Appendix D

Noise Calculation Worksheets

Modera Argyle Project

Noise Calculations Worksheets

Provided by Acoustical Engineering Services

Ambient Noise Measurements

Location: R1 Date: 11/29/2018

10:34:13 PM No

10:35:13 PM No

Time	Overload	Leq	Lmax	L10	L90
10:34:48 AM	No	53.6	58.1	55.6	51.5
10:35:48 AM	No	53	56.5	53.9	51.6
10:36:48 AM	No	53.5	60.6	55	51.1
10:37:48 AM	No	52.6	57.4	54.1	51.3
10:38:48 AM	No	52.2	59.5	53.5	50.4
10:39:48 AM	No	50.3	53.9	51.7	48.9
10:40:48 AM	No	57.3	67.3	59.2	52
10:41:48 AM	No	52.6	57.7	54.2	50.7
10:42:48 AM	No	54.5	62.1	56.8	51.6
10:43:48 AM	No	53.9	61.8	56.9	49.1
10:44:48 AM	No	57.3	70	59.3	50.1
10:45:48 AM	No	58.9	69.3	61.4	51.4
10:46:48 AM	No	59.1	68.7	64.1	49.1
10:47:48 AM	No	55.4	67.4	57.3	49.6
10·48·48 AM	Νο	55.6	62.2	59.2	50
10.40.407.001					
10.40.407/00		55.4			
10.40.407.00		55.4			
Time	Overload	55.4 Leq	Lmax	L10	L90
Time 10:21:13 PM	Overload No	55.4 Leq 51.8	Lmax 54.2	L10 52.9	L90 50.5
Time 10:21:13 PM 10:22:13 PM	Overload No No	55.4 Leq 51.8 57.9	Lmax 54.2 66.4	L10 52.9 62.8	L90 50.5 50.4
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM	Overload No No No	55.4 Leq 51.8 57.9 64.3	Lmax 54.2 66.4 76.6	L10 52.9 62.8 71.8	L90 50.5 50.4 50.8
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM	Overload No No No No	55.4 Leq 51.8 57.9 64.3 71.7	Lmax 54.2 66.4 76.6 85.6	L10 52.9 62.8 71.8 77.6	L90 50.5 50.4 50.8 51.9
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM	Overload No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2	Lmax 54.2 66.4 76.6 85.6 65.3	L10 52.9 62.8 71.8 77.6 61.3	L90 50.5 50.4 50.8 51.9 52.9
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM	Overload No No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2 54.9	Lmax 54.2 66.4 76.6 85.6 65.3 62.5	L10 52.9 62.8 71.8 77.6 61.3 58	L90 50.5 50.4 50.8 51.9 52.9 51.8
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:27:13 PM	Overload No No No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2	L10 52.9 62.8 71.8 77.6 61.3 58 54.5	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:27:13 PM 10:28:13 PM	Overload No No No No No No No No	Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1 51.8	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2 53.5	L10 52.9 62.8 71.8 77.6 61.3 58 54.5 52.9	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3 50.3
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:26:13 PM 10:27:13 PM 10:28:13 PM	Overload No No No No No No No No No	Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1 51.8 54	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2 53.5 57.8	L10 52.9 62.8 71.8 77.6 61.3 58 54.5 52.9 57.2	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3 50.8 50.7
Time 10:21:13 PM 10:22:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:27:13 PM 10:28:13 PM 10:29:13 PM 10:30:13 PM	Overload No No No No No No No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1 51.8 54 54 53.7	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2 53.5 57.8 59.7	L10 52.9 62.8 71.8 77.6 61.3 58 54.5 52.9 57.2 57.2 57.9	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3 50.3 50.8 50.7 49.8
Time 10:21:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:26:13 PM 10:27:13 PM 10:28:13 PM 10:29:13 PM 10:30:13 PM	Overload No No No No No No No No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1 51.8 54 53.7 58.1	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2 53.5 57.8 59.7 60.9	L10 52.9 62.8 71.8 77.6 61.3 58 54.5 52.9 57.2 57.9 60.7	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3 50.8 50.7 49.8 50.4
Time 10:21:13 PM 10:22:13 PM 10:22:13 PM 10:23:13 PM 10:24:13 PM 10:25:13 PM 10:26:13 PM 10:27:13 PM 10:29:13 PM 10:30:13 PM 10:31:13 PM 10:32:13 PM	Overload No No No No No No No No No No No No No	55.4 Leq 51.8 57.9 64.3 71.7 58.2 54.9 52.1 51.8 54 53.7 58.1 52.1	Lmax 54.2 66.4 76.6 85.6 65.3 62.5 57.2 53.5 57.8 59.7 60.9 55.8	L10 52.9 62.8 71.8 77.6 61.3 58 54.5 52.9 57.2 57.2 57.9 60.7 53.9	L90 50.5 50.4 50.8 51.9 52.9 51.8 50.3 50.8 50.7 49.8 50.4 50.5

54.6

51.8

52

56.2

56.6

53.1

54.6

50

49.4

Location: R2 Date: 11/29/2018

Time	Overload	Leq	Lmax	L10	L90
10:52:06 AM	No	63.6	68.9	67	59.7
10:53:06 AM	No	64.8	69.3	68.1	59.1
10:54:06 AM	No	67.9	78	72.1	60.2
10:55:06 AM	No	72.3	87.3	76.3	62
10:56:06 AM	No	69.5	86.4	64.9	57.2
10:57:06 AM	No	65.7	71.5	69.9	59.2
10:58:06 AM	No	66	72	69.5	60
10:59:06 AM	No	65.6	70.5	69.4	58.3
11:00:06 AM	No	64.1	71	67.8	58.1
11:01:06 AM	No	65.2	68.6	67.2	59.4
11:02:06 AM	No	65.9	72.2	68.3	61.2
11:03:06 AM	No	63.4	67.1	65.8	60.1
11:04:06 AM	No	66.1	75.4	68.9	60
11:05:06 AM	No	66.2	72.2	68.6	62.2
11:06:06 AM	No	64.4	70.3	67.2	61.4
		66.8			
Time	Overload	Leq	Lmax	L10	L90
	Overload No	Leq 59.1	Lmax 66.5	L10 62.4	L90 54.1
Time 10:38:47 PM 10:39:47 PM	Overload No No	Leq 59.1 62.3	Lmax 66.5 71.4	L10 62.4 65.9	L90 54.1 53.9
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM	Overload No No No	Leq 59.1 62.3 67.7	Lmax 66.5 71.4 77.2	L10 62.4 65.9 72.2	L90 54.1 53.9 59.1
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM	Overload No No No No	Leq 59.1 62.3 67.7 60.5	Lmax 66.5 71.4 77.2 68.7	L10 62.4 65.9 72.2 62.9	L90 54.1 53.9 59.1 56.2
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM	Overload No No No No No	Leq 59.1 62.3 67.7 60.5 65.2	Lmax 66.5 71.4 77.2 68.7 72.5	L10 62.4 65.9 72.2 62.9 69.1	L90 54.1 53.9 59.1 56.2 53.6
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM	Overload No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9	Lmax 66.5 71.4 77.2 68.7 72.5 70	L10 62.4 65.9 72.2 62.9 69.1 64.5	L90 54.1 53.9 59.1 56.2 53.6 57.1
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM	Overload No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM	Overload No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM	Overload No No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM 10:47:47 PM	Overload No No No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8 62	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3 71.8	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1 66.1	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7 58.7 57.3
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM 10:47:47 PM	Overload No No No No No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8 62 59.9	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3 71.8 67.2	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1 66.1 62.9	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7 57.3 57.3 57.3
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM 10:47:47 PM 10:48:47 PM	Overload No No No No No No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8 62 59.9 62.2	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3 71.8 67.2 68.3	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1 66.1 62.9 65.6	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7 57.3 57.3 57.3 55.7
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM 10:46:47 PM 10:48:47 PM 10:49:47 PM 10:49:47 PM	Overload No No No No No No No No No No No No No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8 62 59.9 62.2 59.3	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3 71.8 67.2 68.3 66.2	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1 66.1 62.9 65.6 62.6	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7 57.3 57.3 57.3 55.7 56.1
Time 10:38:47 PM 10:39:47 PM 10:40:47 PM 10:41:47 PM 10:42:47 PM 10:43:47 PM 10:44:47 PM 10:45:47 PM 10:46:47 PM 10:46:47 PM 10:48:47 PM 10:49:47 PM 10:50:47 PM	Overload No	Leq 59.1 62.3 67.7 60.5 65.2 61.9 57.5 66.4 64.8 62 59.9 62.2 59.3 64.9	Lmax 66.5 71.4 77.2 68.7 72.5 70 67.8 72.3 70.3 71.8 67.2 68.3 66.2 73	L10 62.4 65.9 72.2 62.9 69.1 64.5 59.1 69.9 68.1 66.1 62.9 65.6 62.6 66.9	L90 54.1 53.9 59.1 56.2 53.6 57.1 54.7 59.1 58.7 57.3 57.3 57.3 55.7 56.1 60.8

63.7

Location: R3 Date: 11/29/2018

Time Overload	Leq	Lmax	L10	L90
11:16:25 AM No	72.6	80.1	73.8	69.7
11:17:25 AM No	68.3	71	69.4	67.2
11:18:25 AM No	67.8	70.5	68.6	66.8
11:19:25 AM No	69.7	77.2	71.1	67.6
11:20:25 AM No	71.8	81.3	74.8	68.1
11:21:25 AM No	68.2	70.1	69.1	67.5
11:22:25 AM No	68.6	71.6	70.1	67.6
11:23:25 AM No	68.3	70.9	69.1	67.3
11:24:25 AM No	68.1	69.9	68.9	67.4
11:25:25 AM No	70.1	77.3	73.3	67.4
11:26:25 AM No	68.6	72.4	69.9	67.2
11:27:25 AM No	68.4	71.9	70	67.3
11:28:25 AM No	69	77.3	69.5	67.8
11:29:25 AM No	72.9	82.1	76.1	69
11:30:25 AM No	71.5	79	73.2	68.8
	70.0			

Time Overload	Leq	Lmax	L10	L90
10:55:57 PM No	65.2	72.6	68.5	61.6
10:56:57 PM No	65.7	70.4	67.8	63.3
10:57:57 PM No	64.3	67.4	65.3	62.7
10:58:57 PM No	64.3	69.9	67	62
10:59:57 PM No	62.3	66.7	64.8	60.6
11:00:57 PM No	68.5	79	71.2	62.1
11:01:57 PM No	65.4	69.5	67.3	63.3
11:02:57 PM No	67.4	75.3	70.4	63
11:03:57 PM No	66.3	70.3	68.1	63.7
11:04:57 PM No	68.3	73.6	71.3	62.7
11:05:57 PM No	64.9	70.3	68.5	61.8
11:06:57 PM No	65.1	69.7	67.1	62.7
11:07:57 PM No	66.1	74.4	69.2	59.8
11:08:57 PM No	61.9	68.2	64.6	58.9
11:09:57 PM No	67.3	77.3	70.2	62.2
	65.9			

Location: R4 Date: 11/29/2018

Time Overload	Leq	Lmax	L10	L90
11:33:21 AM No	70.2	76.8	75.1	63.5
11:34:21 AM No	68.2	76.1	70.3	63.9
11:35:21 AM No	68.5	73.6	72	63.7
11:36:21 AM No	68.9	74.4	70.4	67.2
11:37:21 AM No	67.1	75.3	73.7	60
11:38:21 AM Yes	68.6	81.7	69.7	64.4
11:39:21 AM No	70.5	79.1	74.4	63.8
11:40:21 AM No	73.6	83.4	76.8	65.8
11:41:21 AM No	67.7	72.8	69.9	63.4
11:42:21 AM No	65.1	73.6	68.9	60.4
11:43:21 AM No	68.3	75	73.6	62.4
11:44:21 AM No	66.2	70.8	68.5	63.9
11:45:21 AM No	68.4	74.8	70.4	65.4
11:46:21 AM No	68.4	78	71.8	62.1
11:47:21 AM No	62.1	67.9	65	59.6
	68.8			

Time Overload	Leq	Lmax	L10	L90
11:12:45 PM No	65.5	79.4	67	60.9
11:13:45 PM No	63.1	68.3	65.7	60.5
11:14:45 PM No	63.1	68.3	65.5	60.2
11:15:45 PM No	63.7	69.2	65.2	61.8
11:16:45 PM No	65.2	71.8	67.5	59.8
11:17:45 PM No	72.5	83.2	75.5	60.2
11:18:45 PM No	62.4	67.2	65.4	56.4
11:19:45 PM No	67.5	75.5	70.1	63.9
11:20:45 PM No	63.8	71.6	66.4	60
11:21:45 PM No	63.8	69.3	66.1	60.9
11:22:45 PM No	62.7	67.2	65	58.7
11:23:45 PM No	60.7	67.1	64.1	55.1
11:24:45 PM No	62.4	69.9	66.6	55
11:25:45 PM No	63.5	70	66.4	58.9
11:26:45 PM No	71.8	83.4	76.1	58.7
	66.4			

Location: R5 Date: 11/29/2018

Time	Overload	Leq	Lmax	L10	L90
12:18:58 PM	No	59.7	64.9	61.9	56.4
12:19:58 PM	No	61.5	69.5	63.9	57.9
12:20:58 PM	No	62.1	67.2	64.7	58.8
12:21:58 PM	No	60	65.8	62.9	57.1
12:22:58 PM	No	60.7	64.7	62.3	57.9
12:23:58 PM	No	63.3	69.7	66.4	59.5
12:24:58 PM	No	69.5	79.3	75.3	59
12:25:58 PM	No	61.2	64.9	63.5	59.2
12:26:58 PM	No	60.3	63.2	62.1	58.4
12:27:58 PM	No	63.4	75.5	65.2	58.7
12:28:58 PM	No	63.4	75.4	65.4	57.6
12:29:58 PM	No	66.9	76.5	71.5	58.2
12:30:58 PM	No	59.3	65.1	62.1	55.8
12:31:58 PM	No	65.4	73	69.5	57.9
12:32:58 PM	No	61.2	69.2	64.4	57.7
		63.6			

Time Overload	Leq	Lmax	L10	L90
11:49:49 PM No	54.4	58	55.7	53.4
11:50:49 PM No	57.8	66.1	60.7	54.2
11:51:49 PM No	54.3	58.5	55.7	53.3
11:52:49 PM No	55.2	59.5	56.3	54
11:53:49 PM No	54.6	57.3	55.8	53.5
11:54:49 PM No	54.8	63.4	56.1	52.6
11:55:49 PM No	56.3	63.9	59.4	53.4
11:56:49 PM No	55.5	61.9	57	53.9
11:57:49 PM No	55.8	62.2	57.6	53.4
11:58:49 PM No	57.2	67.6	58.7	53.3
11:59:49 PM No	56.1	64	57.3	53.7
12:00:49 AM No	53.5	55.3	54.3	52.8
12:01:49 AM No	54	57.2	55.2	52.8
12:02:49 AM No	57	64.1	59.9	54.2
12:03:49 AM No	54.2	56.5	55.3	53.2
	55.6			

Location: R6 Date: 11/29/2018

Time Overload	Leq	Lmax	L10	L90
12:41:26 PM No	75.5	84.7	78.8	71.5
12:42:26 PM No	81.3	94	85.4	72.4
12:43:26 PM No	74.5	76.9	75.5	73
12:44:26 PM No	72.5	78.6	75	69.5
12:45:26 PM No	73.9	80.2	75.9	71.5
12:46:26 PM No	75.8	83	78.1	72.9
12:47:26 PM No	74.1	77.1	75.9	70.9
12:48:26 PM No	72.2	76.7	74.5	68.6
12:49:26 PM No	74	78	76.2	69.9
12:50:26 PM No	72.3	78.9	74	70
12:51:26 PM No	71.9	76.4	73.8	68.5
12:52:26 PM No	74	77.5	75.9	71.4
12:53:26 PM No	74.1	80.4	75.7	71.8
12:54:26 PM No	77.5	83.3	80.3	74.7
12:55:26 PM No	75.5	80.7	77.6	72.6
	75.4			

Time Overload	Leq	Lmax	L10	L90
12:10:37 AM No	72.5	77.4	76.1	61.4
12:11:37 AM No	71.9	78	76.8	61.9
12:12:37 AM No	73.5	82.5	77.9	54.3
12:13:37 AM No	70.1	76.5	74.4	56.8
12:14:37 AM No	68.9	74.2	72.9	60.8
12:15:37 AM No	69.1	77	74	58.6
12:16:37 AM No	68.1	76.1	72.7	58.4
12:17:37 AM No	70.5	78.3	75.2	56.9
12:18:37 AM No	70.5	75.5	73.8	59.9
12:19:37 AM No	68.6	74.8	73	59.8
12:20:37 AM No	69.6	74.7	73.2	64
12:21:37 AM No	72.1	78.6	75.8	61.5
12:22:37 AM No	67.4	73.4	72.1	60.7
12:23:37 AM No	73.2	78.7	77.2	61.5
12:24:37 AM No	69.1	73.9	72.6	61.9
	70.7			

Location: R4 Date: 11/29/2018

11:38:16 PM No

11:39:16 PM No

11:40:16 PM No

11:41:16 PM No

11:42:16 PM No

11:43:16 PM No

11:44:16 PM No

Time	Overload	Leq	Lmax	L10	L90
11:50:09 AM	No	70.8	80	74.9	64.6
11:51:09 AM	No	70.4	74.2	72.7	67.5
11:52:09 AM	No	75.4	83	79.3	67.5
11:53:09 AM	No	69	72.4	70.6	66.6
11:54:09 AM	No	69.7	72.9	71.8	67.9
11:55:09 AM	No	75.2	83.3	81.1	68
11:56:09 AM	No	67.9	70.9	69.2	66.1
11:57:09 AM	No	71.9	81.5	77.7	66.2
11:58:09 AM	No	70.7	80.4	74.8	65
11:59:09 AM	No	69.3	75.4	71.6	65
12:00:09 PM	No	72	79.8	78	66.5
12:01:09 PM	No	76.3	83.8	81.8	66.3
12:02:09 PM	No	71.2	78.2	73.8	68.8
12:03:09 PM	No	73.8	80.4	79.4	68.9
12:04:09 PM	No	73	81.8	75.1	68.9
		72.5			
Time	Overload	Leq	Lmax	L10	L90
11:30:16 PM	No	64.1	71.7	66.6	60
11:31:16 PM	No	63.1	70.4	66.4	56.6
11:32:16 PM	No	67.3	73.8	71	59.7
11:33:16 PM	No	67.7	71.9	70.1	63.8
11:34:16 PM	No	65	70.8	67.6	60.3
11:35:16 PM	No	63	69	67.5	58.1
11:36:16 PM	No	65.1	75.5	69.7	58.2
11:37:16 PM	No	64.5	74.6	66.7	57.7

61.3

63.9

65.3

62.3

63.6

65.5

64.2

64.7

66.4

70.6

73.2

70.7

72.6

69.7

69

64.5

67.3

68.5

66.3

67.8

69.1

67.8

58

59

61.8

57.8

56.5

58.8

60.4

Construction Noise & Vibration Calculations

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	25	0
Loader	1	79	40%	25	0
Air Compressor	2	78	40%	50	0
Concrete Saw	1	90	20%	50	0
Crane	1	81	16%	75	0
	6				
Receptor:	R1				
Results:					
1-	hour Leq:	90.7			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	25	0
Excavator	1	81	40%	25	0
Plate Compactor	1	83	20%	50	0
Crane	1	81	16%	50	0
Excavator	1	81	40%	75	0
	5				
Receptor:	R1				
Results:					
	1-hour Leq:	86.9			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	25	0
Plate Compactor	1	83	20%	25	0
Crane	1	81	16%	50	0
Cement & Mortar Mixer	1	80	50%	50	0
Concrete Pump	2	81	20%	75	0
Welders	1	74	40%	75	0
Crane	1	81	16%	100	0
Air Compressor	1	78	40%	100	0
	0				
Recentor:	P1				
ivecebioi.					
Results:					
	1-hour Leq:	90.3			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	25	0
Tractor/Loader/Backhoe	e 1	79	40%	25	0
Welders	1	74	40%	50	0
Air Compressor	1	78	40%	50	0
Material Lift	1	83	40%	75	0
Forklift	2	75	20%	75	0
Crane	1	81	16%	100	0
Welders	1	74	40%	100	0
Air Compressor	1	78	40%	125	0
	10				
Receptor:	R1				
Results:					
	1-hour Leq:	84.7			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	25	0
Tractor/Loader/Backhoe	1	79	40%	25	0
Skid Steer Loader	1	79	40%	50	0
Paving Equipment	1	77	50%	50	0
Cement & Mortar Mixer	1	80	50%	75	0
December	5				
Receptor:	R 1				
Results:					
	1-hour Leq:	84.6			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	80	0
Loader	1	79	40%	80	0
Air Compressor	2	78	40%	105	0
Concrete Saw	1	90	20%	105	0
Crane	1	81	16%	130	0
	6				
Receptor:	R2				
Results:					
1	-hour Leq:	81.8			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	80	0
Excavator	1	81	40%	80	0
Plate Compactor	1	83	20%	105	0
Crane	1	81	16%	105	0
Excavator	1	81	40%	130	0
	5				
Receptor:	R2				
Results:					
	1-hour Leq:	77.8			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	80	0
Plate Compactor	1	83	20%	80	0
Crane	1	81	16%	105	0
Cement & Mortar Mixer	· 1	80	50%	105	0
Concrete Pump	2	81	20%	130	0
Welders	1	74	40%	130	0
Crane	1	81	16%	155	0
Air Compressor	1	78	40%	155	0
	9				
Receptor:					
-					
Results:					
	1-hour Leq:	80.9			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	80	0
Tractor/Loader/Backhoe	e 1	79	40%	80	0
Welders	1	74	40%	105	0
Air Compressor	1	78	40%	105	0
Material Lift	1	83	40%	130	0
Forklift	2	75	20%	130	0
Crane	1	81	16%	155	0
Welders	1	74	40%	155	0
Air Compressor	1	78	40%	155	0
	10				
Receptor:	R2				
Results:					
	1-hour Leq:	76.8			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	80	0
Tractor/Loader/Backhoe	1	79	40%	80	0
Skid Steer Loader	1	79	40%	105	0
Paving Equipment	1	77	50%	105	0
Cement & Mortar Mixer	1	80	50%	130	0
Receptor:	5 R2				
Results: 1	-hour Leq:	76.1			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	125	0
Loader	1	79	40%	125	0
Air Compressor	2	78	40%	150	0
Concrete Saw	1	90	20%	150	0
Crane	1	81	16%	150	0
	6				
Receptor:	R3				
Results:					
1-	hour Leq:	78.3			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	125	0
Excavator	1	81	40%	125	0
Plate Compactor	1	83	20%	150	0
Crane	1	81	16%	150	0
Excavator	1	81	40%	150	0
	5				
Receptor:	R3				
Results:					
	1-hour Leq:	74.5			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	125	0
Plate Compactor	1	83	20%	125	0
Crane	1	81	16%	150	0
Cement & Mortar Mixer	1	80	50%	150	0
Concrete Pump	2	81	20%	150	0
Welders	1	74	40%	150	0
Crane	1	81	16%	150	0
Air Compressor	1	78	40%	150	0
	g				
Recentor:	[°] R3				
Neceptor.	73				
Results:					
	1-hour Leq:	77.6			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	125	0
Tractor/Loader/Backhoe	1	79	40%	125	0
Welders	1	74	40%	150	0
Air Compressor	1	78	40%	150	0
Material Lift	1	83	40%	150	0
Forklift	2	75	20%	150	0
Crane	1	81	16%	150	0
Welders	1	74	40%	150	0
Air Compressor	1	78	40%	150	0
	10				
Decenter	10				
Receptor:	K3				
Results:					
	1-hour Leq:	74.6			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	125	0
Tractor/Loader/Backhoe	1	79	40%	125	0
Skid Steer Loader	1	79	40%	150	0
Paving Equipment	1	77	50%	150	0
Cement & Mortar Mixer	1	80	50%	150	0
	5				
Receptor:	R3				
Results:					
	1-hour Leq:	73.0			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	110	5
Loader	1	79	40%	110	5
Air Compressor	2	78	40%	135	5
Concrete Saw	1	90	20%	135	5
Crane	1	81	16%	160	5
	6				
Receptor:	R4				
Results:					
	1-hour Leq:	74.3			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	110	5
Excavator	1	81	40%	110	5
Plate Compactor	1	83	20%	135	5
Crane	1	81	16%	135	5
Excavator	1	81	40%	160	5
	5				
Receptor:	R4				
Results:					
	1-hour Leq:	70.3			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	110	5
Plate Compactor	1	83	20%	110	5
Crane	1	81	16%	135	5
Cement & Mortar Mixer	1	80	50%	135	5
Concrete Pump	2	81	20%	160	5
Welders	1	74	40%	160	5
Crane	1	81	16%	160	5
Air Compressor	1	78	40%	160	5
Description	9				
Receptor:	R4				
Results:					
	1-hour Leq:	73.4			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	110	5
Tractor/Loader/Backhoe	e 1	79	40%	110	5
Welders	1	74	40%	135	5
Air Compressor	1	78	40%	135	5
Material Lift	1	83	40%	160	5
Forklift	2	75	20%	160	5
Crane	1	81	16%	160	5
Welders	1	74	40%	160	5
Air Compressor	1	78	40%	160	5
	10				
Receptor:	R4				
Results:					
	1-hour Leq:	69.8			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	110	5
Tractor/Loader/Backhoe	1	79	40%	110	5
Skid Steer Loader	1	79	40%	135	5
Paving Equipment	1	77	50%	135	5
Cement & Mortar Mixer	1	80	50%	160	5
	5				
Receptor:	R4				
Results:					
1	-hour Leq:	68.7			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	230	0
Loader	1	79	40%	230	0
Air Compressor	2	78	40%	230	0
Concrete Saw	1	90	20%	230	0
Crane	1	81	16%	230	0
	6				
Receptor:	R5				
Results					
1 ⁻	-hour Leq:	73.8			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	230	0
Excavator	1	81	40%	230	0
Plate Compactor	1	83	20%	230	0
Crane	1	81	16%	230	0
Excavator	1	81	40%	230	0
	5				
Receptor:	R5				
Results:					
	1-hour Leq:	70.0			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	230	0
Plate Compactor	1	83	20%	230	0
Crane	1	81	16%	230	0
Cement & Mortar Mixer	· 1	80	50%	230	0
Concrete Pump	2	81	20%	230	0
Welders	1	74	40%	230	0
Crane	1	81	16%	230	0
Air Compressor	1	78	40%	230	0
	9				
Receptor:	[°] R5				
Decultor					
Results:					
	1-hour Leq:	72.9			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	230	0
Tractor/Loader/Backhoe	e 1	79	40%	230	0
Welders	1	74	40%	230	0
Air Compressor	1	78	40%	230	0
Material Lift	1	83	40%	230	0
Forklift	2	75	20%	230	0
Crane	1	81	16%	230	0
Welders	1	74	40%	230	0
Air Compressor	1	78	40%	230	0
	10				
Receptor:	R5				
Results:					
	1-hour Leq:	70.5			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	230	0
Tractor/Loader/Backhoe	1	79	40%	230	0
Skid Steer Loader	1	79	40%	230	0
Paving Equipment	1	77	50%	230	0
Cement & Mortar Mixer	1	80	50%	230	0
Receptor:	R5				
Results:					
	1-hour Leq:	68.8			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	420	0
Loader	1	79	40%	420	0
Air Compressor	2	78	40%	420	0
Concrete Saw	1	90	20%	420	0
Crane	1	81	16%	420	0
	6				
Receptor:	<i>R</i> 6				
Results:					
1-	hour Leq:	68.5			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	420	0
Excavator	1	81	40%	420	0
Plate Compactor	1	83	20%	420	0
Crane	1	81	16%	420	0
Excavator	1	81	40%	420	0
	5				
Receptor:	R 6				
Results:					
1	-hour Leq:	64.8			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	420	0
Plate Compactor	1	83	20%	420	0
Crane	1	81	16%	420	0
Cement & Mortar Mixer	· 1	80	50%	420	0
Concrete Pump	2	81	20%	420	0
Welders	1	74	40%	420	0
Crane	1	81	16%	420	0
Air Compressor	1	78	40%	420	0
Receptor:	9 R6				
Results:					
	1-hour Leq:	67.7			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	420	0
Tractor/Loader/Backhoe	e 1	79	40%	420	0
Welders	1	74	40%	420	0
Air Compressor	1	78	40%	420	0
Material Lift	1	83	40%	420	0
Forklift	2	75	20%	420	0
Crane	1	81	16%	420	0
Welders	1	74	40%	420	0
Air Compressor	1	78	40%	420	0
_	10				
Receptor:	R 6				
Results:					
	1-hour Leq:	65.2			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	420	0
Tractor/Loader/Backhoe	1	79	40%	420	0
Skid Steer Loader	1	79	40%	420	0
Paving Equipment	1	77	50%	420	0
Cement & Mortar Mixer	1	80	50%	420	0
	5				
Receptor:	R6				
Results:					
1	-hour Leq:	63.5			

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	280	10
Loader	1	79	40%	280	10
Air Compressor	2	78	40%	280	10
Concrete Saw	1	90	20%	280	10
Crane	1	81	16%	280	10
	6				
Description	0 57				
Receptor:	R/				
Results:	-hour Leq:	62.0			

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	280	10
Excavator	1	81	40%	280	10
Plate Compactor	1	83	20%	280	10
Crane	1	81	16%	280	10
Excavator	1	81	40%	280	10
Receptor:	5 R7				
Results					
Nesuits.	1-hour Leq:	58.3			

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	280	10
Plate Compactor	1	83	20%	280	10
Crane	1	81	16%	280	10
Cement & Mortar Mixer	1	80	50%	280	10
Concrete Pump	2	81	20%	280	10
Welders	1	74	40%	280	10
Crane	1	81	16%	280	10
Air Compressor	1	78	40%	280	10
	Q				
Receptor:	[~] <i>R</i> 7				
Poculter					
Nesulis.					
	1-nour Leq:	61.2			

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	280	10
Tractor/Loader/Backhoe	e 1	79	40%	280	10
Welders	1	74	40%	280	10
Air Compressor	1	78	40%	280	10
Material Lift	1	83	40%	280	10
Forklift	2	75	20%	280	10
Crane	1	81	16%	280	10
Welders	1	74	40%	280	10
Air Compressor	1	78	40%	280	10
	10				
Receptor:	R7				
Results:					
	1-hour Leq:	58.7			

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane	1	81	16%	280	10
Tractor/Loader/Backhoe	e 1	79	40%	280	10
Skid Steer Loader	1	79	40%	280	10
Paving Equipment	1	77	50%	280	10
Cement & Mortar Mixer	1	80	50%	280	10
Recentor:	5 R7				
Results:					
	1-hour Leq:	57.0			

Construction Vibration Impacts

Reference Levels at 25 feet are based on FTA, 2006 (Transit Noise and Vibration Impact Assessment)							
Calculations using FTA procedure with	n=	1.5 for structure at 25 feet for further					
		1.5 For structure at distances closer than 25 feet (per Caltrans, 2004)					

ON-SITE CONSTRUCTION ACTIVITIES

Table 1: Construction Equipment Vibration Levels (PPV) - Building Damages

		Estimated Vibration Levels at nearest off-site building structures (distance in feet), PPV							
	Reference Vibration Levels at 25	Commercial building to the North	Palladium Theater	Multi-story Residential building to the east	6-story Residential building to the west	Palladium Residences			
Equipment	ft., PPV	60	70	230	80	15			
Large Bulldozer	0.089	0.024	0.019	0.003	0.016	0.192			
Caisson Drilling	0.089	0.024	0.019	0.003	0.016	0.192			
Loaded Trucks	0.076	0.020	0.016	0.003	0.013	0.164			
Jackhammer	0.035	0.009	0.008	0.001	0.006	0.075			
Small bulldozer	0.003	0.001	0.001	0.000	0.001	0.007			
Significance T	hreshold, PPV	0.3	0.12	0.5	0.5	0.5			

Table 2: Construction Equipment Vibration Levels (VdB) - Human Annoyance

	Reference Vibration	Esti	mated Vibrati	on Levels at O	ff-Site Recepto	ors (at note dis	tance in feet),	VdB
	Levels at 25	R1	R2	R3	R4	R5	R6	R7
Equipment	ft., VdB	25	80	125	110	230	420	280
Large Bulldozer	87	87	72	66	68	58	50	56
Caisson Drilling	87	87	72	66	68	58	50	56
Loaded Trucks	86	86	71	65	67	57	49	55
Jackhammer	79	79	64	58	60	50	42	48
Small bulldozer	58	58	43	37	39	29	21	27
Significance 1	Threshold, VdB	72	72	72	65	72	72	65

OFF-SITE CONSTRUCTION HAUL TRUCKS

Table 3: Off-Site Haul Trucks - Building Damage

	Reference Vibration		Estima	ted Vibration I	evels at noted	l distance in fe	et, PPV	
Equipment	Levels at 50 ft., PPV	25						
Typical road surface	0.00565	0.016						
Significance T	hreshold, PPV	0.12						

Ref. Levels based on FTA Figure 7-3 (converted from VdB to PPV)

Table 4: Off-Site Haul Trucks - Human Annoyance

	Reference Vibration		Estimat	ted Vibration I	evels at noted.	l distance in fe	et, VdB	
Equipment	Levels at 50 ft., VdB	25						
Typical road surface	63	72						
Significance T	hreshold, VdB	72						

Ref. Levels based on FTA Figure 7-3

INPUT: ROADWAYS	Mode	ra Argyle	ſ		1						
Eyestone Environmental					17 January 2	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Modera A	Argyle					a State hi	ghway agend	y substant	iates the u	se
RUN:	Trucks -	Demolitior	n _.				of a differ	ent type with	the approv	val of FHW	A
Roadway		Points				_					
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.00) Signal	0.00	100	Average	
		point2	2	1,000.0	0.0	0.00)				

INPUT: TRAFFIC FOR LAeq1h Volumes							Modera A	Argyle				
Eyestone Environmental				17 Ja	nuary 20	19						
SKB				TNM	2.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Modera Ar	gyle										
RUN:	Trucks - De	emolition										
Roadway	Points											
Name	Name	No.	Segme	nt								
			User 1		User 2		User 3	t	User 4		<unkno< th=""><th>wn></th></unkno<>	wn>
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1									
	point2		2									

INPUT: RECEIVERS				,				Modera	Argyle			
Eyestone Environmental						17 Januar	y 2019					
SKB						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Moder	a Argy	le		1							
RUN:	Trucks	s - Den	nolition	,								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Level	s and Cr	iteria		Active
		ĺ	X	Y	Z	above	Existing	Impact (Criteria	NR		in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal		Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
Along Argyle and Selma	1	1	250.0	25.0	0.00	4.92	0.00		0	0.0	0.0	Y
Along Gower	13	1	250.0	30.0	0.00	4.92	0.00		0	0.0	0.0	Y

RESULTS: SOUND LEVELS							i	Modera Ar	gyle			- J		
Evestone Environmental								17 Januar	v 2019					
SKB								TNM 2.5	, _0.0					
									d with TNN	1 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Modera	Argyle											
RUN:		Trucks	- Demoliti	on										
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement type	e shall be use	ed unles	S	
									a State hi	ghway agenc	y substantiat	es the us	se	
ATMOSPHERICS:		68 deg	F, 50% RI	4					of a differ	ent type with	approval of I	FHWA.		
Receiver					-				1					
lame	No.	#DUs	Existing	No Barrier						With Barrier				
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calc	culated
								Sub'l Inc					min	us
													Goa	
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
Along Argyle and Selma	1	1	0.0	58.1		0	58.1	0	Snd Lvl	58.1	0.0	D	0	0.0
Along Gower	13	1	0.0	57.3	3	0	57.3	8 0	Snd Lvl	57.3	3 0.0	C	0	0.0
Dwelling Units		# DUs	Noise Re	eduction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		2	0.0	0.0)	0.0)							
All Impacted		2	0.0	0.0)	0.0)							
All that meet NR Goal		2	0.0	0.0)	0.0)							

INPUT: ROADWAYS								Мос	lera Argyle			
Evestone Environmental						17 January 2	2019					
SKB						TNM 2.5						
INPUT: ROADWAYS								Average	e pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Modera A	rgyle						a State	highway agend	y substant	iates the u	se
RUN:	Trucks -	Grading						of a diff	erent type with	the approv	val of FHW	A
Roadway		Points										
Name	Width	Name	No.	Coor	dinates	(pavement)		Flow Co	ontrol		Segment	
				Х		Y	Z	Control	Speed	Percent	Pvmt	On
				Ì				Device	Constraint	Vehicles	Туре	Struct?
				ĺ						Affected		
	ft			ft		ft	ft		mph	%		
Haul Route	12.0	point1		1	0.0	0.0	0.0	0 Signal	0.00	100	Average	
		point2		2	1,000.0	0.0	0.0	00				

INPUT: TRAFFIC FOR LAeq1h Volumes						N	Iodera Ai	gyle				
Eyestone Environmental				17 Jar	uary 20)19						
SKB				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Modera Arg	gyle	1		1							
RUN:	Trucks - G	rading										
Roadway	Points							-				
Name	Name	No.	Segmer	nt								-
			Autos		MTruc	ks	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	v	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 16	35		0 0	21	25		0 0	0 0	0
	point2		2									

INPUT: RECEIVERS									Modera	Argyle			
Eyestone Environmental							17 Januar	y 2019					
SKB							TNM 2.5						
INPUT: RECEIVERS													
PROJECT/CONTRACT:	Mode	ra Argy	/le			1							
RUN:	Truck	s - Gra	ding			_							
Receiver													
Name	No.	#DUs	Coordinates	s (grou	nd)		Height	Input Sou	nd Level	s and Cr	iteria		Active
			X	Y		Z	above	Existing	Impact	Criteria	NR		in
							Ground	LAeq1h	LAeq1h	Sub'l	Goal		Calc.
			ft	ft		ft	ft	dBA	dBA	dB	dB		
Along Argyle and Selma	1	1	250.0	2	25.0	0.00	0 4.92	0.00		0	0.0	0.0	Y
Along Gower	13	1	250.0)	30.0	0.00) 4.92	0.00		0	0.0	0.0	Y

RESULTS: SOUND LEVELS		1		·			Modera Ar	gyle				
Evestone Environmental							17 Januar	v 2019				
SKB							TNM 2.5	•				
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Modera	Argyle									
RUN:		Trucks	- Grading									
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement typ	e shall be use	ed unless	
								a State hi	ghway agend	y substantiat	es the use	э
ATMOSPHERICS:		68 deg	F, 50% RH	ł				of a differ	ent type with	approval of I	HWA.	
Receiver					_							
Name	No.	#DUs	Existing	No Barrier					With Barrie	•		
		LAeq1h		LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
			ĺ				Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Along Argyle and Selma	1	1	0.0	67.4	4	0 67.4	4 0	Snd Lvl	67.4	4 0.0)	0 0.(
Along Gower	13	3 1	0.0	66.	7	0 66.7	7 0	Snd Lvl	66.	7 0.0)	0 0.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		2	0.0	0.0	0 (0.0						
All Impacted		2	0.0	0.0	0 0	0.0						
All that meet NR Goal		2	0.0	0.0	0 0	0.0						

INPUT: ROADWAYS							Mode	ra Argyle			
Evestone Environmental					17 January 2	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be i	used unles	S
PROJECT/CONTRACT:	Modera A	Argyle					a State hi	ghway agenc	y substant	iates the u	se
RUN:	Trucks -	Foundatio	n				of a differ	ent type with	the approv	al of FHW	4
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.00) Signal	0.00	100	Average	
		point2	2	2 1,000.0	0.0	0.00)				

INPUT: TRAFFIC FOR LAeq1h Volumes						N	Iodera Ai	gyle				
Eyestone Environmental				17 Jar	uary 20)19						
SKB				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Modera Arg	gyle										
RUN:	Trucks - Fo	oundation)									
Roadway	Points							-				
Name	Name	No.	Segmer	nt								
			Autos		MTruc	ks	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 80	35	1	0 0	4	25		0 0	0 0	0
	point2	2	2									

INPUT: RECEIVERS							Modera	Argyle				
Eyestone Environmental						17 Januar	y 2019					
SKB						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Moder	ra Argy	le		1							
RUN:	Trucks	s - Fou	ndation									
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Level	s and Cr	iteria		Active
			X	Y	Z	above	Existing	Impact (Criteria	NR		in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal		Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
Along Argyle and Selma	1	1	250.0	25.0	0.00	4.92	0.00		0	0.0	0.0	Y
Along Gower	13	1	250.0	30.0	0.00	4.92	0.00		0	0.0	0.0	Y

RESULTS: SOUND LEVELS		1					Modera Ar	gyle				
Eyestone Environmental							17 Januar	y 2019				
SKB							TNM 2.5	-				
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Modera	Argyle									
RUN:		Trucks	- Foundati	on								
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement typ	e shall be use	ed unless	
								a State hi	ghway agenc	y substantiat	es the use)
ATMOSPHERICS:		68 deg	F, 50% RH	1				of a differ	ent type with	approval of I	FHWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	,		
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Along Argyle and Selma	1	1	0.0	62.	В	0 62.8	3 0	Snd Lvl	62.8	3 0.0	כ	0 0.0
Along Gower	13	3 1	0.0	62.0	0	0 62.0	0 C	Snd Lvl	62.0) 0.0	נ	0.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		2	0.0	0.0	0 0	0.0						
All Impacted		2	0.0	0.0	0 0	0.0						
All that meet NR Goal		2	0.0	0.0	0 0).0						

INPUT: ROADWAYS			1				Mode	era Argyle			1
Eyestone Environmental					17 January 2	2019					
SKB					I NIM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	5
PROJECT/CONTRACT:	Modera A	Argyle					a State h	ighway agend	y substant	iates the u	se
RUN:	Trucks -	Building Co	onstruct	ion			of a diffe	rent type with	the approv	al of FHW	A.
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	ntrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0)	0.00 Signal	0.00	100	Average	
		point2	2	1,000.0	0.0		0.00				

INPUT: TRAFFIC FOR LAeq1h Volumes	N	Iodera Ai	rgyle	1		1	1					
Eyestone Environmental				17 Jar	nuary 201	9						
SKB				TNM 2	.5		I					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Modera Arg	yle	1		1							
RUN:	Trucks - Bu	rucks - Building Construction										
Roadway	Points									-		
Name	Name	No.	Segmen	nt								
			Autos		MTruck	S	HTrucks	3	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1	1	I 120	35	c C) 0	0 4	25	0) 0	0	0 0
	point2	2	2									

INPUT: RECEIVERS			1	[1		Modera A	rgyle			
Eyestone Environmental						17 Januar	y 2019					
SKB						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Mode	ra Argy	le		1							
RUN:	Truck	s - Buil	ding Constru	ction								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Cri	iteria	Ī	Active
			X	Y	Z	above	Existing	Impact C	riteria	NR		in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal		Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
Along Argyle and Selma	1	1	250.0	25.0	0.00	4.92	0.00) (C	0.0	0.0	Y
Along Gower	13	3 1	250.0	30.0	0.00	4.92	0.00) (0	0.0	0.0	Y

RESULTS: SOUND LEVELS		- [Modera Ar	gyle					
Evestone Environmental								17 Januar	v 2019					
SKB								TNM 2.5	,					
									d with TNN	1 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Modera	Argyle											
RUN:		Trucks	- Building	Construction	n									
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement type	e shall be use	ed unles	s	
									a State hi	ghway agenc	y substantiat	es the us	se	
ATMOSPHERICS:		68 deg	F, 50% RI	н					of a differ	ent type with	approval of I	FHWA.		
Receiver									1					
Name	No.	#DUs	Existing	No Barrier						With Barrier				
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	1	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calc	ulated
								Sub'l Inc					min	us
													Goa	
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
Along Argyle and Selma	1	1	0.0	0 63.7	7	0	63.7	0	Snd Lvl	63.7	0.0)	0	0.0
Along Gower	13	1	0.0	0 62.9	9	0	62.9	9 0	Snd Lvl	62.9	0.0	0	0	0.0
Dwelling Units		# DUs	Noise Re	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		2	0.0	0.0)	0.0								
All Impacted		2	0.0	0.0)	0.0	1							
All that meet NR Goal		2	0.0	0.0)	0.0								

INPUT: ROADWAYS							Mode	ra Argyle			
Eyestone Environmental					17 January 2	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Modera A	Argyle					a State hi	ghway agenc	y substant	iates the u	se
RUN:	Trucks -	Finishing					of a differ	ent type with	the approv	al of FHW	A
Roadway		Points				_					
Name	Width	Name	No.	Coordinates	(pavement)	-	Flow Con	trol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.00) Signal	0.00	100	Average	1
		point2	2	1,000.0	0.0	0.00)				

INPUT: TRAFFIC FOR LAeq1h Volumes	N	Iodera Ai	rgyle									
Eyestone Environmental				17 Jar	uary 20)19						
SKB				TNM 2	.5		1					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Modera Arg	gyle										
RUN:	Trucks - Fi	nishing										
Roadway	Points			_								
Name	Name	No.	Segmer	nt								
			Autos		MTruc	ks	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 40	35	i	0 0	3	25		0 0	0 0	0
	point2		2									

INPUT: RECEIVERS								1	Modera A	rgyle		
Eyestone Environmental							17 Januar	y 2019				
SKB							TNM 2.5					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Mode	ra Argy	le			I						
RUN:	Truck	s - Fini	shing	1								
Receiver												
Name	No.	#DUs	Соо	rdinates (gro	und)		Height	Input Sou	nd Levels	and Criteria	a	Active
			Х	Y		Z	above	Existing	Impact Cr	iteria	NR	in
							Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft		ft	ft	dBA	dBA	dB	dB	
Along Argyle and Selma	1	1		250.0	25.0	0.0	0 4.92	0.00	0	0.0	0.0	Y
Along Gower	13	6 1		250.0	30.0	0.0	0 4.92	0.00	C	0.0	0.0	Y

RESULTS: SOUND LEVELS		1					Modera Ar	gyle				
Eyestone Environmental							17 Januar	y 2019				
SKB							TNM 2.5	•				
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Modera	Argyle									
RUN:		Trucks	- Finishing	9								
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement typ	e shall be use	ed unless	
								a State hi	ghway agend	y substantiat	es the use	3
ATMOSPHERICS:		68 deg	F, 50% RH	ł				of a differ	ent type with	approval of I	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrie	•		
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
			ĺ				Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Along Argyle and Selma	1	1	0.0	60.8	8	0 60.8	3 0	Snd Lvl	60.8	3 0.0)	0 0.0
Along Gower	13	3 1	0.0	60.0	0	0 60.0	0 C	Snd Lvl	60.0	0.0)	0 0.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		2	0.0	0.0	0 ().0						
All Impacted		2	0.0	0.0	0 (0.0						
All that meet NR Goal		2	0.0	0.0	0 (0.0						

Construction Vibration Impacts

Reference Levels at 25 feet are based on FTA, 2006 (Transit Noise and Vibration Impact Assessment)							
Calculations using FTA procedure with	n=	1.5 for structure at 25 feet for further					
		1.5 For structure at distances closer than 25 feet (per Caltrans, 2004)					

ON-SITE CONSTRUCTION ACTIVITIES

Table 1: Construction Equipment Vibration Levels (PPV) - Building Damages

		Estimate	Estimated Vibration Levels at nearest off-site building structures (distance in feet), PPV								
	Reference Vibration Levels at 25	Commercial building to the North	Palladium Theater	Multi-story Residential building to the east	6-story Residential building to the west	Palladium Residences					
Equipment	ft., PPV	60	70	230	80	15					
Large Bulldozer	0.089	0.024	0.019	0.003	0.016	0.192					
Caisson Drilling	0.089	0.024	0.019	0.003	0.016	0.192					
Loaded Trucks	0.076	0.020	0.016	0.003	0.013	0.164					
Jackhammer	0.035	0.009	0.008	0.001	0.006	0.075					
Small bulldozer	0.003	0.001	0.001	0.000	0.001	0.007					
Significance T	hreshold, PPV	0.3	0.12	0.5	0.5	0.5					

Table 2: Construction Equipment Vibration Levels (VdB) - Human Annoyance

	Reference Vibration	Esti	Estimated Vibration Levels at Off-Site Receptors (at note distance in feet), VdB							
	Levels at 25	R1	R2	R3	R4	R5	R6	R7		
Equipment	ft., VdB	25	80	125	110	230	420	280		
Large Bulldozer	87	87	72	66	68	58	50	56		
Caisson Drilling	87	87	72	66	68	58	50	56		
Loaded Trucks	86	86	71	65	67	57	49	55		
Jackhammer	79	79	64	58	60	50	42	48		
Small bulldozer	58	58	43	37	39	29	21	27		
Significance 1	Threshold, VdB	72	72	72	65	72	72	65		

OFF-SITE CONSTRUCTION HAUL TRUCKS

Table 3: Off-Site Haul Trucks - Building Damage

	Reference Vibration		Estima	ted Vibration I	evels at noted	l distance in fe	et, PPV	
Equipment	Levels at 50 ft., PPV	25						
Typical road surface	0.00565	0.016						
Significance T	0.12							

Ref. Levels based on FTA Figure 7-3 (converted from VdB to PPV)

Table 4: Off-Site Haul Trucks - Human Annoyance

	Reference Vibration		Estimat	ted Vibration I	evels at noted.	l distance in fe	et, VdB	
Equipment	Levels at 50 ft., VdB	25						
Typical road surface	63	72						
Significance T	72							

Ref. Levels based on FTA Figure 7-3

Operation Noise Calculations

Project Composite Noise Calculations (CNEL) Project: Modera Argyle Project

						Project	Ambient +	
Receptor	Ambient	Traffic ^a	Mechanical	Loading	Outdoor	Composite	Project	Increase
R1	59.4	53.0	49.0	42.3	55.5	58.1	61.8	2.4
R2	69.2	53.0	29.9	55.6	53.1	58.8	69.6	0.4
R3	71.7	55.8	28.6	37.3	59.4	61.0	72.1	0.4
R4	71.6	49.4	26.9	51.9	54.3	57.1	71.7	0.1
R5	63.3	49.9	31.8	22.1	53.2	 54.9	63.9	0.6
R6	76.8	53.9	30.8	46.0	40.1	54.7	76.8	0.0
R7	72.3	49.4	19.9	25.1	47.3	51.5	72.3	0.0

^a - traffic noise levels at each receptor is based on the traffic noise analysis for the roadway segment in front of the receptor.

		Traffic N	Traffic Noise Levels, CNEL						distance to	
			Existing +	Project	distance to		Existing +		Center	adj. for
Receptor	Roadway Segment	Existing	Project	Only	roadway, ft	Existing	Project	barrier	Line	distance
R1	Argyle	64.5	64.8	53.0	10	64.5	64.8	0	35	0.0
R2	Argyle	64.5	64.8	53.0	10	64.5	64.8	0	35	0.0
R3	Selma	64.9	65.4	55.8	10	64.9	65.4	0	30	0.0
R4	Argyle	65.7	65.8	49.4	10	65.7	65.8	0	35	0.0

Outdoor Mechanical Equipment Noise Calculations Project: Modera Argyle Project

	Hours of Operations									
	Estimated No	oise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to					
	Leq from SC	UNDPLAN	7pm)	10pm)	7am)					
Receptor	Leq	CNEL	12	3	9					
R1	42.3	49.0	42.3	42.3	42.3					
R2	23.2	29.9	23.2	23.2	23.2					
R3	21.9	28.6	21.9	21.9	21.9					
R4	20.2	26.9	20.2	20.2	20.2					
R5	25.1	31.8	25.1	25.1	25.1					
R6	24.1	30.8	24.1	24.1	24.1					
R7	13.2	19.9	13.2	13.2	13.2					

		Ambient +			
	Ambient	Project	Increase		Ambient +
Receptor	CNEL	(CNEL)	(CNEL)	ambient (Leq)	Project (Leq)
R1	59.4	59.8	0.4	54.6	54.8
R2	69.2	69.2	0.0	63.7	63.7
R3	71.7	71.7	0.0	65.9	65.9
R4	71.6	71.6	0.0	66.4	66.4
R5	63.3	63.3	0.0	55.6	55.6
R6	76.8	76.8	0.0	70.7	70.7
R7	72.3	72.3	0.0	64.7	64.7

Outdoor Noise Calculations

Project:

Modera Argyle Project

					Hours of Operations						
					Ld (7am to	Le (7pm to	Ln (10pm to				
	Estimated nois	7pm)	10pm)	7am)							
Receptor	Sound System	Occupants	Total, Leq	CNEL	9	3	4				
R1	50.1	46.3	51.6	55.5	50.4	51.6	48.1				
R2	48.7	39.5	49.2	53.1	48.0	49.2	45.7				
R3	54.9	46.7	55.5	59.4	54.3	55.5	52.0				
R4	50.0	39.8	50.4	54.3	49.2	50.4	46.9				
R5	44.7	47.5	49.3	53.2	48.1	49.3	45.8				
R6	35.1	29.8	36.2	40.1	35.0	36.2	32.7				
R7	43.2	30.3	43.4	47.3	42.2	43.4	39.9				

TOTAL COMBINED

			Ambient +		Project		
		Ambient	Project	Increase	Noise,	Ambient	Ambient +
Receptor	Project (CNEL)	(CNEL)	(CNEL)	(CNEL)	(Leq)	(Leq)	Project (Leq)
R1	55.5	59.4	60.9	1.5	51.6	54.6	56.4
R2	53.1	69.2	69.3	0.1	49.2	63.7	63.9
R3	59.4	71.7	71.9	0.2	55.5	65.9	66.3
R4	54.3	71.6	71.7	0.1	50.4	66.4	66.5
R5	53.2	63.3	63.7	0.4	49.3	55.6	56.5
R6	40.1	76.8	76.8	0.0	36.2	70.7	70.7
R7	47.3	72.3	72.3	0.0	43.4	64.7	64.7

Loading and Trash Compactor Noise Calculations Project: Modera Argyle Project

LOADING

Estimated Noise Levels, Leq from SOUNDPLAN			Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
Receptor	Leq	CNEL	3	3	0
R1	45.1	42.3	39.1	45.1	0.0
R2	58.4	55.6	52.4	58.4	0.0
R3	40.1	37.3	34.1	40.1	0.0
R4	54.7	51.9	48.7	54.7	0.0
R5	24.7	22.0	18.7	24.7	0.0
R6	48.8	46.0	42.8	48.8	0.0
R7	27.8	25.0	21.8	27.8	0.0

TOTAL COMBINED

			Ambient +				Ambient +
	Project	Ambient	Project	Increase	Project	daytime	Project
Receptor	CNEL	CNEL	(CNEL)	(CNEL)	Noise, (Leq)	ambient (Leq)	(Leq)
R1	42.3	59.4	59.5	0.1	45.1	55.4	55.8
R2	55.6	69.2	69.4	0.2	58.4	66.8	67.4
R3	37.3	71.7	71.7	0.0	40.1	70.0	70.0
R4	51.9	71.6	71.6	0.0	54.7	68.8	69.0
R5	22.1	63.3	63.3	0.0	24.7	63.6	63.6
R6	46.0	76.8	76.8	0.0	48.8	75.4	75.4
R7	25.1	72.3	72.3	0.0	27.8	72.5	72.5

Source	Id	
Source		
	dB(A)	
Receiver R1 Ld 22.4 dB(A)		
Mechanical	-7.6	
Mechanical	-7.4	
Mechanical	-7.6	
Mechanical	-7.4	
Mechanical	-7.6	
Mechanical	-7.4	
Mechanical	-7.6	
Mechanical	-7.5	
Mechanical	-7.6	
Mechanical	-7.5	
Mechanical	-7.6	
Mechanical	-7.5	
Mechanical	-7.6	
Mechanical	-7.5	
Mechanical	-7.7	
Mechanical	-7.5	
Mechanical	-7.7	
Mechanical	-7.5	
Mechanical	-7.7	
Mechanical	-7.5	
Mechanical	-7.7	
Mechanical	-7.5	
Mechanical	-7.7	
Mechanical	-7.6	
Mechanical	-7.7	
Mechanical	-7.6	
Mechanical	-7.8	
Mechanical	-7.6	
Mechanical	-7.8	
Mechanical	-7.6	
Mechanical	-7.8	
Mechanical	-7.6	
Mechanical	-7.8	
Mechanical	-7.7	
Mechanical	-7.8	
Mechanical	-7.7	
Mechanical	-7.9	
Mechanical	-7.7	
Mechanical	-7.9	
Mechanical	-7.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	-7.9	
Mechanical	-7.7	
Mechanical	-7.9	
Mechanical	-7.8	
Mechanical	-7.9	
Mechanical	-7.8	
Mechanical	-8.0	
Mechanical	-7.8	
Mechanical	3.7	
Mechanical	4.5	
Mechanical	3.6	
Mechanical	4.5	
Mechanical	5.2	
Mechanical	5.6	
Mechanical	5.2	
Mechanical	5.6	
Mechanical	3.6	
Mechanical	4.5	
Mechanical	3.6	
Mechanical	4.5	
Mechanical	3.6	
Mechanical	4.7	
Mechanical	3.2	
Mechanical	5.3	
Mechanical	3.3	
Mechanical	5.3	
Mechanical	2.9	
Mechanical	5.2	
Mechanical	3.7	
Mechanical	5.2	
Mechanical	3.7	
Mechanical	4.8	
Mechanical	3.6	
Mechanical	4.7	
Mechanical	3.5	
Mechanical	4.6	
Mechanical	3.5	
Mechanical	4.6	
Mechanical	3.4	
Mechanical	4.5	
Mechanical	3.3	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses		
Source		
	dB(A)	
Mechanical	4.4	
Mechanical	3.3	
Mechanical	4.4	
Mechanical	3.2	
Mechanical	4.3	
Mechanical	3.2	
Mechanical	4.2	
Mechanical	2.9	
Mechanical	4.2	
Mechanical	4.2	
Mechanical	5.2	
Mechanical	4.1	
Mechanical	5.2	
Mechanical	4.0	
Mechanical	5.0	
Mechanical	4.0	
Mechanical	4.9	
Mechanical	2.2	
Mechanical	4.5	
Mechanical	-3.8	
Mechanical	-3.9	
Mechanical	-3.8	
Mechanical	-3.7	
Mechanical	-3.9	
Mechanical	-3.8	
Mechanical	-4.1	
Mechanical	-4.0	
Mechanical	-4.3	
Mechanical	-4.2	
Mechanical	-4.5	
Mechanical	-4.5	
Mechanical	-4.9	
Mechanical	-4.7	
Mechanical	-5.1	
Mechanical	-4.7	
Mechanical	-5.3	
Mechanical	-5.0	
Mechanical	-5.5	
Mechanical	-5.2	
Mechanical	-5.7	
Mechanical	-5.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-5.7	
Mechanical	-5.7	
Mechanical	-5.9	
Mechanical	-5.9	
Mechanical	-6.1	
Mechanical	-6.1	
Mechanical	-6.3	
Mechanical	-6.4	
Mechanical	-6.6	
Mechanical	-6.6	
Mechanical	-6.8	
Mechanical	-6.8	
Mechanical	-7.0	
Mechanical	-7.0	
Mechanical	-7.2	
Mechanical	-7.2	
Mechanical	-7.3	
Mechanical	-7.4	
Mechanical	-7.5	
Mechanical	-7.5	
Mechanical	-7.6	
Mechanical	-7.6	
Mechanical	-7.7	
Mechanical	-7.7	
Mechanical	-7.8	
Mechanical	-7.9	
Mechanical	-8.0	
Mechanical	-2.5	
Mechanical	-1.2	
Mechanical	-2.0	
Mechanical	-1.0	
Mechanical	-2.0	
Mechanical	-1.2	
Mechanical	-3.3	
Mechanical	-2.6	
Mechanical	-3.4	
Mechanical	-2.8	
Mechanical	-3.6	
Mechanical	-2.9	
Mechanical	-3.7	
Mechanical	-3.1	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	ЬТ	
Source		
	dB(A)	
Mechanical	-3.8	
Mechanical	-3.2	
Mechanical	-3.9	
Mechanical	-3.2	
Mechanical	-4.9	
Mechanical	-4.4	
Mechanical	-5.0	
Mechanical	-4.6	
Mechanical	-5.2	
Mechanical	-4.8	
Mechanical	-5.4	
Mechanical	-4.9	
Mechanical	-3.8	
Mechanical	-5.1	
Mechanical	-3.9	
Mechanical	-5.2	
Mechanical	-3.9	
Mechanical	-5.2	
Receiver R1A Ld 21.8 dB(A)		
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.2	
Mechanical	-4.9	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-5.2	
Mechanical	-5.0	
	0.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses		
Source	La	
	dB(A)	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-5.3	
Mechanical	-5.0	
Mechanical	-5.3	
Mechanical	-5.1	
Mechanical	-5.3	
Mechanical	-5.1	
Mechanical	-5.4	
Mechanical	-5.1	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.5	
Mechanical	-5.2	
Mechanical	-5.5	
Mechanical	-5.3	
Mechanical	-5.5	
Mechanical	-5.3	
Mechanical	-5.6	
Mechanical	-5.4	
Mechanical	-5.7	
Mechanical	-5.5	
Mechanical	-5.7	
Mechanical	-5.5	
Mechanical	-5.8	
Mechanical	-5.6	
Mechanical	2.7	
Mechanical	3.2	
Mechanical	3.0	
Mechanical	3.2	
Mechanical	4.6	
Mechanical	4.9	
Mechanical	4.7	
Mechanical	5.0	
Mechanical	2.9	
Mechanical	3.6	
Mechanical	2.5	
Mechanical	3.5	
Mechanical	2.4	
Mechanical	3.4	
Mechanical	2.4	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses	ا ما	
Source		
	dB(A)	
Mechanical	3.0	
Mechanical	2.3	
Mechanical	2.9	
Mechanical	2.3	
Mechanical	2.8	
Mechanical	2.2	
Mechanical	2.7	
Mechanical	2.1	
Mechanical	2.5	
Mechanical	2.0	
Mechanical	2.3	
Mechanical	1.9	
Mechanical	2.1	
Mechanical	1.8	
Mechanical	2.1	
Mechanical	1.7	
Mechanical	1.8	
Mechanical	1.4	
Mechanical	1.7	
Mechanical	1.3	
Mechanical	1.6	
Mechanical	1.2	
Mechanical	1.5	
Mechanical	1.1	
Mechanical	1.4	
Mechanical	1.0	
Mechanical	1.3	
Mechanical	2.7	
Mechanical	1.2	
Mechanical	2.6	
Mechanical	1.1	
Mechanical	2.5	
Mechanical	2.6	
Mechanical	1.6	
Mechanical	2.6	
Mechanical	0.9	
Mechanical	2.5	
Mechanical	-2.2	
Mechanical	-2.0	
Mechanical	-2.4	
Mechanical	-2.2	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	La	
	dB(A)	
Mechanical	-2.5	
Mechanical	-2.3	
Mechanical	-2.7	
Mechanical	-2.5	
Mechanical	-2.9	
Mechanical	-2.6	
Mechanical	-3.0	
Mechanical	-2.8	
Mechanical	-3.2	
Mechanical	-3.0	
Mechanical	-3.3	
Mechanical	-3.1	
Mechanical	-3.5	
Mechanical	-3.3	
Mechanical	-3.6	
Mechanical	-3.5	
Mechanical	-3.8	
Mechanical	-3.6	
Mechanical	-3.9	
Mechanical	-3.8	
Mechanical	-4.1	
Mechanical	-3.9	
Mechanical	-4.2	
Mechanical	-4.1	
Mechanical	-4.4	
Mechanical	-4.2	
Mechanical	-4.5	
Mechanical	-4.4	
Mechanical	-4.7	
Mechanical	-4.5	
Mechanical	-4.8	
Mechanical	-4.7	
Mechanical	-4.9	
Mechanical	-4.8	
Mechanical	-5.1	
Mechanical	-5.0	
Mechanical	-5.2	
Mechanical	-5.1	
Mechanical	-5.3	
Mechanical	-5.2	
Mechanical	-5.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	ЬI	
Source		
Mechanical	-5.4	
Mechanical	-5.6	
Mechanical	-5.7	
Mechanical	-5.8	
Mechanical	1.0	
Mechanical	0.6	
Mechanical	0.8	
Mechanical	0.5	
Mechanical	0.1	
Mechanical	0.3	
Mechanical	-0.5	
Mechanical	-0.4	
Mechanical	-0.6	
Mechanical	-0.6	
Mechanical	-0.8	
Mechanical	-0.7	
Mechanical	-0.9	
Mechanical	-0.9	
Mechanical	-1.1	
Mechanical	-1.0	
Mechanical	-1.3	
Mechanical	-1.2	
Mechanical	-2.0	
Mechanical	-2.1	
Mechanical	-2.2	
Mechanical	-2.2	
Mechanical	-2.4	
Mechanical	-2.4	
Mechanical	-2.6	
Mechanical	-2.5	
Mechanical	-1.0	
Mechanical	-2.7	
Mechanical	-1.1	
Mechanical	-2.8	
Mechanical	-1.1	
Mechanical	-2.9	
Receiver R2 Ld 23.2 dB(A)		
Mechanical	-5.5	
Mechanical	-5.7	
Mechanical	-5.4	
Mechanical	-5.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-5.2	
Mechanical	-5.3	
Mechanical	-5.1	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-4.9	
Mechanical	-4.9	
Mechanical	-4.8	
Mechanical	-4.7	
Mechanical	-4.6	
Mechanical	-4.6	
Mechanical	-2.6	
Mechanical	-4.5	
Mechanical	-2.6	
Mechanical	-4.4	
Mechanical	-2.6	
Mechanical	-2.6	
Mechanical	-2.5	
Mechanical	-2.6	
Mechanical	-2.5	
Mechanical	-2.5	
Mechanical	-2.4	
Mechanical	-2.5	
Mechanical	-2.4	
Mechanical	-2.3	
Mechanical	-2.3	
Mechanical	-2.1	
Mechanical	-2.1	
Mechanical	-1.9	
Mechanical	-1.8	
Mechanical	-1.1	
Mechanical	-1.0	
Mechanical	-0.8	
Mechanical	-0.7	
Mechanical	0.0	
Mechanical	0.0	
Mechanical	0.8	
Mechanical	0.4	
Mechanical	1.1	
Mechanical	1.2	
Mechanical	1.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

-		
Source	Ld	
	dB(A)	
Mechanical	1.0	
Mechanical	2.0	
Mechanical	1.6	
Mechanical	-5.1	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.0	
Mechanical	-4.8	
Mechanical	-4.8	
Mechanical	-4.7	
Mechanical	-4.7	
Mechanical	-4.5	
Mechanical	-4.6	
Mechanical	-4.4	
Mechanical	-4.4	
Mechanical	-4.2	
Mechanical	-4.3	
Mechanical	-4.0	
Mechanical	-4.1	
Mechanical	-3.1	
Mechanical	-4.0	
Mechanical	-3.0	
Mechanical	-3.8	
Mechanical	-1.5	
Mechanical	-3.6	
Mechanical	-1.6	
Mechanical	-3.0	
Mechanical	-1.5	
Mechanical	-2.8	
Mechanical	-1.4	
Mechanical	-2.7	
Mechanical	-1.3	
Mechanical	-2.5	
Mechanical	-1.2	
Mechanical	-2.3	
Mechanical	-0.6	
Mechanical	-2.0	
Mechanical	-0.4	
Mechanical	-0.4	
Mechanical	-0.6	
Mechanical	0.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-0.3	
Mechanical	1.1	
Mechanical	0.1	
Mechanical	1.5	
Mechanical	1.6	
Mechanical	1.9	
Mechanical	2.3	
Mechanical	2.4	
Mechanical	3.0	
Mechanical	2.9	
Mechanical	3.4	
Mechanical	3.6	
Mechanical	4.5	
Mechanical	4.1	
Mechanical	5.0	
Mechanical	3.7	
Mechanical	5.0	
Mechanical	3.9	
Mechanical	5.0	
Mechanical	3.8	
Mechanical	5.0	
Mechanical	3.8	
Mechanical	5.0	
Mechanical	3.8	
Mechanical	4.9	
Mechanical	3.5	
Mechanical	4.9	
Mechanical	3.5	
Mechanical	4.8	
Mechanical	3.6	
Mechanical	4.8	
Mechanical	3.6	
Mechanical	4.7	
Mechanical	3.5	
Mechanical	4.6	
Mechanical	3.5	
Mechanical	4.5	
Mechanical	3.4	
Mechanical	4.5	
Mechanical	3.3	
Mechanical	4.4	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Q a vina a	1 -1	
Source	La	
	dB(A)	
Mechanical	3.2	
Mechanical	4.3	
Mechanical	3.2	
Mechanical	4.2	
Mechanical	3.1	
Mechanical	4.1	
Mechanical	3.0	
Mechanical	4.0	
Mechanical	2.9	
Mechanical	3.9	
Mechanical	2.9	
Mechanical	3.8	
Mechanical	2.8	
Mechanical	3.8	
Mechanical	2.7	
Mechanical	3.7	
Mechanical	2.7	
Mechanical	3.7	
Mechanical	2.0	
Mechanical	3.7	
Mechanical	3.9	
Mechanical	3.0	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.2	
Mechanical	-4.9	
Mechanical	-5.2	
Mechanical	-5.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Id	
Source		
	dB(A)	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-5.7	
Mechanical	-5.0	
Mechanical	-5.7	
Mechanical	-5.0	
Mechanical	-5.8	
Mechanical	-5.5	
Mechanical	-5.8	
Mechanical	-5.6	
Mechanical	-5.4	
Mechanical	-5.6	
Mechanical	-5.4	
Receiver R3 Ld 21.9 dB(A)		
Mechanical	-2.0	
Mechanical	-2.7	
Mechanical	-2.0	
Mechanical	-2.8	
Mechanical	-2.6	
Mechanical	-2.8	
Mechanical	-2.1	
Mechanical	-2.8	
Mechanical	-0.9	
Mechanical	-2.0	
Mechanical	-1.1	
Mechanical	-1.9	
Mechanical	-1.2	
Mechanical	-1.9	
Mechanical	-2.0	
Mechanical	-2.8	
Mechanical	-1.3	
Mechanical	-2.8	
Mechanical	-0.4	
Mechanical	-2.0	
Mechanical	-0.6	
Mechanical	-1.2	
Mechanical	-0.7	
Mechanical	-1.2	
Mechanical	-0.7	
Mechanical	-1.1	
Mechanical	-0.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	La	
	dB(A)	
Mechanical	-0.9	
Mechanical	-0.4	
Mechanical	-0.7	
Mechanical	-0.2	
Mechanical	-0.5	
Mechanical	0.0	
Mechanical	-0.3	
Mechanical	0.3	
Mechanical	0.0	
Mechanical	0.7	
Mechanical	0.3	
Mechanical	1.0	
Mechanical	0.7	
Mechanical	1.5	
Mechanical	1.1	
Mechanical	1.9	
Mechanical	1.6	
Mechanical	2.5	
Mechanical	2.0	
Mechanical	3.1	
Mechanical	2.4	
Mechanical	-9.3	
Mechanical	-9.3	
Mechanical	-8.6	
Mechanical	-8.6	
Mechanical	-8.6	
Mechanical	-7.6	
Mechanical	-7.3	
Mechanical	-7.4	
Mechanical	-7.2	
Mechanical	-7.2	
Mechanical	-4.8	
Mechanical	-7.1	
Mechanical	-4.7	
Mechanical	-6.9	
Mechanical	-4.6	
Mechanical	-4.8	
Mechanical	-4.5	
Mechanical	-4.7	
Mechanical	-4.4	
Mechanical	-4.4	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-5.7	
Mechanical	-4.3	
Mechanical	-5.5	
Mechanical	-5.0	
Mechanical	-4.7	
Mechanical	-4.8	
Mechanical	-4.5	
Mechanical	-4.6	
Mechanical	-4.3	
Mechanical	-4.3	
Mechanical	-4.0	
Mechanical	-4.7	
Mechanical	-4.0	
Mechanical	-4.6	
Mechanical	-3.9	
Mechanical	-4.0	
Mechanical	-3.8	
Mechanical	-3.9	
Mechanical	-4.0	
Mechanical	-3.6	
Mechanical	-4.1	
Mechanical	-3.1	
Mechanical	-3.8	
Mechanical	-3.1	
Mechanical	-3.5	
Mechanical	-2.7	
Mechanical	0.2	
Mechanical	0.2	
Mechanical	0.2	
Mechanical	0.9	
Mechanical	2.7	
Mechanical	2.0	
Mechanical	1.9	
Mechanical	0.3	
Mechanical	2.0	
Mechanical	1.0	
Mechanical	2.1	
Mechanical	1.1	
Mechanical	2.2	
Mechanical	1.2	
Mechanical	2.3	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	1.3	
Mechanical	2.4	
Mechanical	0.7	
Mechanical	2.7	
Mechanical	0.8	
Mechanical	2.8	
Mechanical	1.1	
Mechanical	2.9	
Mechanical	1.2	
Mechanical	3.0	
Mechanical	1.3	
Mechanical	3.1	
Mechanical	1.4	
Mechanical	3.3	
Mechanical	1.5	
Mechanical	3.4	
Mechanical	1.6	
Mechanical	2.6	
Mechanical	1.7	
Mechanical	2.7	
Mechanical	1.5	
Mechanical	2.8	
Mechanical	1.6	
Mechanical	2.9	
Mechanical	1.7	
Mechanical	3.0	
Mechanical	1.8	
Mechanical	3.1	
Mechanical	1.8	
Mechanical	3.2	
Mechanical	1.9	
Mechanical	3.3	
Mechanical	2.0	
Mechanical	3.4	
Mechanical	2.1	
Mechanical	3.5	
Mechanical	2.2	
Mechanical	3.6	
Mechanical	3.7	
Mechanical	4.0	
Mechanical	-7.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

AES 22801 Crespi St Woodland Hills, CA 91364 USA

18

2		
Source	Ld	
	dB(A)	
Mechanical	-2.2	
Mechanical	-1.4	
Mechanical	-2.0	
Mechanical	-1.2	
Mechanical	-1.9	
Mechanical	-1.1	
Mechanical	-1.8	
Mechanical	-0.9	
Mechanical	-1.6	
Mechanical	-0.7	
Mechanical	-1.5	
Mechanical	-0.6	
Mechanical	-1.3	
Mechanical	-0.4	
Mechanical	-1.2	
Mechanical	-0.3	
Mechanical	-1.0	
Mechanical	-0.1	
Mechanical	-0.9	
Mechanical	0.4	
Mechanical	-0.7	
Mechanical	0.5	
Mechanical	-0.2	
Mechanical	0.7	
Mechanical	-0.1	
Mechanical	0.9	
Mechanical	0.1	
Mechanical	1.0	
Mechanical	0.2	
Mechanical	1.2	
Mechanical	0.4	
Mechanical	1.4	
Mechanical	0.5	
Mechanical	1.4	
Mechanical	0.4	
Mechanical	1.6	
Mechanical	0.6	
Mechanical	2.8	
Mechanical	1.9	
Mechanical	-8.4	
Mechanical	-9.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-8.3	
Mechanical	-8.5	
Mechanical	-8.3	
Mechanical	-8.4	
Mechanical	-8.2	
Mechanical	-8.4	
Mechanical	-8.2	
Mechanical	-8.3	
Mechanical	-5.8	
Mechanical	-8.3	
Mechanical	-7.5	
Mechanical	-8.2	
Mechanical	-7.4	
Mechanical	-8.2	
Mechanical	-7.4	
Mechanical	-7.5	
Mechanical	-7.2	
Mechanical	-7.4	
Mechanical	-7.1	
Mechanical	-7.3	
Mechanical	-7.1	
Mechanical	-7.2	
Mechanical	-7.0	
Mechanical	-7.1	
Mechanical	-6.9	
Mechanical	-7.0	
Mechanical	-6.9	
Mechanical	-6.9	
Mechanical	-6.8	
Mechanical	-6.9	
Mechanical	-6.7	
Mechanical	-6.8	
Mechanical	-6.7	
Mechanical	-6.7	
Mechanical	-6.6	
Mechanical	-6.6	
Mechanical	-5.3	
Mechanical	-5.3	
Mechanical	-5.4	
Mechanical	-5.3	
Mechanical	-5.3	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	
dB(A)	
Mechanical -5.2	
Mechanical -5.2	
Mechanical -5.0	
Mechanical -5.1	
Mechanical -4.9	
Mechanical -4.8	
Mechanical -4.2	
Mechanical -4.6	
Mechanical -4.0	
Mechanical -3.5	
Mechanical -1.8	
Mechanical -3.3	
Mechanical -1.8	
Mechanical -3.2	
Mechanical -1.8	
Mechanical -3.0	
Mechanical -1.7	
Mechanical -2.8	
Mechanical -2.6	
Mechanical -2.7	
Mechanical -2.5	
Mechanical -2.5	
Mechanical -2.3	
Mechanical -2.3	
Mechanical -2.2	
Mechanical -2.1	
Mechanical -2.7	
Mechanical -1.9	
Mechanical -2.5	
Mechanical -1.7	
Mechanical -2.3	
Mechanical -1.4	
Mechanical -2.1	
Mechanical -1.4	
Mechanical -1.9	
Mechanical -1.1	
Mechanical -1.7	
Mechanical -0.9	
Mechanical -1.4	
Mechanical -0.6	
Mechanical -1.2	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	La	
	dB(A)	
Mechanical	-0.3	
Mechanical	-0.9	
Mechanical	-0.1	
Mechanical	-0.6	
Mechanical	0.2	
Mechanical	-0.3	
Mechanical	0.6	
Mechanical	0.1	
Mechanical	0.9	
Mechanical	0.4	
Mechanical	1.3	
Mechanical	0.8	
Mechanical	1.7	
Mechanical	1.2	
Mechanical	2.2	
Mechanical	2.7	
Mechanical	3.4	
Mechanical	-5.3	
Mechanical	-8.0	
Mechanical	-5.3	
Mechanical	-5.4	
Mechanical	-6.8	
Mechanical	-7.4	
Mechanical	-6.7	
Mechanical	-7.3	
Mechanical	-6.6	
Mechanical	-6.8	
Mechanical	-6.9	
Mechanical	-6.7	
Mechanical	-6.8	
Mechanical	-6.9	
Mechanical	-6.7	
Mechanical	-6.8	
Mechanical	-6.6	
Mechanical	-6.7	
Mechanical	-6.5	
Mechanical	-6.6	
Mechanical	-6.3	
Mechanical	-6.5	
Mechanical	-6.1	
Mechanical	-6.3	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

0	1.1	
Source	La	
	dB(A)	
Mechanical	-5.9	
Mechanical	-6.0	
Mechanical	-5.7	
Mechanical	-6.2	
Mechanical	-5.5	
Mechanical	-6.1	
Mechanical	-5.7	
Mechanical	-5.9	
Receiver R5 Ld 25.1 dB(A)		
Mechanical	8.5	
Mechanical	8.5	
Mechanical	7.3	
Mechanical	7.1	
Mechanical	6.5	
Mechanical	6.1	
Mechanical	5.3	
Mechanical	5.3	
Mechanical	4.3	
Mechanical	4.6	
Mechanical	3.6	
Mechanical	4.0	
Mechanical	3.1	
Mechanical	3.1	
Mechanical	2.5	
Mechanical	2.5	
Mechanical	2.0	
Mechanical	2.0	
Mechanical	1.7	
Mechanical	1.7	
Mechanical	1.2	
Mechanical	-2.2	
Mechanical	0.7	
Mechanical	-2.9	
Mechanical	0.3	
Mechanical	-3.2	
Mechanical	0.0	
Mechanical	-3.4	
Mechanical	-0.3	
Mechanical	-3.6	
Mechanical	-0.6	
Mechanical	-3.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	-0.9	
Mechanical	-3.9	
Mechanical	-1.1	
Mechanical	-4.1	
Mechanical	-1.4	
Mechanical	-4.3	
Mechanical	-1.7	
Mechanical	-4.5	
Mechanical	-1.9	
Mechanical	-4.7	
Mechanical	-2.1	
Mechanical	-4.8	
Mechanical	-2.3	
Mechanical	-5.0	
Mechanical	-2.5	
Mechanical	-5.2	
Mechanical	8.1	
Mechanical	7.9	
Mechanical	6.8	
Mechanical	6.7	
Mechanical	5.7	
Mechanical	5.7	
Mechanical	4.7	
Mechanical	4.9	
Mechanical	3.8	
Mechanical	4.1	
Mechanical	-1.0	
Mechanical	3.6	
Mechanical	-1.3	
Mechanical	3.0	
Mechanical	-1.5	
Mechanical	2.4	
Mechanical	-1.4	
Mechanical	1.8	
Mechanical	-1.4	
Mechanical	1.3	
Mechanical	-1.4	
Mechanical	-2.9	
Mechanical	-1.5	
Mechanical	-3.3	
Mechanical	-1.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-3.5	
Mechanical	-1.5	
Mechanical	-3.7	
Mechanical	-1.6	
Mechanical	-3.8	
Mechanical	-1.5	
Mechanical	-4.0	
Mechanical	-4.1	
Mechanical	-4.2	
Mechanical	-4.3	
Mechanical	-4.3	
Mechanical	-4.5	
Mechanical	-4.5	
Mechanical	-4.5	
Mechanical	-4.6	
Mechanical	-4.6	
Mechanical	-4.8	
Mechanical	-2.9	
Mechanical	-4.9	
Mechanical	-3.3	
Mechanical	-5.1	
Mechanical	-3.6	
Mechanical	-5.2	
Mechanical	-5.9	
Mechanical	-5.3	
Mechanical	-6.1	
Mechanical	-5.5	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.0	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.9	
Mechanical	-5.1	
Mechanical	-4.8	
Mechanical	-5.3	
Mechanical	-4.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-5.3	
Mechanical	-4.7	
Mechanical	-5.3	
Mechanical	-4.7	
Mechanical	-5.3	
Mechanical	-4.7	
Mechanical	-5.3	
Mechanical	-4.6	
Mechanical	-4.9	
Mechanical	-4.6	
Mechanical	-4.9	
Mechanical	-4.6	
Mechanical	-5.0	
Mechanical	-4.6	
Mechanical	-5.0	
Mechanical	-4.7	
Mechanical	-5.0	
Mechanical	-4.7	
Mechanical	-4.8	
Mechanical	-4.5	
Mechanical	-4.8	
Mechanical	-4.5	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	-5.4	
Mechanical	-5.4	
Mechanical	-5.2	
Mechanical	6.0	
Mechanical	7.7	
Mechanical	5.9	
Mechanical	7.7	
Mechanical	6.0	
Mechanical	7.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	6.0	
Mechanical	7.8	
Mechanical	6.0	
Mechanical	7.8	
Mechanical	5.9	
Mechanical	8.0	
Mechanical	6.0	
Mechanical	7.9	
Mechanical	6.2	
Mechanical	7.9	
Mechanical	6.1	
Mechanical	8.0	
Mechanical	6.0	
Mechanical	8.0	
Mechanical	6.0	
Mechanical	8.0	
Mechanical	6.0	
Mechanical	7.9	
Mechanical	6.0	
Mechanical	8.0	
Mechanical	6.1	
Mechanical	8.0	
Mechanical	6.3	
Mechanical	8.0	
Mechanical	6.2	
Mechanical	8.0	
Receiver R6 Ld 24.1 dB(A)		
Mechanical	-6.2	
Mechanical	-6.2	
Mechanical	-7.6	
Mechanical	-7.4	
Mechanical	-9.1	
Mechanical	-10.7	
Mechanical	-9.1	
Mechanical	-10.7	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-6.2	
Mechanical	-6.1	
Mechanical	-4.9	
Mechanical	-3.7	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-5.2	
Mechanical	-5.0	
Mechanical	-5.0	
Mechanical	-4.9	
Mechanical	-5.0	
Mechanical	-4.9	
Mechanical	4.8	
Mechanical	6.1	
Mechanical	4.8	
Mechanical	6.1	
Mechanical	6.8	
Mechanical	7.4	
Mechanical	6.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	
dB(A)	
Mechanical 7.4	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 4.9	
Mechanical 6.3	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 5.0	
Mechanical 6.2	
Mechanical 5.0	
Mechanical 6.2	
Mechanical 5.0	
Mechanical 6.3	
Mechanical 4.9	
Mechanical 6.2	
Mechanical 5.0	
Mechanical 6.2	
Mechanical 5.0	
Mechanical 6.3	
Mechanical 5.0	
Mechanical 6.3	
Mechanical 5.0	
Mechanical 6.3	
Mechanical 5.0	
Mechanical 6.3	
Mechanical 6.9	
Mechanical 7.6	
Mechanical 6.9	
Mechanical 7.5	
Mechanical 6.9	
Mechanical 7.5	
Mechanical 6.9	
Mechanical 7.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	5.0	
Mechanical	6.3	
Mechanical	5.0	
Mechanical	6.3	
Mechanical	-0.3	
Mechanical	-5.5	
Mechanical	-0.5	
Mechanical	-4.7	
Mechanical	-0.7	
Mechanical	-4.3	
Mechanical	-0.9	
Mechanical	-3.9	
Mechanical	-1.1	
Mechanical	-3.8	
Mechanical	-1.3	
Mechanical	-3.7	
Mechanical	-1.6	
Mechanical	-3.7	
Mechanical	-1.8	
Mechanical	-3.7	
Mechanical	-2.0	
Mechanical	-3.7	
Mechanical	-2.2	
Mechanical	-3.7	
Mechanical	-2.4	
Mechanical	-3.8	
Mechanical	-2.5	
Mechanical	-3.9	
Mechanical	-2.7	
Mechanical	-3.9	
Mechanical	-2.9	
Mechanical	-4.0	
Mechanical	-3.1	
Mechanical	-4.1	
Mechanical	-3.2	
Mechanical	-4.2	
Mechanical	-3.4	
Mechanical	-4.3	
Mechanical	-3.5	
Mechanical	-4.3	
Mechanical	-3.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-4.4	
Mechanical	-3.8	
Mechanical	-4.5	
Mechanical	-4.0	
Mechanical	-4.6	
Mechanical	-4.1	
Mechanical	-4.7	
Mechanical	-4.2	
Mechanical	-4.8	
Mechanical	-4.4	
Mechanical	-4.5	
Mechanical	-4.6	
Mechanical	-5.5	
Mechanical	-0.3	
Mechanical	-4.8	
Mechanical	-0.5	
Mechanical	-4.5	
Mechanical	-1.1	
Mechanical	-4.2	
Mechanical	-2.0	
Mechanical	-3.8	
Mechanical	-2.7	
Mechanical	-3.3	
Mechanical	-3.8	
Mechanical	-5.0	
Mechanical	-3.9	
Mechanical	-4.8	
Mechanical	-3.8	
Mechanical	-4.7	
Mechanical	-3.8	
Mechanical	-2.5	
Mechanical	-3.9	
Mechanical	-2.7	
Mechanical	-3.9	
Mechanical	-3.0	
Mechanical	-4.0	
Mechanical	-3.2	
Mechanical	-4.2	
Mechanical	-1.8	
Mechanical	-4.2	
Mechanical	-1.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

2		
Source	Ld	
	dB(A)	
Mechanical	-3.7	
Mechanical	-2.0	
Mechanical	-5.5	
Receiver R7 Ld 13.2 dB(A)		
Mechanical	-8.7	
Mechanical	-8.8	
Mechanical	-6.5	
Mechanical	-8.8	
Mechanical	-6.4	
Mechanical	-6.4	
Mechanical	-8.5	
Mechanical	-6.4	
Mechanical	-8.5	
Mechanical	-8.6	
Mechanical	-8.4	
Mechanical	-8.6	
Mechanical	-8.4	
Mechanical	-8.5	
Mechanical	-8.3	
Mechanical	-8.5	
Mechanical	-8.3	
Mechanical	-8.5	
Mechanical	-8.2	
Mechanical	-8.4	
Mechanical	-8.2	
Mechanical	-8.4	
Mechanical	-8.1	
Mechanical	-8.3	
Mechanical	-8.1	
Mechanical	-8.3	
Mechanical	-8.1	
Mechanical	-8.3	
Mechanical	-8.0	
Mechanical	-8.2	
Mechanical	-8.0	
Mechanical	-8.2	
Mechanical	-8.0	
Mechanical	-8.2	
Mechanical	-7.9	
Mechanical	-8.1	
Mechanical	-7.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses	1.4	
Source		
	dB(A)	
Mechanical	-8.1	
Mechanical	-7.9	
Mechanical	-8.1	
Mechanical	-8.0	
Mechanical	-8.1	
Mechanical	-8.0	
Mechanical	-8.1	
Mechanical	-8.0	
Mechanical	-11.5	
Mechanical	-11.6	
Mechanical	-11.4	
Mechanical	-11.6	
Mechanical	-11.4	
Mechanical	-11.5	
Mechanical	-11.3	
Mechanical	-11.4	
Mechanical	-11.3	
Mechanical	-11.4	
Mechanical	-11.3	
Mechanical	-11.4	
Mechanical	-11.2	
Mechanical	-11.3	
Mechanical	-11.2	
Mechanical	-11.3	
Mechanical	-11.1	
Mechanical	-11.2	
Mechanical	-11.1	
Mechanical	-11.2	
Mechanical	-11.1	
Mechanical	-11.1	
Mechanical	-11.0	
Mechanical	-11.1	
Mechanical	-11.0	
Mechanical	-11.0	
Mechanical	-10.9	
Mechanical	-11.0	
Mechanical	-10.9	
Mechanical	-10.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

0	1.1	
Source	La	
	dB(A)	
Mechanical	-10.8	
Mechanical	-10.9	
Mechanical	-10.8	
Mechanical	-10.8	
Mechanical	-10.7	
Mechanical	-10.8	
Mechanical	-10.7	
Mechanical	-10.7	
Mechanical	-10.6	
Mechanical	-10.7	
Mechanical	-10.6	
Mechanical	-10.6	
Mechanical	-10.5	
Mechanical	-10.5	
Mechanical	-10.5	
Mechanical	-10.4	
Mechanical	-10.4	
Mechanical	-10.3	
Mechanical	-11.1	
Mechanical	-10.3	
Mechanical	-10.9	
Mechanical	-10.9	
Mechanical	-10.2	
Mechanical	-8.2	
Mechanical	-10.1	
Mechanical	-8.2	
Mechanical	-10.1	
Mechanical	-8.2	
Mechanical	-10.0	
Mechanical	-8.1	
Mechanical	-9.9	
Mechanical	-8.1	
Mechanical	-9.8	
Mechanical	-8.1	
Mechanical	-9.8	
Mechanical	-8.1	
Mechanical	-9.7	
Mechanical	-9.7	
Mechanical	-9.6	
Mechanical	-9.6	
Mechanical	-9.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source La dB(A) Mechanical 9.4 Mechanical 9.4 Mechanical 9.3 Mechanical 9.3 Mechanical 9.3 Mechanical 9.3 Mechanical 9.3 Mechanical 9.2 Mechanical 9.1 Mechanical 9.1 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 8.9 Mechanical 8.9 Mechanical 8.8 Mechanical 8.8 Mechanical 8.8 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.4 Mechanical 8.4 Mechanical 8.4 Mechanical 8.4 Mechanical 8.2 Mechanical <th>Courses</th> <th>ا ما</th> <th></th>	Courses	ا ما	
dechanical 9-5 Mechanical 9-4 Mechanical 9-3 Mechanical 9-3 Mechanical 9-3 Mechanical 9-3 Mechanical 9-3 Mechanical 9-2 Mechanical 9-1 Mechanical 9-1 Mechanical 9-0 Mechanical 9-0 Mechanical 9-0 Mechanical 8-9 Mechanical 8-9 Mechanical 8-8	Source		
Mechanical 9-5 Mechanical 9-4 Mechanical 9-3 Mechanical 9-3 Mechanical 9-2 Mechanical 9-2 Mechanical 9-1 Mechanical 9-1 Mechanical 9-1 Mechanical 9-1 Mechanical 9-1 Mechanical 9-0 Mechanical 9-0 Mechanical 8-9 Mechanical 8-8		dB(A)	
Mechanical 9.4 Mechanical 9.3 Mechanical 9.3 Mechanical 9.2 Mechanical 9.2 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.0 Mechanical 8.9 Mechanical 8.9 Mechanical 8.8 Mechanical 8.8 Mechanical 8.8 Mechanical 8.8 Mechanical 8.7 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.8 Mechanical 8.8 Mechanical 8.6 Mechanical 8.8 Mechanical 8.8 Mechanical 8.8 Mechanical 8.2 Mechanical 8.2	Mechanical	-9.5	
Mechanical 9.3 Mechanical 9.3 Mechanical 9.2 Mechanical 9.2 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 8.9 Mechanical 8.8 Mechanical 8.8 Mechanical 8.7 Mechanical 8.8 Mechanical 8.7 Mechanical 8.7 Mechanical 8.8 Mechanical 8.4 Mechanical 8.2 Mechanical 8.2	Mechanical	-9.4	
Mechanical 9.3 Mechanical 9.2 Mechanical 9.2 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.1 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 8.9 Mechanical 8.8 Mechanical 8.8 Mechanical 8.7 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.6 Mechanical 8.8 Mechanical 8.8 Mechanical 8.6 Mechanical 8.8 Mechanical 8.8 Mechanical 8.2 Mechanical 8.2 Mechanical 8.2	Mechanical	-9.4	
Mechanical -9.3 Mechanical -9.2 Mechanical -9.1 Mechanical -9.1 Mechanical -9.1 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.6 Mechanical -8.5 Mechanical -8.2 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical	Mechanical	-9.3	
Mechanical -9.2 Mechanical -9.1 Mechanical -9.1 Mechanical -9.0 Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.5 Mechanical -8.5 Mechanical -8.5 Mechanical -8.5 Mechanical -8.4 Mechanical -8.2 Mechanical	Mechanical	-9.3	
Mechanical -9.2 Mechanical -9.1 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.5 Mechanical -8.5 Mechanical -8.3 Mechanical -8.2 Mechanical	Mechanical	-9.2	
Mechanical 9.1 Mechanical 9.0 Mechanical 9.0 Mechanical 9.0 Mechanical 8.9 Mechanical 8.8 Mechanical 8.8 Mechanical 8.7 Mechanical 8.7 Mechanical 8.6 Mechanical 8.4 Mechanical 8.3 Mechanical 8.2 Mechanical 8.2 Mechanical 8.2 Mechanical 8.2 Mechanical 8.1 Mechanical 8.2 Mechanical 8.1 Mechanical 8.1	Mechanical	-9.2	
Mechanical -9.1 Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.5 Mechanical -8.5 Mechanical -8.3 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.9 Mechanical -8.9 Mechanical -8.9 Mechanical -8.9 Mechanical -8.9 Mechanical	Mechanical	-9.1	
Mechanical -9.0 Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.6 Mechanical -8.5 Mechanical -8.5 Mechanical -8.4 Mechanical -8.3 Mechanical -8.3 Mechanical -8.3 Mechanical -8.3 Mechanical -8.3 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -11.5 Mechanical -11.5 Mechanical	Mechanical	-9.1	
Mechanical -9.0 Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.6 Mechanical -8.7 Mechanical -8.6 Mechanical -8.6 Mechanical -8.5 Mechanical -8.5 Mechanical -8.5 Mechanical -8.3 Mechanical -8.3 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.1 Mechanical -8.2 Mechanical -8.1 Mechanical -8.1 Mechanical -8.2 Mechanical -8.2 Mechanical	Mechanical	-9.0	
Mechanical -8.9 Mechanical -8.9 Mechanical -8.8 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.5 Mechanical -8.4 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.1 Mechanical -8.2 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -11.5 Mechanical	Mechanical	-9.0	
Mechanical -8.9 Mechanical -8.8 Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.4 Mechanical -8.4 Mechanical -8.3 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.2 Mechanical -8.1 Mechanical -8.2 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -11.5 Mechanical	Mechanical	-8.9	
Mechanical -8.8 Mechanical -8.7 Mechanical -8.7 Mechanical -8.7 Mechanical -8.7 Mechanical -8.7 Mechanical -8.7 Mechanical -8.6 Mechanical -8.6 Mechanical -8.5 Mechanical -8.4 Mechanical -8.3 Mechanical -8.3 Mechanical -8.2 Mechanical -8.1 Mechanical -8.1 Mechanical -8.1 Mechanical -11.5 Mechanical -11.2 Mechanical -11.2 Mechanical -10.6 Mechanical -10.6 Mechanical	Mechanical	-8.9	
Mechanical-8.8Mechanical-8.7Mechanical-8.6Mechanical-8.6Mechanical-8.5Mechanical-8.5Mechanical-8.4Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.2Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-11.5Mechanical-11.2Mechanical-11.2Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.8	
Mechanical-8.7Mechanical-8.7Mechanical-8.6Mechanical-8.6Mechanical-8.5Mechanical-8.5Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.2Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-11.5Mechanical-11.2Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.8	
Mechanical-8.7Mechanical-8.6Mechanical-8.6Mechanical-8.5Mechanical-8.4Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.1Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.7	
Mechanical-8.6Mechanical-8.6Mechanical-8.5Mechanical-8.4Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-8.7Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.7	
Mechanical-8.6Mechanical-8.5Mechanical-8.5Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.6	
Mechanical-8.5Mechanical-8.4Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-8.9Mechanical-11.2Mechanical-8.7Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.6	
Mechanical-8.5Mechanical-8.4Mechanical-8.4Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-8.7Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.5	
Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-8.1Mechanical-8.9Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.5	
Mechanical-8.4Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-10.8Mechanical-10.6	Mechanical	-8.4	
Mechanical-8.3Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-11.2Mechanical-10.8Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.4	
Mechanical-8.3Mechanical-8.2Mechanical-8.2Mechanical-8.0Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-11.2Mechanical-11.2Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.3	
Mechanical-8.2Mechanical-8.2Mechanical-8.0Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-11.2Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.3	
Mechanical-8.2Mechanical-8.0Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-11.2Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.2	
Mechanical-8.0Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.2	
Mechanical-8.2Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-11.2Mechanical-11.2Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.0	
Mechanical-8.1Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.8Mechanical-10.6Mechanical-10.6Mechanical-10.8Mechanical-10.6Mechanical-10.8	Mechanical	-8.2	
Mechanical-8.9Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.1	
Mechanical-11.5Mechanical-8.9Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.9	
Mechanical-8.9Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-11.5	
Mechanical-11.2Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-8.9	
Mechanical-8.7Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6Mechanical-10.6	Mechanical	-11.2	
Mechanical-10.8Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6	Mechanical	-8.7	
Mechanical-10.6Mechanical-10.7Mechanical-10.6Mechanical-10.6	Mechanical	-10.8	
Mechanical-10.7Mechanical-10.6Mechanical-10.6	Mechanical	-10.6	
Mechanical -10.6 Mechanical -10.6 Mechanical 10.8	Mechanical	-10.7	
Mechanical -10.6	Mechanical	-10.6	
	Mechanical	-10.6	
	Mechanical	-10.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA
-		
Source	Ld	
	dB(A)	
Mechanical	-10.5	
Mechanical	-10.7	
Mechanical	-10.8	
Mechanical	-10.6	
Mechanical	-10.7	
Mechanical	-10.5	
Mechanical	-10.6	
Mechanical	-10.4	
Mechanical	-10.5	
Mechanical	-10.3	
Mechanical	-10.4	
Mechanical	-10.2	
Mechanical	-10.3	
Mechanical	-10.1	
Mechanical	-10.2	
Mechanical	-10.1	
Mechanical	-10.1	
Mechanical	-10.0	
Mechanical	-10.0	
Mechanical	-9.8	
Mechanical	-9.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	L d	
oource		
Dessiver Delledium 1 FLC		
Receiver Palladium 1 FIG		(A)
Mechanical	20.4	
Mechanical	20.9	
Mechanical	18.8	
Mechanical	20.6	
Mechanical	18.7	
Mechanical	18.9	
Mechanical	18.4	
Mechanical	15.3	
Mechanical	15.3	
Mechanical	7.3	
Mechanical	15.0	
Mechanical	7.3	
Mechanical	12.2	
Mechanical	8.5	
Mechanical	9.9	
Mechanical	10.1	
Mechanical	10.6	
Mechanical	11.5	
Mechanical	11.6	
Mechanical	14.3	
Mechanical	14.1	
Mechanical	14.2	
Mechanical	14.0	
Mechanical	14.0	
Mechanical	13.8	
Mechanical	13.9	
Mechanical	14.5	
Mechanical	14.6	
Mechanical	14.2	
Mechanical	14.4	
Mechanical	14.0	
Mechanical	15.1	
Mechanical	14.0	
Mechanical	15.0	
Mechanical	14.8	
Mechanical	14.9	
Mechanical	14.8	
Mechanical	15.4	
Mechanical	15.3	
Mechanical	15.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

•		
Source	Ld	
	dB(A)	
Mechanical	15.4	
Mechanical	15.8	
Mechanical	15.3	
Mechanical	15.6	
Mechanical	15.2	
Mechanical	15.5	
Mechanical	15.4	
Mechanical	15.5	
Mechanical	25.3	
Mechanical	25.3	
Mechanical	24.6	
Mechanical	24.7	
Mechanical	24.0	
Mechanical	24.0	
Mechanical	24.0	
Mechanical	23.6	
Mechanical	23.6	
Mechanical	23.6	
Mechanical	22.7	
Mechanical	23.5	
Mechanical	22.6	
Mechanical	22.7	
Mechanical	22.3	
Mechanical	22.4	
Mechanical	22.0	
Mechanical	22.1	
Mechanical	21.8	
Mechanical	21.9	
Mechanical	21.6	
Mechanical	21.6	
Mechanical	21.3	
Mechanical	21.4	
Mechanical	21.1	
Mechanical	21.2	
Mechanical	20.9	
Mechanical	21.0	
Mechanical	20.7	
Mechanical	20.8	
Mechanical	20.5	
Mechanical	20.3	
Mechanical	20.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses	1.4	
Source		
	dB(A)	
Mechanical	20.1	
Mechanical	19.8	
Mechanical	19.9	
Mechanical	19.6	
Mechanical	20.2	
Mechanical	19.5	
Mechanical	20.0	
Mechanical	19.3	
Mechanical	19.8	
Mechanical	20.1	
Mechanical	19.6	
Mechanical	19.9	
Mechanical	19.5	
Mechanical	19.8	
Mechanical	19.8	
Mechanical	19.6	
Mechanical	19.6	
Mechanical	19.5	
Mechanical	19.5	
Mechanical	13.1	
Mechanical	13.3	
Mechanical	14.0	
Mechanical	14.5	
Mechanical	15.2	
Mechanical	15.7	
Mechanical	15.1	
Mechanical	16.2	
Mechanical	16.0	
Mechanical	16.8	
Mechanical	16.1	
Mechanical	16.9	
Mechanical	17.8	
Mechanical	17.9	
Mechanical	17.7	
Mechanical	17.4	
Mechanical	17.2	
Mechanical	17.2	
Mechanical	17.1	
Mechanical	17.1	
Mechanical	16.9	
Mechanical	17.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	16.8	
Mechanical	16.8	
Mechanical	16.7	
Mechanical	16.7	
Mechanical	16.6	
Mechanical	16.7	
Mechanical	16.6	
Mechanical	16.6	
Mechanical	16.5	
Mechanical	16.5	
Mechanical	16.4	
Mechanical	16.5	
Mechanical	16.0	
Mechanical	16.1	
Mechanical	16.3	
Mechanical	16.3	
Mechanical	16.2	
Mechanical	16.3	
Mechanical	16.2	
Mechanical	16.2	
Mechanical	16.1	
Mechanical	16.1	
Mechanical	16.0	
Mechanical	16.1	
Mechanical	15.8	
Mechanical	15.3	
Mechanical	15.3	
Mechanical	23.2	
Mechanical	23.9	
Mechanical	22.8	
Mechanical	23.6	
Mechanical	22.6	
Mechanical	23.4	
Mechanical	22.5	
Mechanical	23.2	
Mechanical	22.3	
Mechanical	23.0	
Mechanical	22.2	
Mechanical	22.8	
Mechanical	22.0	
Mechanical	22.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	21.8	
Mechanical	22.5	
Mechanical	21.7	
Mechanical	22.2	
Mechanical	21.5	
Mechanical	22.0	
Mechanical	21.3	
Mechanical	21.8	
Mechanical	21.2	
Mechanical	21.4	
Mechanical	21.5	
Mechanical	22.5	
Mechanical	21.5	
Mechanical	22.8	
Mechanical	20.7	
Mechanical	23.1	
Mechanical	20.5	
Mechanical	20.7	
Receiver Palladium 2 FI G	Ld 41.3 dE	3(A)
Mechanical	20.4	
Mechanical	22.0	
Mechanical	20.0	
Mechanical	20.3	
Mechanical	19.8	
Mechanical	20.1	
Mechanical	19.5	
Mechanical	19.9	
Mechanical	19.3	
Mechanical	9.9	
Mechanical	19.1	
Mechanical	8.7	
Mechanical	15.8	
Mechanical	8.9	
Mechanical	11.1	
Mechanical	9.7	
Mechanical	10.5	
Mechanical	10.2	
Mechanical	10.4	
Mechanical	10.6	
Mechanical	10.6	
Mechanical	10.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source dB(A) Mechanical 10.8 Mechanical 10.9 Mechanical 12.0 Mechanical 12.3 Mechanical 12.4 Mechanical 12.3 Mechanical 12.4 Mechanical 12.3 Mechanical 12.4 Mechanical <	Courses	1 -1	
defchaical 10.8 Mechanical 10.9 Mechanical 11.0 Mechanical 11.0 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 12.0 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 22.2 Mechanical 22.3 Mechanical	Source	Ld	
Mechanical 10.8 Mechanical 10.9 Mechanical 11.0 Mechanical 12.0 Mechanical 12.1 Mechanical 11.7 Mechanical 11.9 Mechanical 12.3 Mechanical 12.4 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 14.9 Mechanical 22.7 Mechanical		dB(A)	
Mechanical 10.9 Mechanical 11.0 Mechanical 11.0 Mechanical 10.9 Mechanical 11.0 Mechanical 12.0 Mechanical 11.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 22.5 Mechanical 22.5 Mechanical 22.3 Mechanical	Mechanical	10.8	
Mechanical 10.8 Mechanical 10.9 Mechanical 12.0 Mechanical 12.3 Mechanical 11.9 Mechanical 11.9 Mechanical 12.3 Mechanical 12.4 Mechanical 14.3 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	10.9	
Mechanical 11.0 Mechanical 10.9 Mechanical 12.0 Mechanical 12.0 Mechanical 12.3 Mechanical 12.8 Mechanical 12.8 Mechanical 12.8 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 22.7 Mechanical 22.5 Mechanical	Mechanical	10.8	
Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 12.0 Mechanical 12.3 Mechanical 12.3 Mechanical 11.7 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 14.3 Mechanical 22.3 Mechanical 22.3 Mechanical 22.3 Mechanical	Mechanical	11.0	
Mechanical 11.0 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 10.9 Mechanical 12.0 Mechanical 11.8 Mechanical 11.7 Mechanical 12.0 Mechanical 12.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 12.9 Mechanical 22.7 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	10.9	
Mechanical 10.9 Mechanical 11.0 Mechanical 12.0 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 11.7 Mechanical 11.9 Mechanical 12.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	11.0	
Mechanical 11.0 Mechanical 10.9 Mechanical 12.0 Mechanical 11.8 Mechanical 12.3 Mechanical 11.7 Mechanical 12.6 Mechanical 12.3 Mechanical 12.8 Mechanical 12.9 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 22.7 Mechanical 22.2 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	10.9	
Mechanical 10.9 Mechanical 12.0 Mechanical 11.8 Mechanical 12.3 Mechanical 11.7 Mechanical 12.6 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.4 Mechanical 12.8 Mechanical 12.9 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 22.2 Mechanical 22.2 Mechanical 22.5 Mechanical 22.5 Mechanical 22.1 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	11.0	
Mechanical 12.0 Mechanical 11.8 Mechanical 12.3 Mechanical 12.6 Mechanical 12.9 Mechanical 12.3 Mechanical 12.4 Mechanical 14.3 Mechanical 22.5 Mechanical 22.7 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	10.9	
Mechanical 11.8 Mechanical 12.3 Mechanical 12.6 Mechanical 11.9 Mechanical 14.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.3 Mechanical 12.4 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.9 Mechanical 22.2 Mechanical 22.3 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	12.0	
Mechanical 12.3 Mechanical 11.7 Mechanical 12.6 Mechanical 11.9 Mechanical 14.3 Mechanical 12.3 Mechanical 12.4 Mechanical 14.4 Mechanical 14.3 Mechanical 14.2 Mechanical 14.3 Mechanical 14.3 Mechanical 22.9 Mechanical 22.2 Mechanical 22.5 Mechanical	Mechanical	11.8	
Mechanical 11.7 Mechanical 12.6 Mechanical 11.9 Mechanical 14.3 Mechanical 12.3 Mechanical 14.4 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 22.2 Mechanical 22.7 Mechanical 22.3 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical	Mechanical	12.3	
Mechanical 12.6 Mechanical 11.9 Mechanical 14.3 Mechanical 12.3 Mechanical 12.3 Mechanical 14.4 Mechanical 14.3 Mechanical 12.9 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.9 Mechanical 22.7 Mechanical 22.5 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.4 Mechanical	Mechanical	11.7	
Mechanical 11.9 Mechanical 14.3 Mechanical 12.3 Mechanical 12.4 Mechanical 12.8 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.9 Mechanical 22.2 Mechanical 22.7 Mechanical 22.5 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.4 Mechanical	Mechanical	12.6	
Mechanical 14.3 Mechanical 12.3 Mechanical 14.4 Mechanical 12.8 Mechanical 12.8 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.2 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 14.9 Mechanical 22.2 Mechanical 22.7 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.4 Mechanical	Mechanical	11.9	
Mechanical 12.3 Mechanical 14.4 Mechanical 12.8 Mechanical 14.3 Mechanical 12.9 Mechanical 14.3 Mechanical 22.2 Mechanical 22.2 Mechanical 22.3 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.5 Mechanical 22.4 Mechanical 24.4 Mechanical	Mechanical	14.3	
Mechanical 14.4 Mechanical 12.8 Mechanical 14.3 Mechanical 12.9 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.3 Mechanical 14.2 Mechanical 14.2 Mechanical 13.9 Mechanical 22.2 Mechanical 22.7 Mechanical 22.3 Mechanical 22.3 Mechanical 22.3 Mechanical 22.5 Mechanical 22.4 Mechanical	Mechanical	12.3	
Mechanical12.8Mechanical14.3Mechanical12.9Mechanical14.0Mechanical14.0Mechanical14.2Mechanical13.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.4Mechanical22.4Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21	Mechanical	14.4	
Mechanical14.3Mechanical12.9Mechanical14.3Mechanical14.0Mechanical14.2Mechanical13.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.4Mechanical22.4Mechanical18.9Mechanical21	Mechanical	12.8	
Mechanical12.9Mechanical14.3Mechanical14.0Mechanical14.2Mechanical13.9Mechanical22.2Mechanical22.7Mechanical22.3Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.4Mechanical22.4Mechanical22.4Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical18.9	Mechanical	14.3	
Mechanical14.3Mechanical14.0Mechanical14.2Mechanical13.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.4Mechanical22.4Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21	Mechanical	12.9	
Mechanical14.0Mechanical14.2Mechanical13.9Mechanical14.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.4Mechanical22.4Mechanical22.4Mechanical21.9Mechanical22.4Mechanical21.9Mechanical22.4Mechanical21.9Mechanical21	Mechanical	14.3	
Mechanical14.2Mechanical13.9Mechanical14.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.1Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical21.9Mechanical22.5Mechanical22.5Mechanical22.5Mechanical21.9Mechanical22.4Mechanical18.9Mechanical21.9Mechanical21.9Mechanical22.4Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	14.0	
Mechanical13.9Mechanical14.9Mechanical22.2Mechanical22.7Mechanical22.3Mechanical22.3Mechanical22.3Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.4Mechanical22.4Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	14.2	
Mechanical14.9Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.1Mechanical22.5Mechanical22.5Mechanical21.9Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	13.9	
Mechanical22.2Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.1Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.6Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical19.1Mechanical22.4Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	14.9	
Mechanical22.7Mechanical22.5Mechanical22.3Mechanical22.3Mechanical22.1Mechanical22.5Mechanical21.9Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.4Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9	Mechanical	22.2	
Mechanical22.5Mechanical22.3Mechanical22.1Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical22.5Mechanical22.5Mechanical22.5Mechanical19.1Mechanical19.1Mechanical22.4Mechanical18.9Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	22.7	
Mechanical22.3Mechanical22.3Mechanical22.1Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical22.5Mechanical22.4Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	22.5	
Mechanical22.3Mechanical22.1Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9Mechanical18.9	Mechanical	22.3	
Mechanical22.1Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical21.9Mechanical18.9	Mechanical	22.3	
Mechanical22.5Mechanical21.9Mechanical20.6Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9Mechanical18.9	Mechanical	22.1	
Mechanical21.9Mechanical20.6Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	22.5	
Mechanical20.6Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	21.9	
Mechanical22.5Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	20.6	
Mechanical19.1Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	22.5	
Mechanical22.4Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	19.1	
Mechanical18.9Mechanical21.9Mechanical18.9	Mechanical	22.4	
Mechanical21.9Mechanical18.9	Mechanical	18.9	
Mechanical 18.9	Mechanical	21.9	
	Mechanical	18.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	ا م ا	
Source		
	dB(A)	
Mechanical	20.3	
Mechanical	18.6	
Mechanical	20.2	
Mechanical	18.2	
Mechanical	18.5	
Mechanical	18.7	
Mechanical	18.4	
Mechanical	19.0	
Mechanical	17.5	
Mechanical	18.9	
Mechanical	17.4	
Mechanical	18.2	
Mechanical	17.3	
Mechanical	18.3	
Mechanical	17.2	
Mechanical	17.4	
Mechanical	17.1	
Mechanical	16.1	
Mechanical	16.7	
Mechanical	16.2	
Mechanical	16.6	
Mechanical	16.2	
Mechanical	16.4	
Mechanical	17.6	
Mechanical	16.4	
Mechanical	17.4	
Mechanical	16.3	
Mechanical	18.6	
Mechanical	16.3	
Mechanical	18.5	
Mechanical	17.1	
Mechanical	18.4	
Mechanical	17.6	
Mechanical	17.1	
Mechanical	18.3	
Mechanical	15.9	
Mechanical	18.1	
Mechanical	15.5	
Mechanical	15.7	
Mechanical	15.6	
Mechanical	15.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	15.7	
Mechanical	16.5	
Mechanical	15.9	
Mechanical	17.1	
Mechanical	16.4	
Mechanical	17.1	
Mechanical	16.9	
Mechanical	17.0	
Mechanical	16.9	
Mechanical	17.0	
Mechanical	16.9	
Mechanical	17.0	
Mechanical	16.8	
Mechanical	16.9	
Mechanical	16.8	
Mechanical	16.9	
Mechanical	16.7	
Mechanical	16.9	
Mechanical	16.7	
Mechanical	16.8	
Mechanical	16.7	
Mechanical	16.8	
Mechanical	16.6	
Mechanical	16.8	
Mechanical	16.6	
Mechanical	16.7	
Mechanical	16.6	
Mechanical	16.7	
Mechanical	16.5	
Mechanical	16.3	
Mechanical	16.1	
Mechanical	16.2	
Mechanical	15.5	
Mechanical	15.0	
Mechanical	15.4	
Mechanical	14.9	
Mechanical	14.8	
Mechanical	14.9	
Mechanical	14.7	
Mechanical	14.8	
Mechanical	14.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Sourco	Id	
Source		
	dB(A)	
Mechanical	14.8	
Mechanical	14.7	
Mechanical	14.7	
Mechanical	13.8	
Mechanical	21.8	
Mechanical	22.4	
Mechanical	21.9	
Mechanical	22.4	
Mechanical	21.9	
Mechanical	22.5	
Mechanical	22.0	
Mechanical	22.6	
Mechanical	22.1	
Mechanical	22.7	
Mechanical	22.1	
Mechanical	22.7	
Mechanical	22.0	
Mechanical	22.7	
Mechanical	22.0	
Mechanical	22.7	
Mechanical	22.0	
Mechanical	22.6	
Mechanical	22.0	
Mechanical	22.6	
Mechanical	22.0	
Mechanical	22.6	
Mechanical	21.9	
Mechanical	22.5	
Mechanical	21.9	
Mechanical	22.4	
Mechanical	21.7	
Mechanical	22.3	
Mechanical	21.5	
Mechanical	21.7	
Mechanical	21.0	
Mechanical	21.6	
Receiver Palladium 3 FI G	Ld 40.1 dE	3(A)
Mechanical	20.9	
Mechanical	21.3	
Mechanical	20.5	
Mechanical	20.7	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Sourco	14	
Source		
	dB(A)	
Mechanical	20.0	
Mechanical	20.2	
Mechanical	19.5	
Mechanical	19.9	
Mechanical	19.1	
Mechanical	19.6	
Mechanical	18.7	
Mechanical	10.5	
Mechanical	18.6	
Mechanical	11.8	
Mechanical	18.6	
Mechanical	11.5	
Mechanical	18.3	
Mechanical	11.6	
Mechanical	12.8	
Mechanical	11.6	
Mechanical	12.3	
Mechanical	11.1	
Mechanical	11.0	
Mechanical	10.8	
Mechanical	10.8	
Mechanical	10.8	
Mechanical	10.7	
Mechanical	10.9	
Mechanical	10.8	
Mechanical	11.1	
Mechanical	11.0	
Mechanical	11.5	
Mechanical	11.4	
Mechanical	11.4	
Mechanical	11.3	
Mechanical	11.3	
Mechanical	11.2	
Mechanical	11.2	
Mechanical	11.1	
Mechanical	11.1	
Mechanical	11.0	
Mechanical	11.0	
Mechanical	10.9	
Mechanical	10.9	
Mechanical	10.8	
		·

AES 22801 Crespi St Woodland Hills, CA 91364 USA

SourceLd dB(A)Mechanical10.8Mechanical10.7Mechanical11.9Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.6Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.5Mechanical20.5Mechanical0.14
dB(A)Mechanical10.8Mechanical10.7Mechanical11.9Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.5Mechanical20.5Mechanical16.7
Mechanical10.8Mechanical10.7Mechanical11.9Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.7Mechanical20.5Mechanical20.5Mechanical16.7
Mechanical10.7Mechanical11.9Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.7Mechanical20.5Mechanical20.5Mechanical16.7
Mechanical11.9Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.7Mechanical20.5Mechanical20.5Mechanical16.7
Mechanical22.2Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.5Mechanical20.5Mechanical16.7
Mechanical20.7Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.5Mechanical16.7
Mechanical20.8Mechanical20.6Mechanical20.7Mechanical20.5Mechanical16.7
Mechanical20.6Mechanical20.7Mechanical20.5Mechanical16.7
Mechanical20.7Mechanical20.5Mechanical16.7
Mechanical20.5Mechanical16.7
Mechanical 16.7
Mechanical 21.1
Mechanical 17.3
Mechanical 21.0
Mechanical 15.3
Mechanical 18.5
Mechanical 15.4
Mechanical 17.3
Mechanical 15.4
Mechanical 17.2
Mechanical 15.7
Mechanical 17.3
Mechanical 15.9
Mechanical 17.3
Mechanical 18.6
Mechanical 16.5
Mechanical 18.5
Mechanical 17.1
Mechanical 18.4
Mechanical 18.4
Mechanical 18.6
Mechanical 18.3
Mechanical 18.5
Mechanical 18.2
Mechanical 18.4
Mechanical 16.8
Mechanical 17.7
Mechanical 16.7
Mechanical 17.6
Mechanical 16.5
Mechanical 16.3
Mechanical 16.3

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	16.2	
Mechanical	16.2	
Mechanical	16.1	
Mechanical	16.0	
Mechanical	17.3	
Mechanical	16.0	
Mechanical	15.6	
Mechanical	16.4	
Mechanical	15.5	
Mechanical	16.8	
Mechanical	14.9	
Mechanical	16.7	
Mechanical	13.0	
Mechanical	14.2	
Mechanical	12.9	
Mechanical	13.1	
Mechanical	13.1	
Mechanical	13.8	
Mechanical	13.3	
Mechanical	13.4	
Mechanical	11.9	
Mechanical	14.2	
Mechanical	12.1	
Mechanical	13.9	
Mechanical	12.9	
Mechanical	13.9	
Mechanical	12.9	
Mechanical	13.8	
Mechanical	13.7	
Mechanical	14.2	
Mechanical	13.7	
Mechanical	14.1	
Mechanical	14.0	
Mechanical	14.1	
Mechanical	13.9	
Mechanical	14.1	
Mechanical	13.9	
Mechanical	14.0	
Mechanical	13.9	
Mechanical	14.0	
Mechanical	13.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

-		
Source	Ld	
	dB(A)	
Mechanical	14.0	
Mechanical	13.8	
Mechanical	13.9	
Mechanical	13.8	
Mechanical	13.9	
Mechanical	13.7	
Mechanical	13.9	
Mechanical	15.4	
Mechanical	15.6	
Mechanical	15.4	
Mechanical	15.6	
Mechanical	12.0	
Mechanical	12.1	
Mechanical	12.0	
Mechanical	12.0	
Mechanical	11.9	
Mechanical	12.0	
Mechanical	11.9	
Mechanical	12.0	
Mechanical	11.9	
Mechanical	11.8	
Mechanical	11.7	
Mechanical	20.1	
Mechanical	20.5	
Mechanical	20.2	
Mechanical	20.8	
Mechanical	20.3	
Mechanical	20.9	
Mechanical	20.5	
Mechanical	23.5	
Mechanical	20.6	
Mechanical	21.2	
Mechanical	20.8	
Mechanical	21.0	
Mechanical	20.9	
Mechanical	21.2	
Mechanical	20.6	
Mechanical	20.9	
Mechanical	20.7	
Mechanical	21.1	
Mechanical	20.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	ا م ا	
Source		
	dB(A)	
Mechanical	21.3	
Mechanical	20.9	
Mechanical	21.4	
Mechanical	20.7	
Mechanical	21.6	
Mechanical	20.9	
Mechanical	21.7	
Mechanical	21.0	
Mechanical	21.8	
Mechanical	20.8	
Mechanical	21.8	
Mechanical	20.9	
Mechanical	21.8	
Receiver Palladium 4 FI G	Ld 39.9 dE	B(A)
Mechanical	17.5	
Mechanical	18.8	
Mechanical	17.4	
Mechanical	18.8	
Mechanical	17.3	
Mechanical	17.2	
Mechanical	14.9	
Mechanical	12.0	
Mechanical	14.5	
Mechanical	5.0	
Mechanical	12.1	
Mechanical	6.0	
Mechanical	10.3	
Mechanical	8.6	
Mechanical	9.8	
Mechanical	13.2	
Mechanical	13.1	
Mechanical	13.1	
Mechanical	13.0	
Mechanical	13.1	
Mechanical	12.9	
Mechanical	13.2	
Mechanical	12.9	
Mechanical	14.3	
Mechanical	13.0	
Mechanical	14.2	
Mechanical	14.0	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	14.1	
Mechanical	13.9	
Mechanical	14.5	
Mechanical	13.8	
Mechanical	14.4	
Mechanical	14.3	
Mechanical	14.3	
Mechanical	14.2	
Mechanical	14.2	
Mechanical	14.1	
Mechanical	14.6	
Mechanical	14.0	
Mechanical	14.5	
Mechanical	13.9	
Mechanical	14.4	
Mechanical	14.3	
Mechanical	14.3	
Mechanical	14.2	
Mechanical	13.5	
Mechanical	14.1	
Mechanical	13.3	
Mechanical	22.5	
Mechanical	22.8	
Mechanical	22.0	
Mechanical	22.4	
Mechanical	21.5	
Mechanical	22.1	
Mechanical	21.2	
Mechanical	21.4	
Mechanical	22.7	
Mechanical	21.0	
Mechanical	22.5	
Mechanical	20.6	
Mechanical	19.9	
Mechanical	20.3	
Mechanical	19.6	
Mechanical	20.0	
Mechanical	19.4	
Mechanical	19.7	
Mechanical	19.1	
Mechanical	19.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Courses	ا ما	
Source		
	dB(A)	
Mechanical	18.8	
Mechanical	19.3	
Mechanical	18.7	
Mechanical	19.1	
Mechanical	18.5	
Mechanical	18.9	
Mechanical	18.4	
Mechanical	18.7	
Mechanical	18.2	
Mechanical	18.5	
Mechanical	17.8	
Mechanical	18.3	
Mechanical	17.6	
Mechanical	18.1	
Mechanical	17.4	
Mechanical	18.0	
Mechanical	17.3	
Mechanical	17.8	
Mechanical	17.1	
Mechanical	17.6	
Mechanical	17.0	
Mechanical	17.5	
Mechanical	16.8	
Mechanical	17.3	
Mechanical	16.7	
Mechanical	17.2	
Mechanical	18.1	
Mechanical	17.0	
Mechanical	16.4	
Mechanical	16.8	
Mechanical	16.2	
Mechanical	16.7	
Mechanical	10.7	
Mechanical	10.8	
Mechanical	13.9	
Mechanical	14.0	
Mechanical	12.9	
Mechanical	12.9	
Mechanical	12.5	
Mechanical	12.7	
Mechanical	13.1	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	Ld	
	dB(A)	
Mechanical	13.2	
Mechanical	13.0	
Mechanical	13.0	
Mechanical	12.8	
Mechanical	12.9	
Mechanical	12.7	
Mechanical	12.8	
Mechanical	12.6	
Mechanical	12.8	
Mechanical	12.7	
Mechanical	14.1	
Mechanical	13.5	
Mechanical	13.5	
Mechanical	13.3	
Mechanical	13.0	
Mechanical	12.8	
Mechanical	12.7	
Mechanical	12.6	
Mechanical	12.4	
Mechanical	12.4	
Mechanical	12.2	
Mechanical	12.1	
Mechanical	12.0	
Mechanical	11.9	
Mechanical	11.9	
Mechanical	11.8	
Mechanical	11.9	
Mechanical	11.8	
Mechanical	11.8	
Mechanical	11.7	
Mechanical	11.8	
Mechanical	11.7	
Mechanical	11.8	
Mechanical	11.6	
Mechanical	13.1	
Mechanical	12.9	
Mechanical	13.2	
Mechanical	13.0	
Mechanical	13.0	
Mechanical	13.1	
Mechanical	20.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Source	ЬI	
000100		
Mechanical		
Mechanical	21.1	
Mochanical	20.4	
Mochanical	20.7	
Mochanical	20.3 20.5	
Mochanical	20.3	
Mochanical	20.3	
Mashanical	20.0	
Mechanical	19.9	
Mashanical	20.4	
Mashanical	19.7	
	20.0	
	19.0	
	19.9	
	19.4	
	19.4	
Mechanical	18.9	
Mechanical	19.2	
Mechanical	19.3	
Mechanical	19.0	
Mechanical	19.2	
	19.5	
	19.1	
	19.3	
Mechanical	10.9	
	19.2	
	10.0	
Mechanical	19.0	
	18.7	
	19.1	
	18.5	
IVIECNANICAI	18.9	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - People Option 2 No Palladium

Source		
	dB(A)	
Receiver R1 Ld 38.1 dB(A)		
People Level 2 Courtyard	27.1	
People Level 1 Plaza	13.7	
People Level 2 - Rear Yard	37.7	
People Level 7 Deck	18.2	
Receiver R1A Ld 35.1 dB(A)		
People Level 2 Courtyard	31.1	
People Level 1 Plaza	15.9	
People Level 2 - Rear Yard	32.6	
People Level 7 Deck	18.8	
Receiver R2 Ld 39.5 dB(A)		
People Level 2 Courtyard	30.4	
People Level 1 Plaza	38.3	
People Level 2 - Rear Yard	24.6	
People Level 7 Deck	28.0	
Receiver R3 Ld 46.7 dB(A)		
People Level 2 Courtyard	27.2	
People Level 1 Plaza	46.2	
People Level 2 - Rear Yard	26.2	
People Level 7 Deck	35.9	
Receiver R4 Ld 39.8 dB(A)		
People Level 2 Courtyard	28.4	
People Level 1 Plaza	39.2	
People Level 2 - Rear Yard	22.7	
People Level 7 Deck	26.5	
Receiver R5 Ld 47.5 dB(A)		
People Level 2 Courtyard	24.1	
People Level 1 Plaza	13.1	
People Level 2 - Rear Yard	46.8	
People Level 7 Deck	39.2	
Receiver R6 Ld 29.8 dB(A)		
People Level 2 Courtyard	20.0	
People Level 1 Plaza	9.6	
People Level 2 - Rear Yard	29.0	
People Level 7 Deck	17.6	
Receiver R7 Ld 30.3 dB(A)		
People Level 2 Courtyard	23.2	
People Level 1 Plaza	27.7	
People Level 2 - Rear Yard	17.3	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - People Option 2 No Palladium

9

-				
Source		Ld		
		dB(A)		
People Leve	el 7 Deck	23.5		
				_
		AES 2	2801 Crespi St Woodland Hills, CA 91364 USA	2

SoundPLAN 8.0

Modera Argyle Assessed contribution level - People Option 2 Palladium Only

Source	Ld	
	dB(A)	
Receiver Palladium 1 Ld 46.4 dB(A)		
People Level 2 Courtyard	33.4	
People Level 1 Plaza	18.2	
People Level 2 - Rear Yard	45.4	
People Level 7 Deck	37.7	
Receiver Palladium 2 Ld 44.5 dB(A)		
People Level 2 Courtyard	32.7	
People Level 1 Plaza	18.6	
People Level 2 - Rear Yard	40.4	
People Level 7 Deck	41.8	
Receiver Palladium 3 Ld 46.0 dB(A)		
People Level 2 Courtyard	32.3	
People Level 1 Plaza	18.2	
People Level 2 - Rear Yard	41.1	
People Level 7 Deck	43.9	
Receiver Palladium 4 Ld 44.5 dB(A)		
People Level 2 Courtyard	31.1	
People Level 1 Plaza	16.2	
People Level 2 - Rear Yard	43.6	
People Level 7 Deck	36.2	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - Speakers Option 2 No Palladium

_	· · ·			
Source	Ld			
	dB(A)			
Receiver R1 Ld 43.0 dB(A)				
Speakers Level 2	39.8			
Speakers Level 2	39.4			
Speakers Level 2	31.2			
Speakers Level 2	25.2			
Speaker Level 1 Plaza	7.9			
Speaker Level 7 - 2	18.5			
Receiver R1A Ld 46.8 dB(A)				
Speakers Level 2	44.1			
Speakers Level 2	42.3			
Speakers Level 2	35.3			
Speakers Level 2	32.6			
Speaker Level 1 Plaza	10.0			
Speaker Level 7 - 2	19.4			
Receiver R2 Ld 48.7 dB(A)				
Speakers Level 2	35.4			
Speakers Level 2	31.7			
Speakers Level 2	43.6			
Speakers Level 2	44.0			
Speaker Level 1 Plaza	22.4			
Speaker Level 7 - 2	43.1			
Receiver R3 Ld 54.9 dB(A)				
Speakers Level 2	31.9			
Speakers Level 2	35.2			
Speakers Level 2	35.3			
Speakers Level 2	35.4			
Speaker Level 1 Plaza	52.4			
Speaker Level 7 - 2	50.8			
Receiver R4 Ld 50.0 dB(A)				
Speakers Level 2	39.5			
Speakers Level 2	39.9			
Speakers Level 2	29.6			
Speakers Level 2	32.9			
Speaker Level 1 Plaza	48.6			
Speaker Level 7 - 2	37.6			
Receiver R5 Ld 44.7 dB(A)				
Speakers Level 2	25.8			
Speakers Level 2	29.1			
Speakers Level 2	37.6			

AES 22801 Crespi St Woodland Hills, CA 91364 USA

9

Modera Argyle Assessed contribution level - Speakers Option 2 No Palladium

Source	Ld	
	dB(A)	
Speakers Level 2	37.0	
Speaker Level 1 Plaza	9.2	
Speaker Level 7 - 2	42.4	
Receiver R6 Ld 35.1 dB(A)		
Speakers Level 2	31.9	
Speakers Level 2	31.1	
Speakers Level 2	21.0	
Speakers Level 2	23.6	
Speaker Level 1 Plaza	3.9	
Speaker Level 7 - 2	18.1	
Receiver R7 Ld 43.2 dB(A)		
Speakers Level 2	34.4	
Speakers Level 2	36.6	
Speakers Level 2	21.7	
Speakers Level 2	27.1	
Speaker Level 1 Plaza	37.5	
Speaker Level 7 - 2	38.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - Speakers Option 2 Palladium Only

Source	Ld	
	dB(A)	
Receiver Palladium 1 Ld 48.6	6 dB(A)	
Speakers Level 2	40.8	
Speakers Level 2	36.3	
Speakers Level 2	44.1	
Speakers Level 2	43.1	
Speaker Level 1 Plaza	30.4	
Speaker Level 7 - 2	39.9	
Receiver Palladium 2 Ld 49.9	9 dB(A)	
Speakers Level 2	38.8	
Speakers Level 2	36.5	
Speakers Level 2	45.7	
Speakers Level 2	44.1	
Speaker Level 1 Plaza	13.6	
Speaker Level 7 - 2	43.6	
Receiver Palladium 3 Ld 50.7	1 dB(A)	
Speakers Level 2	36.9	
Speakers Level 2	37.8	
Speakers Level 2	44.0	
Speakers Level 2	43.4	
Speaker Level 1 Plaza	13.7	
Speaker Level 7 - 2	46.5	
Receiver Palladium 4 Ld 45.7	1 dB(A)	
Speakers Level 2	39.2	
Speakers Level 2	35.3	
Speakers Level 2	38.9	
Speakers Level 2	37.7	
Speaker Level 1 Plaza	30.7	
Speaker Level 7 - 2	37.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - Loading Option 2 No Palladium

Source	Ld	
	dB(A)	
Receiver R1 Ld 58.0 dB(A)		
Loading Option 2 - North	25.9	
Loading Option 2 - Southwest	58.0	
Receiver R1A Ld 59.8 dB(A)		
Loading Option 2 - North	28.8	
Loading Option 2 - Southwest	59.8	
Receiver R2 Ld 58.4 dB(A)		
Loading Option 2 - North	28.2	
Loading Option 2 - Southwest	58.4	
Receiver R3 Ld 40.1 dB(A)		
Loading Option 2 - North	28.2	
Loading Option 2 - Southwest	39.8	
Receiver R4 Ld 33.1 dB(A)		
Loading Option 2 - North	28.3	
Loading Option 2 - Southwest	31.4	
Receiver R4b (behind) Ld 54.7 dB(A)		
Loading Option 2 - North	54.7	
Loading Option 2 - Southwest	25.2	
Receiver R5 Ld 24.7 dB(A)		
Loading Option 2 - North	19.7	
Loading Option 2 - Southwest	23.1	
Receiver R6 Ld 48.8 dB(A)		
Loading Option 2 - North	18.5	
Loading Option 2 - Southwest	48.8	
Receiver R7 Ld 27.8 dB(A)		
Loading Option 2 - North	21.8	
Loading Option 2 - Southwest	26.6	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

Modera Argyle Assessed contribution level - Loading Option 2 Palladium Only

Sourco	١d	
Source	Lu	
	dB(A)	
Receiver Palladium 1 Ld 37.1 dB	(A)	
Loading Option 2 - North	32.3	
Loading Option 2 - Southwest	35.3	
Receiver Palladium 2 Ld 29.8 dB((A)	
Loading Option 2 - North		
Loading Option 2 - Southwest	29.8	
Receiver Palladium 3 Ld 27.5 dB((A)	
Loading Option 2 - North		
Loading Option 2 - Southwest	27.5	
Receiver Palladium 4 Ld 45.1 dB	(A)	
Loading Option 2 - North	35.5	
Loading Option 2 - Southwest	44.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: Modera Argyle Project*

Traffic Distribution as % of	F ADT			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

EXISTING CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
- Between Yucca St. and Hollywood Blvd.	40	10	30	35	457	4,570	10%	0	0	66.9
 Between Hollywood Blvd. and Selma Ave. 	40	10	30	35	562	5,620	10%	0	0	67.8
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,118	21,180	10%	0	0	71.6
- Between Hollywood Blvd. and Selma Ave.	70	10	45	35	2,346	23,460	10%	0	0	72.1
- Between Selma Ave. and Sunset Blvd.	70	10	45	35	2,339	23,390	10%	0	0	72.0
Argyle Avenue										
- Between Yucca St. and Hollywood Blvd.	50	10	35	35	713	7,130	10%	0	0	68.0
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	749	7,490	10%	0	0	68.2
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	575	5,750	10%	0	0	67.1
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,484	14,840	10%	0	0	70.6
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,447	14,470	10%	0	0	71.1
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,303	13,030	10%	0	0	70.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,045	20,450	10%	0	0	72.6
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	633	6,330	10%	0	0	66.4
- Between Vine St. and Argyle Ave.	70	10	45	35	504	5,040	10%	0	0	65.4
- Between Argyle Ave. and Gower St.	40	10	30	35	240	2,400	10%	0	0	64.1
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	1,835	18,350	10%	0	0	71.0
- Between Vine St. and Argyle Ave.	60	10	40	35	2,031	20,310	10%	0	0	71.9
- Between Argyle Ave. and Gower St.	60	10	40	35	1,942	19,420	10%	0	0	71.7
Selma Avenue						,				
- Between Ivar Ave. and Vine St.	40	10	30	35	386	3,860	10%	0	0	66.1

EXISTING CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	540	5,400	10%	0	0	67.6
 Between Argyle Ave. and Gower St. 	40	10	30	35	299	2,990	10%	0	0	65.0
Sunset Boulevard										
- Between Vine St. and Argyle Ave.	70	10	45	35	2,956	29,560	10%	0	0	73.1
- Between Argyle Ave. and Gower St.	70	10	45	35	2,819	28,190	10%	0	0	72.9
- Between Gower St. and Bronson Ave.	70	10	45	35	3,170	31,700	10%	0	0	73.4

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: Modera Argyle Project*

Traffic Distribution as % of AD1	Г			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
- Between Yucca St. and Hollywood Blvd.	40	10	30	35	457	4,570	10%	0	0	66.9
- Between Hollywood Blvd. and Selma Ave.	40	10	30	35	562	5,620	10%	0	0	67.8
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,137	21,370	10%	0	0	71.7
- Between Hollywood Blvd. and Selma Ave.	70	10	45	35	2,365	23,650	10%	0	0	72.1
- Between Selma Ave. and Sunset Blvd.	70	10	45	35	2,344	23,440	10%	0	0	72.1
Argyle Avenue										
- Between Yucca St. and Hollywood Blvd.	50	10	35	35	728	7,280	10%	0	0	68.1
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	777	7,770	10%	0	0	68.4
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	614	6,140	10%	0	0	67.3
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,498	14,980	10%	0	0	70.6
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,461	14,610	10%	0	0	71.1
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,305	13,050	10%	0	0	70.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,045	20,450	10%	0	0	72.6
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	633	6,330	10%	0	0	66.4
- Between Vine St. and Argyle Ave.	70	10	45	35	504	5,040	10%	0	0	65.4
- Between Argyle Ave. and Gower St.	40	10	30	35	240	2,400	10%	0	0	64.1
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	1,846	18,460	10%	0	0	71.0
- Between Vine St. and Argyle Ave.	60	10	40	35	2,042	20,420	10%	0	0	72.0
- Between Argyle Ave. and Gower St.	60	10	40	35	1,947	19,470	10%	0	0	71.7
Selma Avenue					-	,				
- Between Ivar Ave. and Vine St.	40	10	30	35	422	4,220	10%	0	0	66.5

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic Volume		PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	599	5,990	10%	0	0	68.0
 Between Argyle Ave. and Gower St. 	40	10	30	35	380	3,800	10%	0	0	66.1
Sunset Boulevard										
- Between Vine St. and Argyle Ave.	70	10	45	35	2,975	29,750	10%	0	0	73.1
 Between Argyle Ave. and Gower St. 	70	10	45	35	2,855	28,550	10%	0	0	72.9
- Between Gower St. and Bronson Ave.	70	10	45	35	3,207	32,070	10%	0	0	73.4

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: Modera Argyle Project*

Traffic Distribution as % of AL	DT			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
 Between Yucca St. and Hollywood Blvd. 	40	10	30	35	459	4,590	10%	0	0	66.9
 Between Hollywood Blvd. and Selma Ave. 	40	10	30	35	565	5,650	10%	0	0	67.8
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,137	21,370	10%	0	0	71.7
 Between Hollywood Blvd. and Selma Ave. 	70	10	45	35	2,365	23,650	10%	0	0	72.1
- Between Selma Ave. and Sunset Blvd.	70	10	45	35	2,345	23,450	10%	0	0	72.1
Argyle Avenue										
- Between Yucca St. and Hollywood Blvd.	50	10	35	35	730	7,300	10%	0	0	68.1
 Between Hollywood Blvd. and Selma Ave. 	50	10	35	35	778	7,780	10%	0	0	68.4
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	609	6,090	10%	0	0	67.3
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,498	14,980	10%	0	0	70.6
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,461	14,610	10%	0	0	71.1
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,305	13,050	10%	0	0	70.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,045	20,450	10%	0	0	72.6
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	633	6,330	10%	0	0	66.4
- Between Vine St. and Argyle Ave.	70	10	45	35	504	5,040	10%	0	0	65.4
- Between Argyle Ave. and Gower St.	40	10	30	35	240	2,400	10%	0	0	64.1
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	1,857	18,570	10%	0	0	71.0
- Between Vine St. and Argyle Ave.	60	10	40	35	2,043	20,430	10%	0	0	72.0
- Between Argyle Ave. and Gower St.	60	10	40	35	1,948	19,480	10%	0	0	71.8
Selma Avenue										
- Between Ivar Ave. and Vine St.	40	10	30	35	425	4,250	10%	0	0	66.5

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	603	6,030	10%	0	0	68.1
 Between Argyle Ave. and Gower St. 	40	10	30	35	384	3,840	10%	0	0	66.1
Sunset Boulevard										
- Between Vine St. and Argyle Ave.	70	10	45	35	2,977	29,770	10%	0	0	73.1
- Between Argyle Ave. and Gower St.	70	10	45	35	2,857	28,570	10%	0	0	72.9
- Between Gower St. and Bronson Ave.	70	10	45	35	3,209	32,090	10%	0	0	73.4

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: Modera Argyle Project*

Traffic Distribution as % o	f ADT			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

FUTURE NO PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
 Between Yucca St. and Hollywood Blvd. 	40	10	30	35	485	4,850	10%	0	0	67.1
 Between Hollywood Blvd. and Selma Ave. 	40	10	30	35	597	5,970	10%	0	0	68.0
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,608	26,080	10%	0	0	72.5
 Between Hollywood Blvd. and Selma Ave. 	70	10	45	35	2,781	27,810	10%	0	0	72.8
 Between Selma Ave. and Sunset Blvd. 	70	10	45	35	2,794	27,940	10%	0	0	72.8
Argyle Avenue										
 Between Yucca St. and Hollywood Blvd. 	50	10	35	35	878	8,780	10%	0	0	68.9
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	836	8,360	10%	0	0	68.7
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	636	6,360	10%	0	0	67.5
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,685	16,850	10%	0	0	71.1
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,781	17,810	10%	0	0	72.0
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,622	16,220	10%	0	0	71.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,292	22,920	10%	0	0	73.1
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	738	7,380	10%	0	0	67.0
- Between Vine St. and Argyle Ave.	70	10	45	35	655	6,550	10%	0	0	66.5
- Between Argyle Ave. and Gower St.	40	10	30	35	371	3,710	10%	0	0	65.9
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	2,650	26,500	10%	0	0	72.6
- Between Vine St. and Argyle Ave.	60	10	40	35	2,874	28,740	10%	0	0	73.4
- Between Argyle Ave. and Gower St.	60	10	40	35	2,800	28,000	10%	0	0	73.3
Selma Avenue					-					
- Between Ivar Ave. and Vine St.	40	10	30	35	426	4,260	10%	0	0	66.5

FUTURE NO PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	582	5,820	10%	0	0	67.9
 Between Argyle Ave. and Gower St. 	40	10	30	35	318	3,180	10%	0	0	65.3
Sunset Boulevard										
 Between Vine St. and Argyle Ave. 	70	10	45	35	3,972	39,720	10%	0	0	74.3
 Between Argyle Ave. and Gower St. 	70	10	45	35	3,905	39,050	10%	0	0	74.3
- Between Gower St. and Bronson Ave.	70	10	45	35	4,286	42,860	10%	0	0	74.7

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: Modera Argyle Project*

Traffic Distribution as % o	f ADT			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
 Between Yucca St. and Hollywood Blvd. 	40	10	30	35	485	4,850	10%	0	0	67.1
 Between Hollywood Blvd. and Selma Ave. 	40	10	30	35	597	5,970	10%	0	0	68.0
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,627	26,270	10%	0	0	72.6
 Between Hollywood Blvd. and Selma Ave. 	70	10	45	35	2,800	28,000	10%	0	0	72.8
 Between Selma Ave. and Sunset Blvd. 	70	10	45	35	2,799	27,990	10%	0	0	72.8
Argyle Avenue										
 Between Yucca St. and Hollywood Blvd. 	50	10	35	35	893	8,930	10%	0	0	69.0
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	862	8,620	10%	0	0	68.8
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	679	6,790	10%	0	0	67.8
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,699	16,990	10%	0	0	71.2
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,795	17,950	10%	0	0	72.0
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,624	16,240	10%	0	0	71.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,292	22,920	10%	0	0	73.1
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	738	7,380	10%	0	0	67.0
- Between Vine St. and Argyle Ave.	70	10	45	35	655	6,550	10%	0	0	66.5
- Between Argyle Ave. and Gower St.	40	10	30	35	371	3,710	10%	0	0	65.9
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	2,661	26,610	10%	0	0	72.6
- Between Vine St. and Argyle Ave.	60	10	40	35	2,885	28,850	10%	0	0	73.5
- Between Argyle Ave. and Gower St.	60	10	40	35	2,806	28,060	10%	0	0	73.3
Selma Avenue										
- Between Ivar Ave. and Vine St.	40	10	30	35	462	4,620	10%	0	0	66.9

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic Volume		PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	642	6,420	10%	0	0	68.3
 Between Argyle Ave. and Gower St. 	40	10	30	35	399	3,990	10%	0	0	66.3
Sunset Boulevard										
- Between Vine St. and Argyle Ave.	70	10	45	35	3,991	39,910	10%	0	0	74.4
- Between Argyle Ave. and Gower St.	70	10	45	35	3,941	39,410	10%	0	0	74.3
- Between Gower St. and Bronson Ave.	70	10	45	35	4,323	43,230	10%	0	0	74.7

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

PHV to ADT factor 10%

Off-Site Traffic Noise Calculations *Project: 222 West 2nd*

Traffic Distribution as % of AD	DT			
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Ivar Avenue										
 Between Yucca St. and Hollywood Blvd. 	40	10	30	35	487	4,870	10%	0	0	67.1
 Between Hollywood Blvd. and Selma Ave. 	40	10	30	35	600	6,000	10%	0	0	68.0
Vine Street										
 Between Yucca St. and Hollywood Blvd. 	70	10	45	35	2,627	26,270	10%	0	0	72.6
 Between Hollywood Blvd. and Selma Ave. 	70	10	45	35	2,800	28,000	10%	0	0	72.8
- Between Selma Ave. and Sunset Blvd.	70	10	45	35	2,800	28,000	10%	0	0	72.8
Argyle Avenue										
 Between Yucca St. and Hollywood Blvd. 	50	10	35	35	895	8,950	10%	0	0	69.0
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	865	8,650	10%	0	0	68.8
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	674	6,740	10%	0	0	67.7
Gower Street										
- Between Yucca St. and Hollywood Blvd.	60	10	40	35	1,699	16,990	10%	0	0	71.2
- Between Hollywood Blvd. and Selma Ave.	50	10	35	35	1,795	17,950	10%	0	0	72.0
- Between Selma Ave. and Sunset Blvd.	50	10	35	35	1,624	16,240	10%	0	0	71.6
Franklin Avenue										
- Between Argyle Ave. and Gower St.	50	10	35	35	2,292	22,920	10%	0	0	73.1
Yucca Street										
- Between Ivar Ave. and Vine St.	70	10	45	35	738	7,380	10%	0	0	67.0
- Between Vine St. and Argyle Ave.	70	10	45	35	655	6,550	10%	0	0	66.5
- Between Argyle Ave. and Gower St.	40	10	30	35	371	3,710	10%	0	0	65.9
Hollywood Boulevard										
- Between Ivar Ave. and Vine St.	70	10	45	35	2,672	26,720	10%	0	0	72.6
- Between Vine St. and Argyle Ave.	60	10	40	35	2,886	28,860	10%	0	0	73.5
- Between Argyle Ave. and Gower St.	60	10	40	35	2,806	28,060	10%	0	0	73.3
Selma Avenue										
- Between Ivar Ave. and Vine St.	40	10	30	35	465	4,650	10%	0	0	66.9

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Vine St. and Argyle Ave.	40	10	30	35	645	6,450	10%	0	0	68.4
 Between Argyle Ave. and Gower St. 	40	10	30	35	403	4,030	10%	0	0	66.3
Sunset Boulevard										
 Between Vine St. and Argyle Ave. 	70	10	45	35	3,993	39,930	10%	0	0	74.4
 Between Argyle Ave. and Gower St. 	70	10	45	35	3,942	39,420	10%	0	0	74.3
- Between Gower St. and Bronson Ave.	70	10	45	35	4,325	43,250	10%	0	0	74.7

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.