)
Flow top width inside pipe \(=14.41\) (In.)
Critical Depth \(=16.73\) (In.)
Pipe flow velocity \(=\quad 9.58(\mathrm{Ft} / \mathrm{s})\)
travel time through pipe \(=0.07 \mathrm{~min}\).
nue of concutions,
End of computations, total study area \(=\)

\section*{P:14182.30EngIReports Drainage HYDROPROPOSED14500P100.out}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Dia County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/25/18

PROJECT CANTERA
PROPOSED CONDITIONS
4500 P 100

Program License Serial Number 4049
```

Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside City of San Diego
Runoff coefficients by rational method

```

```

Process from Point/Station 4500.000 to Point/Station
**** INITIAL AREA EVALUATION ****

```

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL(greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type]
Initial subarea flow distance \(=\)
highest elevation \(=288.000(\mathrm{Ft}\).)
Elevation difference \(=24.000(\mathrm{Ft}\).
Time of concentration calculated by the urban
areas overland flow method (App \(X-C)=3.19 \mathrm{~min}\).
\(C=[1.8 *(1.1-\mathrm{C}) *\) distance (Ft.)^.5)/(8 slope^(1./3) \(]\)
\(T C=\left[1.8^{*}(1.1-0.4500)^{*}\left(75.000^{\wedge} .5\right) /\left(32.000^{\wedge}(1 / 3)\right]=3.19\right.\)
etting time of concentration to 5 minutes
Rainfall intensity (I) \(=\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area (\(Q=\) KCIA) is \(C=0.450\) Subarea runoff \(=\quad 0.257\) (CFS)
otal initial stream area \(=0.130(A c\).
rocess from Point/Statio
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation \(=288.000(\) Et. \()\)

\section*{P:44182.301EngrReportsiDrainagelHYDROPROPOSED4500P100.0ut}

Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\) Subarea runoti \(=11.005(C E S)\) for 6.390 (Ac.)
Total runoff \(=11.262(\mathrm{CES})\) Total area \(=\quad 6.52(\mathrm{Ac}\).

Process from Point (station 4503.000 to Point/Station
4502.000
**** SUBAREA FLOW ADDITION ****
0.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type]
Time of concentration \(=7.09 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.827(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.450\) Subarea runoff \(=\quad 4.116\) (CFS) for \(2.390(\mathrm{Ac}\). .)
Total runoff \(=\quad 15.378\) (CFS) Total area \(=\quad 8.91\) (Ac.)
\(+++\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=220.000(F t\).
Downstream point/station elevation \(=210.000\) (Et.)
Pipe length \(=450.00(\) Ft.) Manning's \(\mathrm{N}=0.013\)
No. Of pipes \(=1\) Required pipe Llow \(=15.378\) (CES
Nearest computed pipe diameter \(=18.00\) (In.)
Calculated individual pipe flow \(=15.378\) (CFS)
Normal flow depth in pipe \(=14.48(\mathrm{In}\).
Flow top width inside pipe \(=14.27\) (In.
Pipe flow velocity \(=\quad 10.10(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.74 \mathrm{~min}\).
Travel time through pipe \(=\quad 0.74 \mathrm{~min}\).

Process from Point/Station 4502.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
```

Along Main Stream number: 1 in normal stream number
tream flow area = 8.910(Ac.)
7.84.378 (CFS)
Rainfall intensity = = 3.688(In/Hr)

```

Process from Point/Station 4504.000 to Point/Station ***
INiflal area bvabuation
ecimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
ecimal fraction soil group \(D=1.000\)
RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\)) area type
ighest elevation \(=375.000(\mathrm{Ft}\).
owest elevation \(=305.000(\mathrm{Ft}\))
Elevation difference \(=70.000(\mathrm{Ft}\)
Time of concentration calculated by the urban
areas overland flow method (App \(X-C)=3.51 \mathrm{~min}\).
\(C=\left[1.8^{*}(1.1-C)^{*}\right.\) distance (Ft.)^. 5) \(/\) (\% slope^(1/3)]
\(\mathrm{C} \cdot=\left[1.8^{*}(1.1-0.4500) *\left(129.000^{\wedge} .5\right) /\left(54.264^{\wedge}(1 / 3)\right]=3.51\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity (I) \(=4.389(\mathrm{In} / \mathrm{Hr}\)) for a 100.0 year storm effective runoff coefficient used for area (\(Q=\) KCIA) is \(C=0.450\) Subarea runoff 0.612 (CFS)
total initial stream area 0.310 (Ac.)
nt/Station
Process from Point/Station 4505.000 to Point/Station
4506.000
*** IMPROVED CHANNEL TRAVEL TIME ****
\(=305.000(\mathrm{~F}\).
= \(366.000(\mathrm{Ft}\).
Channel base thru subaxea \(=3.000(\mathrm{Ft}\).
lope or ' 2 ' of left channel bank = 1.000
slope or ' \(Z\) ' of right channel bank \(=1.000\)
stimated mean flow rate at midpoint of channel \(=\quad 3.614\) (CFS)
Manning's 'N' \(=0.015\)
Maximur depth of chanel \(=1.000(\mathrm{Ft}\).
(Fepth of flow \(=\quad 0.107(\mathrm{Ft}) \quad \begin{aligned} & 3.614(\mathrm{CFS}) \\ & \text { Average velocity }=10.903(\mathrm{Ft} / \mathrm{s})\end{aligned}\)
Channel flow top width \(=3.213(\mathrm{Ft}\).
Flow Velocity \(=10.90(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=0.56 \mathrm{~min}\).
Time of concentration \(=5.56 \mathrm{~min}\)
Critical depth \(=0.344\) (Ft.
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
RURAL (greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type]

unore coerficient used
Total runoff \(=6.365(\mathrm{CFS})\) Total area \(=\quad 3.35(\mathrm{Ac}\).
```

Process from Point/Station
4506.000 to Point/Station
Jpstream point/station elevation $=210.000$ (Ft.)

Upstream point/station elevation $=\quad 210.000$ (Ft. $)$
Pipe length $=198.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$ No. of pipes $=1$ Required pipe flow $=6.365$ (CFS) Nearest computed pipe diameter $=15.00(I n$. Calculated individual pipe flow $=6.365$ (CFS)
Normal flow depth in pipe $=12.05$ (In.)
Flow top width inside pipe $=11.93$ (In.
Critical Depth $=12.21(\operatorname{In}$.
Pipe flow velocity $=\quad 6.03(\mathrm{Ft} / \mathrm{s})$


Process from Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream llow area $=\quad 3.350(\mathrm{Ac}$.
Runoff from this stream $=6.365$ (CFS)
Time of concentration $=\quad 6.11 \mathrm{~min}$.
Rainfall intensity $=$
$4.053(\mathrm{In} / \mathrm{Hr})$
Summary of stream data

Stream No.	Flow rate (CFS)	$\begin{gathered} \mathrm{TC} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { Rainfall Intensity } \\ (\mathrm{In} / \mathrm{Hr}) \end{gathered}$		
1	15.378	7.84		3.68	
2	6.365	6.11		4.05	
Qmax (1)					
	1.000 *	1.000	15.378)	+	
	0.910	1.000	6.365)	$+=$	21.170
Qmax (2)					
	1.000 *	0.779	15.378)	$+$	
	1.000 *	1.000	6.365)		18.351

Total of 2 streams to confluence:
Flow rates before confluence point
$15.378 \quad 6.365$
Maximum flow rates at confluence using above data
21.170
Area of streams before confluence:
$8.910 \quad 3.350$
Results of confluence
rime flow rate $=$ 21.170(CFS)
Time of concentration $=\quad 7.835 \mathrm{~min}$.
Effective stream area after confluence $=12.260($ Ac.
$+++++++++++++++4+++++++++++4+++++++++++++++++++++++++++++++++++4+4$
Process from Point/Station 4508.000 to Point/Station

Upstream point/station elevation $=208.000(\mathrm{Et}$.
Downstream point/station elevation $=200.000$ (Ft.)
Pipe length $=, \quad \begin{aligned} & 83.00(E t .) \\ & \text { Ranning's } N=0.013 \\ & \text { Required pipe flow }=21.170 \text { (CFS }\end{aligned}$
$\begin{array}{lll}\text { No. of pipes }=1 & \text { Required pipe flow } & =121.17 \\ \text { Nearest computed pipe diameter }= & 18.00(\text { In. })\end{array}$

P:14182.30EEngTRepootsDTainagelHYDROPROPOSEDU4500P100.0ut
Calculated individual pipe flow $=21.170$ (CFS)
Normal flow depth in pipe $=10.56(\mathrm{In}$.
Flow top width inside plpe
pipe flow velocity $=$ not be calculated
Pipe flow velocity $=$
Travel time through pipe $=\quad 0.64(\mathrm{Ft} / \mathrm{s})$
$=0.07 \mathrm{~min}$
Time of concentration (TC) $=7.91 \mathrm{~min}$.
End of computations, total study area $=$
12.260 (Ac.)
.

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
Rational method hydrology program based on Rational Hydrology Study Date: 10/02/18

## PROJECT CANTERA

PROPOSED CONDITIONS
5000P100
********* Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is
English (in-1b) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside cuty of ban Diego
Runoff coefficients by rational method
5044.000 to Point/Station
504.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Highest elevation $=380.000(\mathrm{Ft}$.
Lowest elevation $=310.000(\mathrm{Ft}$ )
Elevation difference $=70.000(5 \mathrm{Et}$.
Time of concentration calculated by the urban
areas overland flow method (App $X-C)=4.11 \mathrm{~min}$.
$T C=\left[1.8^{*}(1.1-C) *\right.$ distance $(\text { Ft. })^{\wedge}$. 5$) /(\%$ slope^(1/3) $]$
$T C=\left[1.8^{*}(1.1-0.4500) *\left(156.000^{\wedge} .5\right) /\left(44.872^{\wedge}(1 / 3)\right]=4.11\right.$
Setting time of concentration to 5 minutes
Rainfall intensity $(I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ( $Q=\mathrm{KCLA}$ ) is $C=0.450$ Subarea runoff $=0.849$ (CFS)
Total initial stream area $=\quad 0.430$ (Ac.)

Process from Point/Station 5045.000 to Point/Station 5052.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation $=308.000($ Ft. $)$

## PI4182.30 EngrReportsDrainageHYOROMROPOSEDI5000P100.out

End of street segment elevation $=302.200(F t$.
ength of street segment $=243.000(\mathrm{Ft}$.
(curb to crown) $=10.0$ (In.)
istance from crown to crossfall grade break $=1.000(\mathrm{Ft}$.)
lope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
slope from grade break to crown ( $\mathrm{v} / \mathrm{hz}$ ) $=0.020$
treet flow is on [1] side(s) of the street
istance from curb to property line $=12.000(\mathrm{Ft}$.
lope from curb to property line (v/hz) =0.025
Gutter width $=2.000(\mathrm{Ft}$.
Gutter hike from flowline $=2.000$ (In.
Manning's N in gutter $=0.0150$
Manning's $N$ from gutter to grade break $=0.0150$
Manning's $N$ from grade break to crown $=0.0150$
Estimated mean flow rate at midpoint of street $=$
4.641 (CFS
velocity $=3.729(\mathrm{Ft} / \mathrm{s})$
trep of flow exceeds Aop of street travel
treetrow hycraulics at mide01 (Ft.)
low velocity $=3.73$ (Ft/s)
Travel time $=\quad 1.09 \mathrm{~min} . \quad T C=\quad 6.09 \mathrm{~min}$
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
MULTI - UNITS area type
Rainfall intensity $=4.058(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $0=K C I A, C=0.700$ $10.908(\mathrm{CFS})$ for $3.840(\mathrm{AC}$.)
Street flow at end of street $=\quad 11.757$ (CFS)
Half street flow at end of street $=\quad 11.757$ (CFS)
Depth of flow $=0.432(\mathrm{Ft}$.$) , Average velocity =5.389(\mathrm{Ft} / \mathrm{s})$
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) $=10.000(\mathrm{Ft}$. )

Process from Point/Station 5052.000 to Point/Station 5053.000

Upstream point $/$ station elevation $=\quad 302.000(\mathrm{Ft}$.
Downstream point $/$ station elevation $=390.000(\mathrm{Ft}$.
Downstream point/station elevation $=\quad 290.000$ (Ft.)
Pipe length $=\quad 71.89(\mathrm{Ft}$.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe fiow $=11.757$ (CES
Nearest computed pipe diameter $=-12.00(\mathrm{In}$.
Calculated individual pipe flow $=11.757$ (CFS
Normal flow depth in pipe $=8.18(\mathrm{In}$.
Flow top width inside pipe $=11.18(\mathrm{In}$.
Critical depth could not be calculated
Pipe flow velocity $=\quad 20.63(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.06 \mathrm{~min}$.
ime of concentration $(T C)=6.14 \mathrm{~min}$


Process from Point/Station
5050.000 to Point/Station
5053.000
area flow addition **

Decimal fraction soll group A $=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$

Printed: 10/24/2018 10:37:59 AM AM
Modified: 1012/2018 4:00:47 PM PM
Page 1 of 3

## P:14182.30 EEngrReportSDrainagelHYDROPROPOSEDI5000P 100.out

Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
concentration $=\quad 6.14 \mathrm{~min}$.
Rainfall intensity $=\quad 4.043(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700$ Subarea runoff $=16.896$ (CFS) for $5.970($ Ac. $)$
Total runoff $=\quad 28.654($ CFS $) \quad$ Total area $=\quad 10.24(\mathrm{Ac}$.

Process from Point/Station 5053.000 to Point/Station 5053.000
**** SUBAREA ELOW ADDITION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$ ) area type]
Time of concentration $=6.14 \mathrm{~min}$.
Rainfall intensity $=\quad 4.043(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$
Subarea runoff $=\quad 1.692$ (CFS) for 0.930 (Ac.)
Total runoff $=30.346(\mathrm{CFS})$ Total area $=\quad 11.17(\mathrm{Ac}$.
End of computations, total study area $=11.170$ (AC.

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/20/18

PROJECT CANTERA
PROPOSED CONDITIONS
6000P100


Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside
Only used if inside City of San Diego
Runoff coefficients by rational method

```
Process from Point/Station 6007.000 to Point/Station
**** INITIAL AREA EVALUATION ****
```

Decimal fraction soil group $A=0.000$
Decimal fraction soil group B $=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=$
Highest elevation $=330.000(\mathrm{Ft}$.
Lowest elevation $=328.000(\mathrm{Ft}$.
Elevation difference $=2.000(F t$.
Time of concentration calculated by the urban
areas overland flow method ( $\operatorname{App} \mathrm{X}-\mathrm{C}$ ) $=5.28 \mathrm{~min}$.
TC $=\left[1.8^{*}(1.1-C) *\right.$ distance (Ft.)^.5) / (\% slope^(1/3) ]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.5500)^{*}(62.000 \wedge .5) /\left(3.226^{\wedge}(1 / 3)\right]=5.28\right.$
Rainfall intensity (I) $=4.294$ (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area ( $Q=$ KCIA) is C $=0.550$ Subarea runoff $=$ 0.165 (CFS)
0.070 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6008.000 to Point/Station

## P:14182.30|Engr|Reports|DrainagelHYDROIPROPOSED

Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

Top of street segment elevation $=328.000(\mathrm{Ft}$.
End of street segment elevation $=324.000(\mathrm{Ft}$. Length of street segment $=266.000(F t$. Height of curb above gutter fowline $=26.0($ In.) Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Distance from crown to crossfall grade break $=10$
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(F t$.
Slope from curb to property line (v/hz) = 0.020
Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=\quad 0.224$ (CFS)
$1.523(\mathrm{Ft} / \mathrm{s})$
reet travel:
Halfstreet flow width $=2.754(F t$.
Flow velocity $=$
Travel time $=$
2.91 min. $\quad$ TC $=8.19 \mathrm{~min}$.
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=\quad 3.629(\mathrm{In} / \mathrm{Hr})$ for a
Runoff coefficient used for 3.629 (In/Hr) for a 100.0 year storm
Subarea runcfent used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCTA}, \mathrm{C}=0.550$ Subarea runoff $=\quad 1.417(\mathrm{CFS})$ for 0.710 (Ac.
Street flow at end of street $=\quad 1.582$ (CFS $)$
Half street flow at end of street $=1.582$ (CFS) (CFS)
Depth of flow $=0.261(F t$.$) , Average velocity =2.081(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=8.302(F t$.

$\underset{\star * * *}{\text { Process from Point/Station } \quad 6010.000 \text { to Point/Station }}$
6011.000

Upstream point/station elevation $=324.000(\mathrm{Ft}$.
Downstream point/station elevation $=323.500(\mathrm{Ft}$.
Downstream point/station elevation $=\quad 323.500(\mathrm{Ft}$.
Pipe length $=\quad 24.25(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
P . of pipes $=1$ Required pipe flow $=1.582$ (CFS)
Nearest computed pipe diameter $=\quad 9.00($ In.)
Calculated individual pipe flow $=1.582$ (CFS)
Normal flow depth in pipe $=5.37$ (In.)
Flow top width inside pipe $=8.83$ (In.)
Critical Depth $=6.95$ (In.)
Pipe flow velocity $=\quad 5.75(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.07 \mathrm{~min}$.
Time of concentration $(T C)=8.26 \mathrm{~min}$

Process from Point/Station
Process from Point/Station *

## 6000P100.out

Decimal fraction soil group $A=0.000$ Decimal fraction soil group $B=0.000$ Decimal fraction soil group $C=0.000$ Decimal fraction soil group $D=1.000$ [SINGLE FAMILY area type Rainfall $=3.617(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.550$ Total runoff $=\quad 5.880($ CFS $)$ Total area $=\quad 2.94(\mathrm{Ac}$.

Process from Point/Station
6011.000 to Point/Station
6012.000
**** PIPEFLOW TRAVEL TIME
gram estimated
Upstream point/station elevation $=323.000(\mathrm{Ft}$.
Downstream point/station elevation $=322.500(\mathrm{Ft}$.
No. of pipes $=1$ Required pipe flow $=5.880(\mathrm{CFS})$
Nearest computed pipe diameter $=15.00$ (In.)
Calculated individual pipe flow $=5.880$ (CFS)
Normal flow depth in pipe $=10.48$ (In.)
Flow top width inside pipe $=13.77($ In. $)$
$\begin{array}{ll}\text { Critical Depth }= & 11.78(\text { In. }) \\ \text { Pipe flow velocity }\end{array}=\quad 6.43(\mathrm{Ft} / \mathrm{s})$

Travel time through pipe $=$
Time of concentration (TC) $=\begin{array}{r}0.11 \mathrm{~min} . \\ 8.37 \mathrm{~min}\end{array}$.
+4+++++++++++++++++++++++++++++++++++4+4
Process from Point/Station 6009.000 to Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
$\begin{array}{ll}\text { Time of concentration }= & 8.37 \mathrm{~min} . \\ \text { Rainfall intensity }= & 3.600(\mathrm{In} / \mathrm{Hr})\end{array}$
Rainfall intensity $=\quad 3.600(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Subarea runoff $=\quad 5.188$ (CFS) for $2.620(\mathrm{Ac}$.
Total runoff $=11.067($ CFS $)$ Total area $=\quad 5.56(\mathrm{Ac}$.

Process from Point/Station 6012.000 to Point/Station 6018.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=322.200(F t$.
Downstream point/station elevation $=317.800(F t$.
Pipe length $=212.00(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. Of pipes $=1$ Required pipe flow $=11.067$ (CFS)
Nearest computed pipe diameter $=$
Nearen
Nearest computed pipe diameter $=\quad 18.00$ (In.)
Calculated
Normal flow depth in pipe $=11.44$ (In.)
Critical Depth $=15.29$ (In.)
Pipe flow velocity $=\quad 9.35(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.38 \mathrm{~min}$.

Time of concentration $(T C)=8.74 \mathrm{~min}$.
+++++++++++++4++++++++++++++++++++++++++++++++++++++++++++++++++++4
Process from Point/Station $\quad 6013.000$ to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Time of concentration $=\quad 8.74 \mathrm{~min}$.
Rainfall intensity $=\quad 3.542(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}$
3.542 (In/Hr) for a
]

Subarea runoff $=\quad 0.841$ (CFS) for Rational method, $Q=K C I A, C=0.95$

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6018.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation $=317.500($ Ft.
Downstream point/station elevation $=315.500(\mathrm{Ft}$.
Pipe length $=130.00($ Ft.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=11.909$ (CFS
Nearest computed pipe diameter $=18.00($ In.)
Calculated individual pipe flow $=11.909$ (CFS)
Normal flow depth in pipe $=13.52$ (In.)
Flow top width inside pipe $=15.56$ (In
Pipe flow velocity $=\quad 8.36(\mathrm{Ft} / \mathrm{s})$

Time of concentration (TC) $=\quad \begin{array}{r}9.00 \mathrm{~min} \text {. }\end{array}$

Process from Point/Station
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $D=1.000$
Decimal industrial area type group D $=1.000$
Time of concentration $=$
9.00 min

Rainfall intensity $=\quad 3.505(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.950$ Subarea runoff $=\quad 1.232(C F S)$ for $0.370(A C$.
Total runoff $=$ 13.141(CFS) Total area $=$ 6.18(Ac.)
+++++++++++++ + ++++++++++ ++ ++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6022.000 to Point/Station
6023.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$

## P:41482.30|EngrIReportsDrainageIHYDROPPROPOSED

P:41482.30|EngrIReportsDIainagelHYDROPPROPOSED
Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.out

## [INDUSTRIAL area type

Time of concentration
Rainfall intensity $=\quad 3.00 \mathrm{~min}$.
Runoff $\quad 3.505(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
作
Total runoff $=13.673(\mathrm{CFS})$ Total area $=(\mathrm{AC}) \quad .6.34(\mathrm{AC}$.

Process from Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
6054.000

Upstream point/station elevation $=315.500(F t$.
Downstream point/station elevation $=314.500(F t$.
Pipe length $=327.36(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No . of pipes $=1$ Required pipe flow $=13.673$ (CFS)
Nearest computed pipe diameter $=\quad 27.00$ (In.)
Calculated individual pipe flow $=13.673$ (CFS)
Calculated individual pipe flow 13.673 (CFS
Normal 18.26 (In.)
Critical Depth $=15.42$ (In.)
Pipe flow velocity $=\quad 4.78(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad \begin{aligned} & 1.14 \mathrm{~min} . \\ & 10.14 \mathrm{~min}\end{aligned}$
Time of concentration $(T C)=10.14 \mathrm{~min}$.

Process from Point/Station
6023.000 to Point/Station
6054.000

The following data inside Main Stream is listed:
In Main Stream number:
Stream flow area = 6.340 (Ac.)
Runoff from this stream $=13.673$ (CFS)
Time of concentration $=10.14 \mathrm{~min}$.
Program is now starting with Main Stream No. 2

Process from Point/Station
6106.000 to Point/Station
+++++++++
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group C $=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=70.000(\mathrm{Ft}$.
Highest elevation $=319.600(F t$.
Lowest elevation = 319.200 (Ft.)
Elevation difference $=\quad 0.400(F t$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=9.98 \mathrm{~min}$.
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance $\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$\mathrm{TC}=\left[1.8 *(1.1-0.5500) *\left(70.00 \wedge^{\wedge} .5\right) /\left(0.571^{\wedge}(1 / 3)\right]=\right.$
$\mathrm{TC}=\left[1.8^{*}(1.1-0.5500) *\left(70.000^{\wedge} .5\right) /\left(0.571^{\wedge}(1 / 3)\right]=9.98\right.$
Rainfall intensity (I) $=3.376(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runor coefficient used for area ( $\mathrm{Q}=\mathrm{KCIA}$ ) is $\mathrm{C}=0.550$
Total initial stream area $=$
0.080 (Ac.)
Top of street segment elevation $=319.200(\mathrm{Ft}$.)
End of street segment elevation $=318.200(F t$.)
Length of street segment $=63.000(F t$.
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Width of half street (curb to crown)
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) = 0.020
slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000$ (Ft.)
Distance from curb to property line $=15.000($ Ft. $)$
Slope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500(F t$.
Gutter hike from flowline $=1.500$ (In.
Gutter hike from flowline $=0.5$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Manning's N from grade break to crown $=0.0180$
0.170 (CFS)
Depth of flow $=0.124$ (Ft.), Average velocity $=1.848(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=1.500(F t$.
Flow velocity $=1.85(\mathrm{Ft} / \mathrm{s})$
Travel time $=0.57 \mathrm{~min} . \quad T C=0.55 \mathrm{~min}$.
Adding area flow 5 min.
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=$
$3.309(\mathrm{In} / \mathrm{Hr})$ for a ${ }^{\text {] }} 100.0$ year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.550$
Subarea runoff $=0.528(C F S)$ for $0.290(A C) \quad .0.37(A C$.
Total runoff =
Street flow at end of street $=\quad 0.676(\mathrm{CFS})$
Half street flow at end of street $=0.676$ (CFS)
Depth of flow $=0.206($ Ft. ), Average velocity $=1.779(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=5.558$ (Ft.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Upstream point/station elevation $=318.000$ (Ft.)
Downstream point/station elevation $=\quad 317.800$ (Ft.)
Pipe length $=12.00$ (Ft.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=0.676$ (CFS
Nearest computed pipe diameter $=6.00$ (In.)
Calculated individual pipe flow $=0.676$ (CFS)
Normal flow depth in pipe $=4.59$ (In.)
Flow top width inside pipe $=5.08$ (In.
Pipe flow velocity $=\quad 4.19(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.05 \mathrm{~min}$.
Time of concentration $(T C)=10.60 \mathrm{~min}$.

6000P100.out
Process from Point/Station
6017.000 to Point/Station
6021.000
**** SUBAREA FLOW ADDITION ***

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Time of concentration $=$
$=0.60 \mathrm{~min}$
Rainfall intensity $=\quad 3.304(\mathrm{In} / \mathrm{Hr})$ for a $\quad 100.0$ year storm Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=\quad 0.618$ (CFS) for 0.340 (Ac.)
Total runoff $=1.294($ CFS $)$ Total area $=0.71$ (Ac.)

Process from Point/Station
6021.000 to Point/Station
6112.000


Upstream point/station elevation $=317.800(\mathrm{Ft}$.
Downstream point/station elevation $=316.800(\mathrm{Ft}$.
No. of pipes $=1$ Required pipe flow $=1.294$ (CFS)
Nearest computed pipe diameter $=12.00($ In. $)$
Calculated individual pipe flow $=1.294$ (CFS)
Normal flow depth in pipe $=6.14$ (In.)
Flow top width inside pipe $=12.00$ (In.)
Critical Depth $=5.77$ (In.)
Pipe flow velocity $=\quad 3.20(\mathrm{Ft} / \mathrm{s})$
Time of concentration (TC) $=1.07 \mathrm{~min}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++4++4+4+1
6021.000 to Point/Station
6112.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area $=0.710$ (Ac.)
Runoff from this stream $=1.294$ (CFS)
Time of concentration $=3.67 \mathrm{~min}$.
Rainfall intensity $=3.191(\mathrm{In} / \mathrm{Hr})$

Process from Point/Station
Process from Point/Station 6108.000 to Point/Station
6109.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=70.000(\mathrm{Ft}$.)
Highest elevation $=319.000(\mathrm{Ft}$.
Elevation difference $=0.400$ (Ft
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=\quad 9.98 \mathrm{~min}$.
TC $=\left[1.8^{*}(1.1-C)^{*}\right.$ distance $\left.(F t .)^{\wedge} .5\right) /(\%$ slope^(1/3)].

## 6000P100.out

$\mathrm{TC}=\left[1.8^{*}(1.1-0.5500)^{*}\left(70.000^{\wedge} .5\right) /\left(0.571^{\wedge}(1 / 3)\right]=9.98\right.$ Rainfall intensity (I) $=3.376$ (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area ( $\mathrm{Q}=\mathrm{KCIA}$ ) is $\mathrm{C}=0.550$ Subarea runoff $=$ 0.130 (CFS)
Total initial stream area $=$
0.070 (Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation $=318.600($ Ft.
End of street segment elevation $=317.300$ (Ft.
Length of street segment $=66.000(F t$.
Height of curb above gutter flowline $=6.0($ In. $)$
Width of half street (curb to crown) $=26.000$ ( Ft .
Distance from crown to crossfall grade break $=15.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) =
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000(\mathrm{Ft}$.
Slope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's $N$ from gutter to grade break $=0.0180$
Manning's $N$ from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.110$ (Ft.), Average velocity $=1.0 .139$ (CFS
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=1.500(\mathrm{Ft}$.)
Flow velocity $=1.91(\mathrm{Ft} / \mathrm{s})$
Travel time $=0.58 \mathrm{~min} . \quad T C=10.56 \mathrm{~min}$.
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=$
$3.308(\mathrm{In} / \mathrm{Hr})$ for a
100.0 year storm Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$ Subarea runoff $=\quad 0.255(C F S)$ for 0.140 (Ac.)
Total runoff $=\quad 0.385($ CFS $)$ Total area $=0.21$ (Ac.)
Half street flow at end of street $=0.385(\mathrm{CFS})$
Depth of flow $=0.171(F t$.$) , Average velocity =1.779(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=3.808$ (Ft.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6110.000 to Point/Station
112.000

Upstream point/station elevation $=317.200(\mathrm{Ft}$. )
Downstream point/station elevation $=317.000(F t$.
No $=1$ Required pipe flow $=0.385$ (CF
No. of pipes $=1$ Required pipe flow $=0.385$ (CFS
Nearest computed pipe diameter $=\quad 6.00$ (In.)
Normal flow depth in pipe $=\quad 3.11$ (In.)
Flow top width inside pipe $=6.00(\mathrm{In}$.

## P:14182.30|EngrIReportsIDrainagelHYDROPROPOSED

P:|4182.30|EngrReports|DrainagelHYDROIPROPOSED
Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.out

Critical Depth $=3.78($ In. $)$
Pipe flow velocity $=\quad 3.74(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.05 \mathrm{~min}$.
Time of concentration $(\mathrm{TC})=\quad 10.61 \mathrm{~min}$

Time of concentration (TC) $=\quad 10.61 \mathrm{~min}$
Process from Point/Station
6111.000 to Point/Station
**** SUBAREA FLOW ADDITION

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 10.61 \mathrm{~min}$.
Rainfall intensity $=\quad 3.302(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$
Total runoff $=$
$0.748($ CFS $)$ Total area $=$
0.41 (Ac.)
++++++++++++++++++++++++++
Process from Point/Station $\qquad$ 6111.000 to Point/Station
6112.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 2 Stream flow area $=0.410($ Ac. $)$						
Runoff from this stream $=0.748$ (CFS)						
Time of concentration $=10.61 \mathrm{~min}$.						
Rainfall intensity $=3.302(\mathrm{In} / \mathrm{H}$						
Summary of stream data:						
Stream No.	Flow rate (CFS)	$\begin{gathered} \mathrm{TC} \\ (\mathrm{~min}) \end{gathered}$		$\begin{aligned} & \text { Rainfall Intensity } \\ & \text { (In/Hr) } \end{aligned}$		
1	1.294	11.67			3.1	
2	0.748	10.61			3.30	
Qmax (1)						
	1.000	1.000	*	1.294)		
	0.966	1.000	*	0.748)	+ =	2.017
Qmax (2)						
	1.000	0.910	*	1.294)		
	1.000	* 1.000	*	$0.748)$	+ =	1.925

Total of 2 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
$2.017 \quad 1.925$
Area of streams before confluence
0.710
0.410

Results of confluence
Total flow rate =
2.017 (CFS)

Time of concentration $=11.665 \mathrm{~min}$.
Effective stream area after confluence
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
**** PIPEFLOW TRAVEL TIME (Program estimated size) ***
Upstream point/station elevation $=317.000(\mathrm{Ft}$.
Downstream point/station elevation $=315.500$ (Ft.)
Pipe length $=1$ Required pipe flow $==10.013$
No. Of pipes $=1$ Required pipe flow $=2.017$ (CFS
Calculated individual pipe flow $=2.017$ (CFS)
Calculated individual pipe flow $=\quad$ (In.). $\quad$ (CFS)
Flow top width inside pipe $=8.92$ (In.)
Critical Depth $=7.73$ (In.)
Pipe flow velocity $=\quad 7.82(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.08 \mathrm{~min}$.
Time of concentration (TC) $=11.75 \mathrm{~min}$.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6112.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
is listed:
The following data insid
Stream flow area $=1.120$ (Ac.)
Runoff from this stream $=\quad 2.017$ (CFS)
Time of concentration $=11.75 \mathrm{~min}$.
Rainfall intensity $=\quad 3.183(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2
++++++++++++++++
Process from Point/Station 6113.000 to Point/Station
6114.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Initial subarea flow distance $=54.000(\mathrm{Ft}$.
Highest elevation $=314.800(\mathrm{Ft}$.
Lowest elevation $=314.500(\mathrm{Ft}$.)
Elevation difference $=0.300(F t$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=2.41 \mathrm{~min}$.

Setting time of concentration to 5 minutes 100.0 year $\begin{array}{ll}\text { Rainfall intensity }(I)= & 4.389(\mathrm{In} / \mathrm{Hr}) \\ \text { for a } \\ 100.0 & \text { year storm }\end{array}$ Effective runoff coefficient used for area ( $\mathrm{Q}=\mathrm{KCIA}$ ) is $\mathrm{C}=0.950$ Subarea runoff $=0.250($ CFS $)$
Total initial stream area $=\quad 0.060($ Ac. $)$
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station $\quad 6114.000$ to Point/Station 6115.000
**** STREET FLOW TRAVEL
6115.000

Top of street segment elevation $=314.500(\mathrm{Ft}$.
End of street segment elevation $=314.300$
Length of street segment $=\quad 28.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0($ In.)

## P::4182.30|Engr|ReportsIDrainagelHYDROIPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## P:44822.30|Engr|Reports|DrainagelHYDROPPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## 6000P100.out

Width of half street (curb to crown) $=26.000(F t$.
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
Slope from grade break to crown ( $\mathrm{v} / \mathrm{hz}$ ) $=$
Street flow is on $[1]$ side(s) of the street 0 ( Ft .
Slope from curb to property line (v/hz) = 0 ( Ft .
Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.177$ (Ft.), Average velocity $=$
Streetflow hydraulics at midpoint of street travel:
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=4.087(F t$.
Flow velocity $=1.09(\mathrm{Ft} / \mathrm{s})$
Travel $\quad T C=5.43 \mathrm{~min}$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=\quad 4.245(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Subarea runoff $=0.163$ (CFS) for 0.070 (Ac.)
Total runoff $=0.414(\mathrm{CFS})$ Total area $=0.13(\mathrm{Ac}$.
Street flow at end of street $=0.414$ (CFS)
Half street flow at end of street $=0.414$ (CFS
Flow width (from curb towards crown) $=5.304$ (Ft.)
Process from Point/Station
6115.000 to Point/Station
6117.000

TME (Program estimat Point/statio
Upstream point/station elevation $=318.000(\mathrm{Ft}$.
Downstream point/station elevation $=317.700(\mathrm{Ft}$.)
Pipe length $=10.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=0.414$ (CFS)
Nearest computed plpe diameter $=\quad 0.01$ (In.)
Calculated $\quad 2.74$ (In, .414 (CFS)
Normal flow depth in pipe $=2.74$ (In.)
Critical Depth $=3.93$ (In.) $4(\mathrm{Ft} / \mathrm{s})$
Pipe flow velocity $=\quad 4.75(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.04 \mathrm{~min}$
Time of concentration $(T C)=5.46 \mathrm{~min}$

Process from Point/Station

## 6000P100.out

Time of concentration Rainfall intensity $=$
5.46 min .
( $4.234(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runorf coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$

Process from Point/Station
6117.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****


Upstream point/station elevation $=317.700(\mathrm{Ft}$.
Downstream point/station elevation $=317.200($ Ft.)
Pipe length $=292.00(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=0.973$ (CFS
Nearest computed pipe diameter $=12.00$ (In.)
Calculated individual pipe flow $=0.973$ (CFS)
Normal flow depth in pipe $=$ 7.11(In.)
Critical Depth $=4.96($ In. $)$ (In
Pipe flow velocity $=\quad 2.00(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad \begin{aligned} 2.00(\mathrm{Ft} / \mathrm{s}) \\ 2.43 \mathrm{~min}\end{aligned}$
Time of concentration (TC) $=\begin{array}{r}2.43 \mathrm{~min} . \\ 7.89 \mathrm{~min}\end{array}$
+++++
Process from Point/Station
$\star \star * *$
6120.000 to Point/Station
122.000

Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
Time of concentration =
7.89 min.
$\begin{array}{ll}\text { Rainfall intensity }= & 3.678(\mathrm{In} / \mathrm{Hr}) \text { for a } 100.0 \text { year storm } \\ \text { Runoff coefficient used for sub-area, Rational method, } \mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\end{array}$ Subarea runoff $=\quad 0.971$ (CFS) for $\quad 0.480$ (Ac.)
Total runoff $=\quad 1.944($ CFS $) \quad$ Total area $=0.85($ Ac. $)$
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6121.000 to Point/Station
6122.000

Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
$\begin{array}{lc}\text { [SINGLE FAMILY area type } & 7.89 \mathrm{~min} . \\ \text { Time of concentration }= & 3.678(\mathrm{In} / \mathrm{Hr}) \text { for a }\end{array}$
Time of concentration
Runoff coefficient used for sub-area, Rational 100.0 year storm
Subarea runoff $=\quad 1.194(\mathrm{CFS})$ for Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$
Subarea runoff $=\quad 1.194(\mathrm{CFS})$ for $0.590(\mathrm{AC}$.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

P:44182.30|Engr|Reports|DrainagelHYDROPPROPOSED
Printed: 3/13/2019 9:27:52 AM A
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.out

Upstream point/station elevation $=317.200(F t$.
Downstream point/station elevation $=316.500(\mathrm{Ft}$.
Pipe length $=197.00(F t$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=3.137$ (CFS)
Calculated individual pipe flow $=\quad 3.137(\mathrm{CFS})$
Calculated 1 . 137 (CFS
Normal 10.29 (In.)
Critical Depth $=8.55($ In. $) \quad$ (
Pipe flow velocity $=3.50(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.94 \mathrm{~min}$.
Time of concentration $(T C)=8.83 \mathrm{~min}$.

Process from Point/Station 6122.000 to Point/Station
+++++++++ Process from Point/Station 6122.00
$* * *$ CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in norma Stream flow area $=1.440$ (Ac.)
Runoff from this stream $=3.137$ (CFS)
ime of concentration $=$

Rainfall intensity $=\quad 3.530(\mathrm{In} / \mathrm{Hr})$

Process from Point/Station
6063.000 to Point/Station
6064.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGIE FAMILY area type
Initial subarea flow distance $=69.000(\mathrm{Ft}$.)
Highest elevation $=317.000(F t$.
Lowest elevation $=316.800(F t$.
Elevation difference $=0.200$ (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=12.43 \mathrm{~min}$
TC $=[1.8 *(1.1-\mathrm{C}) *$ distance $(\mathrm{Ft}.) \wedge$. 5 ) $/(\%$ slope^ $(1 / 3)]$
$T C=\left[1.8^{*}(1.1-0.5500) *\left(69.000^{\wedge} .5\right) /\left(0.290^{\wedge}(1 / 3)\right]=12.43\right.$
Rainfall intensity (I) $=\quad 3.118(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ( $\mathrm{Q}=\mathrm{KCIA}$ ) is $\mathrm{C}=0.550$
Total initial stream area $=$
0.100 (Ac.)

Process from Point/Station 6064.000 to Point/Station
6099.000

Process from Point/Station ${ }_{*}$ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation $=316.800($ Ft.
End of street segment elevation $=312.300(\mathrm{Ft}$
Length of street segment $=472.000$ (Ft.)
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Distance from crown to crossfall grade break $=10.000$ (Ft.)
Slope from gutter to grade break (v/hz) $=0.020$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street

## 6000P100.out

Distance from curb to property line $=15.000$ (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500$ (In.)
Manning's $N$ in gutter $=0.0150$
Manning's $N$ from 0.0180
matimated mean flow grade break to crown $=0.0180$
Depth of flow $=0.252($ Ft.), Average velocity $=$
Streetflow hydraulics at midpoint of street travel
1.115 (CFS)
$.612(\mathrm{Ft} / \mathrm{s})$

Halfstreet flow width $=7.874(\mathrm{Ft}$.
Flow velocity $=1.61(\mathrm{Ft} / \mathrm{s})$
Travel time $=4.88 \mathrm{~min} . \quad T C=17.30 \mathrm{~min}$.
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
DSINGLE FAMILY area type
Rainfall intensity $=\quad 2.745(\mathrm{In} / \mathrm{Hr})$ for a ${ }^{\text {] }} 100.0$ year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=1.660($ CFS $)$ for 1.100 (Ac.) 1.20 (Ac.)
Total runoff $=1.832($ CFS $)$ Total area $=$
Street flow at end of street $=1.832$ (CFS)
Half street flow at end of street $=1.832$ (CFS)
Depth of flow $=0.289$ (Ft.), Average velocity $=1.803(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=9.719$ (Ft.)

Process from Point/Station 6099.000 to Point/Station

Upstream point/station elevation $=318.000(\mathrm{Ft}$.
Downstream point/station elevation $=317.700$ (Ft.)
Pipe length $=12.00(F t$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=1.832$ (CFS
Nearest computed pipe diameter $=9.00($ In. $)$
Calculated individual pipe flow $=1.832$ (CFS)
Normal flow depth in pipe $=5.55$ (In.)
Flow top width inside pipe $=8.75$ (In.)
Critical Depth $=7.43$ (In.)
Pipe flow velocity $=\quad 6.41(\mathrm{Ft} / \mathrm{s})$
Time of concentration $=0.03 \mathrm{~min}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++1+4
Process from Point/Station 6100.000 to Point/Station
6101.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=\quad 17.34 \mathrm{~min}$
Runoff coefficient used for $2.743(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Total runoff $=\quad 2.209$ (CFS) Total area $=($ Ac. $)$ 1.45(Ac.)

P:|4182.30|Engr|Reports|Drainage|HYDROIPROPOSED
Printed: 3/13/2019 9:27:52 AM AM

## P:44182.30|Engr|Reports|DrainagelHYDROPPROPOSED

Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

Process from Point/Station
++++++++++++++++++++++++++
6101.000 to Point/Station
6105.000
**** PIPRED Point/station

Upstream point/station elevation $=317.700(\mathrm{Ft}$.
Downstream point/station elevation $=317.200(\mathrm{Ft}$.
Downstream point/station elevation $=\quad 317.200(\mathrm{Ft}$.
Pipe length $=346.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$

Nearest computed pipe diameter $=15.00$ (In.)
Calculated individual pipe flow $=2.209$ (CFS)
Normal flow depth in pipe $=11.12($ In. $)$
Flow top width inside pipe $=13.14($ In. $)$
Critical Depth $=7.11$ (In.)
Pipe flow velocity $=\quad 2.26(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 2.55 \mathrm{~min}$.
Time of concentration (TC) $=19.88 \mathrm{~min}$

Process from Point/Station 6103.000 to Point/Station
6105.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 19.88 \mathrm{~min}$.
Rainfall intensity $=\quad 2.587(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.550$ Total runoff $=3.646(\mathrm{CFS})$ tot $1.010(\mathrm{Ac}$. )
Total runoff $=\quad 3.646($ CFS $)$ Total area $=\quad 2.46($ Ac. $)$

$$
\text { Process from Point/Station } 6104.000 \text { to Point/Station } 6105.000
$$

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Time of concentration $=\quad 19.88 \mathrm{~min}$.
Rainfall intensity $=\quad 2.587(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=0.996(C F S)$ for $0.700(A c$.
Total runoff $=\quad 4.642(C F S)$ Total area $=\quad 3.16(\mathrm{Ac}$.

Process from Point/Station
6105.000 to Point/Station
6123.000
**** PIPEFIOW TRAVEI TTME (Program 6105.00 to Point/station
Upstream point/station elevation $=317.200(\mathrm{Ft}$.
Downstream point/station elevation $=316.500(\mathrm{Ft}$.
Pipe length $=\quad 185.69$ (Ft.) Manning's $N=0.013$
No. of pipes $=1$ Required pipe flow $=\quad 4.642$ (CFS)
Nearest computed pipe diameter $=18.00$ (In.)

Calculated individual pipe flow $=\quad 4.642$ (CFS)
Normal flow depth in pipe $=11.31$ (In.)
Flow top width inside pipe $=$ 17.40(In.)
Critical Depth $=$ 9.93(In.)
Pipe flow velocity $=\quad 3.97(\mathrm{Ft} / \mathrm{s})$
Time of concentration (TC) $=0.78 \mathrm{~min}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6105.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 2							
Time of concentration $=20.66 \mathrm{~min}$.							
Rainfall intensity $=2.543(\mathrm{In} / \mathrm{Hr})$							
Summary of stream data:							
Stream No.	Flow rate (CFS)		$\begin{aligned} & \mathrm{TC} \\ & (\mathrm{~min}) \end{aligned}$		$\begin{aligned} & \text { Rainfall Intensity } \\ & \text { (In/Hr) } \end{aligned}$		
1	3.137	8.83			3.530		
2	4.642	20.66			2.543		
Qmax (1)							
	1.000	*	1.000	*	3.137)	+	
	1.000	*	0.427	*	4.642)	+	5.121
Qmax (2)							
	0.720	*	1.000	*	3.137)	+	
	1.000	*	1.000	*	4.642)	+ =	6.902

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data
$5.121 \quad 6.902$
$\begin{array}{cc}\text { Area of streams before confluence: } \\ 1.440 & 3.160\end{array}$
Results of confluence:
Total flow conflue
6.902 (CFS
ime of concentration $=\quad 20.662 \mathrm{~min}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4
Process from Point/Station 6123.000 to Point/Station 6068.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation $=316.500(F t$.
Downstream point/station elevation $=315.500(\mathrm{Ft}$.
Pipe length $=155.00$ (Ft.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=\quad 6.902$ (CFS)
Nearest computed pipe diameter $=18.00$ (In.)
Calculated individual pipe flow $=\quad 6.902$ (CFS)
Flow top width inside pipe $=16.69$ (In.)
Flow top width inside pipe $=16.69$ (In )
Critical Depth $=12.19$ (In.)
Pipe flow velocity $=\quad 5.32(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.49 \mathrm{~min}$.

## P:14182.30|Engr|Reports|DrainagelHYDROIPROPOSED

P: 14182.301 EngrIReports $\mid$ DrainagelHYDRO|PROPOSED
Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.0u

Time of concentration (TC) $=21.15 \mathrm{~min}$
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station
6123.

The following data inside Main Stream is listed:
In Main Stream number:
Stream flow area $=\quad 4.600(\mathrm{Ac}$.
Runoff from this stream $=\quad 6.902$ (CFS)
Time of concentration $=21.15 \mathrm{~min}$.
Rainfall intensity $=\quad 2.516(\mathrm{In} / \mathrm{Hr})$
Summary of stream data:

Stream No.	Flow rate (CFS)	$\begin{gathered} \text { TC } \\ (\min ) \end{gathered}$		$\begin{gathered} \text { Rainfall Intensity } \\ (\mathrm{In} / \mathrm{Hr}) \end{gathered}$		
1	2.017	11.75		3.183		
2	6.902	21.15		2.516		
Qmax (1) $=0.0$						
	1.000	1.000	*	2.017)	+	
	1.000 *	0.555	*	6.902)	+ =	5.851
Qmax (2)	$=$					
	0.791 *	1.000	*	2.017)	+	
	1.000 *	1.000	*	6.902)		8.497

Total of 2 main streams to confluence:
Flow rates before confluence point:
Maximum 2.017 6.902
Maximum flow rates at confluence using above data:
Area of streams before confluence:

Results of confluence:
Total flow rate $=$
$=$
8.497 (CFS)
21.147 min .

Time of concentration $=\quad 21.147 \mathrm{~min}$.
5.720 (Ac.)
++++++++++++++++++++++++++++++++
Process from Point/Station
6068.000 to Point/Station
6054.000

Upstream point/station elevation $=315.500(\mathrm{Ft}$.
Downstream point/station elevation $=314.500(\mathrm{Ft}$.
Pipe length $=91.38(F t$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=8.497(C F S)$
Nearest computed pipe diameter $=18.00$ (In.)
Calculated individual pipe flow $=8.497$ (CFS)
Normal flow depth in pipe $=11.88$ (In.)
Flow top width inside pipe $=17.05$ (In.)
Pipe flow velocity $=\quad 6.86(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.22 \mathrm{~min}$.
Time of concentration (TC) $=21.37 \mathrm{~min}$

6000P100.out
Proces from P++++++++++++
6068.000 to Point/Station
6054.000

Process from Point/Station
****
The following data inside Main Stream is listed:
In Main Stream number:
Stream flow area $=\quad 5.720$ (Ac.)
Runoff from this stream $=\quad 8.497$ (CFS)
Time of concentration $=21.37 \mathrm{~min}$.
Summary of stream data

Stream No.	Flow rate   (CFS)	$\begin{gathered} \text { TC } \\ (\min ) \end{gathered}$		$\begin{aligned} & \text { Rainfall Intensity } \\ & (\text { In } / \mathrm{Hr}) \end{aligned}$		
1	2.017	11.75			3.1	
2	8.497	21.37			2.5	
Qmax (1)						
	1.000	1.000	*	2.017)	+	
	1.000	0.550		8.497)	+	6.688
Qmax (2)						
	0.787 *	1.000 *		2.017)		
	1.000	1.000		8.497)		10.084

Total of 2 main streams to confluence
Flow rates before confluence point
$\begin{array}{ll}\text { 2.017 } & 8.497 \\ \text { Maximum flow rates } \\ 6.688 & 10.084\end{array}$
Area of streams before confluence:

$$
\begin{array}{ll}
1.120 & 5.720
\end{array}
$$

Results of confluence:
Total flow rate $=10.084$ (CFS
Iime of concentration $=21.369 \mathrm{~min}$
Effective stream area after confluence $=6.840$ (Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6054.000 to Point/Station 6078.000
$* * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=314.500(\mathrm{Ft}$.
Downstream point/station elevation $=304.500(\mathrm{Ft}$.
Pipe length $=346.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=10.084$ (CFS) Nearest computed pipe diameter $=15.00($ In. $)$ Calculated individual pipe flow $=10.084$ (CFS)
Normal flow depth in pipe $=11.32($ In. $)$
Flow top width inside pipe $=12.91$ (In.
Critical Depth $=14.23$ (In.)
Pipe flow velocity $=10.15(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.57 \mathrm{~min}$.
Time of concentration (TC) $=21.94 \mathrm{~min}$
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
**** SUBAREA FLOW ADDITION ****

P:14182.30|Engr|Reports|Drainage|HYDROIPROPOSED
Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.out

## Decimal fraction soil group $A=0.000$

Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.00$
Time fe
Rainfall $\quad 2.474(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runore coeficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Total runoff $=12.941(\mathrm{CFS})$ for $2.100(\mathrm{Ac}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6080.000 to Point/Station
6078.000

Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMTLY area type
Time of concentration $=21.94 \mathrm{~min}$.
Rainfall intensity $=\quad 2.474(\mathrm{In} / \mathrm{Hr})$ for a $\quad 100.0$ year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=\quad 4.000$ (CFS) for 2.940 (Ac.)
Total runoff $=16.941(C F S)$ Total area $=11.88($ Ac. $)$

Process from Point/Station
6078.000 to Point/Station
6060.000
**** PIPEFLOW TRAVEL TIME (Program estimated
Upstream point/station elevation $=\quad 304.500(\mathrm{Ft}$.
Pipe length $=113.00(F t$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=16.941$ (CFS)
Nearest computed pipe diameter $=18.00$ (In.)
Calculated individual pipe flow $=16.941$ (CFS)
Normal flow depth in pipe $=12.83$ (In.)
Flow top width inside pipe $=16.29$ (In.)
Critical depth could not be calculated.
Pravel time through pipe $=\quad 0.15 \mathrm{~min}$
Time of concentration $(T C)=22.09$ mi

Process from Point/Station 6078.000 to Point/Station
The following data inside Main Stream is listed:
In Main Stream number:
Stream flow area $=11.880(\mathrm{Ac}$. $)$
Runoff from this stream $=16.941$ (CFS)
Rainfall intensity $=\quad 2.466(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2

## P:44182.30|EEngIReportsDDranagelHYDROPPROPOSED

Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

6000P100.out
Process from Point/Station
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $D=1.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=108.000(\mathrm{Ft}$.
Highest elevation $=326.000(\mathrm{Ft}$.
Lowest elevation $=324.000$ (Ft.)
2.000 (Ft.)

Tlme of concentration calculated by the urban
areas overland flow method (App X-C) $=8.38 \mathrm{~min}$.
TC $=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance $($ Ft. $\left.) \wedge .5\right) /\left(\%\right.$ slope $\left.^{\wedge}(1 / 3)\right]$
TC $=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance (Ft.) $\left.{ }^{\text {^ }} .5\right) /(\%$ slope^ $(1 / 3)]$
TC $=\left[1.8^{*}(1.1-0.5500)^{*}\left(108.000^{\wedge} .5\right) /\left(1.852^{\wedge}(1 / 3)\right]=8.38\right.$ Rainfall intensity (I) $=\quad 3.598(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coficient used

Total initial stream area =
0.150 (Ac.)

## Process from Point/Station 6031.000 to Point/Station

**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
6032.000

Top of street segment elevation $=324.000(\mathrm{Ft}$.
End of street segment elevation $=318.500(\mathrm{Ft}$.
Length of street segment $=441.000(F t$.
Height of curb above gutter flowline $=6.0$ (In.)
Width of half street (curb to crown) 26.000(Ft.)
istance from crown to crossfall grade break $=8.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
slope from curb to property line (v/hz) = 0.020
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's $N$ from gutter to grade break $=0.0180$
Manning's $N$ from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=\quad 0.256(F t$.$) , Average velocity =$
$1.346(\mathrm{CFS})$
Depth of flow $=0.256(F t$.$) , Average velocity =1.866(\mathrm{Ft} / \mathrm{s})$
hydraulics at midpoint of street travel
(
Travel time $=3.94 \mathrm{~min} . \quad \mathrm{TC}=12.32 \mathrm{~min}$.
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=3.128(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=\quad 1.824(\mathrm{CFS})$ for 1.060 (Ac.)
Street flow at end of street $=\quad \begin{gathered}\text { Total area }= \\ 2.121(C F S)\end{gathered}$
1.21 (Ac.)

Street flow at end of street $=$
Half street flow at end of street $=\quad 2.121$ (CFS)
2.121 (CFS)
Depth of flow $=0.290(\mathrm{Ft}$.$) , Average velocity =2.068(\mathrm{Ft} / \mathrm{s})$

## P:44182.30|EngrIReportsDrainagelHYDROPPROPOSED

## 6000P100.out

Flow width (from curb towards crown)=
9.768 (Ft.
+++++++++++++++++++++ Process from Point/Station
6032.000 to Point/Station
**** PIPEFIOW TRAVE
gram

$$
318.000(\mathrm{Ft} .)
$$

Upstream point/station elevation $=318.000(F t$.
Downstream point/station elevation $=317.500(\mathrm{Ft}$.
No. of pipes $=1$ Required pipe flow $=\quad 2.121$ (CFS)
Nearest computed pipe diameter $=9.00($ In. $)$
Calculated individual pipe flow $=2.121$ (CFS)
Normal flow depth in pipe $=6.63$ (In.)
Flow top width inside pipe $=7.92$ (In.)
Critical Depth $=7.88$ (In.)
Pipe flow velocity $=\quad 6.08(\mathrm{Ft} / \mathrm{s})$
Travel through pipe $=0.07 \mathrm{~min}$.
Time of concentration $(T C)=12.38 \mathrm{~min}$
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[INDUSTRIAL area type
Rainfall concentration $=\quad 12.38 \mathrm{~min}$.
Rainfall $\quad 3.122(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Total runoff $=\quad 3.040($ CFS $)$ Total area $=1.52(A c$.

Process from Point/Station
$* * * *$
6035.000 to Point/Station
+++++++ .

Upstream point/station elevation $=317.500(\mathrm{Ft}$.
Downstream point/station elevation $=\quad 313.800(\mathrm{Ft}$.
No. of pipes $=1$ Required pipe flow $=3.040$ (CFS)
$\begin{array}{ll}\text { No. Of pipes }=1 \\ \text { Nearest computed pipe diameter }\end{array}=\quad 12.00$ (In.)
Calculated individual pipe flow $=3.040$ (CFS)
Normal flow depth in pipe $=7.07$ (In.)
Flow top width inside pipe $=11.81($ In. $)$
Critical Depth $=8.97($ In. $)$
Pipe flow velocity $=\quad 6.31(\mathrm{Ft} / \mathrm{s})$

Time of concentration $(T C)=12.96 \mathrm{~min}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6035.000 to Point/Station 6040.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area $=\quad 1.520$ (Ac.)

## P:41482.30|EngrIReports|DrainagelHYDROPPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## 6000P100.out

$\begin{aligned} & \text { Runoff from this stream }= \\ & \text { Time of concentration }=\end{aligned} \quad 3.040$ (CFS)
12.96 min.
Time of concentration $=\quad 12.96 \mathrm{~min}$.
Rainfall intensity $=$ $3.070(\mathrm{In} / \mathrm{Hr})$

Stream No.	Flow rate (CFS)	$\begin{gathered} \text { TC } \\ (\mathrm{min}) \end{gathered}$		$\begin{aligned} & \text { Rainfall Intensity } \\ & \text { (In/Hr) } \end{aligned}$		
1	3.137	8.83			3.53	
2	3.040	12.96			3.07	
Qmax (1)						
	1.000 *	* 1.000	*	3.137)	+	
	1.000 *	* 0.682	*	3.040)	+ =	5.209
Qmax (2)	$=$					
	0.870 *	* 1.000	*	3.137)	+	
	1.000 *	* 1.000	*	3.040)	+	5.769

Total of 2 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
$\begin{array}{rl}\text { Maximum flow rates at conf } \\ 5.209 & 5.769\end{array}$
Area of streams before confluence:
Results of confluence:
Total flow rate $=$
5.769 (CFS

Time of concentration $=\quad 12.956 \mathrm{~min}$
Effective stream area after confluence $=2.960$ (Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6036.000 to Point/Station
**** INITIAL AREA EVALUATION ****

Decimal fraction soil group A $=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=84.000(\mathrm{Ft}$.
Highest elevation $=320.000(\mathrm{Ft}$.
Lowest elevation $=318.000(\mathrm{Ft}$.
Time of concentration calculated by the urban
$\begin{aligned} & \text { Time of concentration calculated by the urban } \\ & \text { areas overland flow method (App X-C) }\end{aligned}=\quad 6.80 \mathrm{~min}$.
TC $\left.=\left[1.8^{*}(1.1-\mathrm{C}) * \text { distance (Ft.) }\right)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.5500)^{*}\left(84.000^{\wedge} .5\right) /\left(2.381^{\wedge}(1 / 3)\right]=6.80\right.$ Rainfall intensity (I) $=3.890(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ( $\mathrm{Q}=\mathrm{KCIA}$ ) is $\mathrm{C}=0.550$ Subarea runoff $=\quad 0.214$ (CFS)
Total initial stream area $=\quad 0.100($ Ac. $)$
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6037.000 to Point/Station
6038.000

Top of street segment elevation $=318.000(\mathrm{Ft}$.
End of street segment elevation $=313.800(\mathrm{Ft}$.)
Length of street segment $=211.000(\mathrm{Ft}$.

## P:14182.30 Engr|ReportsIDrainagelHYDROIPROPOSED

## 6000P100.out

Height of curb above gutter flowline $=6.0($ In. $)$ Width of half street (curb to crown) $=26.000(\mathrm{Ft}$.)
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$. Slope from gutter to grade break (v/hz) $=0.020$ Slope from grade break to crown (v/hz) $=$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500(\mathrm{Ft}$.)
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.204$ (Ft.), Average velocity $=$
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=5.446(\mathrm{Ft}$.
Flow velocity $=1.98(\mathrm{Ft} / \mathrm{s})$
TC $=8.57 \mathrm{~min}$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=\quad 3.568(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Subarea runoff $=\quad 0.942$ (CFS) for 0.480 (Ac.)
Total runoff $=\quad 1.156($ CFS $)$ Total area $=0.58(\mathrm{Ac}$.
Street flow at end of street $=1.156$ (CFS)
Half street flow at end of street $=1.156$ (CFS
Flow widh (from curb $2.169(\mathrm{Ft} / \mathrm{s})$

Process from Point/Statio
**** PIPEFLOW TRAVEL TIME (Program estimated size) ***
Upstream point/station elevation $=313.500(\mathrm{Ft}$.
Downstream point/station elevation $=313.000(\mathrm{Ft}$.
Pipe length $=24.27$ (Ft.) Manning's $\mathrm{N}=0.013$
Nearest computed pipe diameter $=\quad 9.00$ (In.)
Calculated individual pipe flow $=1.156(\mathrm{CFS})$
Calculated individual pipe flow $=$ (1.156(CFS)
Flow top width inside pipe $=9.00$ (In.)
Critical Depth $=5.93($ In. $)$
Pipe flow velocity $=\quad 5.34(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.08 \mathrm{~min}$.
Time of concentration (TC) $=8.65 \mathrm{~min}$
$\qquad$
Process from Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$

6000P100.out
[SINGLE FAMILY area type
8.65 min .

Time of concentration
Rainfall intensity $=\quad 3.556(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$ Subarea runoff $=\quad 4.988$ (CFS) for $\quad 2.550(\mathrm{Ac}$.
Total runoff $=6.144(\mathrm{CFS})$ Total area $=3.13(\mathrm{Ac}$. )
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6039.000 to Point/Station
6040.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[INDUSTRIAL area type
Time of concentration $=$
Rainfall intensity $=$$\quad \begin{aligned} & 8.65 \mathrm{~min} . \\ & 3.556(\mathrm{In} / \mathrm{Hr}) \text { for a }\end{aligned}$
Rainfall intensity $=\quad 3.556(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\ell=$ KCIA, $C=0.950$
Total runoff $=$

$$
6.651 \text { (CFS) Total area }=
$$

3.28 (Ac.)

Process from Point/Station
Summary of stream data:
$3.556(\mathrm{In} / \mathrm{Hr})$

No.
(min)
Rainfall Intensity
$\begin{array}{llll}1 & 3.137 & 8.83 & 3.530 \\ 2 & 6.651 & 8.65 & 3.55\end{array}$
$Q \max (1)=$
1.000 * 1.000 * 3.137$)+$
0.992 * 1.000 * 6.651$)+=\quad 9.738$
$\operatorname{Qmax}(2)=1.000 * 0.979$ * 3.137) +
$1.000 * 1.000 * \quad 6.651)+=$
9.723

Total of 2 streams to confluence:
Flow rates before confluence point:
$3.137 \quad 6.651$
$\begin{array}{rl}\text { Maximum flow rates at confluence using above data: } \\ 9.738 & 9.723\end{array}$
Area of streams before confluence:
Results of con
3.280

Result flow
9.738 (CFS)

Effective stream area after 8.831 min .
4.720 (Ac.)

## P:4182.30|Engr|Reports|Drainage|HYDROIPROPOSED

Printed: 3/13/2019 9:27:52 AM AM
Modified: 12/20/2018 9:15:53 AM AM

## 6000P100.out

Process from Point/r++++++++
6040.000 to Point/Station
6046.000
**** PIPEFLOW Point/Station rogram
Upstream point/station elevation $=\quad 313.000(\mathrm{Ft}$.
Downstream point/station elevation $=\quad 305.000(\mathrm{Ft}$.
Downstream point/station elevation $=305.000(F t$.
No . of pipes $=1$ Required pipe flow $=\quad 9.738$ (CFS)
Nearest computed pipe diameter $=15.00$ (In.)
Calculated individual pipe flow $=9.738$ (CFS)
Normal flow depth in pipe $=10.41($ In. $)$
Flow top width inside pipe $=13.83($ In. $)$
Critical Depth $=14.12$ (In.)
Pipe flow velocity $=\quad 10.72(\mathrm{Ft} / \mathrm{s})$
Pipe flow velocity $=\quad 10.72(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.37 \mathrm{~min}$.


Process from Point/Station $\qquad$ 6045.000 to Point/Station
6046.000
**** SUBAREA FIOW ADDITION
0.000

Decimal fract
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$ ) area type]
Time of concentration $=\quad 9.21 \mathrm{~min}$.
Rainfall intensity $=\quad 3.477(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $O=K C I A, C=0.450$ Subarea runoff $=1.408(C F S)$ for $0.900(A c$.
Total runoff $=11.146(\mathrm{CFS})$ Total area $=\quad$ 5.62(Ac.)

Process from Point/Station ++++
60
$* * *$ 6044.000 to Point/Station 046.000

000
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[SINGLE FAMILY area type
Rainfall intensity $=$
Rainfall intensity $=\quad 3.477($ In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ Total runoff $=14.186($ CFS $)$ Total area $=$ (AC.) 7.21(AC.)

Process from Point/Station
6046.000 to Point/Station
6060.000

Upstream point/station elevation $=305.000(F t$.
Downstream point/station elevation $=300.500(\mathrm{Ft}$.
Pipe length $=221.31(\mathrm{Ft}$.) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=14.186$ (CFS)
Nearest computed pipe diameter $=18.00$ (In.)
Calculated individual pipe flow $=14.186$ (CFS)
Normal flow depth in pipe $=13.97$ (In.)

## 6000P100.out

Flow top width inside pipe $=$ 15.01(In.)
Critical Depth $=16.64$ (In.)
Pipe flow velocity $=\quad 9.64(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.38 \mathrm{~min}$.
Time of concentration (TC) $=\quad 9.59 \mathrm{~min}$

Process from Point/Station 6046.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area $=$
7.210 (Ac.)

Runoff from this stream $=\quad 14.186(\mathrm{CFS})$
Time of concentration $=$
Rainfall intensity $=$
9.59 min.
$3.426(\mathrm{In} / \mathrm{Hr})$

Summary of stream data:

Stream No.	Flow rate (CFS)	$\begin{aligned} & \text { TC } \\ & (\min ) \end{aligned}$		$\begin{gathered} \text { Rainfall Intensity } \\ (\mathrm{In} / \mathrm{Hr}) \end{gathered}$		
1	16.941	22.09		2.466		
2	14.186	9.59		3.426		
$Q \max (1)=0$						
	1.000 *	1.000	*	16.941)	+	
	0.720 *	1.000	*	14.186)	+ =	27.152
Qmax (2)	$=$					
	1.000 *	0.434	*	16.941)	+	
	1.000 *	1.000	*	14.186)		21.540

Total of 2 main streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data
$27.152 \quad 21.540$
Area of streams before confluence:
$11.880 \quad 7.210$

Results of confluence:
Total flow rate $=$
27.152 (CFS)

Time of concentration $=\quad 22.087 \mathrm{~min}$
Effective stream area after confluence $=19.090$ (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6060.000 to Point/Stati
061.000

OW TRAVEL TIME (Program
Upstream point/station elevation $=300.500(\mathrm{Ft}$.
Downstream point/station elevation $=292.000($ Ft. $)$
Pipe length $=185.22(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=27.152$ (CFS
Calculated individual pipe flow $=27.152$ (CFS)
Calculal
Flow top width inside pipe $=19.65$ (In.)
Critical depth could not be calculated.
Pipe flow velocity $=15.68(\mathrm{Ft} / \mathrm{s})$

P:44182.30|EngrIReportsDDrainagelHYDROIPROPOSED
Printed: 3/13/2019 9:27:52 AM AM

## P:44182.30|EngrIReports|DrainagelHYDROPPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## 6000P100.0ut


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6062.000 to Point/Station
6061.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type 22.28 min .
Rainfall intensity $=-2.456$ ( $n / \mathrm{Hr}$ )
$\begin{array}{ll}\text { Rainfall intensity }= & 2.456(\mathrm{In} / \mathrm{Hr}) \text { for a } 100.0 \text { year storm } \\ \text { Runoff coefficient used for sub-area, }\end{array}$
Runf coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$ Subarea runoff $=1.513(C F S)$ for $1.120(A C$.
Total runoff $=28.665($ CFS $)$ Total area $=\quad 20.21$ (Ac.)
$+++++++++++++++++++++++++$
Process from Point/Station 6056.000 to Point/Station
6061.000

Total runoff $=$
1.931 (CFS) for 1.430 (AC.
21.64 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6061.000 to Point/Station
$* * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=293.000(\mathrm{Ft}$.
Downstream point/station elevation $=265.000(\mathrm{Ft}$.
Pipe length $=1$ Required pipe flow $=30.013$
No.
Calculated individual pipe flow $=30.596$ (CFS)
Normal flow depth in pipe $=11.10$ (In.)
Flow top width inside pipe $=17.50$ (In.)
Critical depth could not be calculated.
Pipe flow velocity $=26.76(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.10 \mathrm{~min}$.
Time of concentration $(T C)=22.38 \mathrm{~min}$.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
6095.000 to Point/Station
6096.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$

## 6000P100.out

Decimal fraction soil group $D=1.000$
[COMMERCIAL area type
Time of concentration $=\quad 22.38 \mathrm{~min}$.
Rainfall intensity $=\quad 2.450(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.850$ Subarea runoff $=40.226$ (CFS) for 4.910 (Ac.)
Total runoff $=40.823(\mathrm{CFS})$ Total area $=\quad 26.55(\mathrm{Ac}$.
lot+++++++++++++++++++++++++++++++++++++++++++++++++++++++
6096.000 to Point/Statio 6096.000 to Point/Station
6096.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
TRURAL (greater than $0.5 \mathrm{Ac}, 0.2 \mathrm{ha}$ ) area type
Rainfall intensity $=\quad 2.450(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.450$
Subarea runoff $=\quad 2.701$ (CFS) for

End of computations, total study area $=34.300$ (Ac.)

## P:|4182.30|Engr|Reports|DrainagelHYDROIPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## P:|4182.30|EngrIReports|Drainage|HYDROIPROPOSED

Printed: 3/13/2019 9:27:52 AM AM

## P:4182.30 Eng TRepors Drainagel HYDROPROPOSEDIO00P100:out

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study

Date: 10/03/18
PROJECT CANTERA
PROPOSED CONDITION
7000 P100


Program License Serial Number 4049

Rational hydrology study storm event year is
Rational hydrology study storm event
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0-1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method

Process from Point/Station
7050.000 to Point/Station
7051.000

Process from Point/Station
$* * * *$ INITIAL AREA EVALUATIO
$\underset{* * *}{705}$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $=0.000$
Decimal fraction soil group $D=1.000$
[SINGLE FAMILY area type
Initial subarea flow distance $=186.000(F t$.
Highest elevation $=333.300(\mathrm{Ft}$.
Lowest elevation $=330.590(\mathrm{Ft}$.)
Elevation dilference
Time of concentration calculated by the urban
areas overland flow method (App $X-C$ ) $=11.91$ min.
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C})^{*}\right.$ distance $\left.(\mathrm{Ft} .)^{\wedge} .5\right) /\left(\frac{8}{2}\right.$ slope^ (1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.5500)^{*}\left(186.000^{\wedge} .5\right) /(1.45)^{\wedge}(1 / 3)\right]=11.91$
Effective runoff coefficient used for area ( $2=\mathrm{KCIA}$ ) is $\mathrm{C}=0.550$
Subarea runoff $=0.592$ (CES)
Total initial stream area $=$
0.340 (Ac.)
$++++++++++++++++++++++++++++++++++++++++++$
Process from Point/Station 7051.000 to Point/Station
$\begin{array}{ll}\text { Top of street segment elevation }= & 330.590(F t .) \\ \text { End }\end{array}$
End of street segment elevation $=321.000($ Ft.)

## P:14182301Engr|ReportsDrainage HYOROPRROPOSED17000P100.out

Length of street segment $=238.460(\mathrm{Ft}$.)
eight of curb above gutter flowline $=6.0$ (In.)
Distance from crown to crossfall grade break $=15.000$ (Ft.)
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from arade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000$ (Ft.
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500(\mathrm{In}$.
Manning's N in gutter $=0.0150$
Manning's $N$ from gutter to grade break $=0.0180$
Manning's $N$ from grade break to crown $=0.0180$
sstimated mean flow rate at midpoint of street $=1.115$ (CFS
Depth of flow $=0.208(\mathrm{Ft}$.$) , Average velocity =2.851(\mathrm{Ft} / \mathrm{s})$
treetflow hydraulics at midpoint of street travel
alfstreet flow width $=5.655(\mathrm{Ft}$.
low velocity $=2.85(\mathrm{Ft} / \mathrm{s})$
Travel time $=1.39 \mathrm{~min}$.
Adding area flow to street
$\mathrm{TC}=$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
ISINGIE FAMILY area type
Rainfall intensity $=$ 3.040(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.550$ Subarea runoff $=1.003$ (CFS) for 0.600 (Ac.)
Total runoff $=1.595$ (CFS) Total area $=\quad 0.94(\mathrm{Ac}$.
Street flow at end of street $=1.595$ (CFS)
all street 1.595 (CES) $=0.264(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=6.704$ (Ft.)

$$
\begin{aligned}
& ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \\
& \text { rocess from Point/Station } 7052.000 \text { to Point//Station } 7054.000 \\
& \text { } * * * \text { PIPEELOW TRAVEL TIME (Program estimated size) } * * * *
\end{aligned}
$$

```
Upstream point/station elevation = 319.000(Ft.)
Downstream point/station elevation = 318.500(Ft.)
ipe length = 20.75(Et.) Manning's N = 0.013
o. of pipes = 1 Required pipe flow = 1.595(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated Individual pipe flow = 1.595(CFS)
8low top width inside pipe = 8.91(In.)
Flow top width inside pipe =
Pipe flow velocity = 6.12(Et/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 13.36 min.
```

$++++++++++++++++++++++++++++++++++++++++++$ Process from Point/Station 7053.000 to Point/Station 7054.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$ Decimal fraction soil group $\mathrm{C}=0.000$ Decimal fraction soil gro
Time of concentration $=$
13.36 min.

## P:A182.30|EngrIRepots DrainagelHYDRO PROPOSED17000P100.out

Rainfall intensity $=3.035(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Runoff coefficient used for sub-area, Rational met Subarea runoff $=0.985$ (CFS) for 0.590 (Ac.)
Total runoff $=\quad 2.580(C E S)$ Total area $=1.53(A C$.
$+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++$
Process from Point/Station 7054.000 to Point/Station
$* * *$ PIPEFLOW TRAVEL TIME (Program estimated size) ****
7020.000

Upstream point/station elevation $=318.500(F t$.
Downstream point/station elevation $=306.000$ (Et.)
Pipe length $=273.62(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=2.580(C F S)$
Nearest computed pipe diameter $=\quad 9.00$ (In.)
Calculated individual pipe flow $=2.580$ (CFS)
Normal flow depth in pipe $=5.71(\mathrm{In}$.
Elow top width inside pipe $=8.67(\mathrm{In}$.
Pipe flow velocity $=8.3(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.52 \mathrm{~min}$.
Time of concentration $(T C)=13.88 \mathrm{~min}$

Process from Point/Station $\qquad$ 016.000 to Point/Station
7020.000 *

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
Time of concentration $=13.88 \mathrm{~min}$.
Rainfall intensity $=\quad 2.992(\mathrm{In} / \mathrm{Hr})$ for a
ainfall intensity $=\quad 2.992(I n / \mathrm{Hr})$ for a 100.0 year storm
Subarea runoff $=\quad 0.711$ (CFS) for $\quad 0.250$ ( $\mathrm{A} C$ ) C , $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$
Total runoff $=3.291$ (CFS) Total area $=1.78(\mathrm{AC}$.

Process from Point/Station
7020 + 000 + 702.000
( 7020.000 to Point/Station
Upstream point/station elevation $=306.000(\mathrm{Ft}$.
Downstream point/station elevation $=305.000(\mathrm{Ft}$.
No. of pipes $=1$ Required pipe flow $=3.291$ (CFS)
Nearest computed pipe diameter $=12.00$ (In.)
Calculated individual pipe flow $=3.291$ (CFS
Normal flow depth in pipe $=7.63$ (In.)
Flow top width inside pipe $=11.55$ (In.)
$\begin{array}{ll}\text { Critical Depth }= & 9.32(\text { In. }) \\ 6.24(E t / s)\end{array}$
Pipe flow velocity $=$
Travel time through pipe $=$ $\begin{array}{r}6.24(\mathrm{Et} / \mathrm{s}) \\ 0.17 \mathrm{~min} .\end{array}$

+++++++4+4+++++++4+++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7021.000 to Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$

## P:14182.30EngrReportSDrainagelHYDROPROPOSED17000P100.out

Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.00$
SINGLE EAMILY area type
Rainfall intensity $=\quad 14.05 \mathrm{~min}$
moff coefficient used for $2.978(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runor coent used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550$ total runoff $=\quad 6.420(\mathrm{CFS})$ Total are $1.910(\mathrm{Ac}$.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7022.000 to Point//Station 7026.000
$* * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) $* * * *$

Jpstream point/station elevation $=305.000(\mathrm{Ft}$.
Downstream point/station elevation $=302.000(\mathrm{Ft}$.
To of pipes $=1$ Required pipe flow $=6.420$ (CES)
Nearest computed pipe diameter $=15.00(\mathrm{In}$ ) CFS
Calculated individual pipe flow $=6.420$ (CFS)
Normal flow depth in pipe $=10.17$ (In.)
Flow top width inside pipe $=14.02(\mathrm{In}$.
Critical Depth $=12.26$ (In.)
Pipe flow velocity $=7.24(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.45 \mathrm{~min}$.
Time of concentration $(T C)=14.50 \mathrm{~min}$.
$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++$
Process from Point/Station $\quad 7023.000$ to Point/Station
7026.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
INDUSTRIAL area type $=14.50 \mathrm{~min}$.
Rainfall intensity $=\quad 2.943(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Subarea runoff $=\quad 1.202$ (CFS) for 0.430 (Ac.)
Total runoff $=\quad 7.622(\mathrm{CES})$ Total area $=\quad 4.12(\mathrm{Ac}$.

Process from Point/Station
$\qquad$ 7025.000 to Point/Station
rocess from Point/Station $\qquad$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Time of concentration $=14.50 \mathrm{~min}$.
Rainfall intensity $=\quad 2.943(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.950$ $\begin{array}{ll}\text { Subarea runoff }= & 0.643(C F S) \text { for } 0.230(\mathrm{Ac.}) \\ \text { Total runoff }= & 8.265(\mathrm{CFS}) \text { Total area }=\end{array}$
$+++++++++++++++++++++++++++$

Page 4 of 18

### 4182.30EngrIRepotis DrainageHYDROIPROPOSED77000P100.0u

Upstream point/station elevation $=302.000(F t$.
Downstream point/station elevation $=301.000$ (Ft.)
Pipe length $=147.62(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=8.265$ (CES
Nearest computed pipe diameter $=\quad 18.00(\mathrm{In}$.)
Calculated individual pipe flow $=8.265$ (CFS)
Normal flow depth in pipe $=14.09$ (In.)
Flow top width inside pipe $=14.85$ (In
Pipe flow velocity $=\quad 5.57(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.44 \mathrm{~min}$.
Time of concentration $(T C)=14.94 \mathrm{~min}$.
$++++4++4+++4+4+4+4+4+4$
Process from Point/Station
$* * * *$ CONFLUENCE OF MINOR S
7026.000 to Point/Station

MS 7026.000
Along Main Stream number: 1 in normal stream number 1
Stream flow area $=\quad 4.350$ (Ac.)
Runoff from this stream $=\quad 8.265$ (CFS)
Time of concentration $=\quad 14.94$ min.

Time of concentration $=$
Rainfall intensity $=$$\quad \begin{aligned} & 14.94 \mathrm{~min} . \\ & 2.909(\mathrm{In} / \mathrm{Hr})\end{aligned}$

Process from Point/Station $\qquad$ 7005.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Initial subarea flow distance $=33000(\mathrm{Ft}$.
Highest elevation $=306.000(\mathrm{Ft}$.
Elevation difference $=0.200$ (Et.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=1.83 \mathrm{~min}$.
$\left.T C=\left[1.8^{*}(1.1-C) * \text { distance (Ft. }\right)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$T C=\left[1.8^{*}(1.1-0.9500) *\left(33.000^{\wedge} .5\right) /\left(0.606^{\wedge}(1 / 3)\right]=1.83\right.$
Setting time of concentration to 5 minutes
Rainfall intensity $(I)=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ( $\mathrm{Q}=$ KCIA) is $\mathrm{C}=0.950$
Subarea runoff $=\quad 0.125$ (CFS)
Total initial stream area $=\quad 0.030(A C$.
$+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++$
Process from Point/Station 7006.000 to Point/Station
Top of street segment elevation $=305.800(\mathrm{Ft}$.
End of street segment elevation $=305.600(\mathrm{Ft}$.
Length of street segment $=73.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0$ (In.)
Width of half street (curb to crown) $=26.000(\mathrm{Ft}$.)
Distance from crown to crossfall grade break $=15.000(\mathrm{Ft}$.
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from grade break to crown ( $\mathrm{v} / \mathrm{hz}$ ) $=$
Distance from curb to property line $=10.000(\mathrm{Ft}$.
Slope from curb to property line ( $\mathrm{v} / \mathrm{hz}$ ) $=0.020$
Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:53:35 PM PM
Page 5 of 18

## P:4182:30IEngrReports DrainagelHYDROPROPOSEDI7000P 100.0 ut

Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500($ In.
Maning's N in gutcer $=0.0150$
Manning's $N$ from gutter to grade break $=0.0180$
stimated mean flow rate at midpoint of $=0.0180$
Depth of flow $=\quad 0.166(\mathrm{Ft}$.). Average velocity $=0.130$ (CFS
treetflow hydraulics at midpoint of street travel
Halfstreet flow width $=3.561$ (Ft.)
Flow velocity $=0.66(\mathrm{Ft} / \mathrm{s})$
ravel time $=1.85 \mathrm{~min} . \quad \mathrm{TC}=6.85 \mathrm{~min}$
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.00$
Decimal fraction soil group $C=0.00$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Rainfall intensity $=$
R $\quad 3.877(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.950$ Runoff coefficient used for sub-area, Rational met $\quad 0.295$ (CFS) for 0.080 (Ac.)
Total runoff =
0.420 (CFS
treet flow at end of street $=0.420$ (CFS)
Half street flow at end of street $=0.420(\mathrm{CES})$
Depth of flow $=0.230(\mathrm{Ft}$.$) , Average velocity =0.801(\mathrm{Ft} / \mathrm{s}$
Flow width (from curb towards crown) $=6.728$ (Ft.)

```
process from Point/Station 7007.000 to Point/Station
Ipstream point/station elevation \(=303.500(F t\).
Downstream point/station elevation \(=303.400(\mathrm{Ft}\).
```



```
Nearest computed pipe diameter \(=6.00(\mathrm{In}\).
Calculated individual pipe flow \(=0.420\) (CFS
Normal flow depth in pipe \(=2.96(\mathrm{In}\).
low top width inside pipe \(=6.00\) (In.
Critical Depth \(=3.96\) (In.)
Pipe flow velocity \(=4.36(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
rime of concentration \((T C)=6.87 \mathrm{~min}\).
```

$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+$
Process from Point/Station 7009.000 to Point/Station
**** SUBAREA ELOW ADDITION ***
$\qquad$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
6.87 min .

Rainfall intensity $=\quad 3.874(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$
Sotal runoff $=1.708(\mathrm{CFS})$ Total area $=0.46(\mathrm{Ac}$.
$++++++++++++++++++++++++++++++++++++++++++++++++++++++++4$
012.000
**** PIPEELOW TRAVEL TIME (Program estimated size) ****
Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:53:35 PM PM
Page 6 of 18

```
Upstream point/station elevation = 303.400(Ft.)
Downstream point/station elevation = 301.000(Ft.)
Pipe length = 44.42(EL.), Manning s N = 0.013
No.ost computed pipe diameter = 9.00(In)
Calculated individual pipe flow = 1.708(CFS)
Normal flow depth in pipe = 4.20(In.)
Nlow top width inside pipe = 8.98(In.)
Critical Depth = 7.20(In.)
Mipe flow velocity =
Time of concentration (TC) = 6.96 min.
Process from Point/Station 7010.000 to Point/Station 7012.000
**** CONEL
Along Main Stream number: 1 in normal str
Stream flow area \(=\)
Runoff from this stream \(=460(\mathrm{Ac}\).
Time of concentration \(=\)
Rainfall intensity \(=\)
Rainfall intensity = 3.855(In/Hx)
Process from Point/Station
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
DINDUSTRIAL area type
IndUSTRIAL area type
inhest \(=57.000(\mathrm{Ft}\).)
owest elevation \(=323.500(\mathrm{Ft}\).
Lowest elevation \(=\quad 315.000(\mathrm{Ft}\).)
Elevation difference \(=\quad 8.500(\mathrm{Ft}\).
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=0.83 \mathrm{~min}\).
TC \(\left.=\left[1.8^{*}(1.1-C)^{*} \text { distance (Ft. }\right)^{\wedge} .5\right) /(8\) slope^(1/3)]
\(\mathrm{TC}=\left[1.8^{*}(1.1-0.9500)^{*}\left(57.000^{\wedge} .5\right) /\left(14.912^{\wedge}(1 / 3)\right]=0.83\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity \((I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Effective runoff coefficient used for area (\(\mathrm{Q}=\mathrm{KCLA}\)) is \(\mathrm{C}=0.950\)
路
0.090 (Ac.)
\(+++++++++++\) Process from Point/Station 7001.000 to Point/Station

Top of street segment elevation \(=315.000\) (Ft.)
End of street segment elevation \(=308.000(\mathrm{Ft}\)
Length of street segment \(=481.000(\mathrm{Ft}\).
Height of curb above gutter flowline \(=6.0\) (In.)
Width of half street (curb to crown) \(=20.000\) (Ft .)
Distance from crown to crossfall grade break \(=18.000(\mathrm{Ft}\).)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.017\)
Slope from grade break to crown (v/hz) \(=0.017\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=10.000(\) Ft.)

\section*{P:A482:301EngrReportsDrainageHYOROPRROPOSEDI7000P100.out}

Slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.020\) Gutter hike from flowline \(=2.000\) (In.)
Manning's N in gutter \(=0.0170\)
Manning's \(N\) from gutter to grade break \(=0.0170\)
Manning's \(N\) from grade break to crown \(=-\quad\). 0.0170
0.540(CES)

Streetflow hydraulics at midpoint of street travel:
(4.656 (Ft.)
ravel time \(=4.70 \mathrm{~min} . \quad T C=9.70 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Rainfall intensity \(=\)\(\quad 3.411(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCLA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 2.852(C F S)\) for \(0.880(A C\).
Street flow at end of street \(=3.227\) (CFS)
Depth of flow \(=0.335(\mathrm{Ft}\).\() , Average velocity =2.410(\mathrm{Ft} / \mathrm{s})\)
Elow width (from curb towards crown) \(=11.914(\mathrm{Ft}\).

Process from Point/Station 7002.000 to Point/Station
\(++++++\)
```

Upstream point/station elevation = 307.800(Ft.)
Pipe length = 37.25(Ft.) Manning's N = 0.013
o. or pipes = 1 Required pipe How = 3.227(CFS)
Nearest computed pipe diameter = = 3.027(CFS
Normal flow depth in pipe = 7.99(In.)
Elow top width inside pipe = 14.97(In.)
Pipe flow velocity = 4.68(1n.)

```

```

Time of concentration (TC) = 9.83 min

```
Process from Point/Station 7017.000 to Point/Station 7004.000
Decimal fraction soil group \(A=0.000\)
Decmal fraction soil group \(B=0.000\)
decimal fraction soll group \(=0.000\)
[SINGLE FAMILY area type
Time of concentration \(=9.83 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.395(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=\) KCIA, \(C=0.550\)
Total runoff \(=10.043(\mathrm{CFS})\) Total area \(=\quad 4.62(\mathrm{Ac}\).

Process from Point/Station

\section*{P:4182.30EEngTReportsDrainageHYDROPROPOSEDITO00P100.0u}
** SUBAREA FLOW ADDITION ***

\section*{Decimal fraction soil group \(A=0.000\)}

Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=1.000\)
Time of concentration \(=9.83 \mathrm{~min}\)
Rainfall intensity \(=\quad 3.395(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 1.709\) (CFS) for 0.530 (Ac.)
Total runoff \(=\)
11.752 (CFS) Total area
5.15 (AC.)

Process from Point/Station +++++++++++++++++++++++++++1
7004.000 to Point/Station
Process from Point/Station
\[
\begin{aligned}
& 7004.000 \text { to Point/Station } \\
& \text { gram estimated size) **** }
\end{aligned}
\]

Upstream point/station elevation \(=306.000(\mathrm{Ft}\).
Downstream point/station elevation \(=301.000\) (Ft.)
No. of pipes \(=1\) Required pipe flow \(=11.752\) (CFS)
Nearest computed pipe diameter \(=15.00\) (In.)
Calculated individual pipe flow \(=11.752\) (CES)
Normal flow depth in pipe \(=10.69(\mathrm{In}\).)
Flow top width inside pipe \(=13.58(\mathrm{In}\).
Critical depth could not be calculated.
Pipe flow velocity \(=12.56(F \mathrm{t} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.15 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=9.98 \mathrm{~min}\)
(
Process from Point/Station \(\quad 7004.000\) to Point/Station
**** CONFTUENCE OF MINOR STREAMS ****

Total of 3 streams to confluence:

\section*{P:4482.30Engr/RepotsDrainagelHYDROPROPOSEDI7000P100.out}

Flow rates before confluence point:
Maximum flow rates at confluence using above data:
Area of 18.678 , 18
rea of streams before confluence:
\(.350 \quad 0.460\)
5.150

Total flow rate \(=19.678\) (CFS)
Time of concentration \(=14.943 \mathrm{~min}\).
Effective stream area after confluence \(=\quad 9.960(\mathrm{Ac}\).
rocess from Point/Statio
7012.000 to Point/Station
7029.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation \(=301.000(\mathrm{Ft}\).
Downstream point/station elevation \(=294.000\) (Ft.)
10. of pipes \(=1\) Required pipe flow \(=19.678\) (CFS)

Nearest computed pipe diameter \(=21.00(\) In. \()\)
Calculated individual pipe flow \(=19.678\) (CFS
Normal flow depth in pipe \(=16.73\) (In.)
low top width inside pipe \(=16.90\) (In.
Critical Depth \(=1.9 .08(I n\).
Pipe flow velocity \(=\quad 9.58(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.75 \mathrm{~min}\).
Time of concentration \((T C)=15.69 \mathrm{~min}\).

Process from Point/Station
7012.000 to Point/Station
7029.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 9.960\) (Ac.)
Runoff from this stream \(=19.678\) (CFS)
Time of concentration \(=15.69 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.855(\) In \(/ \mathrm{Hr})\)

Process from Point/Station 7002.000 to Point/Station
7011.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
INDUSTRIAL area type
nitial subarea flow distance \(=67.000(\mathrm{Ft}\).
Highest elevation \(=308.000(\) Ft. \()\)
Lowest elevation \(=306.500(F t\).
Elevation difference \(=1.500(F t\).
Fime of concentration calculated by the urban
areas overland flow method (App X-C) \(=1.69 \mathrm{~min}\)
\(\begin{array}{cc}C=\left[1.8^{*}(1.1-C) * \text { distance }(F t .)^{\wedge} \cdot 5\right) /(8) & \text { slope^}(1 / 3)] \\ \left.2.239^{\wedge}(1 / 3)\right]=1.69\end{array}\)
\(\mathrm{C}=\left[1.8^{*}(1.1-0.9500) *\left(67.000^{\wedge} .5\right) /\left(2.239^{*}(1 / 3)\right]\right.\)
Rainfall intensity (I) = \(\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm \(\begin{array}{lll}\text { Rainfall intensity (I) }= & 4.389(\mathrm{In} / \mathrm{Hr}) & \text { for } \mathrm{a} \\ \text { Effective runoff coefficient } & 100.0 \text { year st } \\ \text { sor }\end{array}\) Subarea runoff \(=0 \quad 0.417\) (CFS)
Total initial stream area \(=\)
0.100 (Ac.)
++
Process Erom Point/Station 7011.000 to Point/Station 7027.000 Process from Point station + SUBAREA FLOW ADDITTON ****

Top of street segment elevation \(=306.500(\mathrm{Ft}\).)
End of street segment elevation \(=296.000\) (Ft.)
Length of street segment \(=414.000(\mathrm{Ft}\).
Width of half street (curb to crown) \(=26.0\) (In.)
Distance from crown to crossfall grade break \(=15.000\) (Ft .)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
\(=0.020\)
Slope from grade break to crown (v/hz) =
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=10.000\) (Ft.)
slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).
Gutter hike from flowline \(=1.500\) (In.)
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean How rate at midpoint 1.251 (CFS)
2.427(Ft/s)

Halewtreet fow width \(=6.664\) (Ft.)
Travel time \(=2.84 \mathrm{~min} . \quad \mathrm{TC}=7.84 \mathrm{~min}\).
Travel time area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=1.000\)
[INDUSTRIAL area type
\(3.687(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Rainfall intensity \(=\quad 3.687(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}\)
Runoff coefficient used for sub-area, Rational method, \(\mathrm{O}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=1.401\) (CFS) for \(0.400(\mathrm{Ac}\).
Street flow at end of street \(=\quad 1.818(\mathrm{CES})\)
0.50 (Ac.)

Street flow at end of street \(=\)
Half street flow at end of street \(=\quad 1.818\) (CES)
1.818 (CFS
Depth of flow \(=0.252(\mathrm{Ft}\).\() , Average velocity =2.630(\mathrm{Ft} / \mathrm{s})\)
Elow width (from curb towards crown) \(=7.874(\mathrm{Ft}\).)
++4
Process from Point/Station 7027.000 to Point/Station 7029.000
+****
7027.000 to Point/Station

Upstream point/station elevation \(=295.600(F t\).
Downstream point/station elevation \(=294.000(\mathrm{Ft}\).
No. of pipes \(=1\) Required pipe flow \(=1.818\) (CFS)
Nearest computed pipe diameter \(=\quad 9.00(\) In. \()\)
Calculated individual pipe flow \(=1.818\) (CFS)
Normal flow depth in pipe \(=4.66\) (In.)
Elow top width inside pipe \(=8.99\) (In.)
Critical Depth \(=\)
Pipe flow velocity \(=\)
\(=7.40(I n\).
\(7.87(E t / s)\)
Pipe flow velocity \(=\)
Travel time through pipe \(=\quad \begin{aligned} 7.87(\mathrm{Et} / \mathrm{s}) \\ 0.08 \mathrm{~min}\end{aligned}\)
Travel time through pipe \(=\quad 0.08 \mathrm{~min}\).
Time of concentration \((T C)=7.92 \mathrm{~min}\).
+ி+++
Process from Point/Station
7028.000 to Point/Station
\(\qquad\)
:1418230 E EngrReporst Drainage HYDROPROPOSEDTOOOP 100.out

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type \(\quad 7.92 \mathrm{~min}\)
Time of concentration \(=\)

Rainfall intensity \(=\quad 3.673(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=1.919\) (CFS) for \(0.550(\mathrm{Ac}\).
rotal runoff \(=\quad 3.737\) (CES) Total area \(=1.05(\mathrm{Ac}\).
```

Process from Point/Station 7028.000 to Point/Station 7029.000
*** CONFLUENCE OF MINOR STREAMS ****

```
Along Main Stream number: 1 in normal stream number 2
Stream flow area \(=\) : \(050(\mathrm{Ac}\).)
Runoff from this stream \(=\quad 3.737\) (CES
ime of concentration \(=7.92 \mathrm{~min}\).
Rainfall intensity \(=3.673(\mathrm{In} / \mathrm{Hr}\)
Summary of stream data:
\begin{tabular}{lccccc}
\begin{tabular}{c}
Stream \\
No.
\end{tabular} & \begin{tabular}{c}
Elow rate \\
(CFS)
\end{tabular} & \begin{tabular}{c}
TC \\
\((\min)\)
\end{tabular} & & Rainfall Intensity \\
(In/Hr)
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data: \(22.583 \quad 13.672\)
Area of streams before confluence:
Results of confluence:
Results flow rate \(=\quad 22.583\) (CFS)
Time of concentration \(=\quad 15.691 \mathrm{~min}\).
Effective stream area after confluence \(=11.010(\mathrm{Ac}\).
rocess from Point/Station
7029.000 to Point/Station
7032.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=294.000(\mathrm{Ft}\).
Downstream point/station elevation \(=284.000(\mathrm{Ft}\).
Downstream point/station elevation \(=284.000(\mathrm{Ft}\).
Pipe length \(=1 \quad\) Required pipe flow \(=22.583\) (CFS)
\(\begin{array}{ll}\text { No. of pipes }=1 \text { Required pipe flow } & =1.00(\mathrm{In} .) \\ \text { Nearest computed pipe diameter } & 21.00\end{array}\)
Nearest computed pipe diameter \(={ }^{\text {Calculated individual pipe flow }}=22.00\) (In.)
Normal flow depth in pipe \(=14.58(\mathrm{In}\).
Flow top width inside pipe \(=19.35\) (In.
Critical Depth = 19.77 (In.)
Pipe flow velocity \(=12.68(\mathrm{Ft} / \mathrm{s})\)
Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:53:35 PM PM
Page 12 of 18

\section*{P:14182.30 EngrIRepots DrainagelHYDROPROPOSED7000P100:out}

Travel time through pipe \(=0.44 \mathrm{~min}\).
Time of concentration \((T C)=16.13 \mathrm{~min}\).

Process from Point/Station
7031.000 to Point/Station
032.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(\mathrm{C}=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type]
Time of concentration \(=16.13 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.823(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year stom
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.450\) Subarea runoff \(=\quad 3.430\) (CFS) for 2.700 (Ac.
Total runoff \(=26.013\) (CFS) Total area \(=(\mathrm{Ac}) .13.71(\mathrm{Ac}\).
\(++++4++\)
Process from Point/Station
7032.000 to Point/Station
7035.000

Upstream point/station elevation \(=284.000(\) Et.
Downstream point/station elevation \(=270.000\) (Et.)
No. of pipes \(=1\) Required pipe flow \(=26.013\) (CFS
Nearest computed pipe diameter \(=21.00\) (In.)
Calculated individual pipe flow \(=26.013\) (CFS)
Normal flow depth in pipe \(=14.23(\mathrm{In}\).
Elow top width inside pipe \(=19.63\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=14.98(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.37 \mathrm{~min}\).
+++++++++++++4+++++++++++++++4+1
Process from Point/Station 7033.000 to Point/Station
* SUBAREA FLOW ADDITION *

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(\quad 1651 \mathrm{~min}\) -
Rainfall intensity \(=\quad 2.798(\mathrm{In} / \mathrm{Hr}\)) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Subarea runoff \(=\quad 1.834(\mathrm{CES})\) for \(\quad 0.690(\mathrm{Ac}\).
Total runoff \(=27.847\) (CFS) Total area \(=14.40(\mathrm{Ac}\).

Proces from Point/Station \(\qquad\) 7034.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal iraction soil group \(D=1.000\)
Time of concentration
\[
16.51 \mathrm{~min} .
\]

\section*{P:148230 EngIReports DrainagelHYDROPRROPOSED17000P100.out}

Rainfall intensity \(=\quad 2.798(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational subarea runoff \(=1.728\) (CFS) for \(0.650(A C\).
Total runoft 20.575 (CFS) Total area \(=15.05\) (Ac.)

\section*{Process from Point/Station 7035.000 to Point/Station
\(* * * *\) PIPEFLOW TRAVEL TIME (Program estimated size) ****}
7043.000

Upstream point/station elevation \(=270.000(F t\).
Downstream point/station elevation \(=264.000(\mathrm{Ft}\).
Pipe length \(=66.00(E t\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=29.575\) (CFS)
Nearest computed pipe diameter \(=18.00\) (In.)
Calculated individual pipe flow \(=29.575\) (CES)
Normal flow depth in pipe \(=13.3\) (In.)
Critical depth could not be calculated.
flow velocity \(=20.36(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.05 \mathrm{~min}\).
Time of concentration \((T C)=16.56 \mathrm{~min}\).
rocess from Point/Station
7035.000 to Point/Station 7035.00
```

The following data inside Main Stream is listed:

```

In Main Stream number: 1
tream flow area \(=15.050\) (AC)
of 29.575 (CFS
Rainfall intensity \(=\quad 16.56 \mathrm{~min}\).
Program is now starting with Main Stream No. 2
\(+++++++++++++++++++++++++++\)
Process from Point/Station
Decimal fraction soil group \(A=0.00\)
Decimal fraction soil group \(B=0.00\)
ecimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
INDUSTRIAL area type
Initial subarea flow distance \(=\)
Highest elevation \(=273.600(\mathrm{Ft}\).)
owest elevation \(=273.200(\mathrm{Ft}\).)
Elevation difference \(=\quad 0.400(\mathrm{Ft}\).
Time of concentration calculated by the urban
areas overland flow method (App \(X-C\)) \(=2.46 \mathrm{~min}\)
\(\mathrm{C}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /\left(\%\right.\) slope \(\left.{ }^{\wedge}(1 / 3)\right]\)
\(C=\left[1.8^{*}(1.1-0.9500) *\left(62.000^{\wedge} .5\right) /\left(\quad 0.645^{\wedge}(1 / 3)\right]=2.46\right.\)
Setting time of concentration to 5 minutes
Setting time of concentration tor \(\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Effective runoff coefficient used for area (\(\mathrm{Q}=\mathrm{KCIA}\)) is \(\mathrm{C}=0.950\)
Subarea runoff \(=0.167\) (CFS)
Total initial stream area \(=\quad 0.040\) (Ac.

Process from Point/Station 7039.000 to Point/Station
7041.000
*** STREET ELOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
```

Top of street segment elevation = 2%3.200(FL.
End of street segment elevation = 269.600(Ft.
Length of street segment = 361.000(Ft.
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 26.000(Ft.)
Distance from crown to crossfall grade break = =10.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 15.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0180
Manning's N from grade break to crown = 0 0.0180
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.153(Ft.), Average velocity =
Depth of flow = 0.153(Ft.), Average velocity
Streetflow hydraulics at midpoint of
Flow velocity = 1.24(Ft/s)
Travel time = 4.86 min. TC = 9.86 min
Adding area flow to street A}=0.00
Decimal fraction soil group B}=0.00
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAI area type
Rainfall intensity = 3.391(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.95
Subarea runoff = 0.999(CFS) for 0.310(AC.)
Total runoff = 1.166(CFS) Total area =
Street flow at end of street = 1.166(CFS)
Half street flow at end of street = 1.166(CFS)
Depth of flow = 0.254(Ft.), Average velocity = 1.657(Ft/s)
Flow width (from curb towards crown)= 7.950(Ft.)
Process from Point/Station 7041.000 to Point/Station 7042.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 267.000(Et.)
Downstream point/station elevation = 266.500(Ft.)
Pipe length = 26.25(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 1.166(CFS)
Nearest computed pipe diameter =m 9.00(In.)
Calculated individual pipe flow = 1.166(CFS)
Normal flow depth in pipe = 4.56(In.)
Flow top width inside pipe = 9.00(In.
Pipe flow velocity = 5.19(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 9.94 min
++++++++++++++++++++++++++++

```
\(\qquad\)
``` 7040.000 to Point/Station
\(\qquad\)
```

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$

```

\section*{P:4182.30EngrReportsDrainagelHYDROPROPOSED77000P100.out}

Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=9.94 \mathrm{~min}\).
Runoff coefficient used for sub-area, Rational method year storm 00.950 Subarea runoff \(=\quad 1.895\) (CFS) for 0.590 (AC.)
3.060(CES) Total area \(=\)
0.94 (AC.)

Process from Point/Station
rocess from Point/Station (Program estimated size) \(* * * *\)
Upstream point/station elevation \(=266.500(F t\).
Downstream point/station elevation \(=264.000\) ( Ft. )
Pipe length \(=\) 86.19(Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=3.060\) (CFS)
earest computed pipe diameter \(=\quad 3.060\) (CFS
(In) 3.060 (CFS
Nion top idth ide pipe \(=12.00\) (In )
Citical Depth \(=8.99\) (In.)
Pipe flow velocity \(=7.74(\mathrm{Et} / \mathrm{s})\)
Travel time through pipe \(=0.19 \mathrm{~min}\).
Time of concentration \((T C)=10.13 \mathrm{~min}\).
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7042.000 to Point/Station 7043.000
\(* * * *\) CONFLUENCE OF MAIN STREAMS \(* * * *\)

The following data inside Main Stream is listed:
In Main Stream number:
tream flow area \(=0.940(\mathrm{Ac}\).)
unoff from this stream \(=3.060\) (CFS)
ime of concentration \(=10.13 \mathrm{~min}\).
Rainfall intensity \(=3.358(\mathrm{In} / \mathrm{Hr}\)
Summary of stream data:

No.
Flow rate
(min)
Rainfall Intensity
(CES)
(min)
( \(\mathrm{In} / \mathrm{Hr}\) )
\(\begin{array}{ll}1 & 29 . \\ 2 & 3 . \\ \max (1) & =\end{array}\)
16.56
2.794
10.13
\(29.575)\)
1.000 * 1.000 * 29.575\()+\)
\(\max (2)=\begin{array}{llr}1.000 * & 0.612 * & 29.575)+ \\ 1.000 * & 1.000 * & 3.0601+\end{array}\)
32.121

Total of 2 main streams to confluence:
Flow rates before confluence point:
taximum flow rates at confluence using above data
\(32.121 \quad 21.153\)
\(\begin{array}{cc}\text { Area of streams before confluence: } \\ 15.050 & 0.940\end{array}\)

Results of confluence:
Total flow rate \(=32.121\) (CES)
Time of concentration \(=16.559 \mathrm{~min}\).
Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/3/2018 1:53:35 PM PM

\section*{P:14182.30IEngrRepotsIDrainagelHYDROPROPOSEDI7000P100.0u}

Effective stream area after confluence \(=15.990\) (Ac.)
++7+ frol Process from Point/Station 7043.000 to Point/Station

Upstream point/station elevation \(=264.000(\mathrm{Ft}\) ) Opstrea
Downstream point/station elevation \(=263.500\) (Ft.)
No. of pipes \(=1\) Required pipe flow \(=32.121\) (CES)
No. of pipes \(=1\) Requirest computed pipe diameter \(=33.00\) (In.)
Calculated individual pipe flow \(=32.121\) (CFS)
Normal flow depth in pipe \(=27.00(\mathrm{In}\).
Flow top width inside pipe \(=25.46(\) In. \()\)
Critical Depth \(=22.61\) (In.)
Pipe flow velocity \(=\quad 6.18(\mathrm{Et} / \mathrm{s})\)
Travel time through pipe \(=0.36 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=16.92 \mathrm{~min}\)

地
Process from Point/Station 7044.000 to Point/Station

Upstream point/station elevation \(=263.500(F t\).
Downstream point/station elevation \(=260.000(\mathrm{Ft}\).
Pipe length \(=61.54\) (Ft.) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=32.121\) (CFS
Nearest computed pipe diameter \(=21.00\) (In.)
Calculated individual pipe flow \(=32.121(C E S)\)
Normal flow depth in pipe \(=14.88\) (In.
Flow top width inside pipe \(=19.08\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=17.64(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe = 0.06 min.
Time of concentration \((T C)=16.98 \mathrm{~min}\)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4++++++4
Process from Point/Station 7058.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
058.000 to Point/Station
\(\qquad\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=16.98 \mathrm{~min}\).
Rainfall intensity \(=2.766(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Total runoff \(=35.221(C F S)\) Total area \(=\quad 17.17(A C\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 7048.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type]

\section*{P:14482:30 Engr/ReportsDrainageHYDROPRROPOSEDI7000P 100 .out}

Time of concentration \(=16.98 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.766(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCLA}, \mathrm{C}=0.450\) Subarea runoff \(=36.00\) (CES) Tot 0.730 (Ac.)
(
End of computations, total study area \(=17.900\) (Ac.)

\section*{P:41822.30 EngriRepons DDainageHYYOROPROPOSED18000P 100 .out}

San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3
```

Rational method hydrology program based on
an Diego County Flood Control Division 1985 hydrology manual
go County Flood Control Di
Date: 10/10/1

```

\section*{RROJECT CANTERA}
- Rationa

8000 P 100
********* Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used

Elevation 0-1500 fee
Factor (to multiply * intensity) \(=1.000\)
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
++4+++++++t++++4++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
8005.000 to Point/Station
**** INTTTAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction sol group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Initial subarea flow distance \(=\)
Highest elevation \(=322.500(\) Ft. \()\)
Highest elevation \(=322.500(\mathrm{Ft}\).)
Lowest elevation \(=321.800(\mathrm{Ft}\).)
Elevation difference \(=0.700\) (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App \(X-C\) ) \(=6.36 \mathrm{~min}\)

Rainfali intensity \((I)=3.989(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Effective runoff coefficient used for area ( \(Q=\mathrm{KCIA}\) ) is \(\mathrm{C}=0.550\)
Subarea runoff \(=0.285\) (CFS)
Total initial stream area \(=\)
0.130 (Ac.)

Process from Point/Station
8006.000 to Point/Station
8011.000
\(\begin{array}{ll}\text { Top of street segment elevation }= & 321.800(F t .) \\ \text { sel }\end{array}\)

\section*{P:14182.301EngrkeportsDrainageHYDROPROPOSED 8000 P 100 .out}

Length of street segment \(=327.000\) (Et.
Height of curb above gutter flowline \(=6.0(\mathrm{In}\).)
Width of half street (curb to crown \(=\) break \(=10.000(\mathrm{Et}\).
Distance from crown to crossfall grade breal
Distance from crown to crossfall grade break \(=10\)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(\mathrm{Ft}\).
Slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).)
Gutter hike from flowline \(=1.500(\) In. )
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\quad 3.214\) (CFS)
Depth of flow \(=0.301(\mathrm{Ft}\).\() , Average velocity =2.833(\mathrm{Ft} / \mathrm{s})\)
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width \(=10.312\) (Ft.
Travel time \(=1.92 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=1.000\)
[SINGLE FAMILY area type
Rainfall intensity \(=3.613(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.550\) Subarea runoff \(=\quad 5.305\) (CFS) for 2.670 (Ac.)
Total runoff =
Street flow at end of street \(=5.591\) (CES)
Half street flow at end of street \(=5.591(\mathrm{CFS}) 3.226(\mathrm{Ft} / \mathrm{s})\)
Depth of \(f 10\) w \(=0.353\) (Ft.), Average velocity \(=\) (Ft.)

Process from Point/Station

\section*{upstream point/station elevation \(=314.600(\mathrm{Ft}\).)}

Downstream point/station elevation \(=314.200\) (Ft.
Pipe length \(=54.00(F t\).\() Manning's N=0.013\)
o. of pipes \(=1\) Required pipe flow \(=0.591\) (CFS)

Nearest computed pipe diameter \(=\quad 18.001\) (CFS
Calculated indivin in pipe 10 w (Tn. 5.591 (CFS)
Flow top width inside pipe \(=17.83\) (In.)
Critical Depth \(=10.94\) (In.)
Pipe flow velocity \(=\quad 5.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.17 \mathrm{~min}\).
Time of concentration \((T C)=8.45 \mathrm{~min}\).
```

process from Point/Station 8011.000 Point/Station 8014.000
Process from Point/Station 8011.000 to Point/Station

Along Main Stream number: 1 in normal stream number 1

Along Main Stream number: 1 in normal str
Stream flow area $=2.800$ (Ac.)
Runoff from this stream $=\quad 5.591$ (CFS)
Time of concentration $=$
.45 min.

Time of concentration $=8.45 \mathrm{~min}$.
Rainfall intensity $=3.586(\mathrm{In} / \mathrm{Hr})$

Process from Point/Station

Decimal fraction soil group $A=0.000$

Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group
INDUSTRIAL area type
Highest elevation $=318.000(\mathrm{Ft}$.)
Lowest elevation $=317.000$ (Ft.)
Elevation difference $=1.000$ (Et.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=1.41 \mathrm{~min}$
$T C=\left[1.8^{*}(1.1-C) *\right.$ distance (FL.) $\left.{ }^{\wedge} .5\right) /\left(\%\right.$ slope $\left.^{\wedge}(1 / 3)\right]$
$T C=\left[1.8^{*}(1.1-0.9500)^{*}\left(46.000^{\wedge} .5\right) /\left(2.174^{\wedge}(1 / 3)\right]=1.41\right.$ Setting time of concentration to 5 minutes
Rainfall intensity $(I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ($Q=K C I A$) is $C=0.950$ Subarea runoff $=0.125$ (CFS)
Sotal initial stream area $=0.030(\mathrm{Ac}$.
 Process from Point/Station 8022.000 to Point/Station

Top of street segment elevation $=317.000(\mathrm{Ft}$.)
End of street segment elevation $=314.300(\mathrm{Ft}$.
Length of street segment $=172.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0$ (In.)
Width of half street (curb to crown) $=26.000$ (Ft .
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000$ (Ft.)
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500$ (Ft.)
Gutter hike from flowline $=1.500$ (In.)
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.114$ (Ft.), Average velocity $=$
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=1.500(F t$.
Flow velocity $=1.74(\mathrm{Ft} / \mathrm{s})$
Aravel time area flow to street
6.65 min .

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
$3.921(\mathrm{In} / \mathrm{Hr})$ for a
100.0 year storm

Rainfali intensity $=$ forional method $0=$ KCIA, $C=0.950$ $\begin{array}{cc}\text { Runoff coefficient used for sub-area, Rational meth } \\ \text { Subarea runoff }= & 0.559 \text { (CES) for } \\ 0.150(\mathrm{Ac} .)\end{array}$
Subarea runoff $=0.559$ (CES) for $0.150(\mathrm{Ac}) \quad .0.18(\mathrm{Ac}$
Total runoff $=$
Street flow at end of
street $=$$\quad \begin{array}{r}\text { Total area }= \\ 0.684(C F S)\end{array}$
Street flow at end of street $=\quad 0.684$ (CFS)
Half street flow at end of street $=$
Depth of flow $=0.207(\mathrm{Ft}$.$) , Average velocity =\quad 1.775(\mathrm{Ft} / \mathrm{s})$

14182:30EngrRepors Drainage HYDROPROPOSED 8000 P100.out

Flow width (from curb towards crown) $=5.604$ (Ft.)

Process from Point/Station
rocess from Point/Statio

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
ime of concentration $=6.65 \mathrm{~min}$.
Rainfall intensity $=\quad 3.921$ (In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Subarea runoff $=\quad 1.639(C F S)$ for $0.440(A C$.
Total runoff $=\quad 2.323($ CES $)$ Total area $=0.62(A C$.

```
8014.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ****
期 8013.000 to Point/Station
Upstream point/station elevation \(=314.200(F t\).
Downstream point/station elevation \(=314.000(\mathrm{Ft}\).)
ipe length \(=21.44\) (Ft.) Manning's \(\mathrm{N}=0.013\)
o. of pipes \(=1\) Required pipe fiow \(=2.323\) (CFS)
Nearest computed pipe diameter \(=12.00(\mathrm{In}\).)
Calculated individual pipe flow \(=2.323\) (CFS
Normal flow depth in pipe \(=7.22(\) In. \()\)
low top width inside pipe \(=11.75\) (In
Pipe flow velocity \(=\quad 4.70(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.08 \mathrm{~min}\).
Time of concentration \((T C)=6.73 \mathrm{~min}\)
rocess Erom Point/Statio
*** CONFLUENCE OF MINOR STREAMS ****
```


1	5.591		8.45			3.586	
2	2.323		6.73			3.905	
Qmax (1)							
	1.000	*	1.000	*	5.591)	+	
	0.919	*	1.000	*	2.323)	+ $=$	7.724
Qmax (2)							
	1.000	*	0.796	*	5.591)	+	
	1.000	*	1.000	*	2.323)	$+=$	6.773

Total of 2 streams to confluence:
Flow rates before confluence point

$$
5.591
$$

$$
2.323
$$

```
P:4182.301Eng\ReportsDrainageHYDROPPROPOSED18000P100.out
Maximum flow rates at confluence using above data
    7.724
    6.773
Area of streams before confluence:
    2.800 0.620
Results of confluence:
otal flow rate =
    7.724 (CES
Time of concentration = }\quad8.453\textrm{min
Effective stream area after confluence = 3.420(Ac.)
lol
Upstream point/station elevation = 314.000(Ft.)
M, 256.42(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 7.724(CFS
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 7.724(CFS)
Normal flow depth in pipe = 19.90(In.)
Flow top width inside pipe = 23.77(In.)
Critical Depth =i flow velocity = 11.43(In.)
Travel time through pipe = 1.74 min
Time of concentration (TC) = 10.19 min
Process from Point/Station 8014.000 to Point/Station


Process from Point/Station 8016.000 to Point/Station 8017.000

Top of street segment elevation \(=326.000(\mathrm{Ft}\).
End of street segment elevation \(=320.000(\mathrm{Ft}\).
End of street segment elevation \(=378.000(\mathrm{Ft}\).
Henght of curb above gutter flowline \(=6.0(\mathrm{In}\).
Width of half street (curb to crown) \(=26.000\) (Ft.
Distance from crown to crossfall grade break \(=10.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(\mathrm{Ft}\).
Slope from curb to property line ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.020\)
Gutter width \(=1.500\) (Ft.)
Gutter hike from flowline \(=1.500\) (In.)
Manning's N in gutter \(=0.0150\)
Kanning's \(N\) from gutter to grade break \(=0.0180\)
Manning's N from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
Depth of flow \(=0.296(F t\).\() , Average velocity =\)
treet travel

Travel time \(=\quad 2.66 \mathrm{~min} . \quad \mathrm{TC}=7.66 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
\(3.719(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
, und for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\)

Street flow at end of street \(=3.709\) (CES)
Half street flow at end of street \(=3.709\) (CES)
Depth of flow \(=0.329\) (Ft.), Average velocity \(=2.584(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=11.680(\mathrm{Ft}\).


Upstream point/station elevation \(=319.600(F t\).

\section*{P:1482.30EngrReportsDrainagelHYDROPRROPOSED18000P100.0ut}

Downstream point/station elevation \(=313.800\) (Ft.)
Pipe length \(=64.50(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=3.709(C E S)\)
Nearest computed pipe diameter \(=9.00\) (In.)
Calculated individual pipe flow \(=3.709\) (CFS)
Normal flow depth in pipe \(=5.80\) (In.)
Flow top width inside pipe \(=8.62\) (In.)
\(\begin{array}{ll}\text { Critical depth could not be calculated } \\ \text { Pipe flow velocity }= & 12.31(\mathrm{Ft} / \mathrm{s})\end{array}\)
Pipe flow velocity \(=\)
Travel time through pipe \(=\)
\(=\)
0.09 min .
rravel \(\quad 7.77 \mathrm{~min}\)
++++++++++++++++++++++++++++++++++++++++++++++++10
Process from Point/Station 8020.000 to Point/Station
021.000 **** CONFLUENCE OF MINOR STREAMS \(* * * *\)


Total of 2 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at 7.724
\(11.083 \quad 9.595\)
Area of streams before confluence
Results of confluence:
Total flow rate \(=\)
11.083 (CFS)

Time of concentration \(=\quad 10.190 \mathrm{~min}\)
Effective stream area after confluence \(=4.430(\mathrm{Ac}\).
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
8021.000 to Point/Station 8036.000
Process from Point/Station 8021.000 to Point/Station
\(* * * *\) PI
Upstream point/station elevation \(=313.800(F \mathrm{t}\).
Downstream point/station elevation \(=313.200(F t\).
Pipe length \(=267.14(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=11.083\) (CFS)
Nearest computed pipe diameter \(=24.00\) (In.)
Calculated individual pipe flow \(=11.083(\mathrm{CFS})\)
Normal flow depth in pipe \(=20.48\) (In.)
Flow top width inside pipe \(=16.97(\mathrm{In}\).
Critical Depth 14 33 (Tn.)
pipe flow velocity \(=\quad 3.88(\mathrm{Ft} / \mathrm{s})\)
ravel time through pipe \(=1.15 \mathrm{~min}\)
ime of concentration \((T C)=11.34 \mathrm{~min}\)

Process from Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number:
Stream flow area \(=4.430\) (Ac.)
Runoff from this stream \(=11.083\) (CFS)
Time of concentration \(=11.34 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.224(\mathrm{In} / \mathrm{Hr})\)
rogram is now starting with Main Stream No. 2
\(++4+++++++++++++++++++++++++++++++++++4++++++++++\)
Process from Point/Station

\section*{ecimal fraction soil group \(A=0.000\)}

Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil
Initial subarea flow distance \(=62.000(\mathrm{Ft}\).)
Highest elevation \(=319.000(\mathrm{Ft}\).
Lowest elevation \(=318.000(\mathrm{Ft}\).
Elevation difference \(=1.000(\mathrm{Ft}\).
lime of concentration calculated by the urban
reas overland flow method (App X-C) \(=1.81 \mathrm{~min}\).
\(\mathrm{rC}=\left[1.8^{*}(1.1-0.9500) *\left(62.000^{\wedge} .5\right) /\left(\quad 1.613^{\wedge}(1 / 3)\right]=1.81\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity \((T)=\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
ffective runoff coefficient used for area ( \(\ell=\mathrm{KCIA}\) ) is \(C=0.950\)
Subarea runoff \(=0.292\) (CFS)
Total initial stream area \(=\)
0.070 (Ac.)

process from Point/Station 8023.000 to Point/Station
8024.000

\section*{op of street segment elevation \(=318.000(\mathrm{Ft}\).)}
nd of street segment elevation \(=316.000(\mathrm{Ft}\)
ength of street segment \(=229.000(\mathrm{Ft}\).
eight of curb above gutter flowline \(=6.0(I n\).
istance from street (curb to crown) \(=26.000\) (Et.)
lope from crown to crossfall grade break \(=10.000\) ( Ft .
lope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) =
Street flow is on (1] side(s) of the street \(\quad\) (istance from curb to property line \(=15.000\) (Ft.)
Slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).)
Gutter hike from flowline \(=1.500\) (In.
Kanning's from gutter 0.0150
Manning's N from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
Depth of flow \(=\quad 0.190(F t\).\() , Average velocity =1.248(\mathrm{Et} / \mathrm{s})\)
Streetflow hydraulics at midpoint of street travel:
Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/10/2018 2:56:48 PM PM
Page 8 of 51

\section*{P:1182.30EngrReportSDrainage HYDROPRROPOSEDI8000P100.0u}

Halfstreet flow width \(=4.726(E t\).
Flow velocity \(=1.25(\mathrm{Ft} / \mathrm{s})\)
ravel time \(=3.06 \mathrm{~min} . \quad \mathrm{TC}=8.06 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Decimal fraction soil group \(D=1.000\)
\(\begin{array}{ll}\text { [INDUSTRIAL area type } \\ \text { Rainfall intensity }= & 3.650(\mathrm{In} / \mathrm{Hr}) \text { for a } 100.0 \text { year storm }\end{array}\)
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\)
Subarea runoff \(=1.803\) (CFS) for 0.520 (Ac.)
Total runoff \(=\quad 2.095(C E S)\) Total area \(=\quad 0.59(\mathrm{Ac}\).
Street flow at end of street \(=2.095\) (CFS)
Half street flow at end of street \(=\quad 2.095\) (CFS)
Depth of flow \(=0.304(\mathrm{Et}\).\() , Average velocity =1.798(\mathrm{Et} / \mathrm{s})\)
Flow width (from curb towards crown) \(=10.458\) (Ft.

Process from Point/Station 8024.000 to Point/Station
036.000

Downstream point/station elevation \(\quad 8.60(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No, of pipes \(=1\) Required pipe flow \(=2.095\) (CFS)
Nearest computed pipe diameter \(=9.00(\mathrm{In}\).
Calculated individual pipe flow \(=2.095\) (CFS)
Normal flow depth in pipe \(=6.26\) (In.)
Flow top width inside pipe \(=8.28\) (In.)
Critical Depth = 7.85 (In.)
Pipe flow velocity \(=\quad 6.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=8.08 \mathrm{~min}\)
\begin{tabular}{ll} 
\\
\hline
\end{tabular}
Process from Point/Station 8024.000
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area \(=\quad 0.590\) (Ac.)
Runoff from this stream \(=2.095\) (CFS)
Time of concentration \(=8.08 \mathrm{~min}\).
Rainfall intensity \(=3.646(\mathrm{In} / \mathrm{Hr})\)
Program is now starting with Main Stream No. 3
8028.000

Process from Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
\(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group D \(=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type
Initial subarea flow distance \(=127.000(\mathrm{Ft}\).
Highest elevation \(=428.000(\mathrm{Ft}\).
Lowest elevation \(=426.000\) (Ft.)
Time of concentration calculated by the urban
reas overland flow method \((\) App \(X-C)=11.33 \mathrm{~min}\)
\(C=\left[1.8^{*}(1.1-C) *\right.\) distance (Ft.)^.5)/(8 slope^(1/3) \(]\)
\(=\left[1.8^{*}(1.1-0.4500) *(127.000\right.\). 5 ) \((1.575 \wedge(1 / 3)]=11.33\) used for area ( \(\mathrm{Q}=\mathrm{KCIA}\) ) is \(\mathrm{C}=0.450\) 0.392 (CFS)

Total initial stream area \(=0.270(\mathrm{Ac}\).
rocess from Point/Station \(\qquad\) 8028.000 to Point/Station
8029.000
rocess Erom Point/station
8028.000

Upstream point elevation \(=\quad 426.000(\mathrm{Ft}\).
Downstream point elevation \(=354.000(\mathrm{Ft}\).
Channel length thru subarea \(=483.000\) ( Ft .
Channel base width
\(=5.000(\mathrm{Ft}\).
lope or ' \(Z\) ', of left channel bank \(=1.000\)
lope or
Manning's ' N ' \(=0.200\)
Maximum depth of channel \(=1.000(\mathrm{~F}\)
Flow(q) thru subarea \(=2.104\) (CFS)
Depth of flow \(=0.318\) (Ft.), Average velocity \(=1.246(\mathrm{Ft} / \mathrm{s})\)
Channel flow top width \(=5.635(\mathrm{Ft}\).
Flow Velocity \(=1.25(\mathrm{Ft} / \mathrm{s})\)
ravel time \(=6.46 \mathrm{~min}\).
rime of concentration \(=17.79 \mathrm{~min}\).
Critical depth \(=\quad 0.174(\mathrm{Ft}\)
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
Rainfall intensity \(=\quad 2.713(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.450\)
Subarea runoff \(=\quad 2.881\) (CFS) for 2.360 (Ac.)
Total runoff \(=3.273\) (CFS) Total area \(=\quad 2.63\) (Ac.)
\(+++++++++++++++++++\Varangle++++++++++++++++++++++++++++++++++++++++++++++\)

***

Jpstream point/station elevation \(=354.000(F t\).
Downstream point/station elevation \(=318.000\) ( Ft .)
ipe length \(=1 \quad 73.42(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013(\mathrm{CFS})\)
Nearest computed pipe diameter \(=6.00\) (In.)
Calculated individual pipe flow \(=3.273\) (CFS)
Normal flow depth in pipe \(=4.18(\) In. \()\)
Flow top width inside pipe \(=5.51(\mathrm{In}\).
Critical depth could not be calculated.
Pipe flow velocity \(=\quad 22.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.05 \mathrm{~min}\).
ime of concentration \((T C)=17.85 \mathrm{~min}\)
8030.000 to Point/Statio
rocess from Point/Station
8030.000 to Point/Station

Decimal fraction soil group \(A=0.000\)

\section*{M182.30 EngrReportSDIainage IHYDROPROPOSED18000P100.0u}

Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAI (greater than \(0.5 \mathrm{Ac}, 0.2\) ha) area type
Rainfall intensity \(=\) for sublingr for a 100.0 year \(\operatorname{storm}=0.450\) \(\begin{array}{ll}\text { Runoff coefficient used for sub-area, Rational meth } \\ \text { Subarea runoff }= & 1.805 \text { (CFS) for } 1.480(A c .)\end{array}\)
Total runoff \(=\quad 5.078\) (CFS) Total area \(=\) (Ac.) \(\quad 4.11\) (Ac.)
\(+++++++++++++++++4+1\) Station
8032.000 to Point/Station
+++++++++
8035.000
t*** PTPEFIOW TRAVEL TTME (Program estimated size)

Downstream point/station elevation \(=316.000(\mathrm{Ft}\).
Pipe length \(=8.25(F t\).\() Manning's =5.078\) (CFS)
Nearest computed pipe diameter \(=9.00\) (In.)
Calculated individual pipe flow \(=5.078\) (CES)
Normal flow depth in pipe \(=5.14\) (In.)
Flow top width inside pipe \(=8.91\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=19.44(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\)
Time of concentration \((T C)=01 \mathrm{~min}\).
17.86 min

Process from Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number
Stream flow area \(=4.110(\mathrm{Ac}\).
Runoff from this stream \(=\quad 5.078\) (CFS)
Time of concentration \(=17.86 \mathrm{~min}\).
Rainfall intensity \(=2.709(\mathrm{In} / \mathrm{Hr})\)
8015.000 to Point/Station 8034.000

Process from point/station
8034.000
*** TNTTTAI AREA EVALTIATION \(* * * *\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil
(nitial subarea flow distance \(=108.000(E \mathrm{Et}\).)
Highest elevation \(=328.000(E t\).
owest elevation \(=325.000(\mathrm{Ft}\).
levation difference \(=3.000(\mathrm{Ft}\).)
ime of concentration calculated by the urban
areas overland flow method (App \(X-C\) ) \(=2.00 \mathrm{~min}\).
\(T C=\left[1.8 *(1.1-C) *\right.\) distance (Ft. \(\left.00^{*} .5\right) /\left(\quad 2.778^{\wedge}(1 / 3)\right]=2.00\)
Setting time of concentration to 5 minutes
Rainfall intensity (I) \(=\quad 4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area ( \(Q=\) KCIA) is \(C=0.950\)
Subarea runoff \(=0.500\) (CFS)
Total initial stream area \(=\)
0.120 (Ac.
\(1.000 * 1.000 * 3.697)+=\quad 6.643\)
Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data
Area of streams before confluence:
fluence:
otal flow rate =
8.084 (CFS)

Time of concentration \(=\quad 17.855 \mathrm{~min}\)
ffective stream area after confluence
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4\)
Process from Point/Station
8035.000 to Point/Station

Upstream point/station elevation \(=316.000(\mathrm{Ft}\).
Downstream point/station (Ft.) Manning's \(\mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=8.084\) (CFS)
Nearest computed pipe diameter \(=21.00(\) In. \()\)
Calculated individual pipe flow \(=8.084\) (CFS)
Normal flow depth in pipe \(=14.41\) (In.)
Flow top width inside pipe \(=\) 19.49(In
Critical Depth \(=12.65\) (In.)
Pipe flow velocity \(=\quad 4.59(\mathrm{Ft} / \mathrm{s})\)
Time of concentration \((T C)=18.13 \mathrm{~min}\)
\(++++++++++++++++++++++++++{ }^{+}\) \(\qquad\) 8035.000 to Point/Station

The following data inside Main Stream is listed
In Main Stream number: 3
Stream flow area \(=\)
Runoff from this stream \(=8.084\) (CFS)
Time of concentration \(=18.13 .084\)
Rainfall intensity \(=\quad 2.692(\mathrm{In} / \mathrm{Hr})\)
Summary of stream data:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream No. & Flow rate (CFS) & \[
\underset{(\min )}{T C}
\] & & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\mathrm{In} / \mathrm{Hr})
\end{gathered}
\]} \\
\hline 1 & 11.083 & \multicolumn{2}{|l|}{11.34} & \multicolumn{3}{|c|}{3.224} \\
\hline 2 & 2.095 & \multicolumn{2}{|l|}{8.08} & \multicolumn{3}{|c|}{3.646} \\
\hline 3 & 8.084 & \multicolumn{2}{|l|}{18.13} & \multicolumn{3}{|c|}{2.692} \\
\hline \multirow[t]{4}{*}{\(\underline{\max }\) (1)} & \multicolumn{2}{|l|}{\(=\)} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{+}} \\
\hline & 1.000 * & * 1.000 & * & 11.083) & & \\
\hline & 0.884 * & * 1.000 & * & \(2.095)\) & \(+\) & \\
\hline & 1.000 * & * 0.625 & * & 8.084) & + \(=\) & 17.991 \\
\hline \multirow[t]{3}{*}{\(\operatorname{Qmax}(2)\)} & \(=1.000\) * & * 0.713 & * & 11.0831 & + & \\
\hline & 1.000 & + 1.000 & * & \(2.095)\) & \(+\) & \multirow[b]{2}{*}{13.596} \\
\hline & 1.000 * & * 0.446 & * & 8.084) & + = & \\
\hline \multirow[t]{4}{*}{Qmax (3)} & \multirow[t]{4}{*}{\(=\begin{aligned} & 0.835 * \\ & 0.738 * \\ & 1.000 *\end{aligned}\)} & & & & & \\
\hline & & 1.000 & * & 11.083) & + & \\
\hline & & 1.000 & & \(2.095)\) & + & \\
\hline & & 1.000 & * & 8.084) & & 18.884 \\
\hline
\end{tabular}

Total of 3 main streams to confluence
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
\(17.991 \quad 13.596 \quad 18.884\)
\(\begin{array}{cc}\text { Area of streams before confluence: } \\ 4.430 & 0.590\end{array}\)

Results of confluence
Total flow rate \(=18.884\) (CES)
Time of concentration \(=18.134 \mathrm{~min}\).
Effective stream area after confluence \(=10.260(\mathrm{Ac}\).)
\(+++++++++++++++++++\)
rocess from Point/Station 8036.000 to Point/Station
8049.000
8049.000

Upstream point/station elevation \(=315.700(\mathrm{Ft}\).
Downstream point/station elevation \(=310.000\) (Ft.)
Pipe length \(=615.95(\mathrm{Ft}\).) Manning's \(\mathrm{N}=0.013\)
No, of pipes \(=1\) Required pipe flow \(=18.884\) (CFS)
Nearest computed pipe diameter \(=24.00(\) In. \()\)
Calculated individual pipe flow \(=18.884\) (CFS
Normal flow depth in pipe \(=17.27\) (In.)
low top width inside pipe \(=21.56\) (In.
Critical Depth \(=18.77\) (In.)
Pipe flow velocity \(=\quad 7.80(\mathrm{Et} / \mathrm{s})\)
Travel time through pipe \(=\quad 1.32 \mathrm{~min}\)
Time of concentration \((T C)=19.45 \mathrm{~min}\).
\(+++++++++++++++++++++++++++++++++++++++++++++4+++++++10++++++++++++++\)
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=10.260(\mathrm{Ac}\).
Runoff from this stream \(=\quad 18.884\) (CFS)
Time of concentration \(=19.45 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.612(\mathrm{In} / \mathrm{Hr})\)
Program is now starting with Main Stream No. 2
gou to how staflaty

Process from Point/Station 8022.000 to Point/Statio
**** TNITTAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Initial subarea flow distance \(=75.000(F t\)
Highest elevation \(=315.700(\mathrm{Ft}\).
Lowest elevation Elevation difference \(=0.200\) ( Ft .)
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=13.32 \mathrm{~min}\).
TC \(=\left[1.8^{*}(1.1-\mathrm{C})^{*}\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(\%\) slope \((1 / 3)]\)
\(\mathrm{TC}=\left[1.8^{*}(1.1-0.5500)^{*}\left(75.000^{\wedge} .5\right) /\left(0.267^{\wedge}(1 / 3)\right]=13.32\right.\)

\section*{P: 141823.30 EngrReppors Drainagel-HOROPROPOSED 18000 P100.ou}

Rainfall intensity (I) \(=\quad 3.039(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm ffective runoff coefficient used for area ( \(\mathrm{Q}=\mathrm{KCIA}\) ) is \(\mathrm{C}=0.550\) ubarea runoff \(=\quad 0.100\) (CFS)
Total initial stream area \(=\)
0.060 (Ac.

Process from Point/Station 8037.000 to Point/Station 8038.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation \(=315.500(\mathrm{Ft}\).
End of street segment elevation \(=308.000(\mathrm{Ft}\).
Length of street segment \(=512.000\) (Et.
Height of curb above gutter flowline \(=6.0(\mathrm{In}\).
Width of half street to crossfall grade break \(=10.000\) (Et.
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(\mathrm{Ft}\).
Slope from curb to property line (v/hz) \(=0.020\) Gutter width \(=1.500(\mathrm{Ft}\).
Gutter hike from flowline \(=1.500(\mathrm{In}\).)
Manning's \(N\) in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0180\)
Manning's N from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
Depth of flow \(=0.137\) (Ft.), Average velocity \(=\)
Streetflow hydraulics at midpoint of
\(\begin{aligned} & \text { Flow velocity }=1.57(\mathrm{Et} / \mathrm{s}) \\ & \text { Travel time }= \\ & 5.45 \mathrm{~min} .\end{aligned} \quad T C=18.77 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Rainfall intensity \(=\quad 2.653(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for subarea Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 2.364\) (CFS) for \(\quad 1.620\) (Ac.)
Total runoff \(=\quad 2.464\) (CFS) Total area \(=\)
1.68(Ac.)

Street flow at end of street
2.464 (CFS)

Depth of flow \(=0.296(\mathrm{Ft}\).\() , Average velocity =2.278(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=10.053(\mathrm{Ft}\).

Process from Point/Station
8038.000 to Point/Station
8040.000

Iocess PIPELOW TRAVEL TIME \(\square\) gram estimated sime)

Jpstream point/station elevation \(=308.000(\mathrm{Ft}\).
Downstream point/station elevation \(=307.800\) ( Ft .
Pipe length \(=1 \quad 11.25\) (Ft.) Manning's \(N=2.013(C E S)\)
No. of pipes \(=1\) Required pipe flow \(=12.00\) (In.)
Nearest computed pipe diameter \(=\) 2.464 (CFS
Normal flow depth in pipe \(=6.13\) (In.)
low top width inside pipe \(=12.00(\mathrm{In}\).
Critical Depth \(=8.07(I n\).
Pipe flow velocity \(=\quad 6.10(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.03 \mathrm{~min}\).
rime of concentration \((T C)=18.80 \mathrm{~min}\).

Proces foint/Station 8030.000 to Point/Station
8040.000

Process from Point/Station
8039.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil
Time of concentration \(=18.80 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.651(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=0.453\) (CFS) for 0.180 (AC.)
2.917 (CES) Total area \(=\)
\(1.86(\mathrm{Ac}\).

Process from Point/Station
8040.000 to Point/Station
8045.000
\(\begin{array}{ll}\text { Upstream point/station elevation }= & 307.800(\text { (Et.) }\end{array}\)
\(=466.00(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=2.917\) (CFS)
Nearest computed pipe diameter \(=12.00(\) In.)
alculated individual pipe flow \(=2.917\) (CFS
Normal flow depth in pipe \(=7.64\) (In.)
low top width inside pipe \(=\)
Critical Depth \(=\quad 8.78(\mathrm{In}\).
Pipe flow velocity \(=\quad 5.53(\mathrm{Ft} / \mathrm{s})\)

Travel time through pipe \(={ }^{\text {Time of concentration (TC) }}=\quad 20.20 \mathrm{~min}\).
\(+7+++++++++++++4++++4\) ion
8040.000 to Point/Station
```

long Main Stream number: 2 in normal stream number 1
Stream flow area = 1.860(Ac.)
Runoff from this stream = 2.917(CFS)
Time of concentration = 20.20 min.
Rainfall intensity = 2.569(In/Hr)

```

Proct++4+++++++++++++++10n
Process from point/station
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[SINGLE FAMILY area type
Initial subarea flow distance \(=98.000(\mathrm{Ft}\).)
Highest elevation \(=310.000(\mathrm{Ft}\).
Lowest elevation \(=\)
Elevation difference \(=\)
\(=1.200(\mathrm{Ft}\)
Elevation difference of concentration calculated by the urban
areas overland flow method (App X-C) \(=9.16 \mathrm{~min}\)
\(T C=\left[1.8^{*}(1.1-C) *\right.\) distance (Ft.) \(\left.{ }^{\wedge} .5\right) /(\%\) slope^(1/3) \(]\)
\(T C=\left[1.8^{*}(1.1-0.5500) *\left(98.000^{\wedge} .5\right) /\left(1.224^{\wedge}(1 / 3)\right]=9.16\right.\)

Printed: 10/24/2018 10:37:59 AM AM

Modified: 10/10/2018 2:56:48 PM PM
Page 16 of 51

Rainfall intensity (I) \(=\quad 3.483(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Effective runoff coefficient used for area ( \(O=\) RCIA) is \(C=0.550\) 0.326 (CES)
Total initial stream area \(=\)
0.170 (AC.)
\(\qquad\) 8042.000 to Point/Station

Process from Point/Station

Top of street segment elevation \(=308.800\) (Ft.)
End of street segment elevation \(=305.000\) (Ft.
Length of street segment \(=392.000\) (Ft.)
Height of curb above gutter flowline \(=6.0(\operatorname{In}\).
Distance from streen (cunbessall grade break \(=10.0\)
istan \(=10.000(\mathrm{Ft}\).
lope from grade break to crown (v/hz) =0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(\) Ft.)
Slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).
Gutter hike from flowline \(=1.500(\mathrm{In}\).)
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\quad 0.929\) (CFS)
Depth of flow \(=0.240(\mathrm{Ft}\).\() , Average velocity =1.560(\mathrm{Ft} / \mathrm{s})\)
Street
Halfstreet flow width \(=7.241(\mathrm{Ft}\).
Travel time \(=4.19\) min. \(\quad T C=13.35\) min.
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
[SINGLE FAMILY area type
Rainfall intensity \(=3.036(\mathrm{In} / \mathrm{Hr})\) for
Runoff coefficient used for \(3.036(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runa coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.550\) Subarea runoff \(=\quad 1.052\) (CFS) for \(0.630(A C\).
Total runoff \(=-1.378\) (CFS) Total area \(=(\mathrm{F}\) ) 0.80 (Ac.)
Half street flow at end of street \(=1.378\) (CFS) (CF
Depth of flow \(=0.267\) (Et.), Average velocity \(=1.701(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=8.594\) (Et.)
(
Process from Point/Station 8043.000 to Point/Station
8045.000

Upstream point/station elevation \(=305.000(\mathrm{Ft}\).
Downstream point/station elevation \(=304.800(\mathrm{Ft}\).)
No of pipes \(=1\) Required pipe flow \(=1.378(\mathrm{CFS})\)
Nearest Computed Ripe diameter = 900 (In) (CFS)
Calculated individual pipe flow \(=1.378\) (CFS)
Normal flow depth in pipe \(=5.15\) (In.)
Flow top width inside pipe \(=8.91\) (In.
\(\begin{array}{ll}\text { Critical Depth }= & 6.49(I n .) \\ 5.27(\mathrm{Ft} / \mathrm{s})\end{array}\)
\(\begin{array}{ll}\text { Pipe flow velocity }= \\ \text { Travel time through pipe }= & 5.27(F t / \mathrm{s}) \\ 0.04 \mathrm{~min}\end{array}\)
Travel time through pipe \(=\quad 0.04 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=\)
13.38 min
\(\qquad\)
\(=0.000\)
\(=0.000\)
Decima
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
13.38 min.

Rainf oncentration \(=-33.38\) (In/n. .
Rainfall intensity \(=\quad 3.033(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Subarea runoff \(=\quad 0.692\) (CFS) for 0.240 (Ac.)
Total runoff \(=\quad 2.069(C E S)\) Total area \(=\quad 1.04(A C\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 2
Stream flow area = \(\qquad\) 1.040 (Ac.)

Runoff from this stream \(=2.069\) (CFS)
Time of concentration
\(3.033(\mathrm{In} / \mathrm{Hr})\)
Summary of stream data:
Stream
Flow rate

TC
Rainfall Intensity
No. (CES)
(min)
( \(\mathrm{In} / \mathrm{Hr}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2.917 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 20.20 \\
& 13.38
\end{aligned}
\]}} & & & \multicolumn{2}{|l|}{2.569} \\
\hline 2 & 2.069 & & & & & \multicolumn{2}{|l|}{3.033} \\
\hline \multicolumn{8}{|l|}{Qmax (1)} \\
\hline & 1.000 & * & 1.000 & * & 2.917) & + & \\
\hline & 0.847 & * & 1.000 & * & 2.069) & + = & 4.670 \\
\hline \multicolumn{8}{|l|}{Qmax (2)} \\
\hline & 1.000 & * & 0.662 & & \(2.917)\) & + & \\
\hline & 1.000 & * & 1.000 & & 2.069) & + = & 4.002 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Total of 2 streams to confluence:
\(2.917 \quad 2.069\) point:
Maximurn flow rates at confluence using above data:
Area of streams before confluence:
\(1.860 \quad 1.040\)
Results of confluence
Total flow rate \(=\)
4.670 (CFS)

Time of concentration \(=\quad 20.204 \mathrm{~min}\).
ffective stream area after confluence \(=\quad 2.900(\) Ac. \()\)
Process from Point/Station 8045.000 to Point/Station 8047.000
*** PIPEFLOW TRAVEI TIME (Program estimated size) ****
8047.000

Upstream point/station elevation \(=304.800(F t\).
Downstream point/station elevation \(=304.600\) (Ft.
Pipe length \(=\) 94.95(Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=4.670\) (CFS)
Nearest computed pipe diameter \(=18.00\) (In.)

P:4182 30 Engr/ReporsDDranagetYDROPROPOSED 18000 P100.0u
Calculated individual pipe flow \(=4.670\) (CES)
Normal flow depth in pipe \(=14.27(\mathrm{In}\).
Flow top width inside pipe \(=14.59(\mathrm{In}\).
Critical Depth \(=9.97\) (In.)
Pipe flow velocity \(=3.11(\mathrm{Ft} / \mathrm{s})\)
Time of concentration \((\mathrm{TC})=\quad \begin{aligned} & 0.51 \mathrm{~min} \text {. } \\ & 20.71 \mathrm{~min}\end{aligned}\)

Process from Point/Station
Along Main Stream number: 2 in normal stream number 1
Stream flow area \(=\quad 2.900(\) Ac. \()\)
Runoff from this stream \(=\quad 4.670\) (CFS)
Time of concentration \(=\quad 20.71 \mathrm{~min}\).

Rainfall intensity \(=\quad 2.540(\) In \(/ \mathrm{Hr})\)

Process from Point/Station 802
8024.000 to Point/Station
8046.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(\mathrm{D}=1\).
[INDUSRIA area type
Highest elevation \(=315.600(\mathrm{Ft}\).
Lowest elevation \(=315.000(\mathrm{Ft}\).)
Elevation difference \(=0.600(\) Ft. \()\)
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=2.18 \mathrm{~min}\).
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance (Ft.)^.5)/(\% slope^(1/3)]
\(T C=\left[1.8^{*}(1.1-0.9500)^{*}\left(63.000^{\wedge} .5\right) /\left(0.952^{\wedge}(1 / 3)\right]=2.18\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity (I) \(=4.389(\mathrm{In} / \mathrm{Hr}\) ) for a 100.0 year storm Effective runoff coefficient used for area ( \(Q=\) KCIA ) is \(C=0.950\) Subarea runoff \(=0.334\) (CFS)
Total initial stream area \(=\quad 0.080(\mathrm{Ac}\).
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8046.000 to Point/Station

Top of street segment elevation \(=315.000(\mathrm{Ft}\).
End of street segment elevation \(=310.000(\mathrm{Ft}\).
Length of street segment \(=557.000(\mathrm{Ft}\).
Height of curb above gutter flowline \(=6.0(\mathrm{In}\).
Width of half street (curb to crown) \(=26.000\) ( Ft .
Distance from crown to crossfall grade break \(=10.000(\mathrm{Et}\).)
Slope from gutter to grade break (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(F t\).
Slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.020\)
Gutter width \(=1.500(\mathrm{Et}\).
Gutter hike from flowline \(=1.500(\mathrm{In}\). \()\)
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from gutter to grade break \(=0.0180\)
Manning's N from grade break to crown \(=0.0180\)

\section*{P:A182.30EngrReportsDrainageHYOROPROPOSEDI8000P100.0ut}
```

Estimated mean flow rate at midpoint of street = 0.554 (CFS
Septh of flow = 0.211(Ft), Average velocity = 1.360(Ft/s)
streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5.795(Ft.)
Elow velocity = 1.36(Ft/s)
Travel time = 6.83 min. TC = 11.83 min
Adding area flow to street
Decimal fraction soil group A = 0.000
Decimal fraction soli group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.00
INDUSTRIAL area type
Rainfall intensity = 3.175(In/Hr) for a
3.175(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.950
Subarea runoff = 3.982(CFS) for 1.320(Ac.)
treet flow at end of street = = 4.315(CFS)
Half street flow at end of street = 4.315(CFS)
Depth of flow = 0.373(Ft.), Average velocity = 2.155(Ft/s)
Flow width (from curb towards crown)= 13.896(Et.)
Frocs from Point/Station
Process from Point/Station

```
in nor
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Stream flow area \(=1.400(\mathrm{Ac}\).} \\
\hline \multicolumn{7}{|l|}{Runoff from this stream \(=4.315\) (CFS)} \\
\hline \multicolumn{7}{|l|}{Time of concentration \(=11.83 \mathrm{~min}\).} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Rainfall intensity \(=\quad 3.175(\mathrm{In} / \mathrm{Hr})\)}} \\
\hline & & & & \multicolumn{3}{|c|}{Summary of stream data:} \\
\hline Stream No. & Flow rate (CES) & \[
\begin{gathered}
T C \\
(\mathrm{~min})
\end{gathered}
\] & & \multicolumn{3}{|r|}{\[
\begin{aligned}
& \text { Rainfall Intensity } \\
& (\mathrm{In} / \mathrm{Hr})
\end{aligned}
\]} \\
\hline 1 & 4.670 & 20.71 & & & 2.5 & \\
\hline 2 & 4.315 & 11.83 & & & 3.1 & \\
\hline \multicolumn{7}{|l|}{\(0 \max (1)=\)} \\
\hline & 1.000 & 1.000 & * & 4.670) & + & \\
\hline & 0.800 & 1.000 & * & 4.315) & + \(=\) & 8.122 \\
\hline \multirow[t]{3}{*}{Qmax (2)} & & & & & & \\
\hline & 1.000 & * 0.571 & * & 4.670) & & \\
\hline & 1.000 & * 1.000 & * & 4.315) & + = & 6.981 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point:
axin 4.670 rates
\({ }_{8.122} \quad 6.981 \quad\) rence using above data:
\[
\begin{aligned}
& \text { flow rates at conf } \\
& 8.122
\end{aligned}
\]

Area of streams before confluence:
A.4

Total flow rate \(=\quad 8.122\) (CES)
Time of concentration \(=20.713 \mathrm{~min}\).
ffective stream area after confluence \(=\)
. 300 (AC.)
rocess from Point/Station 8047.000 to Point/Station
8049.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=302.000\) (Ft.)
Printed: 10/24/2018 10:37:59 AM AM

\section*{P. 418230 EngrReportsDrainageHYDROMROPOSED 8000 P100.ou}

Downstream point/station elevation \(=301.500(\) Et.) Pipe length \(=1\) 9.25(Ft.) Manning's \(N=0.013(\mathrm{CFS})\) Nearest computed pipe diameter \(=12.00\) (In.) Calculated individual pipe flow \(=8.122\) (CFS)
Normal flow depth in pipe \(=9.63\) (In.)
Flow top width inside pipe \(=9.55(\mathrm{In}\).
Critical depth could not be calculated.
Pipe flow velocity \(=\quad 12.02(\mathrm{Et} / \mathrm{s})\).
rravel time through pipe \(=0.01 \mathrm{~min}\).
Time of concentration \((T C)=20.73 \mathrm{~min}\)
 Process from Point/Station 8047.000 to Point/Station
\(\star * * *\) CONFLUENCE OF MAIN STREAMS \(* * * *\)
The following data inside Main Stream is listed
In Main Stream number: 2
Stream flow area \(=4.300\) (Ac.)
Runoff from this stream \(=\quad 8.122\) (CFS
Time of concentration \(=20.73 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.540(\mathrm{In} / \mathrm{Hr})\)
Summary of stream data:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stream No. & Flow rate (CFS) &  & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\operatorname{In} / \mathrm{Hr})
\end{gathered}
\]} \\
\hline 1 & 18.884 & 19.45 & \multicolumn{3}{|c|}{2.612} \\
\hline 2 & 8.122 & 20.73 & \multicolumn{3}{|c|}{2.540} \\
\hline \multirow[t]{3}{*}{Qmax (1)} & \(=\) & & \multirow[b]{2}{*}{18.884)} & \multirow[b]{2}{*}{+} & \\
\hline & 1.000 * & 1.000 * & & & \\
\hline & 1.000 & 0.938 & 8.122) & & 26.507 \\
\hline \multirow[t]{3}{*}{Qmax (2)} & \multirow[t]{2}{*}{\(=0.972\)} & & \multirow[b]{2}{*}{18.884)} & & \\
\hline & & 1.000 & & + & \\
\hline & 1.000 & 1.000 * & 8.122) & & 26.480 \\
\hline
\end{tabular}

Total of 2 main streams to confluence:
Flow rates before confluence point:
\(\begin{array}{rr}18.884 & 8.122 \\ \text { Maximum flow rates at }\end{array}\)
Maximum flow rates at confluence using above data
Area of streams before confluence:

Results of confluence:
rotal flow rate
ime of concentration
effective stream area 19.450 min .
 Process from Point/Station 8049.000 to Point/Station
**** PTPEFLOW TRAVEL TTME (Program estimated size) ****
Jpstream point/station elevation \(=301.500(\mathrm{Ft}\).
Downstream point/station elevation \(=301.000\) (Et.)
No. of pipes \(=1\) Required pipe flow \(=26.507\) (CFS Nearest computed pipe diameter \(=27.00\) (In.) Calculated individual pipe flow \(=26.507\) (CFS) Normal flow depth in pipe \(=19.03\) (In.)

\section*{P. 4182.30 EngrReports DranagellYDROPROPOSEDI8000P 100 .out}

Flow top width inside pipe \(=24.63(\mathrm{In}\).
Critical Depth \(=\).
Pipe flow velocity \(=\quad 8.85(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.09 \mathrm{~min}\)
Time of concentration \((T C)=19.54 \mathrm{~min}\)

Process from Point/Station 8049.000 to Point/Station
8055.000
**** CONFLUENCE OF MINOR STREAMS \(* * * *\)
```

Aong Main Stream number: 1 in normal stream number
tream flow area =
14.560 (Ac.)
Runoff from this stream = 26.507 (CFS
Rime of concentration $=19.54 \mathrm{~min}$.

```

8051.000 *** INITIAL AREA EVALUATION ****

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL(greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type]
nitial subarea flow distance \(=178.000(\mathrm{Ft}\).
owest elevation \(=422.000(\mathrm{Ft}\) )
Elevation difference \(=3.000(\mathrm{Ft}\) )
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=13.12 \mathrm{~min}\).
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance (Ft.)^.5)/(\% slope^(1/3)]
\(T C=\left[1.8^{*}(1.1-0.4500) *\left(178.000^{\wedge} .5\right) /\left(1.685^{\wedge}(1 / 3)\right]=13.12\right.\)
Rainfall intensity \((I)=3.056(\operatorname{In} / \mathrm{Hr})\) for a 100.0 year storm
Effective runoff coefficient used for area ( \(Q=K C I A\) ) is \(C=0.450\)
Subarea runoff
0.289 (CFS)

Total initial stream area \(=\quad 0.210(\mathrm{Ac}\).
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 8051.000 to Point/Station 8052.000
**** IMPROVED CHANNEL TRAVEL TIME ****
pstream point elevation \(=422.000\) (FL.)
( 312.000 (Ft.).
Channel length thru subarea \(=\frac{707.000(F t .)}{5.000(F t}\).)
Channel base width \(=5.000(\mathrm{Ft}\).)
Slope or ' \(Z\) ' of left channel bank \(=1.000\)
Slope or ' \(Z\) ' of right channel bank \(=1.000\)
Estimated mean flow rate at midpoint of channel \(=1.630\) (CFS)
Manning's ' N ' \(=0.020\)
Maximum depth of channel \(=1.000\) (Ft.)
low ( q ) thru subarea \(=1.630\) (CFS)
\(0.067(\mathrm{tc})\), Average velocity \(=4.775(\mathrm{Ft} / \mathrm{s})\)
Flow Velocity \(=4.77(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=2.47 \mathrm{~min}\).
Time of concentration \(=15.58 \mathrm{~min}\).
Critical depth \(=0.146(\) Et. \()\)
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)

\section*{P:4182.301EngdReporfsDrainageUHOROOPROPOSEDI8000P100.0u}

Decimal fraction soil group \(\mathrm{C}=0.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type
Rainfall intensity \(=\quad 2.862(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year storn
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450\) Subarea runoff \(=\quad 2.511\) (CFS) for 1.950 (AC.) 2.16 (Ac.)
Total runoff \(=\quad 2.800(\mathrm{CFS})\) Total area \(=\quad 2.16(\mathrm{Ac}\).
 Process from Point/Station 8052.000 to Point/Station 8054.000

Upstream point/station elevation \(=312.000(\mathrm{Ft}\).
Downstream point/station elevation \(=311.000\) (FL.)
To of pipes \(=1\) Required pipe flow \(=2.800\) (CES)
Nearest computed pipe diameter \(=9.00\) (In) (CFS)
Calculated individual pipe flow \(=2.800\) (CFS)
Normal flow depth in pipe \(=5.40(\mathrm{In}\).
Flow top width inside pipe \(=8.82(\mathrm{In}\).
eipe flow velocity \(=\quad 10.11(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.03 \mathrm{~min}\).
Time of concentration \((T C)=15.61 \mathrm{~min}\)

Process from Point/Station
8054.000
**** SUBAREA Point/Scation

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
[RURAL (greater than \(0.5 \mathrm{Ac}, 0.2 \mathrm{ha}\) ) area type
Time of concentration \(=15.61 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.860(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{FCIA}, \mathrm{C}=0.450\) Subarea runoff \(=1.545\) (CFS) for 1.200 (Ac.)
Total runoff \(=4.345(\mathrm{CFS})\) Total area \(=3.36(\mathrm{Ac}\).

Process from Point/Station
\(\qquad\) 8053.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=\quad 15.61 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.860(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Subarea runoff \(=6.14\) (CFS) for 0.910 (Ac.)
Total runoff \(=\) 4.27(Ac.)
process from Point/Station
\[
8054.000 \text { to Point/Station }
\]
8055.000
**** PIPEFLOW TRAVEL TTME (Program estimated size) ****
Upstream point/station elevation \(=311.000(\mathrm{Ft}\).

\section*{P1418230 EngTRepoitsDrainagelHYROPROPOSED18000P100.out}

Downstream point/station elevation \(=302.000(\mathrm{Ft}\).)
lpe length \(=1\) Required. Manning s \(\mathrm{N}=0.013\)
. of pipes \(=1\) Required pipe flow \(=\) 6.817(CFS)
Calculated individual pipe flow \(=6817\) (CFS
Normal flow depth in pipe \(=6.42\) (In.)
Flow top width inside pipe \(=11.97\) (In.)
Critical depth could not be calculated
Pipe flow velocity \(=15.92(\mathrm{Ft} / \mathrm{s})\)
ravel time through pipe \(=0.08\) min.
Time of concentration \((T C)=15.69 \mathrm{~min}\).

Process from Point/Station 8054.000 to Point/Station
**** CONFLUENCE OF MTNOR STREAMS ****


No.
(CES)
(min)
( \(\mathrm{In} / \mathrm{Hr}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & \multirow[t]{2}{*}{26.507
6.817} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 19.54 \\
& 15.69
\end{aligned}
\]}} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2.607
2.854}} \\
\hline 2 & & & & & & & \\
\hline \multicolumn{8}{|l|}{Qmax (1)} \\
\hline & 1.000 & * & 1.000 & * & 26.507) & + & \\
\hline & 0.913 & * & 1.000 & * & 6.817) & \(+=\) & 32.733 \\
\hline \multicolumn{8}{|l|}{\(Q \max (2)=\)} \\
\hline & 1.000 & * & 0.803 & * & 26.507) & + & \\
\hline & 1.000 & * & 1.000 & * & 6.817) & & 28.102 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow 6.817

Maximum flow rates at confluence using above data:
32.733
Area of streams before con
\(14.560 \quad 4.270\)
Results of confluence:
otal flow rate \(=32.733\) (CES)
concentration \(=\quad 19.542 \mathrm{~min}\).
Effective stream area after confluence \(=18.830(\mathrm{Ac}\).
rocess from Point/Station
8055.000 to Point/Station
8067.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=302.000\) (Ft.)
ownstrearn point/station elevation \(=299.000\) (Ft.
ipe \(=1\) Required ipe flow \(=32.733\) (

Calculated individual pipe flow \(=32.733\) (CFS)
Normal flow depth in pipe \(=27.00\) (In.)
low top width inside pipe \(=18.00\) (In.
Critical Depth \(=23.37\) (In.)
Pipe flow velocity \(=\quad 7.04(\mathrm{Ft} / \mathrm{s})\)

Travel time through pipe \(=1.27 \mathrm{~min}\).
Travel time through pipe \(=\)
Time of concentration \((T C)=\quad 1.27\) min.
20.81 min.
Process from Point/Station 8055.000 to Point/Station
8067.000 t*** CONELUENCE OF MINOR STREAMS \(* * * *\)
```

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 18.830(Ac.)
Runoff from this stream = 32.733(CFS)
Time of concentration = 20.81 min
Rainfall intensity = 2.535(In/Hr)

```
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 8054.000 to Point/Station
**** INITIAL AREA EVALUATION ****
```

Decimal fraction soll group A m-0.000
Decimal fraction soil group C }=0.00
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
Initial subarea flow distance = 144.000(Et.
Highest elevation = 310.000(Ft.)
Lowest elevation = 308.000(Ft.)
Elevation difference = 2.000(Ft.)
ime of concend lon calculated by the urban
areas overland flow method (App X-C) = 2.90 min
TC = [1.8*(1.1-C)*distance(Et.)^.5)/(% slope^(1/3)]
Setting time of concentration to 5 minutes for 100 0 year
Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C=0.950
Subarea runoff = 0.709(CES)
Total initial stream area = 0.170(Ac.)

```
Process from Point/Station 8065.000 to Point/Station 8066.000
*** STRED FLOW TRAVEL TTME + SUBAREA FLON ADD
Top of street segment elevation \(=308.000\) (Ft.)
End of street segment elevation \(=300.000(\mathrm{Ft}\).)
Length of street segment \(=397.000(\mathrm{Ft})\).6 (In.)
Width of half street (curb to crown) \(=26.000(\mathrm{Et}\).
Distance from crown to crossfall grade break \(=10.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
slope from grade break to crown ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000\) ( Et .)
Slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.000\) (Ft.)
Gutter width \(=1.500\) (Ft.
Gutter hike from flowline \(=1.500\) ( In
    Manning's \(N\) in gutter \(=0.0150\)
    Manning's N from gutter to grade break \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
depth of flow \(=0.264\) (Ft.). Average velocity \(=2.428(\mathrm{Ft}\) ( s )
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=8.428(\mathrm{Ft}\).
Flow velocity \(=2.43(\mathrm{Ft} / \mathrm{s})\)
- 10242010.37 .59

\section*{PA182.30 Eng Reports DranageHYOROPROPOSED 8000 P 100 .out}
```

Travel time $=2.73 \mathrm{~min} . \quad T C=7.73 \mathrm{~min}$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $\mathrm{D}=1.000$
[INDUSTRIAL area type
Rainfall intensity $=$
$3.707(\mathrm{In} / \mathrm{Hr}$) for a 100.0 year storm
unoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$
Subarea runoff $=\quad 2.007$ (CFS) for 0.570 (Ac.)
Total runoff $=\quad 2.716$ (CFS) Total area $=\quad 0.74$ (Ac .
Street flow at end of street $=2.716$ (CFS)
Half street flow at end of street $=\quad 2.716$ (CFS
Depth of flow $=0.291$ (Ft .), Average velocity $=2.634$ (Ft / s)
Flow width (from curb towards crown) $=9.799$ (Ft.)
$++4+\downarrow+++++++++++++++++++++++++$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=300.000(\mathrm{Ft}$.
Downstream point/station elevation $=299.500$ (Ft.)
Pipe length $=77.25(F t$.$) \quad Manning's \mathrm{N}=0.013$
No. Of pipes $=1$ Required pipe flow $=2.716(C E S)$
Nearest computed pipe diameter $=12.00$ (In.)
Calculated individual pipe flow $=\quad 2.716$ (CFS)
Normal flow depth in pipe $=9.32(\mathrm{In}$.
Low top wide 10.00 (In.
Pipe flow velocity $=4.45(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.31 \mathrm{~min}$.
Time of concentration $(T C)=8.04 \mathrm{~min}$

```
8067.000

Process from Point/Station \(\qquad\) 064.000 to Point/Station
**** SUBAREA FLOW ADDITIO
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
[INDUSTRTAL area type
Time of concentration \(=8.04 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.654(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\)
Subarea runoff \(=\quad 4.547\) (CFS) for \(1.310(\mathrm{Ac}\).
Total runoff \(=\)
\(7.263(\mathrm{CES})\) Total area \(=\)
```

Process from Point/Station 8064.000 to Point/Station 8067.000
*** CONELUENCE OF MINOR STREAMS ***

```

Along Main Stream number: 1 in normal stream number 2
Stream flow area \(=\)
2.050 (Ac.)

Runoff from this stream \(=\quad 7.263\) (CES)
lime of concentration \(=\quad 8.04 \mathrm{~min}\).
Summary of stream data:
Stream
No.
Flow rate
(CES)
\(\underset{(\mathrm{min})}{\mathrm{TC}}\)
Rainfall Intensity

Printed: 10/24/2018 10:37:59 AM AM
Modified: 10/10/2018 2:56:48 PM PM
Page 26 of 51

\section*{P:1418230E EngTRepotsDiainagelHYDROPROPOSED18000P100.out}


\section*{W. \(\because\) P. 4182.30 EngRReportsDrainageLHYDROPROPOSED18000P100.0ut}

Normal flow depth in pipe \(=3.76\) (In.)
Flow top width inside pipe \(=8.88\) (In.)
Critical \(\mathrm{Depth}=6.19(\mathrm{In}).(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.03 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=\quad 15.13 \mathrm{~min}\).

Process from Point/Station 8059.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
decimal fraction soil group \(D=1.000\)
Time of concentration \(=\quad 15.13 \mathrm{~min}\).
1
Rainfall intensity \(=\quad 2.895(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.550\) Subarea runoff \(=\quad 2.484\) (CFS) for 1.560 (Ac.)
Total runoff \(=\quad 3.741\) (CFS) Total area \(=\quad 2.33(A c\).

Process from Point/Station 8060.000 to Point/Station
8061.000

Upstream point/station elevation \(=298.500(\mathrm{Ft}\).
Pipe length \(=45.00\) (Ft.) Manning's \(\mathrm{N}=0.013\)
No. Of pipes \(=1\) Required pipe flow \(=3.741\) (CFS)
Nearest computed pipe diameter \(=12.00\) (In.)
Calculated individual pipe flow \(=3.741\) (CFS)
Normal flow depth in pipe \(=9.80\) (In.)
Flow top width inside pipe \(=\quad 9.29\) (In.)
Critical Depth \(=9.88\) (In.)
Pipe flow velocity \(=\quad 5.45(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.14 \mathrm{~min}\).
Time of concentration \((T C)=15.27 \mathrm{~min}\)

Process from Point/Station
**** SUBAREA ELOW ADDITION **
\(=0.000\)
Decimal fraction soll group
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=15.27 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.885(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Subarea runfr \(=-\quad 0.521\) (CFS) for 0.190 (Ac.)
Total runoff \(=4.262(\mathrm{CFS})\) Total area \(=\quad 2.52(\mathrm{Ac}\).

Process from point/station
8061.000
8089.000
feen Low travel tMe (Program estimated size) xa*
Upstream point/station elevation \(=298.000(F t\).
Downstream point/station elevation \(=297.500(\mathrm{Ft}\).
\$* \& P:/4182.30LEngrReportSDrainageHYOROPROPOSED18000P100.out
Pipe length \(=106.00(\mathrm{Ft}\).\() Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=4.262\) (CES)
Calculated individual pipe flow \(=\quad\) 4.262(CFS)
Calculated individual pipe flow \(=7.262\) (CFS)
Flow top width inside pipe \(=12.31\) (In.)
Critical Depth \(=10.03(\) In. \()\)
Pipe flow velocity \(=\quad 4.12(\mathrm{Ft} / \mathrm{s})\)
pipe flow velocity \(=\) pipe \(=\quad 0.43 \mathrm{~min}\).
Time of concentration (TC) \(=15.70 \mathrm{~min}\).
8069.000 to Point/Station rocess from Point/Station
8089.000

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(\mathrm{D}=1.000\)
[INDUSTRIAL area type
ime of concentration \(=15.70 \mathrm{~min}\)
Rainfall intensity \(=2.854(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCTA}, \mathrm{C}=0.950\) Subarea runoff \(=\quad 0.298\) (CFS) for 0.110 (AC.)
Total runoff \(=\quad 4.560(\mathrm{CFS})\) Total area \(=\quad 2.63(\mathrm{Ac}\).
roces from point/Station
rocess from Point/Station \(\qquad\) 069.000 to Point/Station

Decimal fraction soil group \(A=0.000\)
ecimal fraction soil group \(B=0.000\)
Decimal iraction soll group \(C=0.00\)
Decimal fraction soil group \(D=1.000\)
INDUSTRIAL area type
Time of concentration \(=15.70 \mathrm{~min}\)
Rainfall intensity \(=\quad 2.854(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, C=0.950\) Subarea runoff \(=0.190(\mathrm{CFS}\) ) for 0.070 (Ac.)
Total runoff \(=4.750(\mathrm{CFS})\) Total area \(=2.70(\mathrm{Ac}\).
rocess fry 10.

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
INDUSTRIAL area type
15.70 min

Rainfall intensity \(=\quad 2.854(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) \(\begin{array}{ll}\text { Runoff coefficient used for sub-area, Rational meth } \\ \text { Subarea runoff }= & 0.298 \text { (CFS) for } 0.110 \text { (Ac.) }\end{array}\)
5.048 (CFS) Total area \(=\)

Process from Point/Station \(\qquad\) 8070.000 to Point/Station
rocess from Point/Station

\subsection*{1482.30 EngrReports DrainageHYDROPROPOSED18000P100.out}

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Time of concentration \(=15.70 \mathrm{~min}\)
Rainfall intensity \(=\quad 2.854(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, \(Q=\) KCIA, \(C=0.950\) Subarea runoff \(=\quad 0.461\) (CFS) for \(0.170(\mathrm{AC}\).)
Total runoff \(=\quad 5.509(\) CFS \()\) Total area \(=\quad 2.98\) (AC.)

Process from Point/Station 8089.000 to Point/Station
8068.000
**** PTPEFLOW TRAVEL TTME (Program estimated size) ****
Upstream point/station elevation \(=297.800(\mathrm{Ft}\).
Downstream point/station elevation \(=297.300\) (Et.)
No. of pipes \(=1\) Required pipe flow \(=5.509\) (CFS)
Nearest computed pipe diameter \(=18.00(\) In. \()\)
Calculated individual pipe flow \(=5.509\) (CFS)
Normal flow depth in pipe \(=11.21\) (In.)
Flow top width inside pipe \(=17.45\) (In.)
Critical Depth \(=10.86(\) In. \()\)
Pipe flow velocity \(=4.76(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.32 \mathrm{~min}\).
Time of concentration \((T C)=16.02 \mathrm{~min}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\quad\)
Process from Point/Station 8089.000 to Point/Station 8068.000
* CONFLUENCE OF MINOR STREAMS ****
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Along Main Stream number: 1 in normal stream number 2
Stream flow area \(=\quad 2.980\) (Ac.)}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Runoff from this stream \(=5.509\) (CFS)} \\
\hline \multicolumn{6}{|l|}{Time of concentration \(=16.02 \mathrm{~min}\).} \\
\hline \multicolumn{6}{|l|}{Rainfall intensity \(=2.831(\mathrm{In} / \mathrm{Hr})\)} \\
\hline \multicolumn{6}{|l|}{Summary of stream data:} \\
\hline Stream No. & Flow rate (CFS) & \[
\begin{aligned}
& \mathrm{TC} \\
& (\mathrm{~min})
\end{aligned}
\] & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\text { In/Hr) }
\end{gathered}
\]} \\
\hline 1 & 37.772 & 20.93 & & 2.52 & \\
\hline 2 & 5.509 & 16.02 & & 2.83 & \\
\hline \multicolumn{6}{|l|}{Qmax (1)} \\
\hline & 1.000 * & * 1.000 * & * 37.772) & 2) + & \\
\hline & 0.893 * & * 1.000 & 5.509) & 9) \(+=\) & 42.692 \\
\hline \multicolumn{6}{|l|}{Qmax (2)} \\
\hline & 1.000 * & * 0.766 * & * 37.772) & ) + & \\
\hline & 1.000 * & * 1.000 * & * 5.509) & ) \(+=\) & 34.425 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point:
Maximum flow rates at confluence using above data:
Maximum flow rates at conf 34.425
Area of streams before confluence:
20.880 2.980

Results of confluence:
Total flow rate \(=42.692\) (CFS)
Time of concentration \(=\quad 20.929 \mathrm{~min}\).

\section*{I4 182.30 EngrdRepors D DainageHYOROPROPOSEDVOOOP 100 .out}

Effective stream area after confluence \(=\quad 23.860(\) Ac. \()\)
```

++
8068.000 to Point/Station
Upstream point/station elevation = 297.500(Et.)
Downstream point/station elevation = 291.000(Ft.)
ipe rength = 328.50(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 42.692(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 42.692(CFS)
Normal flow depth in pipe = 21.66(In.)
low top width inside pipe = 21.52(In.
Travel time through pipe 12.49(Ft/s)
Time of concentration (TC) = 21.37 min
+rturn
rocess from Point/Station 806
068.000 to Point/Station

```
Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 23.860\) (Ac.)
Stream flow area \(=\quad 23.860\) (Ac.)
42.692(CFS
ainfall intensity \(=2.504(\mathrm{In} / \mathrm{Hr}\)
```

rocess from
*** INITIAL AREA EVALUATION ****

Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.00$
INDUSTRIAL area type
($113.000(\mathrm{Ft}$.)
Lowest elevation $=297.500(\mathrm{Ft}$.
Elevation difference $=\quad 2.500(\mathrm{Ft}$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=2.20 \mathrm{~min}$.
$=\left[1.8^{*}(1.1-C) *\right.$ distance (Ft.)^.5)/(\% slope^(1/3)]
$C=\left[1.8^{*}(1.1-0.9500) *\left(113.000^{\wedge} .5\right) /\left(2.212^{\wedge}(1 / 3)\right]=2.20\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
effective runoff coefficient used for area ($Q=$ KCIA $)$ is $C=0.950$
Subarea runoff $=0.417$ (CFS)
Total initial stream area $=\quad 0.100(\mathrm{Ac}$.
 rocess from Point/Station 8074.000 to Point/Station 8075.000 *** STREET FLOW TRAVEL TTME + SUBAREA ELOW ADDITION ****

[^0]
P: 1418230 EngTRepots DrainageHYDROPROPOSED 8000 P 100.0 u

Width of half street (curb to crown) $=26.000(\mathrm{Ft}$)
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
Slope from curb to property line (v / hz) $=0.020$
Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=1.397$ (CFS)
Depth of flow $=0.245$ (Ft.), Average velocity $=2.204(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=7.501$ (Et.)
Travel time $=2.43 \mathrm{~min} / \mathrm{s})$
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Rainfall intensity $=\quad 3.762(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Subarea runoff $=1.680(\mathrm{CFS})$ for $0.470(\mathrm{AC}$.
Total runoff $=\quad 2.097$ (CFS) Total area $=$ 0.57(Ac.
Street flow at end of street $=$ 2.097(CSS)
Depth of flow $=0.274$ (Et.), Average velocity $=2.411(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=8.934$ (Et.)
 Process from Point/Station 075.000 to Point/Station
8079.000

Upstream point/station elevation $=291.500(\mathrm{Ft}$.
Downstream point/station elevation $=290.500(\mathrm{Ft}$.)
Pipe length $=77.25$ (Ft.) Manning's $N=0.013$
.. 12.00 (In.) (CFS)
Calculated indivicual pipe flow $=2.097$ (CFS)
Normal flow depth in pipe $=6.12$ (In.) 2.097 (CES)
Flow top width inside pipe $=12.00$ (In.)
Critical Depth $=7.42(\mathrm{In}$.
Pipe flow velocity $=$
$5.21(\mathrm{Ft} / \mathrm{s})$

Time of concentration $(T C)=7.68 \mathrm{~min}$.

Process from Roint/Station
8078.000 to Point/Station

FIOW ADDITION **

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
time of
7.68 min.
$3.716(\mathrm{In} / \mathrm{Hr})$

Rainfall intensity
Runff intensity $3.716(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm

14182.30 EngrRepors DrainageHYDROPROPOSEDI8000P100.out

Total of 2 streams to confluence:
low rates before confluence point:
4.462
aximum flow rates at confluence using above data:

$$
\begin{array}{ll}
45.699 & 19.797
\end{array}
$$

Area of streams before confluence:
23.860 fluence:

Rults or contue
tal flow rate $=45.699$ (CFS)
me of concentration $=\quad 21.367 \mathrm{~min}$.
ffective stream area after confluence $=25.100(\mathrm{Ac}$.
 Process from Point/Station 8079.000 to Point/Station
*** PIPEELOW TRAVEI TTME (Program estimated size) ****

$$
\text { *** CONFLUENCE OF MINOR STREAMS } * * * *
$$

tation

Along Main Stream number: 1 in normal stream number 1

$$
\begin{aligned}
& \text { pstream point/station elevation }=290.500 \text { (Ft.) } \\
& \text { 解 } \\
& \text { ipe length }=1 \text { Required pipe flow }=45.699(\mathrm{CFS}) \\
& \text { Nearest computed pipe diameter }=33.00(\text { In. }) \\
& \text { Calculated individual pipe flow }=45.699 \text { (CFS } \\
& \text { Normal flow depth in pipe }=22.97 \text { (In.) } \\
& \text { Flow top width inside pipe }=30.36 \text { (In.) } \\
& \text { ritical Depth }=26.86 \text { (In.) } \\
& \text { lee flow velocity }=10.34(\mathrm{Ft} / \mathrm{s}) \\
& \text { ime of concentration (TC) }=\quad 22.49 \mathrm{~min} \text {. }
\end{aligned}
$$

P:418230EngrreportSD DrainageHYDROMPOPOSED18000P100.0u

Stream flow area $=25.100$ (AC.)
Runoff from this stream $=45.699$ (CFS)
Time of concentration $=22.49 \mathrm{~min}$.
Rainfall intensity $=\quad 2.445(\mathrm{In} / \mathrm{Hr})$

Process from Point/Station 8075.000 to Point/Station 8080.000
$* * * *$ INITIAI AREA EVALUATION $* * * *$
Decimal fraction soil group $\bar{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decidal
[INDUBRIA area type
fow distance $=101.000(\mathrm{Ft}$.
Highest elevation $=292.000(\mathrm{Ft}$.
Lowest elevation $=291.000(\mathrm{Ft}$.)
Time of concentration $=1.000(\mathrm{Ft}$.
areas overland flow method (App X-C) $=2.72 \mathrm{~min}$
TC $=\left[1.8^{*}(1.1-C) *\right.$ distance $\left.(\mathrm{Ft} .)^{\wedge} .5\right) /\left(\%\right.$ slope $\left.^{\wedge}(1 / 3)\right]$
$T C=\left[1.8^{*}(1.1-0.9500)^{*}\left(101.000^{\wedge} .5\right) /\left(0.990^{\wedge}(1 / 3)\right]=2.72\right.$
Setting time of concentration to 5 minutes
Rainfall intensity (I) $=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.950$ Subarea runoff $=\quad 0.417$ (CFS)
Total initial stream area $=0.100(\mathrm{Ac}$.
$++$
**** STREET FLOW TRAVEL TIME + SUBAREA ELOW ADDITION ****
Top of street segment elevation $=291.000$ (Ft.)
End of street segment elevation $=284.000(\mathrm{Ft}$.
Length of street segment $=644.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Width of half street (curb to crown) $=26.000(\mathrm{Ft}$.)
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.)
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500(\mathrm{Et}$.
Gutter hike from flowline $=1.500(\mathrm{In}$.
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.300($ Ft. $)$, Average velocity $=1.98 .231$ (CFS)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=10.260(F t$.
Travel time $=5.91 \mathrm{~min}$
$T C=10.41 \mathrm{~min}$.
Decimal fraction soil group $\bar{A}=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Rainfall intensity $=\quad 3.326(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$

Subarea runoff $=\quad 2.749$ (CFS) for $0.870(A C$.
otal runoff $=$ 3.166(CFS) Total area $=$
Half street flow at end of street $=\quad 3.166$ (CES)
Depth of flow $=0.332(\mathrm{Ft}$.$) , Average velocity =\quad 2.154(\mathrm{Ft} / \mathrm{s})$ Flow width (from curb towards crown) $=11.826(\mathrm{Ft}$.

cocess from Point/Station 8081.000 to Point/Station
 8085.000
 *** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation $=284.000(\mathrm{Ft}$.
Downstream point/station elevation $=283.500$ (Ft.
ipe length $=1$ Required pipe flow $=N=3.166(\mathrm{CFS}$
orest $12.00($ Tn $)(\mathrm{CFS})$
alculated individual pipe flow $=3.166$ (CFS
alculated individual pipe flow $=$ (In.).166(CFS)
low top width inside pipe $=11.64(\mathrm{In}$.
Critical Depth $=$ 9.14(In.)
Pipe flow velocity $=6.17(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.09 \mathrm{~min}$.
Time of concentration $(T C)=10.49 \mathrm{~min}$.
$++$
Process from Point/Station 8084.000 to Point/Station
8085.000

Decimal fraction soil group $A=0.000$

Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
ecimal fraction soil group $D=1.000$
INDUSTRIAL area type
me of concentration $=\quad 10.49 \mathrm{~min}$
Rainfall intensity $=\quad 3.316(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.950$ Subarea runoff $=\quad 5.198$ (CFS) for 1.650 (Ac.)
Total runoff $=\quad 8.363(\mathrm{CFS})$ Total area $=\quad 2.62(\mathrm{Ac}$.

Process from Point/Station 8084.000 to Point/Station
8085.000

Along Main Stream number: 1 in normal stream number 2
Stream flow area $=\quad 2.620$ (Ac.)
Runoff from this stream $=8.363$ (CFS
rime of concentration $=10.49 \mathrm{~min}$.
ainfall intensity $=$
$3.316(\mathrm{In} / \mathrm{Hr})$
Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
No.	(CFS)	(min)	(In/Hr)

1	45.699	22.49				2.445	
2	8.363		49			3.3	
Qmax (1)							
	1.000	*	1.000	*	45.699)	+	
	0.737	*	1.000	*	8.363)	+ $=$	51.866
Qmax (2)	$=1.000$						
	1.000	*	0.467		45.699)	+	

Printed: 10/24/2018 10:37:59 AMAM
Modified: 10/10/2018 2:56:48 PM PM

P:4182.30LEngrReportsDrainageHYDROPROPOSED 8000 P100.ou

1.000 *
8.363) +
29.689

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data
$51.866 \quad 29.689$
Area of streams before confluence:
$25.100 \quad 2.620$
Results of confluence:
Total flow rate
51.866 (CFS)

Time of concentration $=\quad 22.487 \mathrm{~min}$
Effective stream area after confluence

Process from Point/Station 8085.000 to Point/Station

Upstream point/station elevation $=283.500(\mathrm{Ft}$.
Downstream point/station elevation $=282.000($ Et. $)$
Pipe length $=$ 73.00(Ft.) Manning's $N=0.013$
No. of pipes $=1$ Required pipe flow $=51.866$ (CES
Nearest computed pipe diameter $=30.00($ In.)
Calculated individual pipe flow $=51.866$ (CFS)
Normal flow depth in pipe $=21.89(\mathrm{~m}$.
Flow top width inside pipe $=26.65$ (In.
Pipe flow velocity $=13.52(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 0.09 \mathrm{~min}$.
Time of concentration $(\mathrm{TC})=22.58 \mathrm{~min}$ 8085.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed
In Main Stream number: 1
Stream flow area $=\quad 27.720$ (Ac.)
Runoff from this stream $=51.866$ (CES)
Rainfall intensity $=2.440(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2

Process from Point/Station 8090.000 to Point/Station **
al f action

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
[SINGLE FAMTLY area
Initial subarea flow dise
ow distance $=75.000(\mathrm{Ft}$.)
Lowest elevation $=295.000(\mathrm{Ft}$.)
Elevation difference $=1.000$ (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App $X-C$) $=7.79 \mathrm{~min}$,
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance (Ft.) $\left.{ }^{\wedge} .5\right) /(8$ slope^(1/3)]
$\mathrm{TC}=\left[1.8 *(1.1-0.5500) *\left(75.000^{\wedge} .5\right) /\left(1.333^{\wedge}(1 / 3)\right]=7.79\right.$
Rainfall intensity (I) = 3.696 (In/Hr) for a 100.0 year storm

4. \because PL418230E EngrReportSDranage HYDROPROPOSED18000P100.out

Effective runoff coefficient used for area ($Q=\mathrm{KCIA}$) is $C=0.550$ Subarea runoff $=$ 0.183 (CFS)
Total initial stream area $=$
0.090 (Ac.)

Process from Point/Station 8082.000 to Point/Station 8073.000 *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***
op of street segment elevation $=295.000$ (Ft.
End of street segment elevation $=290.500(\mathrm{Ft}$.
Length of street segment $=357.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Width of half street (curb to crown) $=26.000$ (Ft.)
istance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
lope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500($ In.
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
estimated mean flow rate at midpoint of street $=\quad 0.282(\mathrm{CFS})$
Depth of flow $=0.167(F t$.$) , Average velocity =1.410(\mathrm{Ft} / \mathrm{s})$
treetflow hydraulics at midpoint of street travel:
falfstreet flow width $=3.586(F t$)
low velocity $=1.41(\mathrm{Ft} / \mathrm{s})$
$4.22 \mathrm{~min} . \quad \mathrm{TC}=12.01 \mathrm{~min}$.
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
SINGLE FAMILY area type
Rainfall intensity $=3.157(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCLA}, \mathrm{C}=0.550$ Subarea runoff $=1.875$ (CFS) for 1.080 (Ac.)
Total runoff $=\quad 2.058$ (CFS) Total area $=$
1.17 (Ac.)

Half street flow at end of street $=\quad 2.058$ (CFS
Depth of flow $=0.288(\mathrm{Ft}$.$) , Average velocity =2.062(\mathrm{Ft} / \mathrm{s})$
low width (from curb towards crown) $=9.627$ (Ft.)
roce

```
Jpstream point/station elevation \(=290.200(E t\).
Downstream point/station elevation \(=290.000\) (Ft.
, 11.00 (re.) Manning s \(\mathrm{N}=0.013\)
0.00 (In.) (CFS)
alculat \(=9.00(1 \mathrm{n}\).
Calculated individual pipe flow \(=2.058\) (CFS
ormal flow depth in pipe \(=6.82(\operatorname{In}\).
low top width inside pipe \(=7.71\) (In.
Critical Depth \(=\quad 7.80(\mathrm{In}\).
\(5.73(\mathrm{Ft} / \mathrm{s})\)
ravel time through pipe \(=0.03 \mathrm{~min}\)
Time of concentration \((T C)=12.04 \mathrm{~min}\).
```

 Process from Point/Station
**** SUBAREA FIOW ADDITION
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
$\begin{array}{ll}\text { Decimal fraction soil group } C=0.000 \\ D & =1.000\end{array}$
[SINGLE FAMILY area type
Time of concentration $=$
Rinfall $\quad 12.04 \mathrm{~min}$.
Rainfall intensity $=\quad 3.154(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Subarea coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.55$
$\begin{array}{ll}\text { Subarea runoff }=\quad & 2.238(\text { CFS }) \text { for } \\ \text { Total runoff }= & 1.290(\mathrm{AC.})\end{array} \quad 2.46$ (Ac.)
$+++$ Process from Point/Station 8093.000 to Point/Station

Upstream point/station elevation $=290.000($ Ft. $)$
Downstream point/station elevation $=280.000$ (Et.)
Pipe length $=498.00(F t$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=4.296$ (CFS
Nearest computed pipe diameter $=12.00$ (In.)
Calculated individual pipe flow $=4.296$ (CFS)
Normal flow depth in pipe $=8.51(\mathrm{Im}$.
Elow top width inside pipe $=10.90(\mathrm{In}$.
Pipe flow velocity $=\quad 7.22(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 1.15 \mathrm{~min}$.
Time of concentration $(T C)=13.19 \mathrm{~min}$
++
Process from Point/Station 8093.000 to Point/Station 8096.000
Process from boint/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
MULTI - UNITS area type
nitial subarea aistance $=239.000(\mathrm{Ft}$.)
Lowest elevation $=288.000(\mathrm{Ft}$;
Elevation difference $=4.000$ (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App $X-C)=9.38 \mathrm{~min}$.
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance $\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(\%$ slope^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-0.7000)^{*}\left(239.000^{\wedge} .5\right) /\left(1.674^{\wedge}(1 / 3)\right]=9.38\right.$
Rainfali intensity $(I)=\quad 3.454(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm

P14182.301EngIRepoits DrainagelHYDROPROPOSEDI8000P100.out

Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.700$ ubarea runoff 1.306 (CES
0.540 (Ac.)
$+++4+++4++$ *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION $* * *$

Top of street segment elevation $=288.000$ (Ft.$)$
End of street segment elevation $=282.000(\mathrm{Ft}$)
End of street segment elevation $=282.000(\mathrm{Ft}$
Length of street segment $=406.000(\mathrm{Ft}$.)
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Width of half street (curb to crown) $=26.000(\mathrm{Et}$.
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.)
Slope from gutter to grade break (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.
lope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500(\mathrm{Ft}$.)
Gutter hike from flowline $=1.500($ In.)
Manning's \mathbb{N} in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.361$ (Ft.), Average velocity $=2.9 .956$ (CFS
Streetflow hydraulics at midpoint of street travel
falfstreet flow width $=13.301(\mathrm{Ft}$.
low velocity $=2.69$ (Ft/s)
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
MULTI - UNITS area type
Rainfall intensity $=3.169(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCTA}, \mathrm{C}=0.700$ Subarea runoff $=\quad 6.699$ (CFS) for $\quad 3.020$ (Ac.)
Total runoff $=\quad 8.005$ (CFS) Total area $=\quad 3.56$ (Ac.
treet flow at end of street $=8.005$ (CFS)
Half street flow at end of street $=08.005(\mathrm{CFS})$
Depth of flow $=0.416(\mathrm{Ft}$.), Average velocity $=3.021$ (Ft/s)
low width (from curb towards crown) $=16.056(\mathrm{Ft}$)

Process from Point/Station 8094.000 to Point/Station
Upstream point/station elevation $=282.000(\mathrm{Ft}$.
Downstream point/station elevation $=281.800$ (Ft.
Ripe length $=11.00(\mathrm{Ft}$.) Manning's $\mathrm{N}=0.013$
o. of pipes $=1$ Required pipe flow $=8.005$ (CFS)

Calculated individual pipe flow $=8.005$ (CFS
8.005 (CFS)

Normal flow depth in pipe $=11.32$ (In.)
Critical Depth $=13.38$ (In.)
Pipe flow velocity $=8.05(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.02 \mathrm{~min}$.
Time of concentration $(T C)=11.91 \mathrm{~min}$.
$+++++++\downarrow++$ Process from Point/Station \qquad 8095.000 to Point/Station

Total of 2 streams to confluence:
Flow rates before confluence point
$4.296 \quad 13.746$
Maximum flow rates at confluence using above data
Area of streams before confluence:
$2.460 \quad 6.150$
Results of confluence
Total flow rate $=17.625(\mathrm{CES})$
Time of concentration $=11.911 \mathrm{~min}$.
Effective stream area after confluence $=8.610$ (Ac.
++++++++++++++++++++++++++++++++q++++++++++++++++++++++++++++++++++++ Process from Point/Station 8096.000 to Point/Statio
**** PIPEFLOW TRAVEI TTME (Program estimated size) ****
\square
Upstream point/station elevation $=281.800(E t$.
Downstream point/station elevation $=281.000$ (Ft.)
Pipe length $=372.00(\mathrm{Ft}$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=17.625$ (CFS
Nearest computed pipe dianeter $=30.00($ In.)
Calculated individual pipe flow $=17.625$ (CFS)

P:4182 30EngTReportSD Drainage H YDROPRROPOSEDI8000P 100.out
Normal flow depth in pipe $=22.83(\mathrm{In}$.
Flow top width inside pipe $=25.59(\mathrm{In}$.
Critical Depth $=17.04$ (In.)
Pipe flow velocity $=\quad 4.40(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=1.41 \mathrm{~min}$.
Time of concentration $(T C)=13.32 \mathrm{~min}$.
$+4+4+4+4+4+4+4+4+4+4+4+4+4+++4+4++++4+4+4+4+4+4+4+4++++4+4++++++$ Process from Point/Station

The following data inside Main Stream is listed:
In Main Stream number: 2
tream flow area $=8.610($ Ac. $)$
Runoff from this stream $=17.625$ (CFS)
ime of $=13.32 \mathrm{~min}$.
Summary of stream data:

Stream No.	Flow rate (CES)	$\begin{aligned} & \mathrm{TC} \\ & (\mathrm{~min}) \end{aligned}$		Rainfall(IntensityIn $)$		
1	51.866	22.58		2.440		
2	17.625	13.32		3.039		
$\operatorname{Qmax}(1)=$						
	1.000 *	1.000	*	51.866)	$+$	
	0.803 *	1.000		17.625)	$+$	66.019
	1.000 *	0.590 *	*	51.866)	$+$	

Total of 2 main streams to confluence
Fow rates before confluence point:
Maximum flow rates at confluence using above data:
66.019
Area of streams before confluence:
$27.720 \quad 8.610$

Results of confluence:
Total flow rate $=\quad 66.019$ (CFS)
Time of concentration $=\quad 22.577 \mathrm{~min}$
Effective stream area after confluence $=36.330(\mathrm{Ac}$.)
rocess from Point/Station
8088.000 to Point/Station
8110.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=282.000(\mathrm{Ft}$.
Downstream point/station elevation $=279.000(\mathrm{Ft}$.)
No. of pipes $=1$ Required pipe flow $=66.019$ (CFS)
No. of pipes $=1$ Required pipe flow $\quad=\quad 66.06$ (In.)
Calculated individual pipe flow $=66.019$ (CFS
Normal flow depth in pipe $=30.00$ (In.)
Flow top width inside pipe $=26.83($ In. $)$
Critical Depth $=31.19($ In. $)$
Pipe flow velocity $=10.49(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.50 \mathrm{~min}$.
Time of concentration (TC) $=23.08 \mathrm{~min}$
\qquad
Process from Point/Station ${ }_{* *}^{803}$

```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
Time of concentration = 23.08 min. for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C=0.95
Subarea runoff = 0.573(CFS) for 0.250(AC.)
Total runoff = 66.593(CFS) Total area = = 36.58(Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8031.000 to Point/Station
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=23.08 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.415(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950\) Subarea runoff \(=0.50\) (CES) for \(0.220(A C\).
67.097 (CES) Total area \(=\quad 36.80(\mathrm{Ac}\).)
Process from Point/Station
8110.000 to Point/Station
8118.000
Process from Point/station
```

Upstream point/station elevation $=279.000(\mathrm{Ft}$.
Downstream point/station elevation $=278.800(\mathrm{Ft}$.
Pipe length $=80.00(\mathrm{Ft}$) Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=0$.097(CES
Calculated individual pipe flow $=67.097$ (CFS)
Normal flow denth in pipe $=36.75(\mathrm{Tn}$)
Flow top width inside pipe $=40.67(\mathrm{Tn}$.)
Critical Depth $=29.66$ (In.) $6(\mathrm{Ft} / \mathrm{s})$

Time of concentration $(T C)=23.28 \mathrm{~min}$,
++
Process from Point/Station 8110.000 to Point/Station 8118.000 **** CONEIUENCE OF MINOR STREAMS $* * * *$

Along Main Stream number: 1 in normal stream number 1
Stream flow area $=36.800$ (Ac.)
Runoff from this stream $=67.097$ (CFS)
Time of concentration $=$
Rainfall intensity $=$
$2.404(\mathrm{Tn} / \mathrm{Hr})$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soll group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Initial subarea flow distance $=190.000(\mathrm{Ft}$.)
Highest elevation $=282.000($ Ft.)
owest elevation = $279.500(\mathrm{Ft}$.
levation difference $=2.500$ (Ft.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=3.40 \mathrm{~min}$.
$T C=\left[1.8^{*}(1.1-0.9500) *\left(190.000^{\wedge} .5\right) /\left(1.316^{\wedge}(1 / 3)\right]=3.40\right.$
(1.8 (1.1-0.9500)* $\left.190.000^{\wedge} .5\right) /\left(1.316^{\wedge}(1 / 3)\right]=$
4.39(In/Hr)
$4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.950$
Subarea runoff $=\quad 1.209$ (CES)
Total initial stream area $=\quad 0.290(\mathrm{Ac}$.
+t+
Process from Point/Station
8107.000 to Point/Station
Upstream point/station elevation $=\quad 279.200$ (Ft.)
Downstream point/station elevation 279.000 (Et.
t. Of pipes $=1$ Required pipe flow $=1.209(C F S)$
年 1.209 (CES
earest computed pipe diameter $=9.00(\mathrm{In}$.)
Normal flow depth in pipe $=\quad 6.09(\mathrm{In}$.
Flow top width inside pipe $=8.42(\operatorname{In}$.
Critical Depth $=6.07$ (In.)
Pipe flow velocity $=\quad 3.80(\mathrm{Ft} / \mathrm{s})$
ravel time through pipe $=0.11 \mathrm{~min}$.
Time of concentration (TC) $=5.11$ min.

Poin Process from Point/Station 8107.000 to Point/Station 8118.000
**** CONFLUENCE OF MINOR STREAMS ****

1	67.097	23.28			2.404	
2	1.209	5.11			4.352	
Qmax (1)						
	1.000	1.000	*	67.097)	+	
	0.552	1.000	*	1.209)	+	67.765
Qmax (2)						
	1.000	0.219	*	67.097)	$+$	
	1.000	* 1.000	*	1.209)	+	15.922

Total of 2 streams to confluence:
Flow rates before confluence point
67.0971 .209

Maximum flow rates at confluence using above data:
Area of streams before confluence:
$0.800 \quad 0.290$
Results of confluence
Total flow rate
67.765 (CES)
rime of concentration $=\quad 23.283 \mathrm{~min}$.
Effective stream area after confluence $=37.090(\mathrm{Ac}$.
$+++++++++++++++++++++++++++++++++++4++++++++4++++++++++++++++++++4++4$
Process from Point/Station 8108.000 to Point/Station
**** SUBAREA FLOW ADDITIION ****
0.000

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Time of concentration $=$
23.28 min .
Rainfall intensity $=\quad 2.404(\mathrm{In} / \mathrm{H})$
Rainfall intensity $=$
$2.404(\mathrm{In} / \mathrm{Hr})$
for sub-area,
Runore coefficien
Totarea runoff
2.010 (CES) for
69.775(CFS) Total area $=0$ (AC.) 37.97 (Ac.)

Process from Point/Station ion 8108.000 to Point/Station
118.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area $=37.970(\mathrm{Ac}$.
Runoff from this stream $=69.775$ (CFS)
Time of concentration $=23.28 \mathrm{~min}$.
Rainfall intensity $=\quad 2.404(\mathrm{In} / \mathrm{Hr}$
Program is now starting with Main Stream No. 2
$++++++++++++++++++++++++++++$
Process from Point/Station
8097.000 to Point/Station
8098.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
Initial subarea flow distance $=214.000(\mathrm{Ft}$.)
Highest elevation $=280.000(\mathrm{Et}$.)
Lowest elevation $=277.000$ (Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=\quad 9.41 \mathrm{~min}$

$\mathrm{TC}=\left[1.8^{*}(1.1-0.7000)^{*}\left(214.000^{\circ} .5\right) /\left(1.402^{\wedge}(1 / 3)\right]=9.41\right.$
Rainfali intensity (I) $=3.449$ (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCIA}$) is $C=0.700$ Subarea runoff $=$ 0.797 (CES)

Total initial stream area $=0.330(\mathrm{Ac}$.

Process from Point/Station 8098.000 to Point/Station
8114.000

Top of street segment elevation $=277.000$ (Ft .

Length of street segment $=220.000$ (Ft.)
Height of curb above gutter flowline $=6.0$ (In.
Width of half street (curb to crown) $=26.000(\mathrm{Ft}$.)
Distance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.
Slope from gutter to grade break (v/hz) $=0.020$
Slope from grade break to crown (v/hz) $=0.02$
Street flow is on [1] side(s) of the street
istance from curb to property line $=15.000(\mathrm{Ft}$.
Cupe width $=$ to property
Gutter hike from flowline
Manning's N in gutter $=0.01 .500(\mathrm{In}$.
Manning's N from gutter 0.0150
Manning's N from grade break to break $=0.0180$
stimated mean flow rate at midpoinown $=0.0180$
Depth of flow $=0.275$ (Ft.), Averat of street $=1.968$ (CFS)
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=8.999(\mathrm{Ft}$.)
Flow velocity $=2.23$ (Ft/s
$\mathrm{TC}=11.05 \mathrm{~min}$
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=1.000$
[MOLTI - UNITS area type
Rainfall intensity $=\quad 3.254(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.700$
Subarea runoff $=\quad 2.210$ (CFS) for 0.970 (Ac.)
Total runoff $=$ and 3.006 (CFS) Total area $=$
Street flow at end of street $=3.006$ (CFS)
Half street flow at end of street $=3.006$ (CFS)
Depth of flow $=0.309$ (Ft.), Average velocity $=2.462(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=10.723(\mathrm{Ft}$.
$+++4$
Process from Point/Station 8114.000 to Point/Station
8116.000

Upstream point/station elevation $=273.500(\mathrm{Ft}$.
Downstream point/station elevation $=273.000(\mathrm{Ft}$.
Pipe length $=10.80(E t$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=3.006$ (CFS)
Nearest computed pipe diameter - $9.00(1 \mathrm{n}$.)
Calculated individual pipe flow $=3.006$ (CFS
Flow top width inside pipe $=6.34$ (In.)
Critical depth could not be calculated.
Pipe flow velocity $=\quad 9.03(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.02 \mathrm{~min}$
Time of concentration $(T C)=11.07 \mathrm{~min}$.
815.00 0 .

Process from Point/Station 8115.000 to Point/Station
8116.000

1/418230EngTReportsD Drainage HYOROPROPOSEDI8000P100.0u

**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Mecimal fraction soil group $D=1.000$
Time of concentration $=\quad 11.07 \mathrm{~min}$.
Rainfall intensity $=\quad 3.252(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A, C=0.700$
Subarea runoff $=\quad 3.096$ (CFS) for 1.360 (Ac.)
Total runoff $=\quad 6.102$ (CFS) Total area $=\quad 2.66$ (Ac.)

Process from Point/Station
8116.000 to Point/Station
8117.000

Jpstrearn point/station elevation $=$ 273.000(Ft.)
Downstream point/station elevation $=271.500$ (Ft.)
No. of pipes $=1$ Required pipe flow $=6.102$ (CFS
Nearest computed pipe diameter $=21.00($ In.)
Calculated individual pipe flow $=6.102$ (CFS
Normal flow depth in pipe $=12.63(\operatorname{In}$.
Flow top width inside pipe $=20.56(\mathrm{In}$.
Critical Depth $=10.93$ (In.)
Pipe flow velocity $=4.04(\mathrm{Ft} / \mathrm{s})$
Time of concentration $(T C)=1.90 \mathrm{~min}$.
$-2+$
rocess from Point/Station
103.00 to Point/Station

Decimal fraction soil group $A=0.00$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
Rainfall intensity $=\quad 3.069(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700$ Total runoff $=\quad 7.928$ (CFS) Total area $=($ Ac. $) \quad 3.51$ (Ac.)
 Process from Point/Station \qquad 8104.000 to Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
[MUTTI - UNTTS area type
Time of concentration $=\quad 12.97 \mathrm{~min}$
1
Rainfall intensity $=\quad 3.069(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.700$ Subarea runoff $=\quad 2.170$ (CES) for 1.010 (Ac.)
Total runoff $=10.098(\mathrm{CFS})$ Total area $=\quad 4.52$ (Ac.)

P418230 EngrkRepoitsDrainageLHYDROPROPOSEDI8000P100.out

位
8113.000

Upstream point/station elevation $=271.000(\mathrm{Ft}$.)
Pipe length $=65.00($ Ft. $) \quad$ Manning's $\mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=10.098$ (CFS)
Nearest computed pipe diameter $=21.00($ In. $)$
Calculated individual pipe flow $=10.098$ (CFS
Normal flow depth in pipe $=14.37$ (In.)
Flow top width inside pipe $=19.52$ (In.
Critical Depth $=14.19($ In.)
Pipe flow velocity $=\quad 5.76(\mathrm{Ft} / \mathrm{s})$
rime of 0.19 min .
$+4++++++++++++++++++++++++++++++++++++4+++++++++++++++++++++++++++++++$ Process from Point/Station 8117.000 to Point/Station

Along Main Stream number: 2 in normal stream number 1
stream flow area $=$ 4.520(Ac.)
Runoff from this stream $=10.098$ (CFS)
Time of concentration $=13.16 \mathrm{~min}$.
Rainfall intensity $=3.053(\operatorname{In} / \mathrm{Hr})$

Process from Point/Station 8081.000 to Point/Station
8110.000 80
$* * * *$

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.00$
InNDUSTRIAL area type
Initial subarea flow distance $=228.000(F t$.
Highest elevation $=285.000(\mathrm{Ft}$.)
Lowest elevation $=281.000(\mathrm{Ft}$.)
Time of concentration calculated by
culated by the urban
reas overland flow method (App X-C) $=3.38 \mathrm{~min}$.
$T C=\left[1.8^{*}(1.1-C) *\right.$ distance (Et. $\left.){ }^{*} \cdot 5\right) /(8$ slope^ $(1 / 3)]$
$\left.1.754^{\wedge}(1 / 3)\right]=3.38$
Rainfall intensity $(I)=\quad 4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm Effective runoff coefficient used for area ($\mathrm{Q}=\mathrm{KCLA}$) is $\mathrm{C}=0.950$
Subarea runof£ $=3.753$ (CFS)
rotal initial stream area $=\quad 0.900(\mathrm{Ac}$.
++
rocess from Point/Station 8110.000 to Point/Station

Top of street segment elevation $=281.000(\mathrm{Ft}$.
End of street segment elevation $=272.000(\mathrm{Ft}$.
Length of street segment $=850.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0$ (In.)
Width of half street (curb to crown) $=26.000(\mathrm{Ft}$.)
(1stance from crown to crossfall grade break $=10.000(\mathrm{Ft}$.)
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$

P4182.30 EngrReportSDrainagelHYDROPROPOSED18000P100.0

Slope from grade break to crown (v / hz) $=0.020$
on [1] side(s) of the street
Distance from curb to property line $=15.000(\mathrm{Ft}$.)
slope from curb to property line (v/hz) $=0.020$
Gutter width $=1.500(\mathrm{Et}$.
Gutter hike from flowline $=1.500$ (In.)
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.427(\mathrm{Et}$.$) , Average velocity =$
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=16.618$ (Ft.)
Flow velocity $=$
Travel time $=$
$5.61(\mathrm{Ft} / \mathrm{s})$
ravel time $\quad T C=10.42 \mathrm{~min}$.
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Rainfall intensity $=\quad 3.324(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.950$ Subarea runoff $=\quad 5.526(C F S)$ for $1.750(\mathrm{Ac}$.
Total runoff $=\quad 9.279(\mathrm{CES})$ Total area $=2.65(\mathrm{Ac}$.
Street flow at end of street $=$ a
Half street flow at end of street $=\quad 9.279$ (CFS)
Depth of flow $=0.458(\mathrm{Ft}$.$) , Average velocity =2.760(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=18.140$ (Ft.)
$+++++++t++$ **** CONFIUENCE OF MINOR STREAMS ****

```
Stream flow area = 2.650(AC.) - stream number 2
Sunoff fow area =- 2.650(AC.)
Runof from this stream = 9.279(CFS)
Time of concentration = 10.42 min
Rainfall intensity = 3.324(In/Hr
Summary of stream data:
```

stream No.	Flow rate (CFS)	$\begin{aligned} & \mathrm{TC} \\ & (\min) \end{aligned}$	```Rainfall Intensity (In/Hr)```		
1	10.098	13.16	3.053		
2	9.279	10.42	3.324		
Qmax (1)					
	1.000	1.000	10.098)	+	
	0.918	1.000	9.279)	$+=$	18.619
$Q \max (2)=$					
	1.000	0.792	$10.098)$	+	
	1.000	1.000	9.279)		17.276

Total of 2 streams to confluence:
Flow rates before confluence point
Maximum flow rates at confluence using above data
${ }^{18.619} \quad 17.276$
Area of streams before confluence:
Results of confluence:
Total flow rate $=18.619$ (CFS

थ.
Time of concentration $=\quad 13.160 \mathrm{~min}$
Effective stream area after confluence $=7.170(\mathrm{Ac}$.

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
rocess from Point/Station 8113.000 to Point/Station
uptream point/station elevation = 270.000(Ft.)
```



```
pe length = 9.25(Ft.) Manning's N = 0.013
. of pipes = R Required pipe flow =
earest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 18.619(CFS)
Normal flow depth in pipe = 14.20(In.)
low top width inside pipe = 19.65(In.
Pipe flow velocity = 10.76(Ft/s)
Travel time through pipe =
ime of concentration (TC) = 13.17 min
```



```
Process from Point/Station }8113.000\mathrm{ to Point/Station
*** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed:
In Main Stream number: 2
flow area $=7.170(\mathrm{Ac}$. $)$
Runoff from this stream $=18.619$ (CFS)
Time of concentration $=13.17 \mathrm{~min}$.
Rainfall intensity $=3.051(\mathrm{In} / \mathrm{Hr})$
Summary of stream data:

Stream No.	Flow rate (CFS)	$\begin{aligned} & \mathrm{TC} \\ & (\mathrm{~min}) \end{aligned}$	$\begin{gathered} \text { Rainfall Intensity } \\ (\mathrm{In} / \mathrm{Hr}) \end{gathered}$		
1	69.775	23.28		2.4	
2	18.619	13.17		3.0	
$0 \max (1)$					
	1.000 *	1.000	69.775)	$+$	
	0.788 *	1.000	18.619)	$+=$	84.446
	1.000 *	0.566	69.775)		
	1.000	1.000	18.619)		58.100

Total of 2 main streams to confluence:
low rates before confluence point:
$69.775 \quad 18.619$
Maximum flow rates at confluence using above data:
84.446
58.100
Area of streams before confluence:

Results of confluence:
Total flow rate $=$ 84.446(CFS)
mee concentration $=\quad 23.283 \mathrm{~min}$.
ffective stream area after confluence $=45.140(\mathrm{Ac}$.

P:4182.30UngrRepots Drainage HYDROPROPOSED 8000 P100.ou

**** PIPEELOW TRAVEL TIME (Program estimated size) ****

```
Jpstream point/station elevation = 269.800(Ft.)
Downstream point/station elevation = 264.000(Ft.)
No. of pipes =1 Required pipe flow = N N = 84.446(CFS
Nearest computed pipe diameter = 36.00(In.)
Calculated individual pipe flow = 84.446(CFS)
Normal flow depth in pipe = 30.00(In.)
Fow top width inside pipe = 26.83(In.)
Critical Depth = 33.69(In.)
Pipe flow velocity = 13.41(Ft/s)
Travel time through pipe = 0.46 min
Time of concentration (TC) = }\begin{array}{l}{0.46 min.}\\{23.75 min}
```

$++$
Process from Point/Station
${ }^{8}$
8119.000 to Point/Station
rocess from Point/Station

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group D $=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Time of concentration $=23.75 \mathrm{~min}$.
Rainfall intensity $=\quad 2.381(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}, \mathrm{C}=0.450$ 5.357 (CFS) for 5.000 (Ac.)

Total runoff $=\quad 89$ 803(CFS) Total area $=50.14(\mathrm{AC}$.
$+++$

Process from Point/Station 8120.000 to Point/Station 8122.000

SUBAREA ELOW ADDITION ***
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[RURAL (greater than $0.5 \mathrm{Ac}, 0.2$ ha) area type]
Time of concentration $=23.75 \mathrm{~min}$.
Rainfall intensity $=\quad 2.381(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, $Q=$ KCIA, $C=0.450$ Subarea runoff $=120.837$ (CFS) for 28.780 (Ac.)
End of computations, total study area $=\quad 78.92$ (AC.)

P:14182.30 EngrReports Drainagel HYOROPROPOSEDI9000P 100 .out

San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003
\rightarrow Version 6

```
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
```

 Rational Hydrology Study Date: 01/31/19
 PROJECT CANTERA
 PROPOSED CONDITIONS
 9000P100
 \rightarrow
\qquad
\qquad

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0 - 1500 feet
Factor (to multiply * intensity) $=1.000$
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
$\rightarrow++$ Process from Point/Station 9000.000 to Point/Station
$\rightarrow 9001.000$
**** INITIAL AREA EVALUATION ****
\qquad
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
t.)

Highest elevation $=314.200(\mathrm{Ft}$.
towest elevation $=313.000(\mathrm{Ft}$.
Elevation difference $=1.200$ (Ft.)

P:14182.30EngrReports DrainagelHYDROPROPOSEDI 9000 P 100.0 ut

ime of concentration calculated by the urban
areas overland flow method (App X-C) $=8.65 \mathrm{~min}$.
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance $\left.(\mathrm{Ft} .)^{\wedge} .5\right) /(\%$ slope^$(1 / 3)]$
$T C=\left[1.8^{*}(1.1-0.7000) *\left(134.000^{\wedge} .5\right) /\left(0.896^{\wedge}(1 / 3)\right]=8.65\right.$
Rainfall intensity $(I)=3.557(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year
Effective runoff coefficient used for area ($Q=K C I A$) is $C=\quad \rightarrow$
Subarea runoff $=\quad 0.473$ (CFS)
Total initial stream area $=0.190(A C$.
$-1+++$
Process from Point/Station 9001.000 to Point/Station \rightarrow
$\rightarrow 9006.000$
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
\rightarrow
Top of street segment elevation $=313.000(\mathrm{Ft}$.
End of street segment elevation $=309.000(\mathrm{Ft}$.
Length of street segment $=320.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Width of half street (curb to crown) $=20.000(\mathrm{Ft}$.
Distance from crown to crossfall grade break $=18.000$ (Ft.)
Slope from gutter to grade break (v/hz) $=0.063$
lope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000$ (Ft.)
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=2.000(\mathrm{Ft}$.)
Gutter hike from flowline $=2.000$ (In.)
Manning's N in gutter $=0.0170$
Manning's N from gutter to grade break $=0.0170$
Manning's N from grade break to crown $=0.0170$
Estimated mean flow rate at midpoint of street $=$
$\rightarrow 2.403$ (CFS)
Depth of flow $=0.323(F t$.$) , Average velocity =2.208(\mathrm{Ft} / \mathrm{s})$ Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=$ 9.807(Ft.)
Elow velocity $=2.21(\mathrm{Ft} / \mathrm{s})$
Travel time $=2.42 \mathrm{~min} . \quad \mathrm{TC}=11.06 \mathrm{~min}$
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $\mathrm{C}=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
Rainfall intensity $=\quad 3.253(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year
$\rightarrow C=0.700$
Subarea runoff $=\quad 3.530(\mathrm{CFS})$ for $1.550(\mathrm{Ac}$.
Total runoff $=\quad$ 4.003(CFS) Total area $=1.74$ (Ac.
Street flow at end of street $=\quad 4.003$ (CFS)
Half street flow at end of street $=$ 4.003(CFS)
Printed: 1/31/2019 1:16:40 PM PM
Modified: 1/31/2019 8:37:11 AM AM
Page 2 of 39

P:14182:301Engr/ReportsDrainageHYOROYPROPOSED19000P100.out

Depth of flow $=0.370(\mathrm{Ft}$.$) , Average velocity =2.485(\mathrm{Ft} / \mathrm{s})$ Flow width (from curb towards crown) $=12.182$ (Ft.)
$\rightarrow+++t$ $\rightarrow 9008.000$

$$
\text { Process from Point/Station } 9006.000 \text { to Point/Station }
$$

**** PIPEELOW TRAVEL TIME (Erogram estimated size) ****

$\rightarrow++$ Process from Point/Station 9007.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
\qquad

\Rightarrow storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A$, $\rightarrow C=0.700$

Subarea runoff $=$	$3.390(\mathrm{CFS})$ for $1.490(\mathrm{Ac})$.
Total runoff $=$	$7.393(\mathrm{CFS})$ Total area $=$

$1+1++$ Process from Point/Station 9008.000 to Point/Station
$\rightarrow 9016.000$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ***
\rightarrow
pstream point/station elevation $=307.000$ (Et.
Downstream point/station elevation $=291.500(\mathrm{Ft}$.
Pipe length $=590.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$

P:14182.30 EngrReportSDrainagelHYDROPROPOSED 9000 P100.0u

No. of pipes $=1$ Required pipe flow $=7.393$ (CFS)
Nearest computed pipe diameter $=15.00$ (In.)
Calculated individual pipe flow $=7.393(\mathrm{CFS})$
Normal flow depth in pipe $=9.30$ (In.)
Low top width inside pipe $=14.56$ (In.)
Critical Depth $=13.00($ In. $)$
Pipe flow velocity $=9.25(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=1.06 \mathrm{~min}$
Time of concentration $(T C)=12.15 \mathrm{~min}$.

Process from Point/Station 9014.000 to Point/Station
$\rightarrow 9016.000$
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[MULTI - UNITS area type
Time of concentration $=$
Rainfall intensity $=$

Subarea runoff $=\quad 3.851$ (CFS) for $\quad 1.750(\mathrm{AC}$.
Total runoff $=11.244(\mathrm{CFS})$ Total area $=\quad$ 4.98(AC.)

9016.000 Process from Point/Station $\quad 9015.000$ to Point/Station $\quad \rightarrow$
**** SUBAREA FLOW ADDITION ****
\rightarrow
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$ Decimal fraction soil group $D=1.000$ [MULTI - UNITS area type 12.15 in Time of concentration $=\quad 12.15 \mathrm{~min}$. Rainfall intensity $=\quad$ 3.144(In/Hr) for a $\quad 100.0$ year

Runoff coefficient used for sub-area, Rational method, $Q=K C I A$, $\rightarrow C=0.700$
Subarea runoff $=\quad 4.951$ (CFS) for $\quad 2.250($ Ac. $)$
Total runoff $=\quad 16.195(C F S)$ Total area $=$$\quad$ 7.23(AC.)
$\rightarrow++$
Process from Point/Station
9016.000 to Point/Station

P:14182.30 EngrIReportsDPrainageHYOROPROPOSEDI9000P100.0u

$\rightarrow 9021.000$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\rightarrow

$\rightarrow+++++++t+t++$
$\rightarrow 9021.000$

Process from Point/Station
9016.000 to Point/Station
$\rightarrow 9021.000$
**** CONFLUENCE OF MINOR STREAMS ****
\rightarrow
Along Main Stream number: 1 in normal stream number 1 Stream flow area $=\quad 7.230(\mathrm{Ac}$.)
Runoff from this stream $=16.195$ (CFS)
Time of concentration $=12.62 \mathrm{~min}$.
Rainfall intensity $=3.100(\mathrm{In} / \mathrm{Hr})$
$\rightarrow+++$ $\rightarrow 9018.000$

Process from Point/Station
9017.000 to Point/Station
**** INITIAL AREA EVALUATION ****
\rightarrow
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Initial subarea flow distance $=59.000(\mathrm{Ft}$.
Highest elevation $=296.000(\mathrm{Ft}$.
Lowest elevation $=295.200$ (Ft.)
Elevation difference $=0.800(\mathrm{Ft}$.
Time of concentration calculated by the urban
areas overland flow method $(\mathrm{App} X-C)=1.87 \mathrm{~min}$
$\mathrm{TC}=\left[1.8^{*}(1.1-C) *\right.$ distance (Ft.)^.5)/(\% slope^(1/3)]
$\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.$ distance ($\left.59.000^{\wedge} .5\right) /\left(\begin{array}{c}\text {. } \\ \mathrm{TC}\end{array} 1.356^{\wedge}(1 / 3)\right]=1.87$
$\mathrm{TC}=\left[1.8^{*}(1.1-0.9500)^{*}\left(59.000^{\wedge} .5\right) /(1\right.$.
Setting time of concentration to 5 minutes
Rainfall intensity $(I)=$
$4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year
\rightarrow storm
Effective runoff coefficient used for area ($Q=$ KCIA) is $C=$
$\rightarrow 0.950$
Subarea runoff $=$
0.292 (CES

Total initial stream area =
0.070 (Ac.)

- 9019.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
\qquad ——op of street segment elevation $=295.200(\mathrm{Ft}$.
End of street segment elevation $=289.000(\mathrm{Ft}$.
End of street segment elevation $=289.000$
Length of street segment $=343.000$ (Ft.)
Length of street segment $=343.000($ Ft.)
Height of curb above gutter flowline $=6.0($ In $)$
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
$=26.000(\mathrm{Ft}$.
Width of half street (curb crossfall grade break $=10$
Distance from crown to grade break $(\mathrm{v} / \mathrm{hz})=0.020$ 10.000(Ft.
Slope from gutter to grade break $(v / \mathrm{hz})=0.020$
Slope from grade break to crown (v/hz)
Distance from curb to property line $=15.000(\mathrm{Ft}$.
Slope from curb to property-line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500(\mathrm{Ft}$.)
Gutter hike from flowline $=1.500($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Manning's N from grade break to crown $=$ treet $=$
$\rightarrow 0.344$ (CFS)
Depth of flow $=0.168(\mathrm{Ft}$.$) , Average velocity =1.692(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width $=3.638$ (Ft.)
Flow velocity $=1.69(\mathrm{Ft} / \mathrm{s})$
Travel time $=3.38 \mathrm{~min} . \quad T C=8.38 \mathrm{~min}$.
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $C=0.000$
[INDUSTRIAL area type
[INDUSTRIAL area type
Rainfall intensity $=$$\quad 3.598(\mathrm{In} / \mathrm{Hr})$ for a $\quad 100.0$ year \rightarrow

\rightarrow storm

Runoff coefficient used for sub-area, Rational method, $Q=K C I A, ~ \rightarrow$ $\rightarrow C=0.950$

Subarea runoff $=\quad 1.231(C E S)$ for $0.360(A C$.
Total runoff $=\quad 1.522(\mathrm{CFS})$ Total area $=\quad 0.43(\mathrm{Ac}$.
$\begin{array}{ll}\text { Street flow at end of street }= & 1.522(C F S) \\ \text { Sotal area } & 1.522(C F S)\end{array}$
Half street flow at end of street $=1.522$ (CFS)
Depth of flow $=0.252(\mathrm{Ft}$.$) , Average velocity =2.216(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=7.846$ (Et.)
$\rightarrow+t++++++++++++++++++++++++++++++++t++++++++++++++++++++++++++++++++++$
Process from Point/Station
9055.000 to Point/Station

P:4482.30 EngrRepontsDrainageHYDROPROPOSED19000P100:out

$\rightarrow 9019.000$
**** SUBAREA FLOW ADDITION ****
\rightarrow

Decimal fraction soil group $A=0.000$

Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type]
Time of concentration $=8.38 \mathrm{~min}$.
Rainfall intensity $=\quad 3.598(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year
\rightarrow storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}$, $\Delta C=0.950$
Subarea runoff $=$
1.196 (CFS) for
0.350 (AC.
Total runoff $=$
2.719(CES) Total area $=$
0.78 (AC.)

$$
\begin{gathered}
\rightarrow++ \\
\text { Process from Point/Station } 9019.000 \text { to Point/Station } \\
\rightarrow 9021.000 \quad * * * * \text { PIPEELOW TRAVEL TIME (Program estimated size) **** }
\end{gathered}
$$

\rightarrow

$$
\begin{aligned}
& \text { Upstream point/station elevation }=288.900(\mathrm{Ft} .) \\
& \text { Downstream point/station elevation }=288.700 \text { (Ft.) } \\
& \text { Pipe length }=22.00 \text { (Ft.) Manning's } \mathrm{N}=0.013 \\
& \begin{array}{ll}
\text { No. of pipes }=1 & \text { Required pipe flow }= \\
\text { Nearest computed pipe diameter }= & 2.719 \text { (CFS) }
\end{array} \\
& \text { Nearest computed pipe diameter }=12.00 \text { (In.) } \\
& \text { Calculated individual pipe flow }=12 \text { (In.) } 2.719 \text { (CFS) } \\
& \text { Normal flow depth in pipe }=8.12(\text { In. }) \\
& \text { Flow top width inside pipe }=11.23 \text { (In.) } \\
& \text { Critical Depth }=8.48(\text { In. }) \\
& \text { Pipe flow velocity }=4.81(\mathrm{Ft} / \mathrm{s}) \\
& \text { Travel time through pipe }=0.08 \mathrm{~min} \text {. } \\
& \text { Time of concentration }(T C)=8.46 \mathrm{~min} \text {. }
\end{aligned}
$$

$$
\text { **** SUBAREA FLOW ADDITION } * * * *
$$

\rightarrow storm
Runoff coefficient used for sub-area, Rational method, $\mathrm{Q}=\mathrm{KCIA}$, $\rightarrow C=0.950$

Printed: 1/31/2019 1:16:40 PM PM

Modified: 1/31/2019 8:37:11 AM AM
Page 7 of 39

P:4418230EEggIReportsDrainageHYYDROPROPOSED19000P 100 out
Subarea runoff $=1.192$ (CFS) for 0.350 (Ac.)
3.911(CFS) Total area $=$
1.13 (AC.)
$\rightarrow++\quad \rightarrow$ Process from Point/Station 9020.000 to Point/Station
$\rightarrow 9021.000$
**** CONFLUENCE OF MINOR STREAMS ****
\rightarrow

Total of 2 streams to confluence:
Flow rates before confluence point:

$$
16.195 \quad 3.911
$$

Maximum flow rates at confluence using above data:

$$
19.576
$$

$$
14.759
$$

Area of streams before confluence:

$$
7.230
$$

1.130

Results of confluence
Total flow rate $=\quad 19.576(\mathrm{CFS})$
Time of concentration $=12.623 \mathrm{~min}$.
Effective stream area after confluence $=8.360(\mathrm{AC}$.
$\rightarrow++$
\quad Process from Point/Station $\quad 9021.000$ to Point/Station
$\rightarrow 9054.000 \quad * * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) $* * * *$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation $=288.600(F t$.
Downstream point/station elevation $=288.500$ (Ft.)
Pipe length $=81.00(F t$.$) \quad Manning's N=0.013$
No. of pipes $=1$ Required pipe flow $=19.576$ (CFS)
Nearest computed pipe diameter $=33.00$ (In.)

P:14182.30 EngirReportsDrainageHYOROPROPOSEDI9000P100.0ut

Calculated individual pipe flow $=$ 19.576(CFS)
Normal flow depth in pipe $=28.97$ (In.)
low top width inside pipe $=21.61(\mathrm{In}$.)
Critical Depth $=17.51$ (In.)
Pipe flow velocity $=3.54(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.38 \mathrm{~min}$.
Time of concentration $(T C)=13.00 \mathrm{~min}$.

$\rightarrow++$ Process from Point/Station 9054.000 to Point/Station
$\rightarrow 9056.000$
**** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
In Main Stream number: 1

P:14182:301Engr/ReportsDrainageHYOROPROPOSED19000P100.out

Stream flow area $=15.920$ (Ac.)
Runoff from this stream $=31.166(\mathrm{CFS})$
Time of concentration $=13.04 \mathrm{~min}$.
Rainfall intensity $=3.063(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2
\rightarrow
$++$
Process from Point/Station 9042.000 to Point/Station
**** INITTAL AREA EVALUATION ****
\checkmark Decimal fraction soil group $A=0.000$ Decimal fraction soil group $B=0.000$ Decimal fraction soil group $C=0.000$ Decimal fraction soil group $D=1.000$ IINDUSTRIAL area type
Initial subarea flow distance $=$
Highest elevation $=291.000(\mathrm{Ft}$.
Lowest elevation $=290.800(F t$.
Elevation difference $=0.200(F t$.
Time of concentration calculated by the urban
areas overland flow method (App X-C) $=1.74 \mathrm{~min}$
$\mathrm{TC}=\left[1.8^{*}(1.1-C)^{*}\right.$ distance $\left.(F t .)^{\wedge} .5\right) /(8$ slope^(1/3)] $T C=\left[1.8^{*}(1.1-0.9500) *\left(31.000^{\circ} .5\right) /\left(0.645^{\wedge}(1 / 3)\right]=1.74\right.$ Setting time of concentration to 5 minutes Rainfall intensity $(I)=4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year \Rightarrow Effective runoff coefficient used for area ($Q=\mathrm{KCIA}$) is $C=\quad \rightarrow$
Subarea runoff
0.167 (CFS)
rotal initial stream area $=\quad 0.040(A C$.
$\rightarrow++t$
Process from Point/Station 9044.000 to Point/Station
$\rightarrow 9049.000$ 0
**** STREET FLOW TRAVEL TIME + SUBAREA ELOW ADDITION ****

Top of street segment elevation $=290.800$ (Ft.)
End of street segment elevation $=290.500(\mathrm{Ft}$.
Length of street segment $=120.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0(\mathrm{In}$.
Height of curb above gutter flowline $=26.00$ (Ft.)
Width of half street (curb to crown $=10.000$ (Ft.)
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
slope from grade break to crown $(\mathrm{v} / \mathrm{hz})=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=15.000$ (Ft.)
Slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=1.500(\mathrm{Ft}$.
Gutter hike from flowline $=1.500$ (In.)
Printed: 1/31/2019 1:16:40 PM PM
Page 10 of 39

P:4482.30 EngrReportsDrainagelHYOROPROPOSEDI9000P100.out

Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0180$
Manning's N from grade break to crown $=0.0180$
Estimated mean flow rate at midpoint of street $=$
Depth of flow $=0.185(\mathrm{Ft}$.$) , Average velocity =0.658(\mathrm{Et} / \mathrm{s})$ Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=4.487(\mathrm{Ft}$.
Flow velocity $=0.66(\mathrm{Ft} / \mathrm{s})$
Travel time $=3.04 \mathrm{~min} . \quad \mathrm{TC}=8.04 \mathrm{~min}$
Adding area flow to street
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
Rainfall intensity $=\quad 3.653(\mathrm{In} / \mathrm{Hr})$ for a $\quad 100.0$ year
\rightarrow storm
Runoff coefficient used for sub-area, Rational method, $Q=K C I A$, $\rightarrow C=0.950$

Subarea runoff $=\quad 0.521$ (CFS) for $\quad 0.150(A C$.
Total runoff $=0.687(\mathrm{CFS})$ Total area $=0.19(\mathrm{Ac}$.
street flow at end of street $=0.687$ (CFS)
Street flow at end of street $=$
Half street flow at end of street $=\quad 0.687$ (CFS)
$0.687(\mathrm{CFS})$
Depth of flow $=0.266(\mathrm{Ft}$.$) , Average velocity =0.860(\mathrm{Ft} / \mathrm{s})$ Flow width (from curb towards crown) $=8.530$ (Ft.)

Process from Point/Station
 9049.000 to Point/Station

$\rightarrow 9052.000$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation $=290.300(\mathrm{Ft}$.
Downstream point/station elevation $=290.000(\mathrm{Ft}$.
Pipe length $=51.25(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=0.687$ (CFS) Nearest computed pipe diameter $=9.00($ In.) Calculated individual pipe flow $=0.687$ (CFS)
Normal flow depth in pipe $=4.73(\mathrm{In}$.
Flow top width inside pipe $=8.99($ In. $)$
Critical Depth $=4.52$ (In.)
Pipe flow velocity $=\quad 2.92(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.29 \mathrm{~min}$.
Time of concentration $(T C)=8.33 \mathrm{~min}$.
$\rightarrow+++$ $\rightarrow 9052.000$ Process from Point/Station 9051.000 to Point/Station
**** SUBAREA FLOW ADDITION ****

\rightarrow

P:4482.30EngrReportSDrainagelHYDROPROPOSED 9000 P100.out

Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=1.000$
[INDUSTRIAL area type
8.33 min.

Rainfall intensity $=\quad 3.605(\mathrm{In} / \mathrm{Hr})$ for a $\quad 100.0$ year
\rightarrow storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, $\quad-$ $\rightarrow C=0.950$
Subarea runoff
0.548 (CFS) for
0.160 (AC.)
Total runoff $=1.235(\mathrm{CFS})$ Total area $=10.35($ Ac. $)$
Process from Point/Station $\quad 9052.000$ to Point/Station
$\rightarrow 9053.000$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\rightarrow Upstream point/station elevation $=290.000(\mathrm{Ft}$. Downstream point/station elevation $=289.600(\mathrm{Ft}$.)
Pipe length $=178.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=1.235$ (CFS)
Nearest computed pipe diameter $=12.00($ In. $)$
Nearest computed pipe diameter $=12.00$ (In.)
Calculated individual pipe flow $=$
Normal flow depth in pipe $=7.62($ In. $)$
Normal flow depth in pipe $=1.62($ In. $)$
Flow top width inside pipe $=$
Critical Depth $=\quad 5.63$ (In.)
Critical Depth $=$
Pipe flow velocity $=\quad 5.63($ In. $)$
$2.35(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 1.26 \mathrm{~min}$.
Time of concentration (TC) $=9.60 \mathrm{~min}$.
$\rightarrow+++$ Process from Point/Station 9053.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation = 289.500(Ft.)
Downstream point/station elevation = 288.200(Ft.)
Pipe length = 240.80(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 1.235(CFS)
Nearest computed pipe diameter = 12.00(In.)
Nearest computed pipe diameter = = 1.235(CFS)
Normal flow depth in pipe = 5.80(In.)
Flow top width inside pipe = 11.99(In.)
Critical Depth = 5.63(In.)
Pipe flow velocity = 3.28(Ft/s)
Travel time through pipe = 1.22 min}\mathrm{ .
Time of concentration (TC) = 10.82 min
```


P:4182.30EngrIReportS Drainage HYOROPROPOSED19000P100.out

$+++t$ $\rightarrow 9056.000$

Process from Point/Station 9053.000 to Point/Station
$\rightarrow 9$
\rightarrow \rightarrow **** CONFLUENCE OF MAIN STREAMS ****

Total of 2 main streams to confluence:
Flow rates before confluence point.

$$
31.166 \quad 1.235
$$

Maximum flow rates at confluence using above data:

$$
32.319 \quad 27.089
$$

Area of streams before confluence:
$15.920 \quad 0.350$

Results of confluence
Total flow rate $=32.319$ (CFS)
Time of concentration $=\quad 13.040 \mathrm{~min}$
Effective stream area after confluence $=16.270(\mathrm{Ac}$.
$++$ Process from Point/Station
9056.000 to Point/Station
$\Rightarrow 9064.000$
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\rightarrow
\qquad
Upstream point/station elevation $=288.200(\mathrm{Ft}$.
Downstream point/station elevation $=273.800(\mathrm{Ft}$.
Pipe length $=402.44(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=32.319$ (CFS)
Nearest computed pipe diameter $=24.00$ (In.)
Nearest computed pipe diameter $=34.00(1 n$.
Calculated individual pipe flow

$\rightarrow++\rightarrow$
$\rightarrow 9064.000$
**** CONFLUENCE OF MINOR STREAMS ****
-
Along Main Stream number: 1 in normal stream number 1
Stream flow area $=16.270$ (Ac.)
Runoff from this stream $=32.319$ (CFS)
Time of concentration $=13.49 \mathrm{~min}$.
Rainfall intensity $=3.025(\mathrm{In} / \mathrm{Hr})$
Normal flow depth in pipe $=15.59$ (In.)
Flow top width inside pipe $=22.90($ In. $)$
Critical Depth $=22.71$ (In.)
Pipe flow velocity $=14.97(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.45 \mathrm{~min}$.
Time of concentration $(T C)=13.49 \mathrm{~min}$.
$\rightarrow++$
Process from Point/Station 9057.000 to Point/Station
$\rightarrow 9058.000$
**** INITIAL AREA EVALUATION ****
\rightarrow

[^1]
P. C - $4182: 30$ EngrReportSDrainagelHYDROPROPOSED 9000 P100.out

\rightarrow


```
    Covered channel
    Upstream point elevation = 285.800(Ft.)
    Downstream point elevation = 278.000(Ft.)
    Channel length thru subarea = 510.000(Ft.)
    Channel base width = = 0.090(Ft.)
    Slope or 'Z' of left channel bank = 0.000
    Slope or 'Z' of right channel bank = 0.000
    Estimated mean flow rate at midpoint of channel =
```

\&8.413(CFS)

```
&8.413(CFS)
    Manning's 'N' = 0.005
    Manning's 'N' = 0.005
    Maximum depth of channel = 0.100(Ft.)
    Maximum depth of channel = 0.100(Ft.)
    Flow(q) thru subarea = 8.413(CFS)
    Flow(q) thru subarea = 8.413(CFS)
    Pressure flow condition in covered channel:
    Pressure flow condition in covered channel:
    Wetted perimeter = 0.38(Ft.) Flow area = 0.01(Sq.Ft)
    Wetted perimeter = 0.38(Ft.) Flow area = 0.01(Sq.Ft)
    Hydraulic grade line required at box inlet = 1225279.370(Ft.)
    Hydraulic grade line required at box inlet = 1225279.370(Ft.)
    Friction loss = 1204981.053(Ft.)
    Friction loss = 1204981.053(Ft.)
    Minor Friction loss = 20306.117(Ft.) K-Factor = 1.500
    Minor Friction loss = 20306.117(Ft.) K-Factor = 1.500
    Flow Velocity = 933.71(Ft/s)
    Flow Velocity = 933.71(Ft/s)
    Travel time = 0.01 min.
    Travel time = 0.01 min.
    Time of concentration = 5.01 min
    Time of concentration = 5.01 min
    Adding area flow to channel
    Adding area flow to channel
    Decimal fraction soil group A = 0.000
    Decimal fraction soil group A = 0.000
    Decimal fraction soil group B = 0.000
    Decimal fraction soil group C = 0.000
    Decimal fraction soil group C = 0.000
    Decimal fraction soil group D = 1.000
    Decimal fraction soil group D = 1.000
    l_(INMERCIAL area type 
    l_(INMERCIAL area type 
    [COMMERCIAL area type 
    [COMMERCIAL area type 
    ] 100.0 year
```

] 100.0 year
    ```
t.)
```

 B = 0.000
    ```
```

 B = 0.000
    ```
\(\Rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
\(\rightarrow C=0.850\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & Total runoff \(=16.478(\mathrm{CES})\) Total & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9060.000 to Point/Station
\(\rightarrow 9062.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Tpstream point/station elevation = 277.800(Ft.)
Downstream point/station elevation = 273.500(Ft.
Pipe length = 26.25(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 16.478(CES)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow = 16.478(CFS)
Normal flow depth in pipe = 8.64(In.)
Flow top width inside pipe = 14.83(In.)
Critical depth could not be calculated.
eipe flow velocity = 22.52(Ft/s)
Travel time through pipe = 0.02 min
Time of concentration (TC) = 5.03 min.

```
\(\qquad\)
    Total runoff \(=\quad 16.478(\mathrm{CFS})\) Total area \(=\quad 4.42(\mathrm{Ac}\).
    Process from Point/Station
        9060.000 to Point/Station
\(\rightarrow 9062.000\) **** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Decimal fraction soil group \(A=0.000\)
        Decimal fraction soil group \(B=0.000\)
        Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
        Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
        \begin{tabular}{l} 
Decimal \\
[INDUSTRIAL area type \\
Time of concentration \(=\) \\
\hline
\end{tabular}
        \(\begin{array}{ll}\text { Time of concentration }= & 5.03 \mathrm{~min} . \\ \text { Rainfall intensity }= & 4.379(\mathrm{In} / \mathrm{Hr})\end{array}\)
        Rainfall intensity \(=\quad 4.379(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year
            Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
50
\(\rightarrow C=0.950\)
        Subarea runoff \(=1.456(\mathrm{CFS})\) for \(0.350(\mathrm{Ac}\).
        Total runoff \(=\quad 17.934(\mathrm{CFS})\) Total area \(=(\mathrm{AC}\). . \(4.77(\mathrm{Ac})\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
        Process from Point/Station 9062.000 to Point/Station
            **** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\(\rightarrow 9064.000\)
\(\rightarrow \rightarrow\)
Upstream point/station elevation \(=273.500(\) Ft. \()\)
Upstream point/station elevation \(=273.500(\mathrm{Ft}\).
Downstream point/station elevation \(=273.200(\mathrm{Ft}\).
Pipe length \(=26.25\) (Ft.) Manning's \(N=0.013\)
\(\begin{array}{ll}\text { Pipe length }= & 26.25 \text { (Ft.) Manning's } N=0.013 \\ \text { No. of pipes }=1 \quad \text { Required pipe flow }=17.934 \text { (CFS) }\end{array}\)
No. of pipes \(=1\) Required pipe flow \(=017.93\)
Nearest computed pipe diameter \(=\quad 24.00\) (In.)
Calculated individual pipe flow \(=17.934\) (CFS)
Calculated individual pipe flow \(=17\)
Normal flow depth in pipe \(=15.39(\mathrm{In}\).
Flow top width inside pipe \(=23.02(\) In.
Critical Depth \(=18.32(\operatorname{In}\).
Pipe flow velocity \(=8.43(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.05 \mathrm{~min}\).
Time of concentration \((\mathrm{TC})=\quad 5.08 \mathrm{~min}\).
\(1.456(\mathrm{CFS})\) for \(0.350(\mathrm{Ac}\).
\(17.934(\mathrm{CFS})\) Total area \(=\)

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=5.08 \mathrm{~min}\).

\section*{P:14182.30EEngIReporsIDrainagelHYDROPROPOSED19000P100.out}

\section*{Rainfall intensity \(=\) \\ \(4.361(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year}
\(\rightarrow\) storm Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\), \(\rightarrow C=0.950\)
Subarea runoff \(=\)
2.237 (CFS) for
0.540 (AC.)
Total runoff \(=20.171\) (CFS) Total area \(=\)
5.31 (AC.)
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) \(\rightarrow 9064.000\)

Process from Point/Station
9063.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
\(\rightarrow\)

\section*{\(\rightarrow\) Along Main Stream number: 1 in normal stream number 2}


Total of 2 streams to confluence
Flow rates before confluence point \(32.319 \quad 20.171\)
Maximum flow rates at confluence using above data \(46.310 \quad 32.344\)
Area of streams before confluence: 16.2705 .310

Results of confluence:
Total flow rate \(=46.310(C E S)\)
Time of concentration \(=13.488 \mathrm{~min}\)
Effective stream area after confluence \(=21.580(\) Ac. \()\)
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 9064.000 to Point/Station
\(\rightarrow 9066.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\(\rightarrow\)
Upstream point/station elevation \(=273.200(F t\).

\section*{P:4182.30EngrReppotsDrainagelHYDROPROPOSED 19000 P 100 .out}

Downstream point/station elevation \(=272.700(\mathrm{Ft}\).)
Pipe length \(=41.15\) (Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=0.06 .310\) (CFS)
Nearest computed pipe diameter \(=30.00\) (In.)
Calculated individual pipe flow \(=46.310\) (CFS
Normal flow depth in pipe \(=25.31\) (In.)
Flow top width inside pipe \(=21.79(\operatorname{In}\).
Critical Depth \(=26.98\) (In.)
Pipe flow velocity \(=10.48(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=\quad 0.07 \mathrm{~min}\).
Time of concentration \((T C)=13.55 \mathrm{~min}\).
**** PIPEFLOW TRAVEL TIME (Program estimated size) ***
\(\rightarrow\)
Upstream point/station elevation \(=272.700(\mathrm{Ft}\).
Downstream point/station elevation \(=268.000(\mathrm{Ft}\).)
Pipe length \(=482.00(\mathrm{Ft}\) ) Manning's \(\mathrm{N}=0.013\)
Ho \(=1\) Required pipe flow \(=46.310\) (CES)
N. \(=33.00(\) In. \()\)

Nearest computed pipe diameter \(=46.310(\mathrm{CFS})\)
Calculated individual pipe flow \(=\quad 46.319(\mathrm{In}\).
Normal flow depth in pipe \(=24.19\)
Normal flow depth in pipe \(=24.19\) (In.)
Flow top width inside pipe \(=29.20(\) In. \()\)
Flow top width inside pipe \(=\)
Critical Depth \(=27.02\) (In.)
Critical Depth \(=27.02(\) In. \()\)
Pipe flow velocity \(=\quad 9.93(\mathrm{Ft} / \mathrm{s})\)
\(\begin{array}{ll}\text { Pipe flow velocity }= \\ \text { Travel time through pipe }= & 9.93(\mathrm{Ft} / \mathrm{s}) \\ 0.81 \mathrm{~min}\end{array}\)
Travel time through pipe \(=0.81 \mathrm{~min}\).
Time of concentration \((T C)=14.36 \mathrm{~min}\).
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9066.000 to Point/Station
\(\rightarrow 9069.000\)
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 21.580\) (Ac.)
Runoff from this stream \(=\quad 46.310(\mathrm{CFS})\)
Time of concentration \(=14.36 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.954(\mathrm{In} / \mathrm{Hr})\)
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+4+++++\) process from Point/Station 9059.000 to Point/Station
\(\qquad\)

Decimal fraction soil group \(A=0.000\)
\(\qquad\)

\section*{P:1482:30 EngrReportsDranageHYDROPPROPOSED19000P 100.out}

Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[COMMERCIAL area type
]
(nitial subarea flow distance \(=60.500(\mathrm{Ft}\).
Highest elevation \(=290.000(\mathrm{Ft}\).
Lowest elevation \(=286.000(\mathrm{Ft}\).
Elevation difference \(=4.000(\mathrm{Ft}\).
fime of concentration calculated by the urban
reas overland flow method (App X-C) \(=\)
\(T C=\left[1.8^{*}(1.1-C) *\right.\) distance \(\left.(F t .)^{\wedge} .5\right) /\left(8 \mathrm{slope} \mathrm{A}^{\wedge}(1 / 3)\right]\).
\(T C=\left[1.8^{*}(1.1-0.8500) *\left(60.500^{\wedge} .5\right) /\left(6.612^{\wedge}(1 / 3)\right]\right.\)
Setting time of concentration to 5 minutes
Rainfall intensity \((I)=4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year
\(\rightarrow\) storm
Effective runoff coefficient used for area ( \(\mathrm{Q}=\mathrm{KCIA}\) ) is \(\mathrm{C}=\)
Subarea runoff =
0.410 (CFS)
Total initial stream area
0.110 (Ac.) Process from Point/Station 9061.000 to Point/Station
\(\rightarrow 9065.000\)
**** IMPROVED CHANNEL TRAVEL TIME ****
\(\rightarrow\)
Jpstream point elevation \(=286.000(\mathrm{Et}\).
Downstream point elevation \(=274.000(\mathrm{Ft}\).
Channel length thru subarea \(=467.000(\mathrm{Ft}\).)
Channel base width \(=5.000(\mathrm{Ft}\).)
clope or ' \(\mathrm{Z}^{\prime}\) of left channel bank \(=1.000\)
Slope or \(Z\), of left channel bank \(=1.000\)
Estimated mean flow rate at midpoint of channel \(=\)
\(\rightarrow 7.946\) (CFS)
Manning's \({ }^{\prime} \mathrm{N}^{\prime}=0.020=1.000(\mathrm{Ft}\).
Maximum depth of channel \(=1.000(\mathrm{Ft}\)
Flow(q) thru subarea \(=\)
\(7.946(\mathrm{CFS})\)
Depth of flow \(=0.300(\mathrm{Ft}\).\() , Average velocity =4.998(\mathrm{Ft} / \mathrm{s})\) Channel flow top width \(=5.600(\mathrm{Ft}\).
Flow Velocity \(=5.00(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=1.56 \mathrm{~min}\).
Time of concentration \(=\quad 6.56 \mathrm{~min}\).
Critical depth \(=0.414\) (Et.)
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Decimal fraction soil group \(D=1.000\) ]
[COMMERCIAL area type
Rainfall intensity \(=\)
\(3.943(\mathrm{In} / \mathrm{Hr})\) for a
100.0 year
storm
Runoff coefficient used for sub-area, Rational method, \(Q=\) KCIA,
\(\rightarrow C=0.850\)
Subarea runoff \(=13.540(C F S)\) for \(4.040(\) Ac. \()\)

\section*{P:14182.30IEngrReportSDrainage HYDROPROPOSEDI9000P100.out}

Total runoff \(=13.951\) (CFS) Total area \(=\)
4.15 (AC.)

Downstream point/station elevation \(=268.000(\mathrm{Ft}\).
Pipe length \(=60.00\) (Ft.) Manning's \(N=0.013\)
No. of pipes \(=1 \quad \begin{aligned} & \text { Required pipe flow }=13.951 \text { (CFS) }\end{aligned}\)
Nearest computed pipe diameter \(=15.00\) (In.)
Calculated individual pipe flow \(=13.951\) (CFS)
Normal flow depth in pipe \(=9.20\) (In.)
Flow top width inside pipe \(=14.61(\mathrm{In}\).
Critical depth could not be calculated.
Pipe flow velocity \(=17.68(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.06 \mathrm{~min}\).
Time of concentration (TC) \(=6.61 \mathrm{~min}\)
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9065.000 to Point/Station
\(\rightarrow 9067.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation \(=273.800(\mathrm{Ft}\).
**** SUBAREA FLOW ADDITION ****

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
(INDUSTRIAL area type
6.61 min .

Rainfall intensity \(=\quad 3.930(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
\(\rightarrow\) storm Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, ~ D\) \(\rightarrow C=0.950\)
\(\begin{array}{ll}\text { Subarea runoff }= & 1.083(\text { CFS }) \text { for } 0.290(\mathrm{AC.}) \\ \text { Total runoff }= & 4.033(\mathrm{CFS}) \text { Total area }=\end{array}\)
\(\rightarrow+++++++4+4+++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9067.000 to Point/Station

Jpstream point/station elevation \(=268.000(F t\).
Downstream point/station elevation \(=267.800\) (Ft.)
Pipe length \(=6.25(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=15.033\) (CES)
Printed: 1/31/2019 1:16:40 PM PM
Modified: 1/31/2019 8:37:11 AM AM
Page 20 of 39

\section*{P:14182.30EngrRepors DiainagelHYDROPROPOSED19000P100.out}

Nearest computed pipe diameter \(=18.00(1 n\).
Calculated individual pipe flow \(=15.033\) (CFS
Normal flow depth in pipe \(=12.19\) (In.)
Flow top width inside pipe \(=16.83\) (In.)
Critical Depth \(=16.87(\) In. \()\)
Pipe flow velocity \(=11.82(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.01 \mathrm{~min}\).
Time of concentration \((T C)=6.62 \mathrm{~min}\)

\(\rightarrow 9069.000\)

\section*{Process from Point/Station \\ 9067.000 to Point/Station}
**** CONFLUENCE OF MINOR STREAMS ****
\(\rightarrow\)


Total of 2 streams to confluence:
Flow rates before confluence point:
\[
46.310 \quad 15.033
\]

Maximum flow rates at confluence using above data:
\[
57.614 \quad 36.387
\]

Area of streams before confluence: \(21.580 \quad 4.440\)
Results of confluence:
Total flow rate \(=57.614\) (CFS
Time of concentration \(=14.363 \mathrm{~min}\)
Effective stream area after confluence \(=26.020(\mathrm{Ac}\).
\begin{tabular}{|c|c|c|}
\hline & Process from Point/Station & 9069.000 to Point/Station \\
\hline \(\rightarrow 9068.000\) & & \\
\hline
\end{tabular}
\(\rightarrow 9068.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

\section*{P:14182.300 EngrRepots DrainagelHYDROPROPOSEDI9000P100.out}
\(\rightarrow\)
```

Upstream point/station elevation = 267.800(Ft.)
Downstream point/station elevation = 267.600(Ft.)
ipe length = 26.25(Ft.) Manning's N = 0.013
o. of pipes = 1 Required pipe flow = 57.614(CFS)
Nearest computed pipe diameter = 36.00(In.)
Calculated individual pipe flow = 57.614(CFS)
Normal flow depth in pipe = 29.16(In.)
low top width inside pipe =
ritical Depth = 29 50(Tn
_ritical Depth = 29.50(In.)
ipe flow velocity 9.39(Et/s)
Travel time through pipe = 0.05 min
Time of concentration (TC) = 14.41 min.

```
\(\rightarrow++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++\)
    Process from Point/Station 9064.000 to Point/Station
\(\rightarrow 9068.000\)
**** SUBAREA FLOW ADDITION ****
\(\rightarrow \quad-\quad-\quad\)
\(\rightarrow\) Decimal fraction soil group \(A=0.000\)
    Decimal fraction soil group \(B=0.000\)
    Decimal fraction soil group \(C=0.000\)
    ecimal fraction soil group \(D=1.000\)
    INDUSTRIAL area type
    \(\begin{aligned} & \text { [INDUSTRIAL area type } \\ & \text { Time of concentration }\end{aligned}=14.41 \mathrm{~min}\).
    Rainfall intensity \(=\quad 2.950(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year

Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
Subarea runoff \(=\)
Total runoff \(=\)\(\quad\)\begin{tabular}{c}
\(0.813(C F S)\) for \(\quad 0.290(A C)\). \\
\(28.427(C F S)\) \\
Total area \(=\)
\end{tabular}
\(-t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) **** \(\rightarrow\)
```

Upstream point/station elevation = 267.500(Ft.)
Downstream point/station elevation = 248.000(Ft.)
Pipe length = 75.00(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 58.427(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 58.427(CFS)
Normal flow depth in pipe = 13.24(In.)
Flow top width inside pipe = 20.27(In.
Critical depth could not be calculated
Pipe flow velocity = 36.60(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 14.44 min.

```

Page 21 of 39

\section*{P:14182.30 EngrIRepors DrainageHYOROPROPOSED19000P100.out}


\section*{P:14182.30 EngrReportsDrainageHYOROPROPOSED19000P100.out}

Height of curb above gutter flowline \(=6.0\) (In.)
Width of half street (curb to crown) \(=26.000\) (Ft.)
Distance from crown to crossfall grade break \(=10.000\) (Ft.)
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
lope from grade break to crown (v/hz) \(=0.020\)
street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(\mathrm{Ft}\).)
Slope from curb to property line (v/hz) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).)
Gutter hike from flowline \(=1.500(\) In. \()\)
Manning's N in gutter \(=0.0150\)
Manning's \(N\) from qutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)

\section*{\(\checkmark 2.356\) (CFS)}

Depth of flow \(=0.312(\mathrm{Ft}\).\() , Average velocity =1.887(\mathrm{Ft} / \mathrm{s})\)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=10.849\) (Ft.)
Flow velocity \(=1.89(\mathrm{Ft} / \mathrm{s})\)
ravel time \(=\quad 6.70 \mathrm{~min} . \quad T C=11.70 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type ]


\section*{\(\rightarrow\) storm}

Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\), \(\rightarrow C=0.950\)

Subarea runoff \(=\quad 2.634(\mathrm{CFS})\) for \(\quad 0.870(\mathrm{Ac}\).
Total runoff \(=3.176(\mathrm{CFS})\) Total area \(=\quad 1.00(\mathrm{Ac}\).
Street flow at end of street \(=\quad 3.176(\mathrm{CFS})\)
Half street flow at end of street \(=3.176\) (CFS)
Depth of flow \(=0.340(\mathrm{Ft}\).\() , Average velocity =2.024(\mathrm{Ft} / \mathrm{s})\)
Flow width (from curb towards crown) \(=12.238\) (Ft.)
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) \(\rightarrow 9082.000\)

Process from Point/Station 9081.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

\section*{P:14182.30EEngrRepors DrainageHYDROPROPOSED19000P100.out}

Time of concentration \((T C)=11.78 \mathrm{~min}\).
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 9079.000 to Point/Station
\(\rightarrow 9082.000\)

\(\rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
\(\rightarrow C=0.950\)
Total runoff
\(2.809(C F S)\) for
0.930 (AC.)
Total runoff \(=\)
5.985(CFS) Total area \(=\)
1.93 (AC.)
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station
9082.000 to Point/Station
\(\rightarrow 9084.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation \(=263.500(\mathrm{Ft}\).
Downstream point/station elevation \(=263.200(\mathrm{Ft}\).)
Pipe length \(=10.25(F t\).\() \quad Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=5.985\) (CFS)
Nearest computed pipe diameter \(=12.00(\mathrm{In}\).
Calculated individual pipe flow \(=5.985\) (CFS)
Normal flow depth in pipe \(=9.64\) (In.)
Flow top width inside pipe \(=9.53(\mathrm{In}\).
Critical depth could not be calculated.
Pipe flow velocity \(=\quad 8.85(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
Time of concentration \((T C)=11.80 \mathrm{~min}\).
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9083.000 to Point/Station \(\rightarrow 9084.000\)
**** SUBAREA FLOW ADDITION ****
\(\rightarrow\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)

\section*{P:14182,30 Engt ReportSDiainagelHYDROPRROPOSED 9000 P 100.0 u}
[INDUSTRIAL area type
Time of concentration \(=11.80 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.177(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
\(\rightarrow\)
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}, \rightarrow\)
Subarea runoff \(=\quad 3.532\) (CFS) for \(1.170(\mathrm{AC}\).
Total runoff \(=\quad 9.517(C F S)\) Total area \(=3.10(\mathrm{Ac}\).
9.517(CFS) Total area \(=\)
```

Upstream point/station elevation = 263.200(Ft.)
Downstream point/station elevation = 262.500(Ft.
Pipe length = 76.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 9.517(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 9.517(CFS)
Normal flow depth in pipe = 13.92(In.)
Flow top width inside pipe = 15.07(In.)
Critical Depth = 14.30(In.)
Pipe flow velocity = 6.49(Ft/s)
Pravel time through pipe = . 49 0. 20 min
Time of concentration (TC) = 12.00 min

```

    Process from Point/Station 9084.000 to Point/Station
\(\rightarrow 9085.000\)
    **** CONFLUENCE OF MINOR STREAMS ***
    Stream flow area \(=3.100\) (Ac.)
    Runoff from this stream \(=\quad 9.517\) (CFS
    Time of concentration \(=12.00 \mathrm{~min}\).
    Rainfall intensity \(=\quad 3.158(\mathrm{In} / \mathrm{Hr})\)

    Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)

\section*{P:14182.30EngriRepors Drainage HYOROPROPOSED19000P P100.out}

\section*{[INDUSTRIAL area type}
20.000(Ft.)
subarea 1.10 dist.
Lowest elevation \(=270.700(\mathrm{Ft}\).
Elevation difference \(=0.300(\mathrm{Ft}\).
Time of concentration calculated by the urban
areas overland flow method (App X-C) \(=1.05 \mathrm{~min}\)
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(\mathrm{Ft} .)^{\wedge} .5\right) /\left(\% \operatorname{slope}^{\wedge}(1 / 3)\right]\)
\(\mathrm{TC}=\left[1.8^{*}(1.1-0.9500) *\left(20.000^{\wedge} .5\right) /\left(1.500^{\wedge}(1 / 3)\right]=1.05\right.\) Setting time of concentration to 5 minutes Rainfall intensity (I) \(=\)
\(4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year
storm
\(\rightarrow 0.950\)
Effective runoff coefficient used for area ( \(\mathrm{Q}=\mathrm{KCIA}\) ) is \(\mathrm{C}=\)
Subarea runoff \(=\quad 0.083\) (CFS)
Total initial stream area \(=\quad 0.020(\mathrm{AC}\).
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t\) \(\rightarrow 9074.000\)

Process from Point/Station 9072.000 to Point/Station
\(\qquad\)

Top of street segment elevation \(=270.700(\mathrm{Ft}\).
End of street segment elevation \(=261.400(\mathrm{Ft}\).
Length of street segment \(=333.000(\mathrm{Ft}\).
Height of curb above gutter flowline \(=6.0\) (In.)
Width of half street (curb to crown) \(=26.000\) ( Ft .)
Distance from crown to crossfall grade break \(=10.000\) (Ft.
Slope from gutter to grade break \((v / \mathrm{hz})=0.020\)
Slope from grade break to crown \((\mathrm{v} / \mathrm{hz})=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000(F t\).
Slope from curb to property line ( \(\mathrm{v} / \mathrm{hz}\) ) \(=0.020\)
Gutter width \(=1.500(\mathrm{Ft}\).
Gutter hike from flowline \(=1.500(\) In. \()\)
Manning's N in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0180\)
Manning's N from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
Depth of flow \(=0.090(F t),\). Average velocity \(=1.986(\mathrm{Ft} / \mathrm{s})\) Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=1.500\) ( Ft .)
Flow velocity \(=1.99(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=2.79 \mathrm{~min} . \quad \mathrm{TC}=7.79 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type

Rainfall intensity \(=\quad 3.695(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year

Printed: 1/31/2019 1:16:40 PM PM
Modified: 1/31/2019 8:37:11 AM AM
Page 27 of 39

\section*{P:14182.30EngrIReportsDrainage HYDROPROPOSED 19000 P 100 :ou}

Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\) KCIA, \(\rightarrow\) \(\rightarrow C=0.950\)

Subarea runoff \(=1.158\) (CFS) for 0.330 (Ac.)
Total runoff \(=\quad 1.242(\mathrm{CFS})\) Total area \(=\)
Street flow at end of street \(=\quad 1.242\) (CES)
Half street flow at end of street \(=1.242\) (CFS)
Depth of flow \(=0.225\) (Ft.), Average velocity \(=2.518\) ( \(\mathrm{Ft} / \mathrm{s}\) )
Flow width (from curb towards crown) \(=6.496(\mathrm{Ft}\).
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) Process from Point/Station 9074.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\(\rightarrow\) Upstream point/station elevation \(=261.200(\mathrm{Ft}\).
Downstream point/station elevation \(=261.000(\mathrm{Ft}\).
Pipe length \(=34.75(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=1.242\) (CFS)
Nearest computed pipe diameter \(=\quad 9.00\) (In.)
Calculated individual pipe flow \(=1.242\) (CFS)
Normal flow depth in pipe \(=7.29\) (In.)
Flow top width inside pipe \(=7.06(\) In. \()\)
Critical Depth \(=6.15\) (In.)
Critical Depth \(=\)
Pipe flow velocity \(=\)
\(6.15(1 \mathrm{n}\).
\(3.24(\mathrm{Ft} / \mathrm{s})\)


\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++_{+1}\) Process from Point/Station 9075.000 to Point/Station
**** SUBAREA FLOW ADDITION ****

Decimal fraction soil group \(A=0.000\) Decimal fraction soil group \(B=0.000\) Decimal fraction soil group \(C=0.000\) Decimal fraction soil group \(D=1.000\) [INDUSTRIAL area type
Time of concentration \(=\quad 7.97 \mathrm{~min}\)
Time of concentration \(=\quad 7.97 \mathrm{~min}\)
Rainfall intensity \(=3.664(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}\), \(\rightarrow C=0.950\)
Subarea runoff \(=\)
1.949 (CFS) for
0.560 (AC.)
Total runoff \(=\)
3.191(CFS) Total area \(=\)
0.91 (AC.)

\section*{P:4482.30 EngrRepootsibrainagelHY DROPROPOSEDI9000P100.out}
**** PIPEFLOW TRAVEI TIME (Program estimated size) ****
\(\rightarrow\)
Upstream point/station elevation \(=261.000(F t\).
Downstream point/station elevation \(=260.800(\mathrm{Ft}\).
Pipe length \(=145.00(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\) No. of pipes \(=1\) Required pipe flow \(=3.191\) (CFS) Nearest computed pipe diameter \(=18.00\) (In.) Calculated individual pipe flow \(=3.191\) (CFS)
Normal flow depth in pipe \(=12.38\) (In.)
Flow top width inside pipe \(=16.69(\mathrm{In}\).
Critical Depth = 8.16(In.)
Pipe flow velocity \(=\quad 2.46(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.98 \mathrm{~min}\).
Time of concentration \((T C)=8.96 \mathrm{~min}\).
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
\(\rightarrow 9085.000\)
Process from Point/Station
9076.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
\(\rightarrow\) \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Along Main Stream number: 2 in normal stream number 2
Stream flow area \(=0.910\) (Ac.)} \\
\hline \multicolumn{7}{|l|}{Runoff from this stream \(=3.191\) (CES)} \\
\hline \multicolumn{7}{|l|}{Time of concentration \(=8.96 \mathrm{~min}\).} \\
\hline \multicolumn{7}{|l|}{Rainfall intensity \(=3.512(\mathrm{In} / \mathrm{Hr})\)} \\
\hline \multicolumn{7}{|l|}{Summary of stream data:} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Stream Flow rat \\
No. \\
(CFS)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { TC } \\
(\min )
\end{gathered}
\]} & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\text { In } / \mathrm{Hr})
\end{gathered}
\]} \\
\hline 1 & 9.517 & 12.00 & & & 3.1 & \\
\hline 2 & 3.191 & 8.96 & & & 3.5 & \\
\hline \multicolumn{7}{|l|}{Qmax (1) =} \\
\hline & 1.000 & 1.000 & * & 9.517) & \(+\) & \\
\hline & 0.899 & 1.000 & * & 3.191) & \(+=\) & 12.387 \\
\hline \multicolumn{7}{|l|}{\(Q \max (2)=\)} \\
\hline & 1.000 & 0.746 & * & 9.517) & & \\
\hline & 1.000 & * 1.000 & * & 3.191) & + = & 10.295 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point: \(9.517 \quad 3.191\)
Maximum flow rates at confluence using above data: \(12.387 \quad 10.295\)
Area of streams before confluence: 3.1000 .910

Results of confluence:
Total flow rate \(=12.387(\mathrm{CFS})\)
Time of concentration \(=11.997 \mathrm{~min}\).
Effective stream area after confluence \(=4.010(\mathrm{Ac}\).

\section*{P:14182.30EngrReports 1 DrainagelHYDROPROPOSEDI9000P 100.0 ut}

Process from Point/Station 9085.000 to Point/Station
\(\diamond 9092.000_{* * * *}\) PIPEFLOW TRAVEL TIME (Program estimated size) ****

\footnotetext{
Upstream point/station elevation \(=260.800(F t\).
Downstream point/station elevation \(=255.500\) (Ft.)
Pipe length \(=514.00(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=12.387\) (CFS)
Nearest computed pipe diameter \(=21.00\) (In.)
Calculated individual pipe flow \(=12.387\) (CFS)
Normal flow depth in pipe \(=13.83\) (In.)
Flow top width inside pipe \(=19.92\) (In.)
Critical Depth \(=15.73\) (In.)
Pipe flow velocity \(=\quad 7.38(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=1.16 \mathrm{~min}\).
Time of concentration \((T C)=13.16 \mathrm{~min}\).
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 9085.000 to Point/Station
\(\rightarrow 9092.000\)
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area \(=\quad 4.010(\mathrm{Ac}\).
Runoff from this stream \(=\quad 12.387(\mathrm{CFS})\)
Time of concentration \(=\)
Rainfall intensity \(=\)
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+h\) \(\rightarrow 9088.000\)

Process from Point/Station
9083.000 to Point/Station
\(\rightarrow 9088.000_{* * * *}\) INITIAL AREA EVALUATION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
Decimal fraction soil
[INDUSTRIAL area type
[INDUSTRIAL area type
Initial subarea flow distance \(=\)
Highest elevation \(=264.000\) (Ft.)
Lowest elevation \(=263.000\) (Ft.)
Elevation difference \(=1.000(\mathrm{Ft}\).
Time of concentration calculated by the urban
areas overland flow method (App \(X-C)=1.89 \mathrm{~min}\).
\(\mathrm{TC}=\left[1.8^{*}(1.1-\mathrm{C}) *\right.\) distance \(\left.(F \mathrm{~F} .)^{\wedge} .5\right) /\left(\% \mathrm{slope}^{\wedge}(1 / 3)\right]\)
\(T C=\left[1.8^{*}(1.1-0.9500)^{\star}\left(65.000^{\wedge} .5\right) /\left(1.538^{\wedge}(1 / 3)\right]=1.89\right.\)
}

\section*{P:44182.30EEngriReporsisDranageHYDROPROPOSED19000P100.0u}
Setting time of concentration to 5 minutes Rainfall intensity (I) \(=\)
4.389 (In/Hr) for a 100.0 year Effective runoff coefficient used for area ( \(Q=\mathrm{KCIA}\) ) is \(C=\)
\(\rightarrow 0.950\)
Subarea runoff =
0.459 (CFS)
Total initial stream area \(=\)
0.110 (Ac.)
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++4+1+4+++++++\) \(\rightarrow 9091.000\) Process from Point/Station
9088.000 to Point/Station
\(\rightarrow 9091.000\)
**** STREET FLOW TRAVEL TIME + SUBAREA ELOW ADDITION ****
\(\rightarrow\)
Top of street segment elevation \(=263.000(\mathrm{Ft}\).)
End of street segment elevation \(=257.000(\mathrm{Ft}\).
Length of street segment \(=527.000(F t\).
Height of curb above gutter flowline \(=6.0\) (In.)
Width of half street (curb to crown) \(=26.000(\mathrm{Ft})\)
Distance from crown to crossfall grade break \(=10.000(\mathrm{Ft}\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
Slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=15.000\) ( Ft. )
Slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.020\)
Gutter width \(=1.500(F t\).
Gutter hike from flowline \(=1.500(\mathrm{In}\).
Manning's N in gutter \(=0.0150\)
Manning's N from gutter to grade break \(=0.0180\)
Manning's \(N\) from grade break to crown \(=0.0180\)
Estimated mean flow rate at midpoint of street \(=\)
\(\rightarrow 2.001\) (CFS)
Depth of flow \(=0.289\) (Ft.), Average velocity \(=1.970(\mathrm{Ft} / \mathrm{s})\) streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=9.718\) ( Ft. )
Flow velocity \(=1.97(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=4.46 \mathrm{~min} . \quad \mathrm{TC}=9.46 \mathrm{~min}\).
Adding area flow to street
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
[INDUSTRIAL area type
Rainfall intensity \(=\)\(\quad 3.443(\operatorname{In} / \mathrm{Hr})\) for a 100.0 year
\(a^{1}\)
\(\rightarrow\) storm Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\), \(\rightarrow C=0.950\)

Subarea runoff \(=\quad 2.420\) (CFS) for 0.740 (AC.) \(\quad 0.85\) (Ac.)
Total runoff \(=\quad 2.879(C E S)\)
Street flow at end of street \(=\)
\(2.879(C F S)\)
Street flow at end of street \(=\)
flow at end of street \(=\quad 2.879\) (CFS)
Half street flow at end (Ft.), Average velocity \(=2.144(\mathrm{Ft} / \mathrm{s})\) Depth of flow \(=0.321\) (Ft.), Average velocity \(=\)
Flow width (from curb towards crown) \(=11.276(\mathrm{Ft}\).

\section*{P:14182.30UEngTReports DrainageHYYROPRROPOSED 9000 P100.out}
\(\rightarrow+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t \rightarrow\) \(\rightarrow 9092.000\) \(\qquad\)保
9091.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ***
```

Upstream point/station elevation = 256.500(Ft.)
Downstream point/station elevation = 256.000(Ft.)
Pipe length = 30.75(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 2.879(CFS)
Nearest computed pipe diameter = 12.00(In.)
Nearest computed pipe diameter = 12.00(1n.)
Calculated individual pipe flow =
Flow top width inside pipe = 11.85(In.)
Critical Depth = 8.73(In.)
Pipe flow velocity = 6.12(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 9.54 min.

```
```

Process from Point/Station 9089.000 to Point/Station
**** SUBAREA FLOW ADDITION ****

```

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=9.54 \mathrm{~min}\). for a
Rainfall intensity \(=\quad 3.432(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
\(\rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}\), \(\rightarrow \mathrm{C}=0.950\)
\begin{tabular}{ll} 
Subarea runoff \(=\) & \(4.173(C F S)\) for \(1.280(\mathrm{AC})\). \\
2. & 2.13(AC.)
\end{tabular}
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 9090.000 to Point/Station
\(\rightarrow 9092.000\)
```

*** SUBAREA FLOW ADDITION ****
**** SUBAREA FLOW ADDITION ****

```
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
rime of concentration \(=\)
.54 min .

\section*{P:14182.301EngrReports DrainageHYDROPROPOSED19000P100.out}

Rainfall intensity \(=\quad 3.432(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
\(\Rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\), \(\rightarrow C=0.950\)

Subarea runoff \(=\)
ea runoff \(=\)
\(1.858(C E S)\) for
911(CFS) Total 0.570 (AC.
2.70 (AC.)
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 9090.000 to Point/Station
\(\rightarrow 9092.000 \quad * * * *\) CONFLUENCE OF MINOR STREAMS \(* * * *\)
\(\rightarrow 9092.000\)
**** CONFLUENCE OF MINOR STREAMS ***
\(\rightarrow\) \(\qquad\)
Along Main Stream number: 2 in normal stream number 2 Stream flow area \(=\)
2.700 (Ac.)

Runoff from this stream \(=8.911\) (CFS)
Time of concentration \(=9.54 \mathrm{~min}\).
Rainfall intensity =
\(3.432(\mathrm{In} / \mathrm{Hr})\)
Summary of stream data:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream No. & Flow rate (CFS) & \[
\begin{gathered}
\mathrm{TC} \\
(\mathrm{~min})
\end{gathered}
\] & & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
\text { (In/Hr) }
\end{gathered}
\]} \\
\hline 1 & 12.387 & \multicolumn{2}{|l|}{13.16} & \multicolumn{3}{|c|}{3.053} \\
\hline 2 & 8.911 & \multicolumn{2}{|l|}{9.54} & \multicolumn{3}{|c|}{3.432} \\
\hline \multicolumn{7}{|l|}{Qmax (1)} \\
\hline & 1.000 * & 1.000 & * & 12.387) & + & \\
\hline & 0.889 * & 1.000 & * & 8.911) & \(+=\) & 20.313 \\
\hline \multicolumn{7}{|l|}{Qmax (2)} \\
\hline & 1.000 * & 0.725 & * & 12.387) & \(+\) & \\
\hline & 1.000 * & 1.000 & & 8.911) & \(+=\) & 17.893 \\
\hline
\end{tabular}

Total of 2 streams to confluence:
Flow rates before confluence point:
12.387 8.911

Maximum flow rates at confluence using above data
\[
20.313 \quad 17.893
\]

Area of streams before confluence:
\(4.010 \quad 2.700\)
f confluenc
Total flow rate \(=\)
Time of concentration \(=13.158 \mathrm{~min}\).
Effective stream area after confluence \(=\)
6.710 (AC.)
\(\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) \(\rightarrow 9101.000\)

Process from Point/Station 9092.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
\(\rightarrow\) \(\qquad\)

\section*{P:4182.30EngIReports DrainagelHYDROPROPOSED19000P 100.out}

Downstream point/station elevation \(=251.500(\mathrm{Ft}\).)
Pipe length \(=422.00(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=20.313\) (CFS)
Nearest computed pipe diameter \(=24.00(\mathrm{In}\).
Calculated individual pipe flow \(=20.313\) (CFS)
Normal flow depth in pipe \(=17.30(\operatorname{In}\).
Flow top width inside pipe \(=\) 21.54(In.)
Critical Depth \(=19.41\) (In.)
Pipe flow velocity \(=\quad 8.38(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.84 \mathrm{~min}\)
Time of concentration \((T C)=14.00 \mathrm{~min}\).
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{```
->+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\rightarrow\)
\(\rightarrow\)
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 1
stream flow area \(=\)
6.710 (Ac.)

Runoff from this stream \(=\quad 20.313\) (CFS
Time of concentration \(=14.00 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.983(\mathrm{In} / \mathrm{Hr})\)
\(\rightarrow++\)
Process from Point/Station 9073.000 to Point/Station
\(\rightarrow 9093.000\)
**** INITIAL AREA EVALUATION ****

Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[COMMERCIAL area type
Initial subarea flow distance \(=84.000(\mathrm{Ft}\).
Highest elevation \(=270.200(F t\).
Lowest elevation \(=269.000(\mathrm{Ft}\).
Lowest elion difference \(=\quad\) (F.)
Time of concentration calculated by the urban
areas overland flow method (\(\mathrm{App} \mathrm{X}-\mathrm{C}\)) \(=3.66 \mathrm{~min}\)
TC \(=[1.8 *(1.1-C) *\) distance (Ft.) \(\wedge .5) /(8\) slope^ \((1 / 3)]\)
 Setting time of concentration to 5 minutes Rainfall intensity \((I)=4.389(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year \(\rightarrow\)
Effective runoff coefficient used for area (\(Q=\) KCIA) is \(C=\quad \rightarrow\)
Subarea runoff \(=\)
1.194 (CFS)
Total initial stream area \(=0.320\) (Ac.)

Printed: 1/31/2019 1:16:41 PM PM
Modified: 1/31/2019 8:37:11 AM AM
Page 33 of 39

\section*{P:A482.30EngrReportsDrainagelHYDROPROPOSED19000P100.out}
\(\rightarrow++\) Process from Point/Station 9093.000 to Point/Station
\(\rightarrow 9097.000\)
**** IMPROVED CHANNEL TRAVEL TIME ****
\(\rightarrow\)
Upstream point elevation \(=269.000(F t\).
Downstream point elevation \(=256.000\) (Ft.)
Channel length thru subarea \(=1014.000(\mathrm{Ft}\).
Channel base width \(=5.000(\mathrm{Ft}\).)
Slope or ' \(Z\) ' of left channel bank \(=1.000\)
Slope or ' \(Z\) ' of right channel bank \(=1.000\)
Estimated mean flow rate at midpoint of channel =
\(\rightarrow 20.855\) (CFS)
Manning's 'N' \(\quad=0.018\)
Maximum depth of channel \(=1.000(F t\).
Flow (q) thru subarea \(=\quad 20.855\) (CFS)
Depth of flow \(=0.618(F t\).\() , Average velocity =6.004(\mathrm{Et} / \mathrm{s})\) Channel flow top width \(=6.237\) (Ft.)
Flow Velocity \(=6.00(\mathrm{Ft} / \mathrm{s})\)
Travel time \(=2.81 \mathrm{~min}\).
Time of concentration \(=7.81 \mathrm{~min}\).
Critical depth \(=0.773\) (Ft.)
Adding area flow to channel
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[COMMERCIAL area type \(\quad 3.691(\mathrm{In} / \mathrm{Hr})\) for \(]\)
Rainfall intensity \(=\quad 3.691(\operatorname{In} / \mathrm{Hr})\) for a \(\quad 100.0\) year
\(\rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
\(\rightarrow C=0.850\)
Subarea runoff \(=\)
Total runoff \(=\)\(\quad 33.071(\mathrm{CFS})\) for \(10.540(\mathrm{AC}) \quad .10.86(\mathrm{Ac}\).
\(\rightarrow++\) Process from Point/Station 9097.000 to Point/Station
\(\rightarrow 9098.000\)
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation = 255.000(Ft.)
Downstream point/station elevation = 251.800(Ft.)
Pipe length = 33.62(Et.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 34.265(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 34.265(CFS)
Normal flow depth in pipe = 12.96(In.)
Flow top width inside pipe = 20.42(In.)
Critical depth could not be calculated.
Pipe flow velocity = 22.00(Ft/s)
Travel time through pipe = 0.03 min.

```

\section*{P:14182.30EngrReportSDrainagelHYDROPROPOSEDI9000PP100.out}

Time of concentration \((T C)=7.84 \mathrm{~min}\).

\(\rightarrow\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=\)
Rainfall intensity \(=\)\(\quad\)\begin{tabular}{l}
7.84 min .
\end{tabular}

\section*{\(\rightarrow\) storm}

Runoff coefficient used for sub-area, Rational method, \(Q=K C I A\),
Subarea runoff \(=\)
Total runoff \(=\)\(\quad 4.098(\mathrm{CFS})\) for \(1.170(\mathrm{AC}) \quad .12.03(\mathrm{Ac}\).
\(\rightarrow++\) Process from Point/Station 9098.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation = 251.800(Ft.)
Downstream point/station elevation = 251.600(Ft.)
Pipe length = 27.25(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 38.363(CFS)
Nearest computed pipe diameter = 33.00(In.)
Calculated individual pipe flow = 38.363(CFS)
Normal flow depth in pipe = 23.30(In.)
Flow top width inside pipe = 30.07(In.)
Critical Depth = 24.72(In.)
Pipe flow velocity = 8.56(Ft/s)
Travel time through pipe = 0.05 min
Time of concentration (TC) = 7.89 min

```
```

->++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9092.000 to Point/Station
>9101.000

```
 **** SUBAREA FLOW ADDITION ****
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)

Decimal fraction soil group \(D=1.000\)

\section*{P:14182.30 EngTRMepors DIrainageHYDROPROPOSED 9000 P100.out}
[INDUSTRIAL area type Time of concentration Rainfall intensity =
7.89 min.
\(3.678(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year

\section*{\(\rightarrow\) storm}

Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}\), \(\rightarrow C=0.950\)

Subarea runoff \(=\quad 3.494(\mathrm{CFS})\) for \(\quad 1.000(\mathrm{Ac}\).
Total runoff \(=\)
41.857 (CFS) Total area \(=\)
13.03 (AC.)
\(\rightarrow+++\) Process from Point/Station 9100.000 to Point/Station

\section*{\(\rightarrow 9101.000\)}
**** SUBAREA FLOW ADDITION ****
\(\rightarrow\) \(\qquad\)
Decimal fraction soil group \(\mathrm{A}=0.000\) Decimal fraction soil group \(B=0.000\) Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[INDUSTRIAL area type
Time of concentration \(=\quad 7.89 \mathrm{~min}\)
Rainfall intensity =
. 8.89 min.
\(\rightarrow\) storm
Runoff coefficient used for sub-area, Rational method, \(\mathrm{Q}=\mathrm{KCIA}\), \(B C=0.950\)
Subarea runoff \(=\)
3.878 (CFS) for
1.110 (AC.)
Total runoff \(=45.736(\mathrm{CFS})\) Total area \(=\)
14.14(AC.)
\(\rightarrow++\) Process from Point/Station
9100.000 to Point/Station
\(\rightarrow 9101.000\)
**** CONFLUENCE OF MINOR STREAMS ****
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Along Main Stream number: 2 in normal stream number 2
Stream flow area \(=14.140\) (Ac.)} \\
\hline \multicolumn{7}{|l|}{Runoff from this stream \(=\) 45.736(CFS)} \\
\hline \multicolumn{7}{|l|}{Time of concentration \(=7.89 \mathrm{~min}\).} \\
\hline \multicolumn{7}{|l|}{Rainfall intensity \(=3.678(\mathrm{In} / \mathrm{Hr})\)} \\
\hline \multicolumn{7}{|l|}{Summary of stream data:} \\
\hline Stream No. & Flow rate (CFS) & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{TC} \\
(\mathrm{~min})
\end{gathered}
\]} & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Rainfall Intensity } \\
(\text { In/Hr) }
\end{gathered}
\]} \\
\hline 1 & 20.313 & 14.00 & & & 2.98 & \\
\hline 2 & 45.736 & 7.89 & & & 3.6 & \\
\hline \multicolumn{7}{|l|}{Qmax (1)} \\
\hline & 1.000 & * 1.000 & * & 20.313) & 3) + & \\
\hline & 0.811 & 1.000 & * & 45.736) & 6) \(+=\) & 57.404 \\
\hline \multirow[t]{2}{*}{Qmax (2)} & & & & & & \\
\hline & 1.000 & * 0.564 & * & 20.313) & 3) + & \\
\hline
\end{tabular}

\section*{P:14182.30 EngrReppors DrainagetHYDROPROPOSED19000P100.out}
1.000 * 1.000 *
45.736) \(+=\)
57.190

Total of 2 streams to confluence:
low rates before confluence point:
\[
20.313 \quad 45.736
\]

Maximum flow rates at confluence using above data:
\[
57.404 \quad 57.190
\]

Area of streams before confluence:
\[
14.140
\]

Results of confluence:
Total flow rate \(=\quad 57.404(\mathrm{CFS})\)
Time of concentration \(=13.998 \mathrm{~min}\).
Effective stream area after confluence \(=\)
20.850 (AC.)

Modified: 1/31/2019 8:37:11 AM AM
```

                P:4182.30Eng|ReportSDIainagelHYDROPROPOSED19000P 100.out
    2
        57.404 14.18
        2 . 9 6 8
    Qmax (1) =
1.000 * 1.000 * 58.427) +
0.993 * 1.000 * 57.404) + = 115.429
Qmax(2) = , 093* N
1.000 * 0.982 * 58.427) +
1.000 * 1.000 * 57.404) + = 114.762
Total of 2 main streams to confluence:
Flow rates before confluence point:

$$
58.427 \quad 57.404
$$

Maximum flow rates at confluence using above data:
115.429 114.762
Area of streams before confluence:
$26.310 \quad 20.850$
Results of confluence:
Total flow rate $=$
ime of concentration
Effective stream area after confluence $=$ 47.160(Ac.)
$\rightarrow++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\quad \rightarrow$
*** SUBAREA FIOW ADDTTION ****

```
\(\qquad\)
``` \(\rightarrow\)
Decimal fraction soil group \(A=0.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=1.000\)
[RURAL(greater than 0.5 Ac, 0.2 ha area type]
Time of concentration \(=14.44 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.947(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year \(\quad \rightarrow\)
- storm
Runoff coefficient used for sub-area, Rational method, \(Q=K C I A, \Rightarrow\)
\(\rightarrow C=0.450\)
Subarea runoff \(=\quad 2.494(C F S)\) for 1.880 (Ac.)
Total runoff \(=117.923(\) CFS \()\) Total area \(=\quad 49.04(\mathrm{Ac}\).
End of computations, total study area \(=\quad 49.040\) (Ac.)
```


APPENDIX 4

Rick Engineering Drainage Report \& As-builts

- Report Excerpts
- Backbone Stormdrain As-builts
- CD of Approved Study

APPENDIX 5

Detention Basin Routing Analysis

RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 10/11/2018
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 6 MIN.
6 HOUR RAINFALL 2.8 INCHES
BASIN AREA 11.2 ACRES
RUNOFF COEFFICIENT 0.42
PEAK DISCHARGE 30.3 CFS
$\operatorname{TIME}(M I N)=0$
$\operatorname{TIME}(M I N)=6$
TIME $(\operatorname{MIN})=12$
$\operatorname{TIME}(\mathrm{MIN})=18$
$\operatorname{TIME}(\mathrm{MIN})=24$
TIME (MIN) $=30$
$\operatorname{TIME}(\mathrm{MIN})=36$
$\operatorname{TIME}(\mathrm{MIN})=42$
TIME (MIN) $=48$
TIME $(\operatorname{MIN})=54$
TIME (MIN) $=60$
TIME $(\operatorname{MIN})=66$
$\operatorname{TIME}(\mathrm{MIN})=72$
TIME (MIN) $=78$
$\operatorname{TIME}(\mathrm{MIN})=84$
$\operatorname{TIME}(\operatorname{MIN})=90$
TIME (MIN) $=96$
TIME (MIN) $=102$
$\operatorname{TIME}(\mathrm{MIN})=108$
TIME (MIN) = 114
TIME (MIN) $=120$
TIME $(\operatorname{MIN})=126$
TIME (MIN) = 132
TIME (MIN) $=138$
TIME (MIN) $=144$
TIME (MIN) $=150$
TIME (MIN) $=156$
$\operatorname{TIME}(\mathrm{MIN})=162$
TIME (MIN) = 168
TIME (MIN) $=174$
TIME $(\operatorname{MIN})=180$
TIME (MIN) $=186$
TIME (MIN) $=192$
$\operatorname{TIME}(\mathrm{MIN})=198$
TIME (MIN) = 204
$\operatorname{TIME}(\mathrm{MIN})=210$
TIME (MIN) $=216$
TIME (MIN) $=222$
TIME (MIN) $=228$
TIME (MIN) $=234$
TIME (MIN) $=240$
TIME (MIN) $=246$
TIME (MIN) $=252$
TIME (MIN) $=258$
TIME (MIN) $=264$
TIME (MIN) $=270$
TIME (MIN) $=276$
TIME (MIN) $=282$
TIME (MIN) $=288$
TIME (MIN) $=294$
TIME (MIN) $=300$
TIME (MIN) $=306$
TIME (MIN) = 312
TIME (MIN) $=318$
TIME (MIN) $=324$
TIME (MIN) $=330$
$\operatorname{TIME}(\mathrm{MIN})=336$
TIME (MIN) $=342$
TIME $(\mathrm{MIN})=348$
TIME (MIN) $=354$
TIME (MIN) $=360$
TIME (MIN) $=366$

$$
\begin{aligned}
& \text { DISCHARGE (CFS) }=0 \\
& \text { DISCHARGE (CFS) }=0.8 \\
& \text { DISCHARGE (CFS) }=0.9 \\
& \text { DISCHARGE (CFS) }=0.9 \\
& \text { DISCHARGE (CFS) }=0.9 \\
& \text { DIICHARGE (CFS) }=0.9 \\
& \text { DISCHARGE (CFS) }=0.9 \\
& \text { DISCHARGE (CFS) }=0.9 \\
& \text { DISCHARGE (CFS) }=1 \\
& \text { DISCHARGE (CFS) }=1.1 \\
& \text { DISCHARGE (CFS) }=1.1 \\
& \text { DISCHARGE (CFS) }=1.1 \\
& \text { DISCHARGE (CFS) }=1.2 \\
& \text { DISCHARGE (CFS) }=1.2 \\
& \text { DISCHARGE (CFS) } \\
& \text { DISCHARGE (CFS) }
\end{aligned}
$$

RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 1/10/2019
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 15 MIN .
6 HOUR RAINFALL 2.8 INCHES
BASIN AREA 49.1 ACRES
RUNOFF COEFFICIENT 0.57
PEAK DISCHARGE 107.6 CFS

TIME (MIN) $=0$	DISCHARGE (CFS) $=$
$\operatorname{TIME}(\mathrm{MIN})=15$	DISCHARGE (CFS) $=4.7$
TIME (MIN) $=30$	DISCHARGE (CFS) $=4.8$
TIME (MIN $)=45$	DISCHARGE (CFS) $=5.1$
TIME (MIN) $=60$	DISCHARGE (CFS) $=5.3$
TIME (MIN) $=75$	DISCHARGE (CFS) $=5.7$
TIME (MIN) $=90$	DISCHARGE (CFS) $=5.9$
TIME (MIN) $=105$	DISCHARGE (CFS) $=6.4$
TIME (MIN) $=120$	DISCHARGE (CFS) $=6.7$
TIME (MIN) $=135$	DISCHARGE (CFS) $=7.5$
TIME (MIN) $=150$	DISCHARGE (CFS) $=7.9$
TIME (MIN) = 165	DISCHARGE (CFS) $=9.1$
TIME (MIN) $=180$	DISCHARGE (CFS) $=9.8$
TIME (MIN) $=195$	DISCHARGE (CFS) $=12$
$\operatorname{TIME}(\mathrm{MIN})=210$	DISCHARGE (CFS) $=13.7$
TIME (MIN) = 225	DISCHARGE (CFS) $=20.1$
TIME (MIN) $=240$	DISCHARGE (CFS) $=22.4$
TIME (MIN) $=255$	DISCHARGE (CFS) $=107.6$
TIME (MIN) $=270$	DISCHARGE (CFS) $=16.1$
TIME (MIN) $=285$	DISCHARGE $(C F S)=10.8$
TIME (MIN) $=300$	DISCHARGE (CFS) $=8.5$
TIME (MIN) $=315$	DISCHARGE (CFS) $=7.1$
TIME (MIN $)=330$	DISCHARGE (CFS) $=6.2$
TIME (MIN) $=345$	DISCHARGE (CFS) $=5.5$
TIME (MIN) $=360$	DISCHARGE (CFS) $=5$
TIME (MIN) $=375$	DISCHARGE (CFS) $=0$

Basin 5

Project Summary	
Title	
Engineer	Basin 5
Company	PDC
Date	$7 / 9 / 2018$
Notes	

Basin 5

Subsection: Master Network Summary

Catchments Summary

		Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
S5000	EX10	0	1.093	246.000	30.30

Node Summary

		Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	$\begin{aligned} & \text { Peak Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$
0-5	EX10	0	0.921	361.000	0.63

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
1 (IN)	EX10	0	1.093	246.000	30.30	(N/A)	(N/A)
1 (OUT)	EX10	0	0.921	361.000	0.63	292.69	0.964

Basin 5

Subsection: Read Hydrograph
Return Event: 100 years
Label: S5000
Storm Event:

Peak Discharge	$30.30 \mathrm{ft}^{3} / \mathrm{s}$
Time to Peak	246.000 min
Hydrograph Volume	$1.093 \mathrm{ac}-\mathrm{ft}$

HYDROGRAPH ORDINATES (ft ${ }^{3} / \mathrm{s}$)
Output Time Increment $\mathbf{=} \mathbf{6 . 0 0 0} \mathbf{~ m i n}$
Time on left represents time for first value in each row.

Time (min)	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{gathered} \text { Flow } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$
0.000	0.00	0.80	0.80	0.80	0.80
30.000	0.80	0.90	0.90	0.90	0.90
60.000	0.90	0.90	1.00	1.00	1.00
90.000	1.00	1.10	1.10	1.10	1.20
120.000	1.20	1.20	1.30	1.30	1.40
150.000	1.40	1.50	1.60	1.60	1.70
180.000	1.80	2.00	2.00	2.30	2.40
210.000	2.80	3.00	3.70	4.20	6.10
240.000	9.20	30.30	4.90	3.30	2.60
270.000	2.10	1.90	1.70	1.50	1.40
300.000	1.30	1.20	1.10	1.10	1.00
330.000	1.00	0.90	0.90	0.90	0.80
360.000	0.80	0.00	(N/A)	(N/A)	(N/A)

Basin 5

Subsection: Elevation-Area Volume Curve
Label: 1

Return Event: 100 years

Elevation (ft)					
Planimeter $\left(\mathrm{ft}^{2}\right)$		Area $\left(\mathrm{ft}^{2}\right)$	$\mathrm{A} 1+\mathrm{A} 2+\mathrm{sqr}$ $\left(\mathrm{A} 1^{*} \mathrm{~A} 2\right)$	Volume $(\mathrm{ac}-\mathrm{ft})$	Volume (Total) $(\mathrm{ac}-\mathrm{ft})$
290.00					

Basin 5

Subsection: Volume Equations
Return Event: 100 years
Label: 1
Storm Event:
Pond Volume Equations

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume $=(1 / 3) *(E L 2-E l 1) *(A r e a 1+$ Area2 + sqr(Are		
where:	EL1, EL2	Lower and upper elevations of the increment
	Area1, Area2	Areas computed for EL1, EL2, respectively
	Volume	Incremental volume between ELI and EL2

Basin 5

Subsection: Outlet Input Data
Return Event: 100 years
Label: Basin Outlet 1 Storm Event:

Requested Pond Water Surface Elevations	
Minimum (Headwater)	290.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	296.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	$\begin{gathered} E 1 \\ \text { (ft) } \end{gathered}$	$\begin{aligned} & E 2 \\ & (\mathrm{ft}) \end{aligned}$
Orifice-Circular	LF2.0	Forward	TW	292.50	296.00
Orifice-Circular	MF1	Forward	TW	293.00	296.00
Stand Pipe	Riser - 1	Forward	TW	293.50	296.00
Orifice-Circular	LF1.0	Forward	TW	290.50	296.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Basin 5

Subsection: Outlet Input Data
Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Structure ID: TW
Structure Type: TW Setup, DS Channel

Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	100

Basin 5

Subsection: Outlet Input Data
Return Event: 100 years
Label: Basin Outlet 1 Storm Event:

Convergence Tolerances	
Tailwater Tolerance (Minimum)	0.00 ft
Tailwater Tolerance (Maximum)	0.10 ft
Headwater Tolerance (Minimum)	0.00 ft
Headwater Tolerance (Maximum)	0.10 ft
Flow Tolerance (Minimum)	$0.001 \mathrm{ft}^{3} / \mathrm{s}$
Flow Tolerance (Maximum)	$1.000 \mathrm{ft}^{3} / \mathrm{s}$

Basin 5

Subsection: Composite Rating Curve Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Composite Outflow Summary

Water Surface Elevation (ft)	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	Tailwater Elevation (ft)	Convergence Error (ft)	
290.00	0.00	(N/A)	0.00	
290.10	0.00	(N/A)	0.00	
290.20	0.00	(N/A)	0.00	
290.30	0.00	(N/A)	0.00	
290.40	0.00	(N/A)	0.00	
290.50	0.00	(N/A)	0.00	
290.60	0.02	(N/A)	0.00	
290.70	0.07	(N/A)	0.00	
290.80	0.14	(N/A)	0.00	
290.90	0.20	(N/A)	0.00	
291.00	0.24	(N/A)	0.00	
291.10	0.28	(N/A)	0.00	
291.20	0.31	(N/A)	0.00	
291.30	0.33	(N/A)	0.00	
291.40	0.36	(N/A)	0.00	
291.50	0.38	(N/A)	0.00	
291.60	0.41	(N/A)	0.00	
291.70	0.43	(N/A)	0.00	
291.80	0.45	(N/A)	0.00	
291.90	0.47	(N/A)	0.00	
292.00	0.48 -	(N/A)	0.00	
292.10	0.50	(N/A)	0.00	
292.20	0.52	(N/A)	0.00	
292.30	0.54	(N/A)	0.00	
292.40	0.55	(N/A)	0.00	
292.50	0.57	(N/A)	0.00	
292.60	0.60	(N/A)	0.00	
292.70	0.63	(N/A)	0.00	
292.80	0.66	(N/A)	0.00	
292.90	0.69	(N/A)	0.00	
293.00	0.71	(N/A)	0.00	
293.10	0.75	(N/A)	0.00	
293.20	0.82	(N/A)	0.00	
293.30	0.91	(N/A)	0.00	
293.40	0.99	(N/A)	0.00	
293.50	1.05	(N/A)	0.00	
293.60	1.70	(N/A)	0.00	
293.70	2.84	(N/A)	0.00	
293.80	4.29	(N/A)	0.00	
293.90	6.00	(N/A)	0.00	
294.00	7.94	(N/A)	0.00	
294.10	10.07	(N/A)	0.00	
294.20	12.39	(N/A)	0.00	
Basin5.ppc	Bentley S	ems, Inc. Haestad Method Center	lution	Bentley PondPack V8i [08.11.01.56]
10/24/2018	$\begin{array}{r} 27 \mathrm{Sif} \\ \text { Waterto } \end{array}$	on Company Drive Suite 2 CT 06795 USA +1-203-7		Page 9 of 14

Basin 5

Subsection: Composite Rating Curve
Return Event: 100 years
Label: Basin Outlet 1

Contributing Structures

None Contributing
None Contributing
LF1.0

Basin 5

Subsection: Composite Rating Curve Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Composite Outflow Summary

Contributing Structures

Basin 5

Subsection: Elevation-Volume-Flow Table (Pond)
Label: 1

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface,	290.00 ft
Initial)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$0.00 \mathrm{ft} 3 / \mathrm{s}$
Flow (Initial Outlet)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Infiltration)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial, Total)	1.000 min

Elevation (ft)	Outflow ($\mathrm{ft}^{3} / \mathrm{s}$)	Storage $(a c-f t)$	Area $\left(\mathrm{ft}^{2}\right)$	Infiltration $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Flow (Total) $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	$\begin{gathered} 2 \mathrm{~S} / \mathrm{t}+\mathrm{O} \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$
290.00	0.00	0.000	12,590.000	0.00	0.00	0.00
290.10	0.00	0.029	12,800.041	0.00	0.00	42.32
290.20	0.00	0.059	13,011.819	0.00	0.00	85.34
290.30	0.00	0.089	13,225.335	0.00	0.00	129.06
290.40	0.00	0.119	13,440.588	0.00	0.00	173.51
290.50	0.00	0.151	13,657.579	0.00	0.00	218.67
290.60	0.02	0.182	13,876.308	0.00	0.02	264.58
290.70	0.07	0.214	14,096.774	0.00	0.07	311.25
290.80	0.14	0.247	14,318.978	0.00	0.14	358.68
290.90	0.20	0.280	14,542.920	0.00	0.20	406.84
291.00	0.24	0.314	14,768.599	0.00	0.24	455.74
291.10	0.28	0.348	14,996.016	0.00	0.28	505.38
291.20	0.31	0.383	15,225.170	0.00	0.31	555.78
291.30	0.33	0.418	15,456.062	0.00	0.33	606.94
291.40	0.36	0.454	15,688.691	0.00	0.36	658.87
291.50	0.38	0.490	15,923.059	0.00	0.38	711.58
291.60	0.41	0.527	16,159.163	0.00	0.41	765.07
291.70	0.43	0.564	16,397.006	0.00	0.43	819.35
291.80	0.45	0.602	16,636.586	0.00	0.45	874.43
291.90	0.47	0.640	16,877.903	0.00	0.47	930.31
292.00	0.48	0.679	17,120.958	0.00	0.48	986.99
292.10	0.50	0.719	17,365.751	0.00	0.50	1,044.48
292.20	0.52	0.759	17,612.281	0.00	0.52	1,102.80
292.30	0.54	0.800	17,860.549	0.00	0.54	1,161.94
292.40	0.55	0.841	18,110.555	0.00	0.55	1,221.90
292.50	0.57	0.883	18,362.298	0.00	0.57	1,282.71
292.60	0.60	0.925	18,615.779	0.00	0.60	1,344.36
292.70	0.63	0.968	18,870.997	0.00	0.63	1,406.88
292.80	0.66	1.012	19,127.953	0.00	0.66	1,470.24

[^2]Bentley Systems, Inc. Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Return Event: 100 years
Storm Event:

Basin 5

Subsection: Elevation-Volume-Flow Table (Pond)
Label: 1

Return Event: 100 years
Storm Event:

Elevation (f)	Outflow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Storage ($\mathrm{ac}-\mathrm{ft}$)	Area $\left(\mathrm{ft}^{2}\right)$	Infiltration ($\mathrm{ft}^{3} / \mathrm{s}$)	Flow (Total) ($\mathrm{ft}^{3} / \mathrm{s}$)	$\frac{2 \mathrm{~s} / \mathrm{t}+0}{\left(\mathrm{ft}^{3} / \mathrm{s}\right)}$
292.90	0.69	1.056	19,386.647	0.00	0.69	1,534.45
293.00	0.71	1.101	19,647.078	0.00	0.71	1,599.53
293.10	0.75	1.147	19,909.247	0.00	0.75	1,665.50
293.20	0.82	1.193	20,173.153	0.00	0.82	1,732.37
293.30	0.91	1.239	20,438.797	0.00	0.91	1,800.15
293.40	0.99	1.286	20,706.179	0.00	0.99	1,868.80
293.50	1.05	1.334	20,975.298	0.00	1.05	1,938.33
293.60	1.70	1.383	21,246.155	0.00	1.70	2,009.35
293.70	2.84	1.432	21,518.749	0.00	2.84	2,081.76
293.80	4.29	1.481	21,793.081	0.00	4.29	2,155.40
293.90	6.00	1.532	22,069.151	0.00	6.00	2,230.22
294.00	7.94	1.583	22,346.958	0.00	7.94	2,306.18
294.10	10.07	1.634	22,626.503	0.00	10.07	2,383.27
294.20	12.39	1.687	22,907.786	0.00	12.39	2,461.47
294.30	14.87	1.740	23,190.806	0.00	14.87	2,540.79
294.40	15.76	1.793	23,475.563	0.00	15.76	2,619.46
294.50	16.57	1.847	23,762.059	0.00	16.57	2,698.99
294.60	17.34	1.902	24,050.291	0.00	17.34	2,779.45
294.70	18.08	1.958	24,340.262	0.00	18.08	2,860.84
294.80	18.79	2.014	24,631.970	0.00	18.79	2,943.17
294.90	19.47	2.071	24,925.416	0.00	19.47	3,026.44
295.00	20.13	2.128	25,220.599	0.00	20.13	3,110.67
295.10	20.76	2.187	25,517.520	0.00	20.76	3,195.87
295.20	21.38	2.246	25,816.178	0.00	21.38	3,282.05
295.30	21.98	2.305	26,116.574	0.00	21.98	3,369.20
295.40	22.56	2.366	26,418.708	0.00	22.56	3,457.34
295.50	23.13	2.427	26,722.579	0.00	23.13	3,546.48
295.60	23.68	2.488	27,028.188	0.00	23.68	3,636.62
295.70	24.22	2.551	27,335.535	0.00	24.22	3,727.76
295.80	24.75	2.614	27,644.619	0.00	24.75	3,819.93
295.90	25.27	2.678	27,955.441	0.00	25.27	3,913.11
296.00	25.78	2.742	28,268.000	0.00	25.78	4,007.32

Basin 5

Subsection: Pond Inflow Summary
Return Event: 100 years
Label: 1 (IN)

Summary for Hydrograph Addition at '1'

Upstream Link Upstream Node
<Catchment to Outflow Node> S5000

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
Flow (From)	S 5000	1.093	246.000	30.30
Flow (In)	1	1.093	246.000	30.30

Basin 9

Project Summary	
Title	Basin 4
Engineer	PDC
Company	PDC
Date	$8 / 7 / 2017$

Notes

Basin 9

Subsection: Master Network Summary
Catchments Summary

Node Summary

			Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
0-9	EX10	0	6.869	255.000	19.82

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
1 (IN)	EX10	0	7.417	252.000	117.90	(N/A)	(N/A)
1 (OUT)	EX10	0	6.869	255.000	19.82	252.00	4.836

Basin 9

Subsection: Read Hydrograph
Label: S9000
Return Event: 100 years
Storm Event:

Peak Discharge	$117.90 \mathrm{ft}^{3} / \mathrm{s}$
Time to Peak	252.000 min
Hydrograph Volume	$7.417 \mathrm{ac}-\mathrm{ft}$

HYDROGRAPH ORDINATES ($\mathrm{ft}^{3} / \mathrm{s}$)

Output Time Increment $=\mathbf{1 4 . 0 0 0} \mathbf{~ m i n}$
Time on left represents time for first value in each row.

Time (min)	$\begin{gathered} \text { Flow } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Flow}^{3} \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{gathered} \text { Flow } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$
0.000	0.00	5.30	5.60	5.80	6.10
70.000	6.30	6.80	7.00	7.70	8.00
140.000	8.90	9.40	10.80	11.70	14.30
210.000	16.30	24.00	36.90	117.90	19.20
280.000	12.90	10.10	8.40	7.30	6.50
350.000	5.90	5.50	0.00	(N/A)	(N / A)

Basin 9

Subsection: Elevation-Area Volume Curve Label: 1

Return Event: 100 years
Storm Event:

Elevation (ft)	Planimeter $\left(\mathrm{ft}^{2}\right)$	Area $\left(\mathrm{ft}^{2}\right)$	$\mathrm{A} 1+\mathrm{A} 2+\mathrm{sqr}$ $\left(\mathrm{A} 1^{*} \mathrm{~A} 2\right)$	Volume $\left(\mathrm{ft}^{2}\right)$	Volume (Total) $(\mathrm{ac}-\mathrm{ft})$	
246.00		0.0	$28,525.000$	0.000	0.000	0.000
248.00	0.0	$32,879.000$	$92,028.720$	1.408	1.408	
252.00	0.0	$41,957.000$	$111,977.677$	3.428	4.836	

Basin 9

Subsection: Volume Equations
Return Event: 100 years
Label: 1

Pond Volume Equations

* Incremental volume computed by the Conic Method for Reservoir Volumes.

$$
\begin{aligned}
& \text { Volume }=(1 / 3) *(E L 2-\text { El1 }) *(\text { Area1 }+ \text { Area2 }+ \text { sqr(Area1 } * \text { Area2 })) \\
& \text { where: EL1, EL2 Lower and upper elevations of the increment } \\
& \text { Area1, Area2 Areas computed for EL1, EL2, respectively } \\
& \text { Volume Incremental volume between EL1 and EL2 }
\end{aligned}
$$

Basin 9

Subsection: Outlet Input Data
Return Event: 100 years
Label: Basin Outlet 1

Requested Pond Water Surface Elevations	
Minimum (Headwater)	246.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	252.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	$\begin{gathered} E 2 \\ \text { (ft) } \end{gathered}$
Orifice-Circular	LF2.0	Forward	TW	247.50	252.00
Orifice-Circular	LF3.0	Forward	TW	248.50	252.00
Orifice-Circular	MF1	Forward	TW	249.50	252.00
Stand Pipe	Riser - 1	Forward	TW	250.90	252.00
Orifice-Circular	LF1.0	Forward	TW	246.50	252.00
Tailwater Settings	Tailwater			(N/A)	(N / A)

Basin 9

Subsection: Outlet Input Data
Return Event: 100 years
Label: Basin Outlet 1
Storm Event:

Structure ID: Riser-1 Structure Type: Stand Pipe	
Number of Openings	1
Elevation	250.90 ft
Diameter	24.0 in
Orifice Area	$3.1 \mathrm{ft}^{2}$
Orifice Coefficient	0.600
Weir Length	6.28 ft
Weir Coefficient	3.00 ($\mathrm{ft}^{\wedge} 0.5$)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	True
Orifice H to crest	True
Structure ID: MF1 Structure Type: Orifice-Circular	
Number of Openings	3
Elevation	249.50 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: LF1.0 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	246.50 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: LF2.0 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	247.50 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: LF3.0 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	248.50 ft
Orifice Diameter	2.0 in
Orifice Coefficient	0.600
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	

Basin 9

Subsection: Outlet Input Data
Label: Basin Outlet 1
Return Event: 100 years Storm Event:

Structure ID: TW
Structure Type: TW Setup, DS Channel

Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations Tailwater Tolerance (Minimum)	100
Tailwater Tolerance (Maximum)	0.00 ft
Headwater Tolerance (Minimum)	0.10 ft
Headwater Tolerance (Maximum)	0.00 ft
Flow Tolerance (Minimum)	0.10 ft
Flow Tolerance (Maximum)	$0.001 \mathrm{ft}^{3} / \mathrm{s}$.

Basin 9

Subsection: Composite Rating Curve
Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Composite Outflow Summary

Basin 9

Subsection: Composite Rating Curve Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Composite Outflow Summary

Water Surface
Elevation
(ft)

250.30	
250.40	
250.50	
250.60	
250.70	
250.80	
250.90	
251.00	
251.10	
251.20	
251.30	
251.40	
251.50	
251.60	
251.70	
251.80	
251.90	2.62
252.00	

Tailwater Elevation
(ft)

(N/A)	
(N/A)	
(N/A)	0.00

Contributing Structures

```
None Contributing
None Contributing
None Contributing
None Contributing
None Contributing
None Contributing
LF1.0
LF2.0 + LF1.0
```


Basin 9

Subsection: Composite Rating Curve Label: Basin Outlet 1

Return Event: 100 years
Storm Event:

Composite Outflow Summary

Contributing Structures

LF2.0 + LF1.0
LF2.0 + LF1.0
LF2.0 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
LF2.0 + LF3.0 + MF1 + LF1.0
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 }+ \text { Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 }+ \text { Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 }+ \text { Riser }-1+ \\ & \text { LF1. } \end{aligned}$
$\text { LF2.0 + LF3.0 + MF1 + Riser - } 1+$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 }+ \text { Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 + Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 }+ \text { Riser }-1+ \\ & \text { LF1. } \end{aligned}$
$\begin{aligned} & \text { LF2.0 }+ \text { LF3.0 }+ \text { MF1 + Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 + LF3.0 + MF1 + Riser }-1+ \\ & \text { LF1.0 } \end{aligned}$
$\begin{aligned} & \text { LF2.0 + LF3.0 + MF1 + Riser - } 1+ \\ & \text { LF1.0 } \end{aligned}$

Basin 9

Subsection: Composite Rating Curve
Return Event: 100 years
Label: Basin Outlet 1

Composite Outflow Summary
Contributing Structures
LF2.0 + LF3.0 + MF1 + Riser - $1+$ LF1. 0
LF2.0 + LF3.0 + MF1 + Riser - $1+$ LF1. 0

Basin 9

Subsection: Elevation-Volume-Flow Table (Pond) Label: 1

Return Event: 100 years
Storm Event:

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface,	246.00 ft
Initial)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Outlet)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Infiltration)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial, Total)	1.000 min
Time Increment	

Elevation (ft)	Outflow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Storage (ac-ft)	Area (ft^{2})	$\begin{aligned} & \text { Infiltration } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$	Flow (Total) (ft ${ }^{3} / \mathrm{s}$)	$\begin{gathered} 2 \mathrm{~S} / \mathrm{t}+0 \\ \left(\mathrm{t}^{3} / \mathrm{s}\right) \end{gathered}$
246.00	0.00	0.000	28,525.000	0.00	0.00	0.00
246.10	0.00	0.066	28,735.358	0.00	0.00	95.43
246.20	0.00	0.132	28,946.490	0.00	0.00	191.57
246.30	0.00	0.199	29,158.394	0.00	0.00	288.41
246.40	0.00	0.266	29,371.070	0.00	0.00	385.96
246.50	0.00	0.333	29,584.520	0.00	0.00	484.22
246.60	0.02	0.402	29,798.742	0.00	0.02	583.21
246.70	0.07	0.470	30,013.738	0.00	0.07	682.95
246.80	0.14	0.539	30,229.506	0.00	0.14	783.42
246.90	0.20	0.609	30,446.046	0.00	0.20	884.61
247.00	0.24	0.679	30,663.360	0.00	0.24	986.50
247.10	0.28	0.750	30,881.446	0.00	0.28	1,089.11
247.20	0.31	0.821	31,100.306	0.00	0.31	1,192.44
247.30	0.33	0.893	31,319.938	0.00	0.33	1,296.50
247.40	0.36	0.965	31,540.342	0.00	0.36	1,401.30
247.50	0.38	1.037	31,761.520	0.00	0.38	1,506.82
247.60	0.42	1.111	31,983.470	0.00	0.42	1,613.10
247.70	0.50	1.184	32,206.194	0.00	0.50	1,720.16
247.80	0.59	1.259	32,429.690	0.00	0.59	1,827.98
247.90	0.67	1.333	32,653.958	0.00	0.67	1,936.53
248.00	0.73	1.408	32,879.000	0.00	0.73	2,045.81
248.10	0.78	1.484	33,092.479	0.00	0.78	2,155.81
248.20	0.83	1.560	33,306.649	0.00	0.83	2,266.53
248.30	0.87	1.637	33,521.510	0.00	0.87	2,377.95
248.40	0.91	1.714	33,737.062	0.00	0.91	2,490.09
248.50	0.95	1.792	33,953.304	0.00	0.95	2,602.95
248.60	1.00	1.870	34,170.238	0.00	1.00	2,716.54
248.70	1.06	1.949	34,387.862	0.00	1.06	2,830.86
248.80	1.11	2.028	34,606.177	0.00	1.11	2,945.90
$\begin{aligned} & \text { Basin 9.ppc } \\ & 1 / 31 / 2019 \end{aligned}$		Bentley Sys 27 Si	ms, Inc. Haestad Center Company Driv	ethods Solution uite 200 W		Bentley Pond [08. Page

Basin 9

Subsection: Elevation-Volume-Flow Table (Pond)
Label: 1

Return Event: 100 years Storm Event:

Elevation (ft)	Outflow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Storage (ac-ft)	Area (ft ${ }^{2}$)	Infiltration (ft ${ }^{3 / 5}$)	Flow (Total) ($\mathrm{ft}^{3} / \mathrm{s}$)	$\begin{gathered} 2 \mathrm{~S} / \mathrm{t}+0 \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$
248.90	1.15	2.108	34,825.183	0.00	1.15	3,061.66
249.00	1.19	2.188	35,044.879	0.00	1.19	3,178.15
249.10	1.23	2.269	35,265.266	0.00	1.23	3,295.37
249.20	1.27	2.350	35,486.345	0.00	1.27	3,413.33
249.30	1.31	2.432	35,708.113	0.00	1.31	3,532.02
249.40	1.34	2.514	35,930.573	0.00	1.34	3,651.46
249.50	1.38	2.597	36,153.724	0.00	1.38	3,771.63
249.60	1.47	2.680	36,377.565	0.00	1.47	3,892.60
249.70	1.65	2.764	36,602.097	0.00	1.65	4,014.42
249.80	1.89	2.848	36,827.320	0.00	1.89	4,137.04
249.90	2.11	2.933	37,053.234	0.00	2.11	4,260.40
250.00	2.26	3.018	37,279.839	0.00	2.26	4,384.44
250.10	2.39	3.104	37,507.134	0.00	2.39	4,509.21
250.20	2.51	3.190	37,735.120	0.00	2.51	4,634.74
250.30	2.62	3.277	37,963.797	0.00	2.62	4,761.01
250.40	2.73	3.365	38,193.165	0.00	2.73	4,888.04
250.50	2.82	3.452	38,423.224	0.00	2.82	5,015.84
250.60	2.92	3.541	38,653.973	0.00	2.92	5,144.39
250.70	3.01	3.630	38,885.413	0.00	3.01	5,273.71
250.80	3.10	3.719	39,117.545	0.00	3.10	5,403.80
250.90	3.18	3.810	39,350.366	0.00	3.18	5,534.67
251.00	3.86	3.900	39,583.879	0.00	3.86	5,666.90
251.10	5.02	3.991	39,818.083	0.00	5.02	5,800.41
251.20	6.51	4.083	40,052.977	0.00	6.51	5,935.01
251.30	8.26	4.175	40,288.562	0.00	8.26	6,070.66
251.40	10.22	4.268	40,524.838	0.00	10.22	6,207.32
251.50	12.39	4.361	40,761.804	0.00	12.39	6,344.96
251.60	14.74	4.455	40,999.462	0.00	14.74	6,483.58
251.70	17.26	4.550	41,237.810	0.00	17.26	6,623.16
251.80	18.18	4.644	41,476.849	0.00	18.18	6,761.94
251.90	19.02	4.740	41,716.579	0.00	19.02	6,901.43
252.00	19.82	4.836	41,957.000	0.00	19.82	7,041.69

Bentley Systems, Inc. Haestad Methods Solution
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i
[08.11.01.56]
Page 14 of 15

Basin 9

Subsection: Pond Inflow Summary
Return Event: 100 years
Label: 1 (IN)
Storm Event:

Summary for Hydrograph Addition at ' 1 '

Upstream Link			Upstream Node	
<Catchment	Outflow Node>	S9000		
Node Inflows				
Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) (ft ${ }^{3} / \mathrm{s}$)
Flow (From)	59000	7.417	252.000	117.90
Flow (In)	1	7.417	252.000	117.90

APPENDIX 6

Exhibits

[^0]: op of street segment elevation $=297.500(\mathrm{Ft}$.
 End of street segment elevation $=291.500(\mathrm{Ft}$.
 ength of street segment $=321.000$ (Ft.)
 Height of curb above gutter flowline $=6.0$ (In.

[^1]: Decimal fraction soil group $\mathrm{A}=0.000$
 Decimal fraction soil group $B=0.000$
 Decimal fraction soil group $B=0.000$
 Decimal fraction soil group $C=0.000$
 Decimal fraction soil group $D=1.000$
 [COMMERCIAL area type
 Initial subarea flow distance $=52.000$ (Ft.)
 Highest elevation $=292.000(F t$.
 Lowest elevation $=285.800(F t$.
 Elevation difference $=6.200(\mathrm{Ft}$.
 Time of concentration calculated by the urban
 areas overland flow method $(\mathrm{App} \mathrm{X}-\mathrm{C})=1.42 \mathrm{~min}$.
 $T C=\left[1.8 *(1.1-C) *\right.$ distance $\left.(F t .)^{\wedge} .5\right) /(8$ slope^(1/3)]
 $\mathrm{TC}=\left[1.8^{*}(1.1-0.8500)^{*}\left(52.000^{\wedge} .5\right) /\left(11.923^{\wedge}(1 / 3)\right]=1.42\right.$
 Setting time of concentration to 5 minutes
 etting time of concentration to $4.389(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year
 Effective runoff coefficient used for area ($Q=K C I A$) is $C=\quad \rightarrow$
 Subarea runoff $=$
 0.336 (CES)
 Total initial stream area $=0.090(A C$.
 $\rightarrow++$ Process from Point/Station 9058.000 to Point/Station
 **** IMPROVED CHANNEL TRAVEL TIME ****

[^2]: Basin5.ppc
 10/24/2018

