

APPENDIX E

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

P:\CCP1903\Draft IS-MND\Draft ISMND.docx «08/26/19»

CYPRESS SPORTS PARK City of Cypress, California

This page intentionally left blank

Limited Phase II Environmental Site Assessment Western Portion of APN 241-221-23 Cypress, California 90630

City of Cypress Engineering Division 5275 Orange Avenue, Suite 400 | Cypress, California 90640

January 29, 2019 | Project No. 210784002

Geotechnical | Environmental | Construction Inspection & Testing | Forensic Engineering & Expert Witness Geophysics | Engineering Geology | Laboratory Testing | Industrial Hygiene | Occupational Safety | Air Quality | GIS

Limited Phase II Environmental Site Assessment Western Portion of APN 241-221-23 Cypress, California 90630

Mr. Nick Mangkalakiri, P.E. Senior Civil Engineer City of Cypress Engineering Division 5275 Orange Avenue, Suite 400 | Cypress, California 90640

January 29, 2019 | Project No. 210784002

Kristina Hill Staff Geologist

John Jay Roberts, PG, CEG Principal Geologist

KMH/PJC/JJR/sc

Distribution: (1) Addressee (via e-mail)

ck Cullis

Patrick Cullip, EIT Project Engineer

CONTENTS

1	INTRODUCTION	1								
2	BACKGROUND	1								
2.1	Project Location	1								
2.2	Regional and Site Geology	1								
2.3	Hydrogeology									
3	OBJECTIVES									
4	LIMITED PHASE II ESA									
4.1	Site-Specific Health and Safety Plan (HSP)									
4.2	Underground Service Alert	3								
4.3	Geophysical Survey									
4.4	Field Activities	3								
	4.4.1 Soil Sampling Procedures	3								
	4.4.2 Temporary Soil Vapor Probe Installation	4								
	4.4.3 Soil Vapor Sampling Procedures	4								
4.5	Investigation Derived Wastes (IDW)	5								
5	ANALYTICAL RESULTS	5								
5.1	Title 22 Metals in Soil Samples	5								
5.2	TPH in Soil Samples	5								
5.3	VOCs in Soil Samples	5								
5.4	VOCs in Soil Vapor Samples	6								
5.5	TPHg in Soil Vapor Samples	6								
6	FINDINGS	6								
7	CONCLUSIONS AND RECOMMENDATIONS									
8	LIMITATIONS	7								
9	REFERENCES									

TABLES

- 1 Soil Sample Analytical Results Title 22 Metals
- 2 Soil Sample Analytical Results TPH and VOCs
- 3 Soil Vapor Analytical Results VOCs and TPHg

FIGURES

- 1 Site Location
- 2 Site Plan and Boring Locations

APPENDICES

- A Boring Logs
- B Photographs
- C Geophysical Report and Field Procedures
- D Analytical Laboratory Reports
- E Waste Manifest

1 INTRODUCTION

Ninyo & Moore conducted a Limited Phase II Environmental Site Assessment (ESA) on behalf of the City of Cypress (City, client) of the property located at the northwest portion of Assessor's Parcel Number (APN) 241-221-23 in Cypress, California (site); Figure 1). The work was conducted in general accordance with our agreement, dated December 11, 2018. The following sections state the purpose, the scope of services, and the environmental findings and recommendations for this project.

2 BACKGROUND

A Phase I ESA was prepared by Ninyo & Moore, dated September 21, 2018 for the subject site (Ninyo & Moore, 2018). The Phase I ESA reported the following vapor encroachment condition (VEC) in connection with the site:

- Based on historical research and the results of the Vapor Encroachment Screening Matrix (VESM) conducted by Ninyo & Moore, a VEC cannot be ruled out beneath the site.
- If structures are planned for future development on the site, Ninyo & Moore recommends an additional evaluation in the form of a Phase II ESA to evaluate if a VEC exists at the site.

Based on the findings, Ninyo & Moore recommended a Phase II ESA to further evaluate the above mentioned VEC.

2.1 **Project Location**

The site consists of the western portion of APN 241-221-23 in Cypress, California. The site is bound by Lexington Drive to the west, by West Cerritos Avenue to the north, by a former golf course used for horse feed and construction material storage to the east, and by horse stalls associated with the Los Alamitos Race Course to the south. The site is planned for development as a park by the City.

2.2 Regional and Site Geology

Based on a review of the United States Geological Survey (USGS), 7.5-Minute Topographic Quadrangle Map Series, Los Alamitos, California, 2012, the site elevation is approximately 29 feet above mean sea level. The regional topography is generally flat and slopes to the west.

Based on a review of the California Geologic Survey South Gate Quadrangle, California-Los Angeles County 7.5 Minute Series, the site is located within the Pressure Area of the Orange County Groundwater Basin, which primarily contains sedimentary rocks ranging in age from Quaternary to Tertiary. The basin is bordered by hills and mountains to the north and east and the

Pacific Ocean to the southwest (GeoTracker, 2018). Based on a review of the Phase I EDR report, the site is underlain by Bolsa, a silty loam with slow infiltration rates (Ninyo & Moore, 2018a).

Soil encountered in borings during this evaluation consisted primarily of alluvium characterized by micaceous silty-sand. Boring B4 encountered approximately 0.5 feet of base characterized by gravel and asphalt debris, underlain by alluvium similar to that encountered in borings B1 through B3. Detailed descriptions of the subsurface materials encountered beneath the site are presented in the boring logs provided in Appendix A.

2.3 Hydrogeology

The site lies within the Westminster Watershed in the Pressure Area of the Orange County Groundwater Basin. Groundwater was measured at approximately 5 to 7 feet below ground surface (bgs) in 2006 at the southwest adjoining property (former Cypress Golf Course). Groundwater was encountered during this evaluation from approximately 8 to 11 feet bgs. Groundwater was reported to flow towards the west (Environmental Resolutions, Inc. [ERI], 2006). Groundwater levels, gradient, and flow direction can fluctuate due to seasonal variations, groundwater withdrawal or injection, changes in land use, and other factors. Groundwater was encountered during this Limited Phase II ESA at approximately 8 feet bgs in borings B1 and B2, and at 11 feet bgs and 13 feet bgs in borings B3 and B4, respectively.

3 OBJECTIVES

The objective of this Limited Phase II ESA was to evaluate whether significant concentrations of chemicals of concern are present in soil and soil vapor at select locations of the site, as suspected in Ninyo & Moore's Phase I ESA (Ninyo & Moore, 2018). The Limited Phase II ESA is not intended to delineate the extent of chemicals reported.

4 LIMITED PHASE II ESA

The following sections describe activities that were conducted for this Limited Phase II ESA. Field activities conducted at the site included advancing and sampling four borings, completing the borings as temporary dual-nested vapor probes, and collecting vapor samples. The approximate locations of the borings are presented in Figure 2. Boring logs are presented in Appendix A. Photographs of the site taken during this Limited Phase II ESA are presented in Appendix B. Field sampling procedures are described in Appendix C. The Limited Phase II ESA was conducted under the guidance of a Ninyo & Moore California Licensed Professional Geologist.

4.1 Site-Specific Health and Safety Plan (HSP)

Prior to implementing the field evaluation, a site-specific Health and Safety Plan (HSP) was prepared. The HSP provided a site-specific scope of work and reported the suspected constituents of concern that may be present at the site. Prior to the initiation of field activities, a site safety briefing was conducted to evaluate potential physical and chemical hazards and outlined measures to be taken in the event of an emergency. On-site personnel signed the safety form acknowledging their participation in the briefing.

4.2 Underground Service Alert

Prior to commencement of the soil sampling activities, the proposed soil boring locations were marked with white spray paint or a flag was placed in the proposed location. Underground Service Alert of Southern California was notified of the intent to conduct the subsurface evaluation activities at least 72 hours prior to initiation of intrusive field tasks. Inquiry identification numbers were obtained for the boring locations (A183540977 and A183540977-00A).

4.3 Geophysical Survey

On December 27, 2018, Ninyo & Moore retained Subsurface Surveys & Associates, Inc. (SSA), of Carlsbad, California to conduct a geophysical survey at the planned boring locations in an attempt to locate underground pipes conduits, utilities, and subsurface anomalies prior to drilling. Detected underground features were marked with pink spray paint by SSA. Obstructions were not found at the boring locations (Appendix C).

4.4 Field Activities

On December 27, 2018, Strongarm Environmental, Inc. (Strongarm) of Norwalk, California, advanced four soil borings (B1 through B4) to depths of approximately 15 feet bgs, under the oversight of Ninyo & Moore. Borings B1 through B4 were advanced to 5 feet bgs using a hand auger, then advanced deeper using a Geoprobe F350 direct push drill rig. Borings B1, B2, B3, and B4 encountered groundwater at approximately 8, 8.5, 11, and 13 feet bgs, respectively.

4.4.1 Soil Sampling Procedures

Soil samples from each soil boring were collected at approximately 5, 10, and 15 feet bgs. Soil samples collected from the borings were visually classified in accordance with the Unified Soil Classification System. Each soil sample was monitored for total volatile organic compounds (VOCs) using a calibrated Mini-Rae 3000, photo-ionization detector (PID). PID readings are presented on the boring logs (Appendix A). Soil sample collection was performed as described in the Field Procedures (Appendix C). Soil samples were collected and transported to Enthalpy Analytical Laboratory, Inc. (Enthalpy) of Orange, California for analysis. Soil samples collected from approximately 5 feet bgs were analyzed for Title 22 Metals in accordance with United States Environmental Protection Agency (EPA) Method 6010B/7471A. Soil samples collected from approximately 10 feet bgs were analyzed for total petroleum hydrocarbons (TPHs) and VOCs in accordance with EPA Methods 8015B/5035 and 8260B/5035, respectively. The soil samples collected at 15 feet bgs from each boring were placed on hold at the laboratory, pending analytical results of the shallower samples. Soil samples for TPH as gasoline (TPHg) and VOC analysis were collected in accordance with EPA Method 5035 as described in the Field Procedures (Appendix C). The sample containers were labeled, placed in a cooler containing ice, and transported following standard chain-of-custody protocols to Enthalpy, a State-certified fixed environmental laboratory, within 24 hours after their collection.

4.4.2 Temporary Soil Vapor Probe Installation

After the drilling and sampling of borings B1 through B4, temporary dual-nested soil vapor probes were installed in accordance with the 2015 Department of Toxic Substances Control (DTSC) Advisory Active Soil Gas Investigation (DTSC, 2015). Depth of the deepest vapor probe in each boring was based on depth of groundwater encountered during drilling, and the shallower vapor probe depth was relative to that depth. Vapor probe depths in each boring were as follows: in Boring B1, approximately 3 and 7 feet bgs; in Boring B2, approximately 4.5 and 7.5 feet bgs; in Boring B3, approximately 5 and 9.5 feet bgs; and in Boring B4, approximately 5 and 10 feet bgs. Each vapor probe was centered in two feet of sand pack. The remainder of the borehole was backfilled with hydrated, granular bentonite. The temporary vapor probes were allowed to equilibrate for at least 48 hours before collecting soil vapor samples.

4.4.3 Soil Vapor Sampling Procedures

On January 2, 2019, a soil vapor sample from each of the dual-nested probes in borings B1 through B4 were collected and analyzed for TPHg and VOCs in accordance with EPA Method 8260B by Jones Environmental Laboratories, Inc. (Jones) of Santa Fe Springs, California. The temporary soil vapor probes were sampled in accordance with the DTSC Advisory Active Soil Gas Investigation (DTSC, 2015). Before sampling, the temporary soil vapor probes were purged of three purge volumes at a rate of approximately 200 milliliters per minute. After collection of soil vapor samples, the tubing was removed. Due to the location of the borings in unpaved ground, capping of the boreholes was conducted by placing soil on top of the borings to match surface grade.

4.5 Investigation Derived Wastes (IDW)

Soil cuttings and decontaminated water were stored in a 55-gallon drum pending analytical results. The non-hazardous waste drum was removed and disposed off-site by Belshire Environmental Services, Inc. on January 29, 2019. Copies of the non-hazardous waste manifests are provided in Appendix E.

5 ANALYTICAL RESULTS

Analytical results are presented in Tables 1 through 3, and discussed below. Laboratory reports are provided in Appendix D. Soil analytical results were compared to the EPA Regional Screening Levels (RSLs) for commercial/industrial soil (EPA, 2018), DTSC Human and Ecological Risk Office (HERO) Screening Levels (SLs) assuming commercial/industrial land use (DTSC, 2018), and DTSC Determination of Southern California regional background arsenic concentration in soil (DTSC, 2008). Soil vapor analytical results were compared to the DTSC HERO modified soil gas screening levels (SSLs) (DTSC, 2018) and modified EPA RSLs for commercial/industrial indoor air (EPA, 2018).

5.1 Title 22 Metals in Soil Samples

Detectable concentrations of eleven Title 22 Metals were reported in one or more of the 5-foot bgs soil samples analyzed from each of the four borings but at concentrations below their respective EPA RSLs, except for arsenic in three of the samples (Table 1). Arsenic concentrations in three of the four samples (B1-5', B2-5' and B4-5') analyzed exceeded the EPA RSL and DTSC SL; however, were below the DTSC Determination of a Southern California Regional Background Arsenic Concentration in soil of 12 milligrams per kilogram (mg/kg) (DTSC, 2008).

5.2 TPH in Soil Samples

Concentrations of TPHg and TPH as diesel (TPHd) were not detected above the laboratory reporting limits (LRLs) in the 10-foot bgs samples analyzed from each of the four borings. A concentration of TPH as oil (TPHo) was reported in sample B4-10'; however, the concentration was below the EPA RSLs for TPHo (Table 2). TPHo was not detected above the reporting detection limit (RDL) in other samples analyzed.

5.3 VOCs in Soil Samples

Concentrations of VOCs were not detected above the RDLs in the 10-foot bgs soil samples analyzed from each of the four borings (Table 2).

5.4 VOCs in Soil Vapor Samples

Concentrations of 1,1-dichloroethene, tetrachloroethene, toluene, 1,2,4-trimethylbenzene, and/or o-xylene were detected in seven of the eight soil vapor samples analyzed and the duplicate sample; concentrations were below their respective DTSC HERO modified SSLs and modified EPA RSLs for commercial/industrial use.

Ethylbenzene concentrations were not detected above the reporting limit (RL) (<8 micrograms per cubic meter [μ g/m³]) in seven of the eight soil vapor samples analyzed and the duplicate sample. In sample SV1-7, an ethylbenzene concentration of 9 μ g/m³ was detected; however, the concentrations was below the ethylbenzne DTSC HERO modified SSL and modified EPA RSL for commercial/industrial use.

Other VOCs were not detected in concentrations above their respective RLs (Table 3).

5.5 TPHg in Soil Vapor Samples

TPHg was detected in two of eight soil vapor samples (SV1-3 and SV1-7) at concentrations of 4,670 μ g/m³ and 8,510 μ g/m³, respectively. Based on the laboratory's review of the chromatograms, "...the hydrocarbon components are on the light end - C8 or less, and the majority are less than C6 (not aromatic). The aromatic low fraction (C6-C8) would be equivalent to the sum of the detected benzene, toluene, ethylbenzene and xylene (BTEX) compounds." The sum of the detected BTEX concentrations in SV1-3 and SV1-7, 9 μ g/m³ and 31 μ g/m³, respectively are significantly below the TPH aromatic low modified EPA RSL concentrations of 4,333.33 μ g/m³ (Table 3). There are no listed DTSC screening levels for TPH concentrations with aliphatic hydrocarbon components (less than C6). Concentrations of TPHg as low carbon range aliphatic compounds do not exceed modified industrial EPA RSLs (86,667 μ g/m³). TPHg was not detected above the RL in the other samples analyzed.

6 **FINDINGS**

Based on the laboratory analytical results of this Limited Phase II ESA, the following findings are provided:

- Detectable concentrations of eleven Title 22 Metals were reported in the 5-foot bgs soil samples analyzed from each of the four borings at concentrations below their EPA RSLs, except for arsenic in three of the borings (B1, B2 and B4). However, the arsenic concentrations were below the DTSC Determination of a Southern California Regional Background Arsenic Concentration in soil.
- Concentrations of TPHg, TPHd, and TPHo were not detected above their RDLs in the 10-foot bgs soil samples analyzed from each boring, except for a TPHo concentration in boring B4 which was below the EPA RSL.

- Concentrations of VOCs were not detected above the RDLs in the four 10-foot bgs soil samples analyzed.
- VOC concentrations detected in soil vapor in each of the four borings did not exceed their respective DTSC HERO modified commercial SSLs and modified EPA RSLs for commercial/industrial use.
- TPHg concentrations were detected in the two vapor samples (SV1-3 and SV1-7) from boring B1; however, the hydrocarbon components were characterized as carbon range C-8 or less, with the majority less than C-6 (not aromatic). The aromatic low fraction (C6-C8), equivalent to the sum of the detected BTEX compounds, in each sample was below the TPH aromatic low modified EPA RSL. There are no listed DTSC SSLs listed for low range aliphatic TPHg concentrations. Concentrations of TPHg as low carbon range aliphatic compounds do not exceed modified industrial EPA RSLs (86,667 µg/m³).

7 CONCLUSIONS AND RECOMMENDATIONS

Based on the above findings, the following conclusions and recommendations are provided:

- Based on the detected Title 22 Metals, TPH, and/or VOC concentrations being below regulatory screening levels or not detected above their respective RDLs in the soil samples analyzed, significant concentrations are not present in soil at these locations and depths. Additional soil sampling is not recommended at this time.
- Based on the detected VOC and/or TPHg concentrations being below their respective modified regulatory screening levels for commercial/industrial land uses or not detected above their respective RLs in the soil vapor samples analyzed, significant concentrations are not present in the subsurface at these locations and depths. Additional soil vapor sampling is not recommended at this time.
- If land use changes from planned park to use for occupancy by sensitive receptors (residential, day care, etc.), additional soil vapor sampling should be conducted in the vicinity of boring B1, to evaluate if significant health risk may be present from potential exposure to VOCs in soil vapor.

8 **LIMITATIONS**

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. No warranty, expressed or implied, is made regarding the professional opinions presented in this report. Variations in site conditions may exist and conditions not observed or described in this report may be encountered during subsequent activities. Please also note that this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Ninyo & Moore's opinions and recommendations regarding environmental conditions, as presented in this report, are based on limited subsurface assessment and chemical analysis. Further assessment of potential adverse environmental impacts from past on-site and/or nearby

use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between sampling locations. Variations in soil and/or groundwater conditions will exist beyond the points explored in this evaluation.

The environmental interpretations and opinions contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the site. The testing and analyses have been conducted by an independent laboratory which is certified by the State of California to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

9 **REFERENCES**

- California Department of Toxic Substances Control, 2008, Determination of a Southern California Regional Background Arsenic Concentration in Soil, G. Chernoff, W. Bosan and D. Oudiz, Society of Toxicology, dated March.
- California Department of Toxic Substances Control, 2011, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, dated October.
- California Department of Toxic Substances Control, 2015, Advisory Active Soil Gas Investigations, dated July.
- California Department of Toxic Substances Control Human and Ecological Risk Office, 2018, Human Health Risk Assessment Note Number: 3, DTSC-modified Screening Levels (DTSC-SLs), updated June.
- DTSC, see California Department of Toxic Substances Control.
- EPA, see United States Environmental Protection Agency.
- Environmental Resolutions, Inc. (ERI), 2006, Third Quarter 2006 Groundwater Monitoring and Status Report, Former Cypress golf Club, 4921 Katella Avenue, Cypress, California, OCHCHA Case No. 04UT011, dated October 20.
- Ninyo & Moore 2018, Phase I Environmental Site Assessment, Western Portion of APN 241-221-23 Cypress, California, dated September 21.
- State of California Water Resources Control Board (SCWRCB), 2018; GeoTracker website: http://geotracker.waterboards.ca.gov/
- United States Environmental Protection Agency, 2015, OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Ai, dated June.
- United States Environmental Protection Agency, 2018, Regional Screening Levels, Pacific Southwest, Region 9, dated November.
- United States Geological Survey, 2012, 7.5' Quadrangle Map Series: Scale 1:24,000, Los Alamitos, California.

USGS, see United States Geological Survey.

										EPA Meth	od 6010B/74	471A (mg/kg)							
Sample ID	Sample Depth (feet bgs)	Date Sample Collected	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	ead	Mercury	Molybdenum	Nickel	Selenium	Silver	rhal lium	Vanadium	Zinc
B1-5'	5'	12/27/2018	ND<3	3.90	77.1	ND<0.5	0.60	16.2	9.66	11.4	5.30	ND<0.14	1.22	11.9	ND<3	ND<0.5	ND<3	37.7	52.6
B1-10'	0'	12/27/2018																	
B1-15'	5'	12/27/2018					-												
B2-5'	5'	12/27/2018	ND<3	3.62	103	ND<0.5	0.84	27.5	12.0	16.4	10.6	ND<0.14	2.24	15.9	ND<3	ND<0.5	ND<3	44.9	68.1
B2-10'	0'	12/27/2018					-												
B2-15'	5'	12/27/2018																	
B3-5'	5'	12/27/2018	ND<3	2.78	68.9	ND<0.5	ND<0.5	17.5	6.76	14.7	17.8	ND<0.14	ND<1	8.91	ND<3	ND<0.5	ND<3	25.8	64.5
B3-10'	0'	12/27/2018																	
B3-15'	5'	12/27/2018																	
B4-5'	5'	12/27/2018	ND<3	6.51	106	ND<0.5	0.78	22.1	11.8	17.4	10.7	ND<0.14	ND<1	15.8	ND<3	ND<0.5	ND<3	46.2	72.8
B4-10'	0'	12/27/2018																	
B4-15'	5'	12/27/2018																	
egulatory	Screening Lev	vels (mg/kg)																	
PA RSLs (I	ndustrial Soil)		470	3	220,000	2,300	980	1,800,000*(1)	350	47,000	800	46	5,800	22,000	5,800	5,800	12	5,800	350,000
DTSC HERO HHRA (Industrial Soil)		NL	0.36	NL	6,900	9,300	170,000*	NL	NL	320*	4.4*	NL	64,000	NL	1500*	NL	1000*	NL	
TSC Accep	table Clean U	p Level	NA	12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
azardous '	Waste Criteria	1			-									-					
CLP (mg/L))		NL	5.0	100	NL	1.0	5	NL	NL	5.0	0.2	NL	NL	1.0	5	NL	NL	NL
TLC (mg/L)		15	5.0	100	0.75	1.0	5	80	25	5.0	0.2	350	20	1.0	5	7.0	24	250
FLC (mg/kg	g)		500	500	10,000**	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000
non-cancei excluding	romium value · endpoint barium sulfate	ed above laborat	ory reporting	limit															
s - below	ground surface)																	
TSC Accep	table Clean U	p Levels- DTSC	's Determina	tion of a So	uthern Californi	a Regional Bad	ckground Arse	enic concentratior	ns in soil (Ma	rch, 2008)									
TSC HERO) HHRA in RSI	L for Soil (June 2	2018)			-	-												
PA - United	I States Enviro	nmental Protect	ion Agency																
) - Identifica			• •																
g/kg - millig	grams per kilog	gram																	
	rams per liter																		
A - not app																			
		the laboratory re	porting limit																
ls - I Inite	d States Envir	onmental Protec	tion Agency	Regional S	creening Levels	. November 20	018												

RSLs - United States Environmental Protection Agency Regional Screening Levels, November 2018

STLC - Soluble threshold limit concentration - maximum soluble limit concentration for California Hazardous Waste (California Code of Regulations [CCR] Title 22, Section 66261.24)

TCLP - Toxicity characteristic leaching procedure - maximum leachable concentration for Federal RCRA hazardous waste

TTLC - Total threshold limit concentration - maximum allowable concentration for California Hazardous Waste (California Code of Regulations [CCR] Title 22, Section 66261.24)

Semale ID	Samula Danth (fact has)	Data Samula Callested		EPA Method 8015B (mg/kg)		VOCs by EPA Method 8260B
Sample ID	Sample Depth (feet bgs)	Date Sample Collected	TPH (C6 to C12)	TPH (C13 to C22)	TPH (C23 to C40)	(µg/kg)
B1-5'	5'	12/27/2018				
B1-10'	10'	12/27/2018	ND<2.61	ND<10	ND<10	ND
B1-15'	15'	12/27/2018				
B2-5'	5'	12/27/2018				
B2-10'	10'	12/27/2018	ND<2.25	ND<10	ND<10	ND
B2-15'	15'	12/27/2018				
B3-5'	5'	12/27/2018				
B3-10'	10'	12/27/2018	ND<2.64	ND<10	ND<10	ND
B3-15'	15'	12/27/2018				
B4-5'	5'	12/27/2018				
B4-10'	10'	12/27/2018	ND<2.22	ND<10	32	ND
B4-15'	15'	12/27/2018				
tory Screening Leve	els (mg/kg)					
SLs (Industrial Soil)			420*	600*	33,000*	Various

Notes:

-- not analyzed

* aromatic fraction

Bold concentration detected above laboratory reporting limit

µg/kg - micrograms per kilogram

bgs - below ground surface

EPA - United States Environmental Protection Agency

ID - Identification

mg/kg - milligrams per kilogram

ND - not detected above the laboratory reporting limit

RSLs - United States Environmental Protection Agency Regional Screening Levels, November 2018

TPH - Total petroleum hydrocarbons

VOCs - volatile organic compounds

Tuble 0	Con Vap				μθ/μη					
Sample ID ⁽¹⁾	Depth (feet bgs)	Sample Date	1, 1-Dichloroethene	Ethylbenzene	Tetrachloroethene (PCE)	Toluene	1,2,4- Trimethylbenzene	o-Xylene	TPHg (aliphatic fraction C5-C8)	TPHg (aromatic fraction C6-C8) ⁽³⁾
SV1-3	3	1/2/19	ND<8	ND<8	11	ND<8	8	9	4,670 ⁽²⁾	9
SV1-7	7	1/2/19	86	9	27	12	9	10	8,510 ⁽²⁾	31
SV2-4.5	5	1/2/19	ND<8	ND<8	12	ND<8	ND<8	ND<8	ND<2,000	NA
SV2-7.5	8	1/2/19	ND<8	ND<8	14	12	ND<8	ND<8	ND<2,000	12
SV3-5	5	1/2/19	ND<8	ND<8	ND<8	ND<8	ND<8	ND<8	ND<2,000	NA
SV3-9.5	10	1/2/19	ND<8	ND<8	34	ND<8	ND<8	ND<8	ND<2,000	NA
SV4-5	5	1/2/19	ND<8	ND<8	10	ND<8	ND<8	ND<8	ND<2,000	NA
SV4-10	10	1/2/19	ND<8	ND<8	10	10	ND<8	ND<8	ND<2,000	10
SV4-10DUP	10	1/2/19	ND<8	ND<8	9	8	ND<8	ND<8	ND<2,000	8
Federal Regu	latory Scree	ning Criteria (µ	ıg/m³)							
		al/ Industrial Ai	310	NL	2	1,300	NL	NL	NL	NL
	DTSC Modified SSLs (Commercial/Industrial)*			NL	4,000	2,600,000	NL	NL	NL	NL
EPA RSL - In	dustrial Air		880 ⁽¹⁾	4.9	47	22,000 ⁽¹⁾	260 ⁽¹⁾	440	2,600	130 ⁽¹⁾⁽⁴⁾
Modified RSL Commercial/	•		29,333.33 ⁽¹⁾	163.33	1,566.67	733,333.33 ⁽¹⁾	8,666.67 ⁽¹⁾	14,666.67 ⁽¹⁾	86,667	4,333.33 ⁽¹⁾⁽⁴⁾

Notes:

Bold type indicates analytical results greater than a regulatory screening criteria

* attenuation factor of 0.0005 for 5-foot probes used to calculate DTSC screening values (DTSC, 2011, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air)

** attenuation factor of 0.03 for 5-foot probes used to calculate EPA screening values (EPA OSWER, 2015, Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air)

(1) non-cancer end-point

⁽²⁾ Based on the laboratory's review of the chromatograms, the hydrocarbon components are on the light end - C8 or less, and the majority are less than C6 (not aromatic). The aromatic fraction (C6-C8) would be equivalent to the sum of the detected BTEX compounds.

⁽³⁾ concentrations are a sum of detected benzene, toluene, and xylene, per footnote (2)

(4) Total Petroleum Hydrocarbons (aromatic low)

µg/m3 - micrograms per cubic meter

bgs - below ground surface

DTSC Modified SSLs – Modified Soil Gas Screening Levels, California Department of Toxic Substances Control Human and Ecological Risk Office Human Health Risk Assessment Note 3, June, 2018, cancer endpoint value. Concentration is calculated from Indoor Air screening value using attenuation factor (0.0005 for future commercial/ industrial) provided in DTSC Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (October 2011).

BTEX - benzene, toluene, ethylbenzene, and xylenes

DUP - duplicate sample

EPA - United States Environmental Protection Agency

EPA RSL - Environmental Protection Agency, Regional Screening Levels for indoor air, updated November 2018

ID - identification

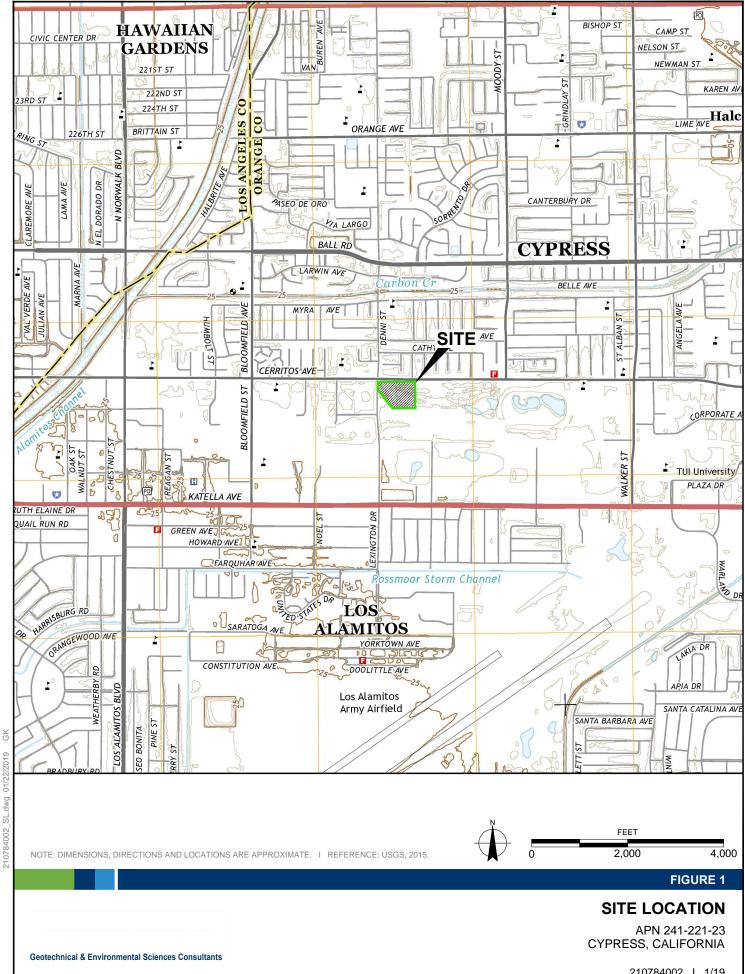
Modified RSLs – Modified Regional Screening Level, EPA Region 9, November 2018, cancer value. Concentration is calculated from Air screening value using EPA OSWER attenuation factor (0.03) provided in Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway (June, 2015).

NA - not analyzed

ND - not detected above the practical quantitation limit - see laboratory reports for additional details

NL - not listed

OSWER - Office of Solid Waste and Emergency Response


TPHg - total petroleum hydrocarbons as gasoline

SSLs - soil gas screening levels

VOCs - volatile organic compounds

FIGURES

Ninyo & Moore | APN 241-221-23, Cypress, California | 210784002 R | January 29, 2019

210784002 I 1/19

APPENDIX A

Boring Logs

Ninyo & Moore | APN 241-221-23, Cypress, California | 210784002 R | January 29, 2019

	Soil Clas	sification C	hart		Grain Size						
F	rimary Divis	sions			ndary Divisions		Desci	ription	Sieve Size	Grain Size	Approximate Size
				oup Symbol	Group Name				Size		Size
		CLEAN GRAVEL less than 5% fines			well-graded GRAVEL		Bou	Iders	> 12"	> 12"	Larger than basketball-sized
				GP	poorly graded GRAVEL						
	GRAVEL			GW-GM	well-graded GRAVEL with silt		Cob	bles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than 50% of	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt						
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on			GP-GC	poorly graded GRAVEL with		Gravel				Pea-sized to
	No. 4 sieve	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			<u> </u>		0.070 0.40"	Rock-salt-sized to
SOILS more than		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized
50% retained		CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve		less than 5% fines		SP	poorly graded SAND		Cana	Weddiam	#10 - #10	0.017 - 0.075	rock-salt-sized
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 - 0.017"	Flour-sized to sugar-sized
	SAND 50% or more			SP-SM	poorly graded SAND with silt					0.017	sugai-sizeu
	of coarse fraction passes No. 4 sieve			SW-SC	well-graded SAND with clay		Fir	nes	Passing #200	< 0.0029"	Flour-sized and smaller
				SP-SC	poorly graded SAND with clay						
		SAND with FINES		SM	silty SAND				Plastic	ity Chart	
				SC	clayey SAND						
		12% fines		SC-SM	silty, clayey SAND		70				
				CL	lean CLAY		% 60				
	SILT and	INORGANIC		ML	SILT		[] 50				
	CLAY liquid limit			CL-ML	silty CLAY		a 40			CH or C	рн
FINE-	less than 50%	ORGANIC		OL (PI > 4)	organic CLAY		≥ 30				
GRAINED SOILS		ORGANIC		OL (PI < 4)	organic SILT		LICI 20		CL o	r OL	MH or OH
50% or more passes		INORGANIC		СН	fat CLAY		AS				
No. 200 sieve	SILT and CLAY	INURGAINIC		МН	elastic SILT		10 7 4	CL - I	ML ML o	r OL	
	liquid limit 50% or more	ORGANIC		OH (plots on or above "A"-line)	organic CLAY		U) 10	20 30 40		70 80 90 1
		ONGAINIC	OH (plots below "A"-line)		organic SILT		LIQUID LIMIT (LL), %			%	
	Highly	Highly Organic Soils			Peat						

Apparent Density - Coarse-Grained Soil

<u> </u>	parent De	1151ty - 00ai	se-Grame		Consistency - Fine-Graineu Son						
	Spooling Ca	able or Cathead	Automatic	Trip Hammer		Spooling Ca	ble or Cathead	Automatic Trip Hammer			
Apparent Density	SPT (blows/foot)	Modified Split Barrel (blows/foot)	SPT (blows/foot)	Modified Split Barrel (blows/foot)	Consis- tency	SPT (blows/foot)	Modified Split Barrel (blows/foot)	SPT (blows/foot)	Modified Split Barrel (blows/foot)		
Very Loose	≤ 4	≤ 8	≤ 3	≤ 5	Very Soft	< 2	< 3	< 1	< 2		
Loose	5 - 10	9 - 21	4 - 7	6 - 14	Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Medium	11 - 30	22 - 63	8 - 20	15 - 42	Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Dense		22 00	0 20	10 12	Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Dense	31 - 50	64 - 105	21 - 33	43 - 70	Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Very Dense	> 50	> 105	> 33	> 70	Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Consistency - Fine-Grained Soil

DEPTH (feet) Bulk SAMPLES Driven BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET
0					Bulk sample.
					Modified split-barrel drive sampler.
					No recovery with modified split-barrel drive sampler.
					Sample retained by others.
					Standard Penetration Test (SPT).
5					No recovery with a SPT.
xx/xx					Shelby tube sample. Distance pushed in inches/length of sample recovered in inches.
					No recovery with Shelby tube sampler.
					Continuous Push Sample.
	Ş				Seepage.
10	<u> </u>				Groundwater encountered during drilling.
					Groundwater measured after drilling.
				SM	MAJOR MATERIAL TYPE (SOIL):
					Solid line denotes unit change.
				CL	Dashed line denotes material change.
					Attitudes: Strike/Dip
					b: Bedding
45					c: Contact
15					j: Joint f: Fracture
					F: Fault
					cs: Clay Seam s: Shear
					bss: Basal Slide Surface
					sf: Shear Fracture sz: Shear Zone
					sbs: Shear Bedding Surface
			////		The total depth line is a solid line that is drawn at the bottom of the boring.
20		I			

BORING LOG

	ES							DATE DRILLED 12/27/18 BORING NO. B1
et)	SAMPLES		₽	ORGANIC VAPORS (ppm)	ЯП	_	CLASSIFICATION U.S.C.S.	GROUND ELEVATION 30' ± (MSL) SHEET 1 OF 1
DEPTH (feet)	S	TIME	SAMPLE ID	VIC VA	MOISTURE	SYMBOL	IFICA S.C.S	METHOD OF DRILLING Direct Push
DEP.	Bulk Driven		SAN		MOI	SΥ	ASS U.	DRIVE WEIGHT DROP
	a <u>C</u>			OR			ŭ	SAMPLED BY KMH LOGGED BY KMH REVIEWED BY JJR DESCRIPTION/INTERPRETATION
0							SM	ALLUVIUM: Medium brown, slightly moist, dense, silty SAND; micaceous.
								Wet. Slightly moist.
		0900	B1-5'	86.2				Slightly moist.
					Ţ			Water measured at 8 feet after waiting one hour.
10 -		0910	B1-10'	0.0				Very moist.
								Slightly moist.
								Wet; minor clay.
		0920	B1-15'	0.0				Very moist.
								Total Depth = 15 feet. Groundwater was encountered at approximately 8 feet one hour after drilling.
								Vapor probes installed at 3 and 7 feet bgs. Backfilled with hydrated, #8 granular bentonite from total depth to 8 feet, from 6 to 4 feet, and from 2 feet to surface, and with #3 Monterey sand from 2 to 4 feet and
								from 6 to 8 feet bgs.
20 -								Notes: Groundwater may rise to a level higher than that measured in borehole due to
								seasonal variations in precipitation and several other factors as discussed in the report.
								The ground elevation shown above is an estimation only. It is based on our
								interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and
								design documents.
30 -								
40 -								FIGURE A- 1
		nın	Moor	P				APN 241-221-23
		-	nental Sciences Consulta					CYPRESS, CALIFORNIA 210784002 1/19

	S							DATE DRILLED 12/27/18 BORING NO. B2
eet)	SAMPLES		9	ORGANIC VAPORS (ppm)	RE	٦	CLASSIFICATION U.S.C.S.	GROUND ELEVATION 29' ± (MSL) SHEET 1 OF 1
DEPTH (feet)		TIME	SAMPLE ID	IC V/	MOISTURE	SYMBOL	S.C.	METHOD OF DRILLING Direct Push
DEP	Bulk Driven		SAN	()	MO	S	_ASS ∪.	DRIVE WEIGHT DROP
	۵Ğ	2		OR			Ö	SAMPLED BY KMH LOGGED BY KMH REVIEWED BY JJR DESCRIPTION/INTERPRETATION
0							SM	ALLUVIUM: Medium brown, dry, dense, micaceous silty SAND.
			B2-5' B2-10' B2-15'	2.3				Medium brown, dry, dense, micaceous silty SAND. Very moist; minor clay. Water up to 8.5 feet after waiting one hour. Wet. No clay; very moist. Total Depth = 15 feet. Groundwater was encountered at approximately 8.5 feet during drilling. Vapor probes installed at approximately 4.5 and 7.5 feet. Backfilled with hydrated, #8 granular bentonite from total depth to 8.5 feet, from 6.5 to 5.5 feet, and from 3.5 teet. Notes: Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
40 -								
								FIGURE A- 2
	ŊÌ	inyo	Moor	9				APN 241-221-23 CYPRESS, CALIFORNIA
G	Geotechn	nical & Environ	mental Sciences Consulta	nts				210784002 1/19

	S							DATE DRILLED 12/27/18 BORING NO. B3				
eet)	SAMPLES		₽	ORGANIC VAPORS (ppm)	ШЖ	_	CLASSIFICATION U.S.C.S.	GROUND ELEVATION 30' ± (MSL) SHEET 1 OF 1				
TH (fe		TIME	SAMPLE ID	IIC VA (ppm)	MOISTURE	SYMBOL	IFICA S.C.S	METHOD OF DRILLING Direct Push				
DEPTH (feet)	Bulk		SAN		MOI	SΥ	ASS U.	DRIVE WEIGHT DROP				
	ے m	2		OR			ซ	SAMPLED BY KMH LOGGED BY KMH REVIEWED BY JJR DESCRIPTION/INTERPRETATION				
0							SM	ALLUVIUM: Medium brown, dry, loose, micaceous, silty SAND with some gravel.				
		1200	B3-5'	2.8				Slightly moist; dense; no gravel. Minor reddish-brown, rust-colored staining.				
		_						Moist.				
10 -		1210	B3-10'	0.0	Ţ			Hole collapsed at 10.5 feet after 15-foot sample collected-re-drilled. Some clay. Hole collapsed at 11 feet after re-drill. Water filled to 11 feet after one hour.				
		1220	B3-15'	0.0				Very moist. _Wet.				
20 -		-						Total Depth = 15 feet. Groundwater was measured at approximately 11 feet one hour after drilling. Backfilled with hydrated, #8 granular bentonite from 8.5 to 6 feet bgs and from 4 feet to surface, and with #3 Monterey sand from 4 to 6 feet from 8.5 to 10.5 feet. Vapor probes installed at 5 feet and 9.5 feet. <u>Notes:</u> Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report.				
		-						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.				
30 -	$\left \right $	-										
		-										
	$\left \right $	1										
	$\left \right $	-										
40 -												
								FIGURE A- 3				
1		inun		P				APN 241-221-23				
	,	AFN 241-221-23 CYPRESS, CALIFORNIA Geotechnical & Environmental Sciences Consultants 210784002 1/19										

	S							DATE DRILLED 12/27/18 BORING NO. B4
eet)	SAMPLES		₽	ORGANIC VAPORS (ppm)	ШЖ	_	CLASSIFICATION U.S.C.S.	GROUND ELEVATION 28' ± (MSL) SHEET 1 OF 1
TH (f		TIME	SAMPLE ID	V ∠ (ppm)	MOISTURE	SYMBOL	S.C.9	METHOD OF DRILLING Direct Push
DEPTH (feet)	Bulk		SAM		MOI	SΥ	ASS U.	DRIVE WEIGHT DROP
	В Б	5		ORG			ฮ	SAMPLED BY KMH LOGGED BY KMH REVIEWED BY JJR DESCRIPTION/INTERPRETATION
0							SM	BASE: Light gray, dry, loose, well graded GRAVEL with some asphalt debris.
		-						FILL: Dark brown, slightly moist, dense, micaceous silty SAND.
		1250	B4-5'	0.0				
		-						Medium brown.
		-						
		1200	B4 10	0.0			SM	Concrete and minor asphalt fragments. ALLUVIUM:
10 -		1300	B4-10	0.0				Medium brown, moist, dense, micaceous silty SAND.
		-						Hole collapsed to 11 feet after drilling.
					Ţ			Wet.
		1310	B4-15'	0.0				Total Depth = 15 feet.
		-						Groundwater was encountered at approximately 13 feet bgs during drilling. Vapor probes installed at 5 and 10 feet bgs.
								Backfilled with hydrated #8 granular bentonite from 9 to 6 feet and from 4 feet bgs to surface, and with #3 Monterey sand from 4 to 6 feet and from 9 to 11 feet.
								Notes:
20 -		1						Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the
		-						report.
								The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes
								of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
		-						
30 -		1						
	\square	-						
	++	-						
		-						
40 -								FIGURE A- 4
	\ /i	inun		2				APN 241-221-23
	,	_	& MOOR					CYPRESS, CALIFORNIA 210784002 1/19

APPENDIX B

Photographs

Ninyo & Moore | APN 241-221-23, Cypress, California | 210784002 R | January 29, 2019

Photograph 1: Looking southwest at the site towards Boring B1, before drilling and sampling activities.

Photograph 2:

Looking west at the site towards Boring B2, before drilling and sampling activities.

FIGURE B-1

PHOTOGRAPHS

APN 241-221-23 CYPRESS, CALIFORNIA

Photograph 3: Looking northwest at the site during direct push drilling of Boring B3.

Photograph 4:

Looking north at the site towards West Cerritos Avenue from Boring B4, before drilling and sampling activities.

FIGURE B-2

PHOTOGRAPHS

APN 241-221-23 CYPRESS, CALIFORNIA

Photograph 5: Vapor probes installed and at Boring B4 at approximately 5 and 10 feet below ground surface.

Photograph 6:

Pressure monitoring of soil vapor probe using magnehelic prior to sampling on January 2, 2019.

FIGURE B-3

PHOTOGRAPHS

APN 241-221-23 CYPRESS, CALIFORNIA

APPENDIX C

Geophysical Report and Field Procedures

December 27, 2018

Project No. 18-552

Ninyo & Moore 475 Goddard, Suite 200 Irvine, CA 92618

Attn: Patrick Cullip

Re: Geophysical Investigation, Hay Storage Lot, Northwest Corner of West Cerritos Avenue and Lexington Drive, Cypress, California

This report is to present the results of our geophysical survey carried out over a Hay Storage Lot located at the Northwest Corner of West Cerritos Avenue and Lexington Drive in Cerritos, California (Figure 1). The survey was performed on December 27, 2018, and its purpose was to locate and identify, insofar as possible, pipes, conduits, utilities, and other buried features that may exist within the vicinity of four (4) proposed boreholes scheduled for drilling.

A combination of electromagnetic induction (EM), magnetometry, and ground penetrating radar (GPR) were brought to the field with anticipation of use. Utility locators with line tracing capabilities were also used where applicable.

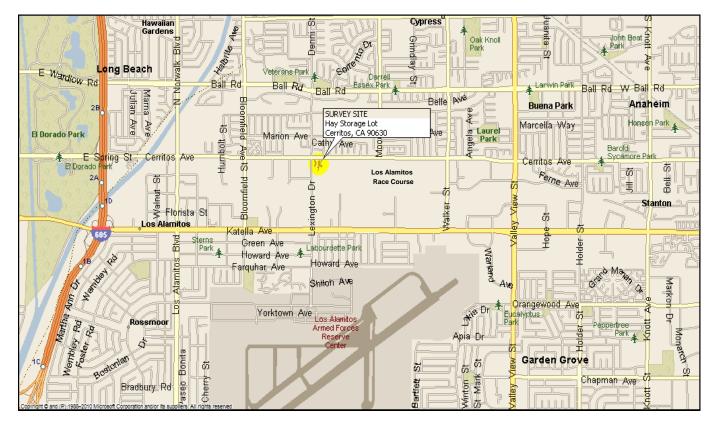


FIGURE 1 – Site Location Map

Survey Design – The areas to be surveyed were identified in the field by the client. It included four (4) proposed boreholes within an area of a hay storage lot associated with the Los Alamitos Race Course.

In site situations and survey objectives such as this, the best use of time is achieved by systematically free-traversing with the instruments while monitoring them continuously to determine which responses are significant and due to true subsurface targets, and which are due to other non-target or aboveground features and must be ignored. Where applicable, the EM devices, magnetic gradiometer, and GPR were traversed systematically over the survey areas in multiple, organized directions. Other traverses were taken for detailing and confirmation where anomalous conditions were found.

In addition, the line tracers were used to impress signals onto pipes, generally through accessible risers and tracer wires when present, to delineate the lines' locations and orientations. The instruments were also used in passive mode, configured to detect 60 Hz electrical signals and other common radio-frequency signals.

Hard copy of the EM data was not acquired, that is, discrete readings on the nodes of a grid were not recorded that could be put into a contoured map format. Rather, the instruments' meters were read continuously, and in real-time, during each traverse. This free-traversing method allowed for immediate detection of anomalous objects and facilitated the opportunity to investigate them further, without the need to first download and process data in the office. The lack of hard copy for EM data sets does not degrade the quality of the survey in any way. Hard copy merely provides a basis for report documentation of these geophysical fields, if such documentation is needed.

A Fischer M-Scope, were used for the EM sampling and a Sensors & Software Noggin Ground Penetrating Radar unit with a 500 MHz antenna produced the radar images. A Metrotech 9890 and RIDGID SR-60 SeekTech utility locator rounded out the tools applied.

Brief Description of the Geophysical Methods Applied – The M-Scope device energizes the ground by producing an alternating primary magnetic field with AC current in a transmitting coil. If conducting materials are within the area of influence of the primary field, AC eddy currents are induced to flow in the conductors. A receiving coil senses the secondary magnetic field produced by these eddy currents, and outputs the response as anomalous conditions. The strength of the secondary field is a function of the conductivity of the object, say a pipe, tank or cluster of drums, its size, and its depth and position relative to the instrument's two coils. Conductive objects, to a depth of approximately 7 feet below ground surface (bgs) for the M-Scope are sensed. The device is also somewhat focused; that is, it is more sensitive to conductors below the instrument than they are to conductors off to the side.

The line locator is used to passively detect energized high voltage electric lines and electrical conduit (50-60 Hz), VLF signals (14-22 kHz), as well as to actively trace other utilities. Where risers are present, the utility locator transmitter can be connected directly to the object, and a signal (9.8-82 kHz) is sent traveling along the conductor, pipe, conduit, etc. In the absence of a riser, the transmitter can be used to impress an input signal on the utility by induction. In either case, the receiver unit is tuned to the input signal, and is used to actively trace the signal along the pipe's surface projection.

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at a boundary in the subsurface across which there is an electrical contrast. The instrument produces a continuous record of the reflected energy as the antenna is traversed across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The radar wave travels at a velocity unique to the material properties of the ground being investigated, and when these velocities are known, the two-

way travel times can be converted to depth. The depth of penetration and image resolution produced are a function of ground electrical conductivity and dielectric constant.

Interpretation and Conclusions - The interpretation took place in real time as the survey progressed, and accordingly, the findings of our investigation were verbally relayed to the client, and further documented with site photographs (Figures 2-5).

The findings were marked out with spray paint using red for electric and high visibility pink for unknown piping.

Once completed, the proposed boreholes were spray-painted with a white circle and yellow "SSS" to indicate that Subsurface Surveys personnel had investigated them. Please refer to the attached photos for location and orientation of items detected in the survey.

Limitations and Further Recommendations - It should be understood that limitations inherent in geophysical instruments and/or surveying techniques exist at all sites, and nearly all sites exhibit conditions under which such might not perform optimally. Consequently, the detection of buried objects in all circumstances **cannot be guaranteed**. Such limitations are numerous and include, but are not limited to, rebar-reinforced ground cover, abrupt changes in ground cover type, above-ground obstacles preventing full traverses or traverses in one direction only, above-ground conductive objects interfering with instrument signal, nearby power lines or EM transmitters, highly conductive background soil conditions, limited GPR penetration, non-metallic targets, shallower or larger objects shielding deeper or smaller targets, tracing signal jumping from one line to another, and inaccessible risers, cleanouts, valve boxes, and manholes. If one or more geophysical instrument is rendered ineffective and cannot be utilized, the quality of the survey can be somewhat degraded.

For the above reasons, and in the interest of maximum safety, we encourage our clients to take advantage of Underground Service Alert (USA), Dig Alert, or other similar services, when possible. Furthermore, we recommend hand auguring and the use of a drilling method known as air knifing or vacuum extraction, when feasible or if applicable to this project. These methods may significantly limit damage to underground pipes, conduits, and utilities that might not have been detectable during the course of this survey. Please bear in mind, that geophysical surveying is only one of several levels of protection that is available to our clients.

SubSurface Surveys may include maps in some reports. While they are an accurate general representation of the site and our findings, they are not of engineering quality (i.e., measured and mapped by a licensed land surveyor).

SubSurface Surveys and Associates makes no guarantee either expressed or implied regarding the accuracy of the findings and interpretations present. And, in no event will SubSurface Surveys and Associates be liable for any direct, indirect, special, incidental, or consequential damages resulting from interpretations and opinions presented herewith.

All data generated on this project are in confidential file in this office, and are available for review by authorized persons at any time. The opportunity to participate in this investigation is very much appreciated. Please call, if there are questions.

Daniel L. Matticks, MS Staff Geophysicist

Travis Crosby, GP# 1044 Senior Geophysicist

(
	Surface	
	Surveys	

TITLE: Borehole Photographs PREPARED FOR: Ninyo & Moore SURVEY DATE: December 27, 2018 SSS PROJECT NO: 18-552

APPENDIX C

FIELD PROCEDURES

Hand Auger Soil Sampling Procedures

A hand-auger bucket is attached to an extension rod and "T" handle using threaded nuts or locking pins. If concrete was present, the location was cored prior to hand augering. The auger was advanced into the soil by hand while simultaneously rotating and putting downward pressure on the T-handle. The bucket was retrieved periodically (typically every 3 to 5 inches).

Soil cuttings were profiled and disposed in accordance with the Soil Classification and Investigative Derived Waste Standard Operating Procedures.

Direct-Push Soil Sampling Procedures

Prior to advancing soil borings, the proposed locations for boreholes were hand-augered to approximately 5 feet bgs to clear utilities. Drilling services were provided by a State-licensed drilling contractor. The direct-push rig consists of a van or pick-up truck-mounted hydraulic ram/pneumatic hammer system which pushes 4-foot-long, 1¹/₄-inch-diameter rods. Soil samples are collected by attaching a 2- or 4-foot-long, 1.6- or 2-inch-diameter, stainless steel core sample or macro-core sampler containing brass or acetate sleeves to the bottom of the rods.

The probe-drive sampler consists of the sampler, sample tube, a piston tip attached to a piston rod, a drive head, and a piston stop pin. The sample tubes are placed in the sampler. The piston tip and attached piston rod are placed into the sampler from the bottom. The drive head is then screwed onto the top of the sampler. The piston stop-pin is screwed into the top of the drive head. The sampler is then attached to the 1-inch drive rods.

Undisturbed soil samples are collected by driving the sampler and rods to the target depth. The piston stop pin keeps the piston tip and rod from rising into the sampler. Subsequently, the probedrive sampler remains sealed while it is pushed or driven to the desired sampling depth. Once the target depth is reached, the piston stop-pin is removed by means of extension rods inserted down the inside diameter of the probe rods. The sampler is then pushed approximately 24 inches. As the sampler is pushed down, the piston tip and rod rise in the sampler on top of the intruding soil. The rods and sampler are then retrieved. The sampler is disassembled, the sample tubes removed for sample logging, identification, and analysis, and the apparatus decontaminated prior to reuse.

The macro-core sampler consists of the sampler, cutting shoe, point assembly, drive head, sample sleeve, and (optional) sand catcher. Once assembled, the point assembly is placed in the cutting shoe and locked in place. The sample is then driven to the target depth. The point assembly is unlocked using extension rods lowered through the drive rods. The sampler is then driven another 4 feet. The sampler and drive rods are then retrieved, the sampler disassembled, and the sample tube removed for sample logging, identification and analysis. The apparatus is then decontaminated prior to reuse.

On retrieval, the sample sleeve containing the soil samples were removed from the sampler, cut to the desired sample length, capped with Teflon sheeting, and sealed with polyethylene end caps. The sample tube was labeled with the project number, sample number, sample depth, collection date and time, and sampler's initials. The soil samples were placed in sealable plastic bags and stored in a cooler chilled using ice to a temperature of approximately 4 degrees Celsius. [These samples were used for chemical analysis, with the exception of volatile organic compounds (VOCs) and total petroleum hydrocarbons as gasoline (TPHg).]

EPA 5035 Soil Sampling Procedures

If a soil sample was to be analyzed for VOCs, the sample was collected in accordance with United States Environmental Protection Agency (EPA) Method 5035 and following the California Department Toxic Substances Control (DTSC) Method 5035 Guidance Document, dated November, 2004.

The sample from the sleeve was sub-cored using EPA Method 5035 sample preservation. A plastic syringe was used to collect four aliquots of approximately 5 grams of soil. The 5-gram soil aliquot were ejected into pre-weighed, laboratory supplied, 40-milliliter volatile organic analysis (VOA) vials containing preservatives. A new syringe was used for each sampling interval.

A sample label was placed on the VOA vials with the sample number, location, and date recorded on the label. The VOA vials were placed in a zip-lock bag. VOA vials collected at a specific sample location and depth were placed in one zip-lock bag. The zip-lock bag and its contents were stored in a cooler chilled using ice to a temperature of approximately 4 degrees Celsius.

Soil Classification

Soil cuttings, the soil from the shoe of the sampler, and the remaining sleeves were examined and logged. Soil characterization information, including soil type (e.g., fill, native soil, or bedrock) were recorded on boring logs in accordance with the Unified Soil Classification System (USCS). Soil descriptions, sample type and depth, texture, color, density or consistency, odor, an estimate of soil moisture content, and related drilling information were recorded in general accordance on boring logs. Boring logs were reviewed by a Ninyo & Moore California licensed Professional Geologist.

Backfill

Boreholes were backfilled with one foot of sand above and below vapor probes. The remainder of each borehole was backfilled with hydrated bentonite and capped to match surface material grade.

Chain-of-Custody Documentation

Sample information including: sample identification, date, time, analyses, sample, laboratory turnaround-time, number and type of containers, and preservation method were recorded on a chainof-custody (COC). The COC was filled out and signed with the date and time by the sampler. The COC accompanied the samples. If the custody of the samples and COC were transferred the COC was signed with the date and time by the releasing and new custodians.

Investigative-Derived Waste Procedures

Used personal protective equipment and disposable equipment were not considered hazardous and were double bagged and placed in a municipal refuse dumpster. PPE and disposable equipment that could still be reused was rendered inoperable before disposal in the refuse dumpster.

APPENDIX D

Analytical Laboratory Reports

	Enthalpy Analytical, LLC	
	931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com	MONTROSE
Client: Address:	Ninyo & Moore 475 Goddard Suite 200 Irvine, CA 92618	Lab Request: 410374 Report Date: 01/07/2019 Date Received: 12/27/2018 Client ID: 15461
Attn:	Patrick Cullip	
Comments:	Cypress Ltd Phase II ESA #210784002 APN: 244-221-23 Cypress, CA	

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
410374-001	B1-5'
410374-002	B1-10'
410374-003	B1-15'
410374-004	B2-5'
410374-005	B2-10'
410374-006	B2-15'
410374-007	B3-5'
410374-008	B3-10'
410374-009	B3-15'
410374-010	B4-5'
410374-011	B4-10'
410374-012	B4-15'
410374-013	Trip Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Clarke

Report Review performed by: Ranjit Clarke, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Solid	Client: Ninyo &	& Moore		Co	Ilector: Client		
Sampled: 12/27/2018 09:00 Sample #: <u>410374-001</u>	Site: Client Sample #: B1-5'			Sampl	e Type:		
Sample #. <u>410374-001</u>				Jampi	e Type.		
Analyte	Result	DF	RDL	Units	Prepared	Analyze	d By Notes
Method: EPA 6010B NELAC	Prep Method: EPA 3050B	1				QCBatch	ID: QC1199568
Antimony	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Arsenic	3.90	1	1	mg/Kg	01/02/19	01/03/19	KLN
Barium	77.1	1	1	mg/Kg	01/02/19	01/03/19	KLN
Beryllium	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Cadmium	0.60	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Chromium	16.2	1	1	mg/Kg	01/02/19	01/03/19	KLN
Cobalt	9.66	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Copper	11.4	1	1	mg/Kg	01/02/19	01/03/19	KLN
Lead	5.30	1	1	mg/Kg	01/02/19	01/03/19	KLN
Molybdenum	1.22	1	1	mg/Kg	01/02/19	01/03/19	KLN
Nickel	11.9	1	1.5	mg/Kg	01/02/19	01/03/19	KLN
Selenium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Silver	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Thallium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Vanadium	37.7	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Zinc	52.6	1	5	mg/Kg	01/02/19	01/03/19	KLN
Method: EPA 7471A NELAC	Prep Method: EPA 7471A					QCBatch	ID: QC1199549
Mercury	ND	1	0.14	mg/Kg	12/31/18	12/31/18	CO

Matrix: Solid		Ninyo	& Moore		Coll	ector: Client			
Sampled: 12/27/2018 09:10 Sample #: <u>410374-002</u>	Site: Client Sample #:	B1-10'			Sample	Туре:			
Analyte		Result	t DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Method: EPA 8015B NELAC	Prep Method: EP		-				QCBatchIE		21199631
TPH (C6 to C12)		ND	0.87	2.61	mg/Kg		01/03/19	EW	
<u>Surrogate</u>		20	<u> Recovery</u>	<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			100	60-140					
Method: EPA 8015M	Prep Method: EP	A 3580/	Ą				QCBatchI	D: QC	21199510
TPH (C13 to C22)		ND	1	10	mg/Kg	12/29/18	01/01/19	SS	
TPH (C23 to C40)		ND	1	10	mg/Kg	12/29/18	01/01/19	SS	
<u>Surrogate</u>		<u>%</u>	6 Recovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			91	50-150					
Method: EPA 8260B NELAC	Prep Method: EP	A 5035/	4				QCBatchIE	D: QC	21199511
1,1,1,2-Tetrachloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,1,1-Trichloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,1,2,2-Tetrachloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,1,2-Trichloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,1,2-Trichlorotrifluoroethane			0.82 0.82	4.1	ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,1-Dichloroethane 1,1-Dichloroethene		ND ND	0.82	4.1 4.1	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ	
1,1-Dichloropropene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2,3-Trichlorobenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2,3-Trichloropropane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2,4-Trichlorobenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2,4-Trimethylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2-Dibromo-3-chloropropane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2-Dibromoethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2-Dichlorobenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2-Dichloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,2-Dichloropropane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,3,5-Trimethylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
1,3-Dichlorobenzene 1,3-Dichloropropane		ND ND	0.82 0.82	4.1 4.1	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,4-Dichlorobenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
2,2-Dichloropropane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
2-Butanone (MEK)		ND	0.82	82	ug/Kg		12/29/18	ZZ	
2-Chlorotoluene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
4-Chlorotoluene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
4-Isopropyltoluene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Acetone		ND	0.82	82	ug/Kg		12/29/18	ZZ	
Allyl Chloride			0.82	4.1	ug/Kg		12/29/18	ZZ	
Benzene			0.82	4.1	ug/Kg		12/29/18	ZZ 77	
Bromobenzene Bromochloromethane		ND ND	0.82 0.82	4.1 4.1	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ ZZ	
Bromodichloromethane		ND	0.82	4.1	ug/Kg ug/Kg		12/29/18	ZZ	
Bromoform		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Bromomethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Carbon Tetrachloride		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Chlorobenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Chlorodibromomethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Chloroethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Chloroform		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Chloromethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
cis-1,2-Dichloroethene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
cis-1,3-dichloropropene			0.82	4.1	ug/Kg		12/29/18	ZZ	
cis-1,4-dichloro-2-butene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
			Analytica	Results Reno	rt			En	thalny

Matrix: Solid	Client:	Ninvo &	Moore		Co	llector: Client			
Sampled: 12/27/2018 09:10	Site:								
Sample #: <u>410374-002</u>	Client Sample #: E	31-10'			Sample	е Туре:			
			DE	DDI			Awahawad	Du	Nataa
Analyte Dibromomethane	R	esult ND	DF 0.82	4.1	Units ug/Kg	Prepared	Analyzed 12/29/18	ZZ	Notes
Dichlorodifluoromethane		ND	0.82	4.1	ug/Kg ug/Kg		12/29/18	ZZ	
			0.82				12/29/18	ZZ	
Di-isopropyl ether (DIPE)		ND ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Ethylbenzene			0.82	4.1	ug/Kg		12/29/18	ZZ	
Ethyl-tertbutylether (ETBE) Hexachlorobutadiene		ND ND	0.82	4.1 4.1	ug/Kg		12/29/18	ZZ	
Isopropylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
m and p-Xylene		ND	0.82		ug/Kg		12/29/18	ZZ	
Methylene chloride		ND	0.82	4.1	ug/Kg ug/Kg		12/29/18	ZZ	
-		ND					12/29/18	ZZ	
Methyl-t-butyl Ether (MTBE)		ND	0.82 0.82	4.1	ug/Kg		12/29/18	ZZ	
Naphthalene				4.1	ug/Kg				
N-butylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
N-propylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
o-Xylene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Sec-butylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Styrene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
t-Butyl alcohol (TBA)		ND	0.82	8.2	ug/Kg		12/29/18	ZZ	
Tert-amylmethylether (TAME)		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Tert-butylbenzene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Tetrachloroethene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Toluene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
trans-1,2-dichloroethene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
trans-1,3-dichloropropene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
trans-1,4-dichloro-2-butene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Trichloroethene		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Trichlorofluoromethane		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Vinyl Chloride		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
Xylenes (Total)		ND	0.82	4.1	ug/Kg		12/29/18	ZZ	
<u>Surrogate</u>		<u>% </u>	<u>Recovery</u>	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)			106	70-145					
4-Bromofluorobenzene (SUR)			93	70-145					
Dibromofluoromethane (SUR)			103	70-145					
Toluene-d8 (SUR)			99	70-145					
Matrix: Solid	Client:	Ninyo &	Moore		Co	llector: Client			
Sampled: 12/27/2018 09:20	Site:								
Sample #: <u>410374-003</u>	Client Sample #: E	31-15'			Sample	е Туре:			
Analyte	R	esult	DF	RDL	Units	Prepared	Analyzed	By	Notes
Method: AL HOLD	Prep Method:						QCBatchID		
N/A		N/A	1						

Matrix: Solid	Client: Ninyo &	Moore		Co	Ilector: Client		
Sampled: 12/27/2018 10:00							
Sample #: <u>410374-004</u>	Client Sample #: B2-5'			Sampl	е Туре:		
Analyte	Result	DF	RDL	Units	Prepared	Analyze	d By Notes
Method: EPA 6010B NELAC	Prep Method: EPA 3050B					QCBatch	ID: QC1199568
Antimony	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Arsenic	3.62	1	1	mg/Kg	01/02/19	01/03/19	KLN
Barium	103	1	1	mg/Kg	01/02/19	01/03/19	KLN
Beryllium	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Cadmium	0.84	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Chromium	27.5	1	1	mg/Kg	01/02/19	01/03/19	KLN
Cobalt	12.0	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Copper	16.4	1	1	mg/Kg	01/02/19	01/03/19	KLN
Lead	10.6	1	1	mg/Kg	01/02/19	01/03/19	KLN
Molybdenum	2.24	1	1	mg/Kg	01/02/19	01/03/19	KLN
Nickel	15.9	1	1.5	mg/Kg	01/02/19	01/03/19	KLN
Selenium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Silver	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Thallium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Vanadium	44.9	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Zinc	68.1	1	5	mg/Kg	01/02/19	01/03/19	KLN
Vethod: EPA 7471A NELAC	Prep Method: EPA 7471A					QCBatch	ID: QC1199549
Mercury	ND	1	0.14	mg/Kg	12/31/18	12/31/18	CO

Matrix: Solid		-	& Moore		Coll	ector: Client			
Sampled: 12/27/2018 10:10 Sample #: <u>410374-005</u>	Site: Client Sample #:				Sample	Туре:			
Analyte		Result	t DF	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA 8015B NELAC	Prep Method: EF		-		01110	riopulou	QCBatchI		1199631
TPH (C6 to C12)		ND	0.75	2.25	mg/Kg		01/03/19	EW	
Surrogate		%	Recovery	Limits	Notes				
4-Bromofluorobenzene (SUR)			100	60-140					
Method: EPA 8015M	Prep Method: EF	PA 3580A	Ą				QCBatchI	D: QC	1199510
TPH (C13 to C22)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
TPH (C23 to C40)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
<u>Surrogate</u>		<u>%</u>	Recovery	Limits	<u>Notes</u>				
Triacontane (SUR)			66	50-150					
Method: EPA 8260B NELAC	Prep Method: EF	PA 5035A	Ą				QCBatchI	D: QC	1199511
1,1,1,2-Tetrachloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1,1-Trichloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1,2,2-Tetrachloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1,2-Trichloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,1-Dichloropropene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,2,3-Trichlorobenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,2,3-Trichloropropane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,2,4-Trichlorobenzene			0.71 0.71	3.55	ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		ND ND	0.71	3.55 3.55	ug/Kg ug/Kg		12/29/18	ZZ	
1,2-Dibromoethane		ND	0.71	3.55 3.55			12/29/18	ZZ	
1,2-Dichlorobenzene		ND	0.71	3.55	ug/Kg ug/Kg		12/29/18	ZZ	
1,2-Dichloroethane		ND	0.71	3.55	ug/Kg ug/Kg		12/29/18	ZZ	
1,2-Dichloropropane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,3,5-Trimethylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,3-Dichlorobenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,3-Dichloropropane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
1,4-Dichlorobenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	·
2,2-Dichloropropane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
2-Butanone (MEK)		ND	0.71	71	ug/Kg		12/29/18	ZZ	
2-Chlorotoluene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
4-Chlorotoluene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
4-Isopropyltoluene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Acetone		ND	0.71	71	ug/Kg		12/29/18	ZZ	
Allyl Chloride		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Benzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Bromobenzene			0.71	3.55	ug/Kg		12/29/18	ZZ	
Bromochloromethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Bromodichloromethane Bromoform		ND ND	0.71 0.71	3.55 3.55	ug/Kg		12/29/18 12/29/18	ZZ ZZ	
Bromororm Bromomethane		ND	0.71	3.55 3.55	ug/Kg ug/Kg		12/29/18	ZZ	
Carbon Tetrachloride		ND	0.71	3.55	ug/Kg ug/Kg		12/29/18	ZZ	
Chlorobenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Chlorodibromomethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Chloroethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Chloroform		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Chloromethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
cis-1,2-Dichloroethene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
cis-1,3-dichloropropene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
cis-1,4-dichloro-2-butene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
			A					Ent	halny

Matrix: Solid	Cliente	Ninua P	Maara		60	llector: Client			
Sampled: 12/27/2018 10:10	Site:	Ninyo &	MOOIE		00	nector. Chem			
•		DO 101			Compl	- T. <i>i</i> ne.			
Sample #: <u>410374-005</u>	Client Sample #:	B2-10			Sample	е Туре:			
Analyte	F	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Dibromomethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Dichlorodifluoromethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Di-isopropyl ether (DIPE)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Ethylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Ethyl-tertbutylether (ETBE)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Hexachlorobutadiene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
lsopropylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
m and p-Xylene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Methylene chloride		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Methyl-t-butyl Ether (MTBE)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Naphthalene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
N-butylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
N-propylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
o-Xylene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Sec-butylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Styrene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
t-Butyl alcohol (TBA)		ND	0.71	7.1	ug/Kg		12/29/18	ZZ	
Tert-amylmethylether (TAME)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Tert-butylbenzene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Tetrachloroethene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Toluene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
trans-1,2-dichloroethene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
trans-1,3-dichloropropene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
trans-1,4-dichloro-2-butene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Trichloroethene		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Trichlorofluoromethane		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Vinyl Chloride		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Xylenes (Total)		ND	0.71	3.55	ug/Kg		12/29/18	ZZ	
Surrogate		<u>% I</u>	Recovery	<u>Limits</u>	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)			109	70-145					
4-Bromofluorobenzene (SUR)			96	70-145					
Dibromofluoromethane (SUR)			105	70-145					
Toluene-d8 (SUR)			97	70-145					
Matrix: Solid	Client	Ninyo &	Moore		<u></u>	llector: Client			
Sampled: 12/27/2018 10:30	Site:	Nilly0 &	moore		0	licetor. Ciletit			
Sample #: <u>410374-006</u>	Client Sample #:	B2-15'			Sample	е Туре:			
			DE	001	-		Analyza	Dir	Notes
Analyte Method: AL HOLD	Prep Method:	Result	DF	RDL	Units	Prepared	Analyzed QCBatchID		NOLES
N/A	r top motriou.	N/A	1				QODAIGHD	-	
120		11/1	1						

Matrix: Solid	Client: Ninyo &	& Moore		Co	llector: Client		
Sampled: 12/27/2018 12:00 Sample #: 410374-007	Site:			Compl			
Sample #: 410374-007	Client Sample #: B3-5'			Sampi	е Туре:		
Analyte	Result	DF	RDL	Units	Prepared	Analyze	d By Notes
Method: EPA 6010B NELAC	Prep Method: EPA 3050B	}				QCBatch	ID: QC1199568
Antimony	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Arsenic	2.78	1	1	mg/Kg	01/02/19	01/03/19	KLN
Barium	68.9	1	1	mg/Kg	01/02/19	01/03/19	KLN
Beryllium	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Cadmium	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Chromium	17.5	1	1	mg/Kg	01/02/19	01/03/19	KLN
Cobalt	6.76	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Copper	14.7	1	1	mg/Kg	01/02/19	01/03/19	KLN
Lead	17.8	1	1	mg/Kg	01/02/19	01/03/19	KLN
Molybdenum	ND	1	1	mg/Kg	01/02/19	01/03/19	KLN
Nickel	8.91	1	1.5	mg/Kg	01/02/19	01/03/19	KLN
Selenium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Silver	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Thallium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Vanadium	25.8	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Zinc	64.5	1	5	mg/Kg	01/02/19	01/03/19	KLN
Method: EPA 7471A NELAC	Prep Method: EPA 7471A	\				QCBatch	ID: QC1199549
Mercury	ND	1	0.14	mg/Kg	12/31/18	12/31/18	CO

Matrix: Solid		-	& Moore		Coll	ector: Client			
Sampled: 12/27/2018 12:10 Sample #: <u>410374-008</u>	Site: Client Sample #:				Sample	Туре:			
Analyte		Resul	t DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Method: EPA 8015B NELAC	Prep Method: EP		-		•	opulou	QCBatchIE		21199631
TPH (C6 to C12)		ND	0.88	2.64	mg/Kg		01/03/19	EW	
<u>Surrogate</u>		%	Recovery	<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			100	60-140					
Method: EPA 8015M	Prep Method: EP	A 3580	Ą				QCBatchIE): QC	21199510
TPH (C13 to C22)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
TPH (C23 to C40)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
<u>Surrogate</u>		<u>%</u>	6 Recovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			89	50-150					
Method: EPA 8260B NELAC	Prep Method: EP	PA 5035	Ą				QCBatchIE): QC	21199511
1,1,1,2-Tetrachloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,1,1-Trichloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,1,2,2-Tetrachloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,1,2-Trichloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,1,2-Trichlorotrifluoroethane			0.83 0.83	4.15	ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,1-Dichloroethane 1,1-Dichloroethene		ND ND	0.83 0.83	4.15 4.15	ug/Kg ug/Kg		12/29/18	ZZ	
1,1-Dichloropropene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2,3-Trichlorobenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2,3-Trichloropropane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2,4-Trichlorobenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2,4-Trimethylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2-Dibromo-3-chloropropane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2-Dibromoethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2-Dichlorobenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2-Dichloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,2-Dichloropropane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,3,5-Trimethylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
1,3-Dichlorobenzene 1,3-Dichloropropane		ND ND	0.83 0.83	4.15 4.15	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,4-Dichlorobenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
2,2-Dichloropropane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
2-Butanone (MEK)		ND	0.83	83	ug/Kg		12/29/18	ZZ	
2-Chlorotoluene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
4-Chlorotoluene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
4-Isopropyltoluene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Acetone		ND	0.83	83	ug/Kg		12/29/18	ZZ	
Allyl Chloride			0.83	4.15	ug/Kg		12/29/18	ZZ	
Benzene Bromobenzene		ND ND	0.83 0.83	4.15 4.15	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ ZZ	
Bromochloromethane		ND	0.83	4.15	ug/Kg ug/Kg		12/29/18	ZZ	
Bromodichloromethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Bromoform		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Bromomethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Carbon Tetrachloride		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Chlorobenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Chlorodibromomethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Chloroethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Chloroform		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Chloromethane			0.83	4.15	ug/Kg		12/29/18	ZZ	
cis-1,2-Dichloroethene		ND ND	0.83	4.15	ug/Kg		12/29/18	ZZ 77	
cis-1,3-dichloropropene cis-1,4-dichloro-2-butene		ND ND	0.83 0.83	4.15 4.15	ug/Kg ug/Kg		12/29/18 12/29/18	ZZ ZZ	
			0.03	4.13	uynty				
			Analytica	I Results Reno	rt			H n	thalny

Mateirus Calid	Olianti	Niimura 9	Maara		0.0	llasten Oliant			
Matrix: Solid		Ninyo &	woore		Co	llector: Client			
Sampled: 12/27/2018 12:10	Site:				0	T			
Sample #: <u>410374-008</u>	Client Sample #:	B3-10			Sample	е туре:			
Analyte	I	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Dibromomethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Dichlorodifluoromethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Di-isopropyl ether (DIPE)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Ethylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Ethyl-tertbutylether (ETBE)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Hexachlorobutadiene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Isopropylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
m and p-Xylene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Methylene chloride		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Methyl-t-butyl Ether (MTBE)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Naphthalene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
N-butylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
N-propylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
o-Xylene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Sec-butylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Styrene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
t-Butyl alcohol (TBA)		ND	0.83	8.3	ug/Kg		12/29/18	ZZ	
Tert-amylmethylether (TAME)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Tert-butylbenzene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Tetrachloroethene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Toluene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
trans-1,2-dichloroethene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
trans-1,3-dichloropropene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
trans-1,4-dichloro-2-butene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Trichloroethene		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Trichlorofluoromethane		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Vinyl Chloride		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
Xylenes (Total)		ND	0.83	4.15	ug/Kg		12/29/18	ZZ	
<u>Surrogate</u>		<u>% I</u>	Recovery	<u>Limits</u>	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)			111	70-145					
4-Bromofluorobenzene (SUR)			93	70-145					
Dibromofluoromethane (SUR)			106	70-145					
Toluene-d8 (SUR)			95	70-145					
Matrix: Solid	Client	Ninyo &	Mooro		0	llector: Client			
Sampled: 12/27/2018 12:20	Site:	NIIIYO &	MOOIE		0	liector. Cherit			
	Client Sample #:	D2 15			Samel	Type:			
Sample #: 410374-009					Sample				
Analyte		Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: AL HOLD	Prep Method:	N//6					QCBatchID		
N/A		N/A	1						

Matrix: Solid	Client: Ninyo &	Moore		Co	Illector: Client		
Sampled: 12/27/2018 12:50 Sample #: 410374-010	Site: Client Sample #: B4-5'			Sampl	e Type:		
Sample #. <u>410374-010</u>	olient Sample #. D4-5			Jampi	e Type.		
Analyte	Result	DF	RDL	Units	Prepared	Analyze	d By Notes
Method: EPA 6010B NELAC	Prep Method: EPA 3050B					QCBatch	ID: QC1199568
Antimony	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Arsenic	6.51	1	1	mg/Kg	01/02/19	01/03/19	KLN
Barium	106	1	1	mg/Kg	01/02/19	01/03/19	KLN
Beryllium	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Cadmium	0.78	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Chromium	22.1	1	1	mg/Kg	01/02/19	01/03/19	KLN
Cobalt	11.8	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Copper	17.4	1	1	mg/Kg	01/02/19	01/03/19	KLN
Lead	10.7	1	1	mg/Kg	01/02/19	01/03/19	KLN
Molybdenum	ND	1	1	mg/Kg	01/02/19	01/03/19	KLN
Nickel	15.8	1	1.5	mg/Kg	01/02/19	01/03/19	KLN
Selenium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Silver	ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Thallium	ND	1	3	mg/Kg	01/02/19	01/03/19	KLN
Vanadium	46.2	1	0.5	mg/Kg	01/02/19	01/03/19	KLN
Zinc	72.8	1	5	mg/Kg	01/02/19	01/03/19	KLN
Method: EPA 7471A NELAC	Prep Method: EPA 7471A					QCBatch	ID: QC1199549
Mercury	ND	1	0.14	mg/Kg	12/31/18	12/31/18	CO

Matrix: Solid		: Ninyo a	& Moore		Coll	ector: Client			
Sampled: 12/27/2018 13:00 Sample #: <u>410374-011</u>	Site Client Sample #				Sample	Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed	By	Notos
Method: EPA 8015B NELAC	Prep Method: EF			RDL	Units	Flepaleu	QCBatchIE		C1199631
TPH (C6 to C12)		ND	0.74	2.22	mg/Kg		01/03/19	EW	
Surrogate		%	Recovery	Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)		<u></u>	100	<u> </u>					
Method: EPA 8015M	Prep Method: EF	PA 35804	4				QCBatchIE)· Q(C1199510
TPH (C13 to C22)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
TPH (C23 to C40)		32	1	10	mg/Kg	12/29/18	12/31/18	SS	
Surrogate		%	Recovery	Limits	Notes				
Triacontane (SUR)			71	50-150					
Method: EPA 8260B NELAC	Prep Method: EF	PA 50354	4				QCBatchIE); Q(C1199511
1,1,1,2-Tetrachloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1,1-Trichloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1,2,2-Tetrachloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1,2-Trichloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,1-Dichloropropene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2,3-Trichlorobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2,3-Trichloropropane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2,4-Trichlorobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2,4-Trimethylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2-Dibromo-3-chloropropane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2-Dibromoethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2-Dichlorobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2-Dichloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,2-Dichloropropane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,3,5-Trimethylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,3-Dichlorobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
1,3-Dichloropropane		ND ND	0.81 0.81	4.05	ug/Kg		12/29/18 12/29/18	ZZ ZZ	
1,4-Dichlorobenzene 2,2-Dichloropropane		ND	0.81	4.05 4.05	ug/Kg		12/29/18	ZZ	
2-Butanone (MEK)		ND	0.81	4.05	ug/Kg ug/Kg		12/29/18	ZZ	
2-Chlorotoluene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
4-Chlorotoluene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
4-Isopropyltoluene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Acetone		ND	0.81	81	ug/Kg		12/29/18	ZZ	
Allyl Chloride		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Benzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Bromobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Bromochloromethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Bromodichloromethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Bromoform		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Bromomethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Carbon Tetrachloride		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Chlorobenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Chlorodibromomethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Chloroethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Chloroform		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Chloromethane			0.81	4.05	ug/Kg		12/29/18	ZZ	
cis-1,2-Dichloroethene			0.81	4.05	ug/Kg		12/29/18	ZZ	
cis-1,3-dichloropropene			0.81 0.81	4.05	ug/Kg		12/29/18	ZZ 77	
cis-1,4-dichloro-2-butene		ND	U.O I	4.05	ug/Kg		12/29/18	ZZ	
			A nol	al Regulta Roper	~			En	thalny

Matrix: Solid	Oliante	Niimura Q	Maara		0.	llester Olient			
		Ninyo &	Moore		0	llector: Client			
Sampled: 12/27/2018 13:00	Site:				Commit	- T			
Sample #: <u>410374-011</u>	Client Sample #:	B4-10			Sample	е Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed		Notes
Dibromomethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Dichlorodifluoromethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Di-isopropyl ether (DIPE)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Ethylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Ethyl-tertbutylether (ETBE)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Hexachlorobutadiene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Isopropylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
m and p-Xylene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Methylene chloride		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Methyl-t-butyl Ether (MTBE)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Naphthalene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
N-butylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
N-propylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
o-Xylene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Sec-butylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Styrene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
t-Butyl alcohol (TBA)		ND	0.81	8.1	ug/Kg		12/29/18	ZZ	
Tert-amylmethylether (TAME)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Tert-butylbenzene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Tetrachloroethene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Toluene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
trans-1,2-dichloroethene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
trans-1,3-dichloropropene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
trans-1,4-dichloro-2-butene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Trichloroethene		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Trichlorofluoromethane		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Vinyl Chloride		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
Xylenes (Total)		ND	0.81	4.05	ug/Kg		12/29/18	ZZ	
<u>Surrogate</u>		%	Recovery		<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		<u>,</u>	108	70-145	<u></u>				
4-Bromofluorobenzene (SUR)			93	70-145					
Dibromofluoromethane (SUR)			103	70-145					
Toluene-d8 (SUR)			99	70-145					
		NP -							
Matrix: Solid		Ninyo &	Moore		Co	llector: Client			
Sampled: 12/27/2018 13:10	Site:								
Sample #: <u>410374-012</u>	Client Sample #:	B4-15'			Sample	е Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: AL HOLD	Prep Method:						QCBatchID):	
N/A		N/A	1						

Matrix: Water	Client: Ninyo & I	Noore		Co	Ilector: Client			
Sampled: 12/27/2018	Site:							
Sample #: 410374-013	Client Sample #: Trip Blan	k		Sampl	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: EPA 8260B NELAC	Prep Method: EPA 5030B					QCBatchID	: QC	
1,1,1,2-Tetrachloroethane	ND	1	5	ug/L		12/29/18	LΖ	
1,1,1-Trichloroethane	ND	1	5	ug/L		12/29/18	LZ	
1,1,2,2-Tetrachloroethane	ND	1	5	ug/L		12/29/18	LZ	
1,1,2-Trichloroethane	ND	1	5	ug/L		12/29/18	LZ	
1,1,2-Trichlorotrifluoroethane	ND	1	5	ug/L		12/29/18	LZ	
1,1-Dichloroethane	ND	1 1	5	ug/L		12/29/18	LZ LZ	
1,1-Dichloroethene 1,1-Dichloropropene	ND ND	1	5 5	ug/L ug/L		12/29/18 12/29/18	LZ LZ	
1,2,3-Trichlorobenzene	ND	1	5	ug/L		12/29/18	LZ	
1,2,3-Trichloropropane	ND	1	5	ug/L		12/29/18	LZ	
1,2,4-Trichlorobenzene	ND	1	5	ug/L		12/29/18	LZ	
1,2,4-Trimethylbenzene	ND	1	5	ug/L		12/29/18	LZ	
1,2-Dibromo-3-chloropropane	ND	1	5	ug/L		12/29/18	LZ	
1,2-Dibromoethane	ND	1	5	ug/L		12/29/18	LZ	
1,2-Dichlorobenzene	ND	1	5	ug/L		12/29/18	LZ	
1,2-Dichloroethane	ND	1	5	ug/L		12/29/18	LZ	
1,2-Dichloropropane	ND	· · · · · · · · · · · · · · · · · · ·	5	ug/L		12/29/18	LZ	
1,3,5-Trimethylbenzene	ND	1	5	ug/L		12/29/18	LZ	
1,3-Dichlorobenzene	ND	1	5	ug/L		12/29/18	LZ	
1,3-Dichloropropane	ND	1	5	ug/L		12/29/18	LZ	
1,4-Dichlorobenzene	ND	1	5	ug/L		12/29/18	LZ	
2,2-Dichloropropane	ND	1	5	ug/L		12/29/18	LZ	
2-Butanone (MEK)	ND	1	100	ug/L		12/29/18	LZ	
2-Chlorotoluene	ND	1	5	ug/L		12/29/18	LZ	
4-Chlorotoluene	ND	1	5	ug/L		12/29/18	LΖ	
4-Isopropyltoluene	ND	1	5	ug/L		12/29/18	LZ	
4-Methyl-2-pentanone (MIBK)	ND	1	5	ug/L		12/29/18	LZ	
Acetone	ND	1	100	ug/L		12/29/18	LZ	
Allyl Chloride	ND	1	5	ug/L		12/29/18	LΖ	
Benzene	ND	1	1	ug/L		12/29/18	LZ	
Bromobenzene	ND	1	5	ug/L		12/29/18	LZ	
Bromochloromethane	ND	1	5	ug/L		12/29/18	LΖ	
Bromodichloromethane	ND	1	5	ug/L		12/29/18	LZ	
Bromoform	ND	1	5	ug/L		12/29/18	LΖ	
Bromomethane	ND	1	5	ug/L		12/29/18	LΖ	
Carbon Tetrachloride	ND	1	5	ug/L		12/29/18	LZ	
Chlorobenzene	ND	1	5	ug/L		12/29/18	LΖ	
Chlorodibromomethane	ND	1	5	ug/L		12/29/18	LZ	
Chloroethane	ND	1	5	ug/L		12/29/18	LZ	
Chloroform	ND	1	5	ug/L		12/29/18	LZ	
Chloromethane	ND	1	5	ug/L		12/29/18	LZ	
cis-1,2-Dichloroethene	ND	1	5	ug/L		12/29/18	LZ	
cis-1,3-dichloropropene	ND	1	5	ug/L		12/29/18	LZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/L		12/29/18	LZ	
Dibromomethane	ND	1	5	ug/L		12/29/18	LZ	
Dichlorodifluoromethane	ND	1	5	ug/L		12/29/18	LZ	
Di-isopropyl ether (DIPE)	ND	1	1	ug/L		12/29/18	LZ	
Ethylbenzene	ND	1	5	ug/L		12/29/18	LZ	
Ethyl-tertbutylether (ETBE)	ND	1	1	ug/L		12/29/18	LZ	
Hexachlorobutadiene	ND	1	5	ug/L		12/29/18	LZ	
Isopropylbenzene	ND	1	5	ug/L		12/29/18	LZ	
m and p-Xylene	ND	1	5	ug/L		12/29/18	LZ	
Methylene chloride Methyl-t-butyl Ether (MTBE)	ND ND	1 1	5 1	ug/L		12/29/18 12/29/18	LZ LZ	
weary-t-baly Enter (MIDE)	IND	I	I	ug/L				
		Analytica	al Results Report	t			Ent	thalpy

Matrix: Water	Client:	Ninyo & N	Noore		Co	llector: Client			
Sampled: 12/27/2018	Site:								
Sample #: 410374-013	Client Sample #:	Trip Blan	k		Sampl	е Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Naphthalene		ND	1	5	ug/L		12/29/18	LΖ	
N-butylbenzene		ND	1	5	ug/L		12/29/18	LΖ	
N-propylbenzene		ND	1	5	ug/L		12/29/18	LΖ	
o-Xylene		ND	1	5	ug/L		12/29/18	LΖ	
Sec-butylbenzene		ND	1	5	ug/L		12/29/18	LZ	
Styrene		ND	1	5	ug/L		12/29/18	LΖ	
t-Butyl alcohol (TBA)		ND	1	10	ug/L		12/29/18	LΖ	
Tert-amylmethylether (TAME)		ND	1	5	ug/L		12/29/18	LΖ	
Tert-butylbenzene		ND	1	5	ug/L		12/29/18	LΖ	
Tetrachloroethene		ND	1	5	ug/L		12/29/18	LΖ	
Toluene		ND	1	5	ug/L		12/29/18	LΖ	
trans-1,2-dichloroethene		ND	1	5	ug/L		12/29/18	LΖ	
trans-1,3-dichloropropene		ND	1	5	ug/L		12/29/18	LZ	
trans-1,4-dichloro-2-butene		ND	1	5	ug/L		12/29/18	LΖ	
Trichloroethene		ND	1	5	ug/L		12/29/18	LΖ	
Trichlorofluoromethane		ND	1	5	ug/L		12/29/18	LΖ	
Vinyl Chloride		ND	1	5	ug/L		12/29/18	LZ	
Xylenes (Total)		ND	1	5	ug/L		12/29/18	LZ	
<u>Surrogate</u>		<u>% R</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		1	04	70-145					
4-Bromofluorobenzene (SUR)		:	97	70-145					
Dibromofluoromethane (SUR)		1	07	70-145					
Toluene-d8 (SUR)			97	70-145					

QCBatchID: QC1199504 Analy	st: lucy	Method:	EPA 8260B		
Matrix: Water Analyze	ed: 12/28/2018	Instrument:	VOA-MS (group)		
	RI	ank Summai	v		
	Blank		y		
Analyte	Result	Units	RDL	Notes	
QC1199504MB1	Result	Offits		10103	
1,1,1,2-Tetrachloroethane	ND	ug/L	5		
1,1,1-Trichloroethane	ND	ug/L	5		
1,1,2,2-Tetrachloroethane	ND	ug/L	5		
1,1,2-Trichloroethane	ND	ug/L	5		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	5		
1,1-Dichloroethane	ND	ug/L	5		
1,1-Dichloroethene	ND	ug/L	5		
1,1-Dichloropropene	ND	ug/L	5		
1,2,3-Trichlorobenzene	ND	ug/L	5		
1,2,3-Trichloropropane	ND	ug/L	5		
1,2,4-Trichlorobenzene	ND	ug/L	5		
1,2,4-Trimethylbenzene	ND	ug/L	5		
1,2-Dibromo-3-chloropropane	ND	ug/L	5		
1,2-Dibromoethane	ND	ug/L	5		
1,2-Dichlorobenzene	ND	ug/L	5		
1,2-Dichloroethane	ND	ug/L	5		
1,2-Dichloropropane	ND	ug/L	5		
1,3,5-Trimethylbenzene	ND	ug/L	5		
1,3-Dichlorobenzene	ND	ug/L	5		
1,3-Dichloropropane	ND	ug/L	5		
1,4-Dichlorobenzene	ND	ug/L	5		
2,2-Dichloropropane	ND	ug/L	5		
2-Butanone (MEK)	ND	ug/L	100		
2-Chloroethyl Vinyl Ether	ND	ug/L	10		
2-Chlorotoluene	ND	ug/L	5		
4-Chlorotoluene	ND	ug/L	5		
4-Isopropyltoluene	ND	ug/L	5		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5		
Acetone	ND	ug/L	100		
Allyl Chloride	ND	ug/L	5		
Benzene	ND	ug/L	1		
Bromobenzene	ND	ug/L	5		
Bromochloromethane	ND	ug/L	5		
Bromodichloromethane	ND	ug/L	5		
Bromoform	ND	ug/L	5		
Bromomethane	ND	ug/L	5		
Carbon Tetrachloride	ND	ug/L	5		
Chlorobenzene	ND	ug/L	5		
Chlorodibromomethane	ND	ug/L	5		
Chloroethane	ND	ug/L	5		
Chloroform	ND	ug/L	5		
Chloromethane	ND	ug/L	5		
cis-1,2-Dichloroethene	ND	ug/L	5		
cis-1,3-dichloropropene	ND	ug/L	5		
cis-1,4-dichloro-2-butene	ND	ug/L	5		
Dibromomethane	ND	ug/L	5		
Dichlorodifluoromethane	ND	ug/L	5		
Di-isopropyl ether (DIPE)	ND	ug/L	1		
Ethanol	ND	ug/L	500		
Ethylbenzene	ND	ug/L	5		
Ethyl-tertbutylether (ETBE)	ND	ug/L	1		
Hexachlorobutadiene	ND	ug/L	5		

QCBatchID: <u>QC1199504</u>	Analyst:	lucy	Method:	EPA 8260B			
Matrix: Water	Analyzed:	12/28/2018	Instrument:	VOA-MS (group	o)		
		Blank					
Analyte		Result	Units		RDL	Notes	
QC1199504MB1			L	- - - - - -			
Isopropylbenzene		ND	ug/L		5		
m and p-Xylene		ND	ug/L		5		
Methylene chloride		ND	ug/L		5		
Methyl-t-butyl Ether (MTBE)		ND	ug/L		1		
Naphthalene		ND	ug/L		5		
N-butylbenzene		ND	ug/L		5		
N-propylbenzene		ND	ug/L		5		
o-Xylene		ND	ug/L		5		
Sec-butylbenzene		ND	ug/L		5		
Styrene		ND	ug/L		5		
t-Butyl alcohol (TBA)		ND	ug/L		10		
Tert-amylmethylether (TAME)		ND	ug/L		5		
Tert-butylbenzene		ND	ug/L		5		
Tetrachloroethene		ND	ug/L		5		
Toluene		ND	ug/L		5		
trans-1,2-dichloroethene		ND	ug/L		5		
trans-1,3-dichloropropene		ND	ug/L		5		
trans-1,4-dichloro-2-butene		ND	ug/L		5		
Trichloroethene		ND	ug/L		5		
Trichlorofluoromethane		ND	ug/L		5		
Vinyl Chloride		ND	ug/L		5		
Xylenes (Total)		ND	ug/L		5		

Lab C	Control Sp	ike/ Lab	Contro	ol Spike	Duplicat	te Sun	nmary				
	Spike	Spike Amount		Spike Result		Reco	veries		Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1199504LCS1											
1,1-Dichloroethene	50		61		ug/L	122			59-172		
Benzene	50		50		ug/L	100			62-137		
Chlorobenzene	50		53		ug/L	106			60-133		
Methyl-t-butyl Ether (MTBE)	50		38		ug/L	76			62-137		
Toluene	50		55		ug/L	110			59-139		
Trichloroethene	50		55		ug/L	110			66-142		

	Mat	trix Sp	ike/Matr	rix Spil	ke Dupli	cate Sun	nmary					
	Sample Spike Amount		Spike	Result	Result		Recoveries		Limits			
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199504MS1, QC1199504MSD1										S	ource:	410381-001
1,1-Dichloroethene	ND	50	50	63	59	ug/L	126	118	6.6	59-172	22	
Benzene	ND	50	50	51	49	ug/L	102	98	4.0	62-137	24	
Chlorobenzene	ND	50	50	53	50	ug/L	106	100	5.8	60-133	24	
Methyl-t-butyl Ether (MTBE)	ND	50	50	40	43	ug/L	80	86	7.2	62-137	21	
Toluene	ND	50	50	56	52	ug/L	112	104	7.4	59-139	21	
Trichloroethene	ND	50	50	54	50	ug/L	108	100	7.7	66-142	21	

QCBatchID: QC1199510	Analyst:	ssabir	Method:	EPA 8015M					
Matrix: Solid	Analyzed:	12/29/2018	Instrument:	SVOA-GC (gr	oup)				
		BI	ank Summa	ry					
		Blank							
Analyte		Result	Units		RDL	No	tes		
QC1199510MB1			L	1	1 1		I		
TPH (C10 to C28)		ND	mg/Kg		10				
TPH (C13 to C22)		ND	mg/Kg		10				
TPH (C23 to C40)		ND	mg/Kg		20				
TPH (C28 to C40)		ND	mg/Kg		20				
TPH (C6 to C12)		ND	mg/Kg		10				
TPH (C6 to C44) Total		ND	mg/Kg		20				
TPH (C8 to C10)		ND	mg/Kg		10				
TPH Diesel		ND	mg/Kg		10				
TPH Gasoline		ND	mg/Kg		10				
TPH Motor Oil		ND	mg/Kg		20				
	Lab Conti	rol Spike/ Lab	Control Spi	ke Duplicat	e Summary				
		Spike Amount	Spike Result		Recoveries		Limi	ts	
Analyte		LCS LCSD	LCS LCS	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1199510LCS1				·	•			1	
TPH (C10 to C28)		250	220	mg/Kg	88		60-133		

	Ma	trix Sp	ike/Mat	rix Spik	ce Dupli	icate Sum	mary					
Sample Spike Amount Spike Result Recoveries Limits												
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199510MS1, QC1199510MSD1										Sc	ource:	410389-001
TPH (C10 to C28)	3300	250	250	3000	3300	mg/Kg	0	0	9.5	70-130	20	NC

·	nicollez	Method:	EPA 8260B			
Matrix: Solid Analyzed:	12/29/2018	Instrument:	VOA-MS (group)			
	Bla	ank Summai	ν			
	Blank					
Analyte	Result	Units		RDL	Notes	
C1199511MB1						
1,1,1,2-Tetrachloroethane	ND	ug/Kg		5		
1,1,1-Trichloroethane	ND	ug/Kg		5		
1,1,2,2-Tetrachloroethane	ND	ug/Kg		5		
1,1,2-Trichloroethane	ND	ug/Kg		5		
1,1,2-Trichlorotrifluoroethane	ND	ug/Kg		5		
1,1-Dichloroethane	ND	ug/Kg		5		
1,1-Dichloroethene	ND	ug/Kg		5		
1,1-Dichloropropene	ND	ug/Kg		5		
1,2,3-Trichlorobenzene	ND	ug/Kg		5		
1,2,3-Trichloropropane	ND	ug/Kg		5		
1,2,4-Trichlorobenzene	ND	ug/Kg		5		
1,2,4-Trimethylbenzene	ND	ug/Kg		5		
1,2-Dibromo-3-chloropropane	ND	ug/Kg		5		
1,2-Dibromoethane	ND	ug/Kg		5		
1,2-Dichlorobenzene	ND	ug/Kg ug/Kg		5		
1,2-Dichloroethane	ND	ug/Kg		5		
1,2-Dichloropropane	ND			5		
	ND	ug/Kg				
1,3,5-Trimethylbenzene		ug/Kg		5		
1,3-Dichlorobenzene	ND	ug/Kg		5		
1,3-Dichloropropane	ND	ug/Kg		5		
1,4-Dichlorobenzene	ND	ug/Kg		5		
2,2-Dichloropropane	ND	ug/Kg		5		
2-Butanone (MEK)	ND	ug/Kg		100		
2-Chlorotoluene	ND	ug/Kg		5		
4-Chlorotoluene	ND	ug/Kg		5		
4-Isopropyltoluene	ND	ug/Kg		5		
4-Methyl-2-pentanone (MIBK)	ND	ug/Kg		5		
Acetone	ND	ug/Kg		100		
Allyl Chloride	ND	ug/Kg		5		
Benzene	ND	ug/Kg		5		
Bromobenzene	ND	ug/Kg		5		
Bromochloromethane	ND	ug/Kg		5		
Bromodichloromethane	ND	ug/Kg		5		
Bromoform	ND	ug/Kg		5		
Bromomethane	ND	ug/Kg		5		
Carbon Tetrachloride	ND	ug/Kg		5		
Chlorobenzene	ND	ug/Kg		5		
Chlorodibromomethane	ND	ug/Kg		5		
Chloroethane	ND	ug/Kg		5		
Chloroform	ND	ug/Kg		5		
Chloromethane	ND	ug/Kg		5		
cis-1,2-Dichloroethene	ND	ug/Kg		5		
cis-1,3-dichloropropene	ND	ug/Kg		5		
cis-1,4-dichloro-2-butene	ND	ug/Kg		5		
Dibromomethane	ND	ug/Kg		5		
Dichlorodifluoromethane	ND	ug/Kg		5		
Di-isopropyl ether (DIPE)	ND	ug/Kg		5		
Ethylbenzene	ND	ug/Kg		5		
Ethyl-tertbutylether (ETBE)	ND	ug/Kg		5		
Hexachlorobutadiene	ND	ug/Kg		5		
Isopropylbenzene	ND	ug/Kg		5		
m and p-Xylene	ND	ug/Kg		5		

QCBatchID: QC1199511	Analyst:	nicollez	Method:	EPA 8260B			
Matrix: Solid	Analyzed:	12/29/2018	Instrument:	VOA-MS (grou	la)		
		Blank					
Analyte		Result	Units		RDL	Notes	
QC1199511MB1			1	1		1	
Methylene chloride		ND	ug/Kg		5		
Methyl-t-butyl Ether (MTBE)		ND	ug/Kg		5		
Naphthalene		ND	ug/Kg		5		
N-butylbenzene		ND	ug/Kg		5		
N-propylbenzene		ND	ug/Kg		5		
o-Xylene		ND	ug/Kg		5		
Sec-butylbenzene		ND	ug/Kg		5		
Styrene		ND	ug/Kg		5		
t-Butyl alcohol (TBA)		ND	ug/Kg		10		
Tert-amylmethylether (TAME)		ND	ug/Kg		5		
Tert-butylbenzene		ND	ug/Kg		5		
Tetrachloroethene		ND	ug/Kg		5		
Toluene		ND	ug/Kg		5		
trans-1,2-dichloroethene		ND	ug/Kg		5		
trans-1,3-dichloropropene		ND	ug/Kg		5		
trans-1,4-dichloro-2-butene		ND	ug/Kg		5		
Trichloroethene		ND	ug/Kg		5		
Trichlorofluoromethane		ND	ug/Kg		5		
Vinyl Chloride		ND	ug/Kg		5		
Xylenes (Total)		ND	ug/Kg		5		

L	ab Control Spike/ Lal	Control S	oike Duplica	te Summa	r y			
	Spike Amount	Spike Resu	ılt	Recoverie	3	Limit	S	
Analyte	LCS LCSD	LCS LC	SD Units	LCS LCS	D RPD	%Rec	RPD	Notes
QC1199511LCS1			L. L	•		1		
1,1-Dichloroethene	50	59	ug/Kg	118		59-172		
Benzene	50	49	ug/Kg	98		62-137		
Chlorobenzene	50	51	ug/Kg	102		60-133		
Methyl-t-butyl Ether (MTBE)	50	38	ug/Kg	76		62-137		
Toluene	50	54	ug/Kg	108		59-139		
Trichloroethene	50	53	ug/Kg	106		66-142		

	Mat	trix Sp	ike/Matı	rix Spil	ke Dupli	cate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199511MS1, QC1199511MSD1							•			So	ource:	410375-001
1,1-Dichloroethene	ND	50	50	58	60	ug/Kg	116	120	3.4	59-172	22	
Benzene	0.95	50	50	48	50	ug/Kg	94	98	4.1	62-137	24	
Chlorobenzene	ND	50	50	49	49	ug/Kg	98	98	0.0	60-133	24	
Methyl-t-butyl Ether (MTBE)	ND	50	50	43	44	ug/Kg	86	88	2.3	62-137	21	
Toluene	ND	50	50	51	52	ug/Kg	102	104	1.9	59-139	21	
Trichloroethene	ND	50	50	51	52	ug/Kg	102	104	1.9	66-142	21	

QCBatchID: QC1199549	Analyst:	cota	Method:	EPA 7471A					
Matrix: Solid	Analyzed:	12/31/2018	Instrument:	AAICP-HG1					
		В	lank Summa	ry					
		Blank							
Analyte		Result	Units		RDL	No	otes		
QC1199549MB1	ł		1	•			1		
Mercury		ND	mg/Kg		0.14				
	Lab Contr	rol Spike/ La	b Control Spi	ke Duplicat	te Summary	,			
		Spike Amount	Spike Result		Recoveries		Lim	its	
Analyte		LCS LCSD	LCS LCS	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1199549LCS1	ł		-		•				1
Mercury		0.83	0.82	mg/Kg	99		80-120		
	Mat	rix Spike/Ma	trix Spike Du	olicate Sun	nmary				
	Sample	Spike Amount	Spike Result		Recoveries		Limit	ts	
Analyte	Amount	MS MSD	MS MSE	0 Units	MS MSD	RPD	%Rec	RPD	Notes
QC1199549MS1, QC1199549MSD1			1				Sc	ource:	410397-00

0.77

0.72

93

mg/Kg

87

6.7

0.83

ND

0.83

75-125 20

Mercury

QCBatchID:	QC1199568	Analyst:	dswafford	Method:	EPA 6010B			
Matrix:	Solid	Analyzed:	01/02/2019	Instrument:	AAICP (group)			
			Bla	ank Summa	у			
			Blank					
	Analyte		Result	Units		RDL	Notes	
QC1199568N	IB1	L.		1	1 1		1	
Antimony			ND	mg/Kg		3		
Arsenic			ND	mg/Kg		1		
Barium			ND	mg/Kg		1		
Beryllium			ND	mg/Kg		0.5		
Cadmium			ND	mg/Kg		0.5		
Chromium			ND	mg/Kg		1		
Cobalt			ND	mg/Kg		0.5		
Copper			ND	mg/Kg		1		
Lead			ND	mg/Kg		1		
Molybdenur	n		ND	mg/Kg		1		
Nickel			ND	mg/Kg		1.5		
Selenium			ND	mg/Kg		3		
Silver			ND	mg/Kg		0.5		
Thallium			ND	mg/Kg		3		
Vanadium			ND	mg/Kg		0.5		
Zinc			ND	mg/Kg		5		

	Lab Control Spike/ Lab	Control Spike	Duplica	te Summary				
	Spike Amount	Spike Result		Recoveries		Limit	s	
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1199568LCS1							1	
Antimony	100	98.6	mg/Kg	99		80-120		
Arsenic	100	95.3	mg/Kg	95		80-120		
Barium	100	102	mg/Kg	102		80-120		
Beryllium	100	91.2	mg/Kg	91		80-120		
Cadmium	100	96.4	mg/Kg	96		80-120		
Chromium	100	93.5	mg/Kg	94		80-120		
Cobalt	100	101	mg/Kg	101		80-120		
Copper	100	95.6	mg/Kg	96		80-120		
Lead	100	103	mg/Kg	103		80-120		
Molybdenum	100	95.9	mg/Kg	96		80-120		
Nickel	100	104	mg/Kg	104		80-120		
Selenium	100	89.4	mg/Kg	89		80-120		
Silver	100	103	mg/Kg	103		80-120		
Thallium	100	98.1	mg/Kg	98		80-120		
Vanadium	100	101	mg/Kg	101		80-120		
Zinc	100	96.1	mg/Kg	96		80-120		

	Mat	trix Sp	ike/Matı	rix Spil	ce Dupli	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limit	S	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199568MS1, QC1199568MSD1										Sc	ource:	410305-131
Antimony	ND	100	100	73.8	58.9	mg/Kg	74	59	22.5	75-125	20	M,D
Arsenic	1.63	100	100	111	104	mg/Kg	109	102	6.5	75-125	20	
Barium	112	100	100	214	204	mg/Kg	102	92	4.8	75-125	20	
Beryllium	ND	100	100	98.0	95.8	mg/Kg	98	96	2.3	75-125	20	
Cadmium	0.63	100	100	96.9	90.4	mg/Kg	96	90	6.9	75-125	20	
Chromium	12.0	100	100	107	99.2	mg/Kg	95	87	7.6	75-125	20	
Cobalt	9.08	100	100	110	102	mg/Kg	101	93	7.5	75-125	20	
Copper	13.1	100	100	111	104	mg/Kg	98	91	6.5	75-125	20	
Lead	15.2	100	100	131	120	mg/Kg	116	105	8.8	75-125	20	
Molybdenum	0.56	100	100	105	96.8	mg/Kg	104	96	8.1	75-125	20	

QCBatchID: QC1199568	Analyst:	dswaff	ord	М	ethod: E	PA 6010B						
Matrix: Solid	Analyzed:	01/02/2	2019	Instru	ument: A	AICP (group)					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199568MS1, QC1199568MSD1										So	ource:	410305-131
Nickel	9.28	100	100	121	111	mg/Kg	112	102	8.6	75-125	20	
Selenium	ND	100	100	102	95.2	mg/Kg	102	95	6.9	75-125	20	
Silver	ND	100	100	109	100	mg/Kg	109	100	8.6	75-125	20	
Thallium	2.20	100	100	104	98.2	mg/Kg	102	96	5.7	75-125	20	
Vanadium	30.6	100	100	137	127	mg/Kg	106	96	7.6	75-125	20	
Zinc	59.4	100	100	172	159	mg/Kg	113	100	7.9	75-125	20	

QCBatchID: QC1199631 Anal	/st: sand	lyw	Metho	d: E	EPA 8015B						
Matrix: Solid Analyz	ed: 01/0	3/2019	Instrumen	t: \	VOA-GC (grou	lb)					
		Bl	ank Summ	ary	/						
		Blank									
Analyte		Result	Units			R	DL	No	tes		
QC1199631MB1	1		-				1				
TPH (C6 to C12)		ND	mg/Kg			3	3				
Lab Co	ontrol S	pike/ Lab	Control S	oik	e Duplicate	e Sur	nmary				
		e Amount	Spike Resu				veries		Lim	its	
Analyte	LCS	LCSD	LCS LC	SD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1199631LCS1, QC1199631LCSD1			•								
TPH Gasoline	5	5	5.3 5.	3	mg/Kg	106	106	0	70-130	20	

Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I IB	The sample was read outside of the method required incubation period. Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
IR	Reported value is estimated
J L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample
-	data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
м	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated
	LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
Р	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3 -	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
T T4	Sample was extracted/analyzed past the holding time.
T1 T2	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only). Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T3	Sample received and analyzed out of hold time per client's request.
T4	Sample was analyzed out of hold time per client's request.
T5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
T6	Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

ENTHA	LPY ANALYTICAL, INC.					C	hain of <u>C</u>	ustody	Rece	ord			Turn	Around	Tim	e (Rus	h by adva	nced notic	e only)
931 W. E	Barkley Ave, Orange, CA 92868				Lab	No:	212	10	41	0 2	57U	1	Standard:	X	4	4 Day:		3 Day:	
Phone: (714	4) 771-6900 Fax: (714)771-9933	3		1	Pag	ge:	1	1 0	_	-	2		2 Day:		:	1 Day:		Same Day:	
Billing: Enthalpy	/ - Orange			<u> </u>			Matrix: A	= Air D	w = 1	Drinl	king \	Wate	er						
c/o Montrose E	nvironmental Group		THAI				= Food Liqu						•	Pr			$1 = Na_2S_2O_3$		-
P.O. Box 74113	7, Los Angeles, CA 90074-1137	1.A.	NALYTICA	41.			Pure Produ Swab W									4 = H ₂ 5	0 ₄ 5 = NaOH	b = Other	
C	USTOMER INFORMATION			PROJE	CT I	NFOR	MATION				-		Analysis Re	quest			Test Instru	uctions / Cor	nments
Company:	Ninyo & Moore		Name:	Cı	pre	is l	td Thas	eIFS	A	Ð									
Report To:	Patrisk Cullip & Kristing Hill &		Number:			1840			<u> </u>	<u>HIIH</u>		_							
Email:	Pcullip @ ninyoandmoo	INE.COM	P.O. #:		i/					B	أ	R							
Address:	475 Goddard		Address:	A	ΡN	1: 24	4-221-	23		(bolog)	205	150						,	
	Inine, CA 92618	/					, CA		ļ	Y		À							
Phone:	949-753-7070		Global ID:						Ţ	<u>1</u>	151	SULOBI							
Fax:	949-753-7071		Sampled By:	4	M	t (k	nistina	Hin	ŀ	Metal	<u>cc(8015B</u>	8							
	Sample ID	Samplin Date	g Samp Tin	oling		trix	Containe No. / Size	r Pre				VOCS	101						
1 B	1-5'				6	11 12	L'sleene -NOAS			$\frac{1}{2}$		-	\rightarrow		\square		-		
	1-10'	12/27/1	<u>8 090</u> 091				-VOAS		-	4	ᠵᡰ	\forall			\vdash				
3 72	n-15		092		$\left \right $					┫	\sim	4	\checkmark		\square		told		
4 D	n2-5'		1000		+				-	\forall		-	$ \rightarrow +$			/	1010		
	52-10		1010		+				ť			\mathbf{X}							
	32-15'		102							ť	Ý		\mathbf{x}^{+}				old		
	33-5'		120						╡	オ		ľ							
	33-10'		120								大	オ							
	03-15		12:		\uparrow					ť	1					TH	old		
	B4-5'	4	12		-	5	4			オ		ſ							
	, S	ignature	•			Prin	t Name	•	Ť			Ċ	ompany /	/ Title			Da	ate / Time	
¹ Relinquishe	d By: Katit	Fel		Knis	hin	a t	Hill			Ni	, mi	, đi	Moore/	Eccolor	1'sF	- 1	2/27/18	153	35
¹ Received By		/		/	·~ .	(h)						Ż		¹ 7	-1		122		153.5
² Relinquishe				t.								-2-5			-		/ _ /		
² Received By	y:																		
³ Relinquishe	d By:	~																	
³ Received By	<i>y</i> :	````````````````````````````````																	

ENT	HALPY ANAI	LYTICAL, INC.					Chain of Cust	ody Red	ord			Turn /	Around	Time (Rush by a	advanced i	notice o	only)
931	W. Barkley Ave, C	Drange, CA 92868	٦' (Lab No): 				Stand	ard:	\mathbf{X}	4 D	ay:	3 Day	:	
Phone:	(714) 771-6900	Fax: (714)771-9933				Page:	2	of	2		2 Day:	:		1 D	ay:	Same	Day:	
illing: Enth	alpy - Orange						Matrix: A = A											
/o Montro	se Environmenta	l Group	1	[THA]			FL = Food Liquid P = Pure Product					r	Pro			a ₂ S ₂ O ₃ 2 = H = NaOH 6 = 1		INO ₃
.O. Box 74	1137, Los Angele	s, CA 90074-1137	A	NALYTIC	AL		V = Swab W = W											
	CUSTOMER	INFORMATION			PROJE	CT INFO	ORMATION				Analys	sis Requ	uest		Test	t Instructions	/ Comm	ents
ompany:	Ninya	o & Maore		Name:	Ci	1press	. Utd Phase	ITESA	LA Singe	<u> </u>	Î							
eport To:	Patrick	cullip a		Number:		10784				恐	t là	5						
nail:		@ ninyoand mo	nove.com	P.O. #:		lí			PL/BO	1993	KMIH IZINA 1992							
ddress:	475 (Boddard		Address:	A	PN=z	44-221-23		101 1									
		2, CA 9261	18				s, CA		30	Sleog								
none:	949-7	153-7070		Global ID:	/		1	`	etals (60 1801572									
ax:		53-7071		Sampled By:	K	MH (instina Hi	()	10-10-10-10-10-10-10-10-10-10-10-10-10-1	¶ ─	Ą							
	Sample ID)	Sampliı Date	-	pling me	Matrix	Container No. / Size	Pres.	T22 Metals (6010B/74	AOC I	HOUD							
1	34-10'		12/27/	18 13	00	SOIL	1-6"sleeve 5-VOAS	KE		权								
2	B4-15'		<i>t</i> t		010		11 11			Ť.	\boxtimes				Hold			
	Trip Blank	_				H20	2-VOAS	<u></u>		X								
4									-									
5																		
5																		
7																		
8	/																	
9																		
.0																		
		S	ignature			, Pi	rint Name			(Comp	any /	Title			Date / -		
Relinqui	shed By:	fortex	4		K	nstir	ra Hill		Nin	you	el Mo	now /	Fee	logist	12/2	7/18	1534	5
Receive	d By:	6			ŀ	Skn	, , ,			G	\overline{x}	/		0	Γ	zzlar		121
Relinqui	shed By:	197									<u> </u>							
Receive	d By:																	
Relinqui	shed By:																	
Receive	d By:																	

SAMPLE ACCEPTANCE CHECKLIST

Section 1						
Client: <u>Ninyo & Moore</u>	Project:					
Date Received: 12/27/18	Sampler's Name Present:	/ Yes	No			
Section 2						
Sample(s) received in a cooler? 🚺 Yes, How many? 1	NO (skip section 2)		Temp (°C) No Cooler)			
Sample Temp (°C), One from each cooler: #1: <u>8.5</u>	#2:#3:					
(Acceptance range is < 6° C but not frozen (for Microbiology samples, accepta	nce range is $< 10^{\circ}$ C but not frozen). It is	s acceptable		s collected		
the same day as sample receipt to have a higher temperatu	ure as long as there is evidence that coo	ling has begu	ın.)			
Shipping Information:						
Section 3						
Was the cooler packed with:	Bubble Wrap	oam				
Paper None	Other					
Cooler Temp (°C): #1: <u>-0.1</u> #2:	#3:	_#4:				
Section 4		YES	NO	N/A		
Was a COC received?		\checkmark				
Are sample IDs present?						
Are sampling dates & times present?		\checkmark				
Is a relinquished signature present?		\checkmark				
Are the tests required clearly indicated on the COC?						
Are custody seals present?			\checkmark			
If custody seals are present, were they intact?				\checkmark		
Are all samples sealed in plastic bags? (Recommended for	or Microbiology samples)	\checkmark				
Did all samples arrive intact? If no, indicate in Section 4 b	elow.	1				
Did all bottle labels agree with COC? (ID, dates and times)	✓				
Were the samples collected in the correct containers for	•	✓				
Are the containers labeled with the correct preserve		\checkmark				
Is there headspace in the VOA vials greater than 5-6 mm				✓		
Was a sufficient amount of sample submitted for the req	\checkmark					
Section 5 Explanations/Comments						
Section 6 For discrepancies, how was the Project Manager notified						
For discrepancies, now was the Project Manager notified		• -		—		
Email (email sent to/on):/						
Project Manager's response:						
Carta da	11211-1					
Completed By: Date:_Date:_Date						
Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.						
931 W. Barkley Ave, Orange, CA 92868 •						
www.enthalp Sample Acceptance Che	oy.com/socal ecklist – Rev 4, 8/8/2017					

11007 FOREST PLACE Santa FE Springs, ca 90670 WWW.Jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Ninyo & Moore 475 Goddard, Suite 200 Irvine, CA 92618	Report date: JEL Ref. No.:	1/2/2019 D-1572
Attn:	Kristina Hill	Date Sampled: Date Received:	1/2/2019 1/2/2019
		Date Analyzed:	1/2/2019
Project Address:	4511 Katella Ave Cypress, CA	Physical State:	Soil Gas

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling – Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-pentane, n-hexane, or n-heptane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Angela Haar, Ph. D. Mobile Lab Manager

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Ninyo & Mo 475 Goddard Irvine, CA 92	l, Suite 200				Report date: Jones Ref. No.:	1/2/2019 D-1572
Attn:	Kristina Hill					Date Sampled: Date Received: Date Analyzed:	1/2/2019 1/2/2019 1/2/2019
Project Address:	4511 Katella Cypress, CA					Physical State:	Soil Gas
EPA 82	260B – Volatil	e Organics b	y GC/MS +	Oxygenates/O	Gasoline Rar	ige Organics	
Sample ID:	SV1-3	SV1-7	SV2-4.5	SV2-7.5	SV3-5		
Jones ID:	D-1572-01	D-1572-02	D-1572-03	D-1572-04	D-1572-05	<u>Reporting Limit</u>	<u>Units</u>
Analytes:	ND	ND	ND	ND	ND	0	1.2
Benzene Bromobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	8 8	μg/m3 μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	8	µg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	µg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	µg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	10	μg/m3
4-Chlorotoluene Dibromochloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	10 8	μg/m3 μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	10	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	10	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	10	µg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	8	µg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1-Dichloroethene	ND	86	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND ND	ND ND	ND ND	ND	ND ND	8	μg/m3
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	8 8	μg/m3 μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV1-3	SV1-7	SV2-4.5	SV2-7.5	SV3-5		
Jones ID:	D-1572-01	D-1572-02	D-1572-03	D-1572-04	D-1572-05	<u>Reporting Limit</u>	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
Ethylbenzene	ND	9	ND	ND	ND	8	µg/m3
Freon 113	ND	ND	ND	ND	ND	16	µg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	16	µg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	µg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	10	µg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	µg/m3
Naphthalene	ND	ND	ND	ND	ND	40	µg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Styrene	ND	ND	ND	ND	ND	8	µg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	µg/m3
Tetrachloroethene	11	27	12	14	ND	8	µg/m3
Toluene	ND	12	ND	12	ND	8	µg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	µg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	10	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	8	9	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	9	10	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	4670	8510	ND	ND	ND	2000	µg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	µg/m3
n-Hexane	ND	ND	ND	ND	ND	80	µg/m3
n-Heptane	ND	ND	ND	ND	ND	80	µg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	ts
Dibromofluoromethane	100%	86%	102%	104%	100%	60 - 140	
Toluene-d ₈	97%	96%	90%	95%	95%	60 - 140	
4-Bromofluorobenzene	92%	93%	89%	92%	93%	60 - 140	
	D1-010219-	D1-010219-	D1-010219-	D1-010219-	D1-010219-		
Batch ID	01	01	01	01	01		
ND= Value less than reporting	limit						

ND= Value less than reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Ninyo & Mo 475 Goddard Irvine, CA 92	l, Suite 200			Report date: Jones Ref. No.:	1/2/2019 D-1572
Attn:	Kristina Hill				Date Sampled: Date Received: Date Analyzed:	1/2/2019 1/2/2019 1/2/2019
Project Address:	4511 Katella Cypress, CA				Physical State:	Soil Gas
	EPA 82	60B – Volati	le Organics	by GC/MS + Oxy	ygenates	
<u>Sample ID:</u>	SV3-9.5	SV4-5	SV4-10	SV4-10 DUP		
Jones ID:	D-1572-06	D-1572-07	D-1572-08	D-1572-09	<u>Reporting Limit</u>	<u>Units</u>
Analytes:	ND		ND		0	1.2
Benzene Bromobenzene	ND ND	ND ND	ND ND	ND ND	8 8	μg/m3 μg/m3
Bromodichloromethane	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	8	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	8	µg/m3
tert-Butylbenzene	ND	ND	ND	ND	8	µg/m3
Carbon tetrachloride	ND	ND	ND	ND	8	µg/m3
Chlorobenzene	ND	ND	ND	ND	8	µg/m3
Chloroform	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene 4-Chlorotoluene	ND ND	ND ND	ND ND	ND ND	10 10	μg/m3
Dibromochloromethane	ND ND	ND	ND ND	ND	8	μg/m3 μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	10	µg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	10	µg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	10	µg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	8	µg/m3
1,1-Dichloroethane	ND	ND	ND	ND	8	µg/m3
1,2-Dichloroethane	ND	ND	ND	ND	8	µg/m3
1,1-Dichloroethene	ND ND	ND ND	ND ND	ND ND	8	$\mu g/m3$
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND	ND	ND ND	ND ND	8 8	μg/m3 μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	8	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	10	μg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

<u>Sample ID:</u>	SV3-9.5	SV4-5	SV4-10	SV4-10 DUP		
Jones ID:	D-1572-06	D-1572-07	D-1572-08	D-1572-09	Reporting Limit	<u>Units</u>
Analytes:						
cis-1,3-Dichloropropene	ND	ND	ND	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	8	µg/m3
Ethylbenzene	ND	ND	ND	ND	8	µg/m3
Freon 113	ND	ND	ND	ND	16	µg/m3
Hexachlorobutadiene	ND	ND	ND	ND	16	µg/m3
Isopropylbenzene	ND	ND	ND	ND	8	µg/m3
4-Isopropyltoluene	ND	ND	ND	ND	10	µg/m3
Methylene chloride	ND	ND	ND	ND	8	µg/m3
Naphthalene	ND	ND	ND	ND	40	µg/m3
n-Propylbenzene	ND	ND	ND	ND	8	µg/m3
Styrene	ND	ND	ND	ND	8	µg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	8	µg/m3
Tetrachloroethene	34	10	10	9	8	μg/m3
Toluene	ND	ND	10	8	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	16	µg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	8	µg/m3
Trichlorofluoromethane	ND	ND	ND	ND	10	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	2000	µg/m3
Tracer:						
n-Pentane	ND	ND	ND	ND	80	µg/m3
n-Hexane	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	80	µg/m3
Dilution Factor	1	1	1	1		
Surrogate Recoveries:					<u>OC Limits</u>	
Dibromofluoromethane	101%	99%	97%	99%	<u>60 - 140</u>	
Toluene-d ₈	95%	96%	96%	95%	60 - 140	
4-Bromofluorobenzene	91%	94%	96%	94%	60 - 140	
	D1-010219-	D1-010219-	D1-010219-	D1-010219-		
Batch ID	01	01	01	01		
ND- Value less than reporting		U1	V1	U 1		

ND= Value less than reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Attn:Kristina HillDate Samplef:1/2/2019 Date Analyzed:1/2/2019 1/2/2019 Date Analyzed:1/2/2019 1/2/2019Project Address:4511 Katella Av Cypress, CAPhysical State:Soil GasEFA 8260B - Volatile Organics by GC/MS + OxygenatesFormal StateSoil GasSample ID:METHOP BLANKSAMPLING BLANKKeporting LimitUnitsIones ID:010219 - D1MB1010219 - D1MB1Keporting LimitUnitsBenzeneNDND8µg/m3BromodichloromethaneNDND8µg/m3BromodichloromethaneNDND8µg/m3BromodichloromethaneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3<	Client: Client Address:	Ninyo & Mo 475 Goddaro Irvine, CA 9	d, Suite 200		Report date: Jones Ref. No.:	1/2/2019 D-1572
Project Address: 4511 Katella Ave Cypress, CA Physical State: Soil Gas FPA 8260B - Volatile Organics by GC/MS + Oxygenates Sample ID: METHOD SAMPLING Jones ID: 010219- DIMBI 010219- DISBI Reporting Limit Units Analytes: Benzene ND ND 8 µg/m3 Bromobenzene ND ND 8 µg/m3 Bromotorm ND ND 8 µg/m3 Bromotorm ND ND 8 µg/m3 Chorobenzene ND ND 8 µg/m3 Chorobenzene ND ND 8 µg/m3 Chlorobenzene ND ND 8 µg/m3 Chlorobenzene ND ND 8 µg/m3 Chlorobenzene ND	Attn:	Kristina Hill			Date Received:	1/2/2019
Sample ID:METHOD BLANKSAMPLING BLANKJones ID:010219- DIMM010219- DISB1Reporting LimitLinitAnalytes: </td <td>Project Address:</td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	Project Address:				•	
Sample ID:BLANKBLANKJones ID:010219- 010219- 01081010219- 01081Analytes:Keporting LimitUintBenzeneNDND8µg/m3BromobenzeneNDND8µg/m3BromobenzeneNDND8µg/m3BromotichloromethaneNDND8µg/m3- ButylbenzeneNDND8µg/m3- ButylbenzeneNDND8µg/m3carbot tetrachlorideNDND8µg/m3Carbot tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobueneNDND8µg/m31.2-Dibromo-3-chloropropaneNDND8µg/m31.2-Dibromo-3-chloropropaneNDND8µg/m31.3-DichlorobenzeneNDND8µg/m31.3-DichlorobenzeneNDND10µg/m31.3-DichlorobenzeneNDND8µg/m31.4-DichlorobenzeneNDND8µg/m31.1-DichlorobenzeneNDND8µg/m31.1-DichlorobenzeneNDND8µg/m31.1-DichlorobenzeneNDND8µg/m31.1-DichlorobenzeneNDND8µg/m31.1-Dichlorobenzene <t< td=""><td></td><td>EPA 82</td><td>260B – Volatile</td><td>• Organics by GC/MS + Oxygenates</td><td></td><td></td></t<>		EPA 82	260B – Volatile	• Organics by GC/MS + Oxygenates		
Jones ID:DtMB1DtSB1Reporting LimitUnitsAnalytes:BenzeneNDND&#g/m3BromobenzeneNDND&#g/m3BromodichloromethaneNDND&#g/m3BromoformNDND&#g/m3BromoformNDND&#g/m3n-ButylbenzeneNDND&#g/m3ec-ButylbenzeneNDND&#g/m3Carlon tetrachlorideNDND&#g/m3ChlorobenzeneNDND&#g/m3ChlorobenzeneNDND&#g/m3ChlorobenzeneNDND&#g/m3ChloroblueneNDND&#g/m3J-ChloroblueneNDND&#g/m31,2-Dibromo-3-chloropropaneNDND&#g/m31,2-Dibromo-thane (EDB)NDND&#g/m31,2-DichlorobenzeneNDND#g/m31,2-DichlorobenzeneNDND#g/m31,1-DichlorobenzeneNDND#g/m31,1-DichlorobenzeneNDND#g/m31,1-DichlorobenzeneNDND#g/m31,1-DichlorobenzeneND%D#g/m31,1-DichlorobenzeneND%D#g/m31,1-DichlorobenzeneND%D#g/m31,1-DichlorobenzeneND%D#g/m31,1-DichlorobenzeneND%D#g/m3</t</th><th>Sample ID:</th><th></th><th></th><th></th><th></th><th></th></tr><tr><th>BenzeneNDNDND8µg/m3BromobenzeneNDNDND8µg/m3BromodichloromethaneNDND8µg/m3BromoformNDND8µg/m3n-ButylbenzeneNDND8µg/m3sec-ButylbenzeneNDND8µg/m3carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m32-ChlorobueneNDND8µg/m32-ChlorobueneNDND8µg/m32-ChlorobueneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND10µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND10µg/m31,2-Dibromo-1NDND8µg/m31,2-Dibromo-1NDND8µg/m31,2-Dibromo-1NDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneND</th><th>Jones ID:</th><th></th><th></th><th></th><th><u>Reporting Limit</u></th><th><u>Units</u></th></tr><tr><td>BromobenzeneNDND8µµ/m3BromodichloromethaneNDND8µµ/m3BromoformNDNDND8µµ/m3n-ButylbenzeneNDND8µµ/m3sec-ButylbenzeneNDND8µµ/m3tert-ButylbenzeneNDND8µµ/m3Carbon tetrachlorideNDND8µµ/m3ChlorobenzeneNDND8µµ/m3ChlorobenzeneNDND8µµ/m32-ChlorotolueneNDND10µµ/m31,2-Dibromo-3-chloropropaneNDND8µµ/m31,2-DibromoethaneNDND8µµ/m31,2-DibromoethaneNDND8µµ/m31,2-DibromoethaneNDND8µµ/m31,2-DibromoethaneNDND10µµ/m31,2-DibromoethaneNDND10µµ/m31,3-DichlorobenzeneNDND10µµ/m31,4-DichlorobenzeneNDND8µµ/m31,1-DichloroethaneNDND8µµ/m31,1-DichloroethaneNDND8µµ/m31,1-DichloroethaneNDND8µµ/m31,1-DichloroethaneNDND8µµ/m31,2-DichloroetheneNDND8µµ/m31,1-DichloroetheneNDND8µµ/m31,2-DichloroetheneNDND8µµ/m3</t</td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>BromodichloromethaneNDNDNDBromoformNDNDND8µg/m3n-ButylbenzeneNDND8µg/m3sec-ButylbenzeneNDND8µg/m3tert-ButylbenzeneNDND8µg/m3Carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChloroformNDND8µg/m32-ChlorotolueneNDND8µg/m31,2-Dibromo-shloropropaneNDND8µg/m31,2-Dibromo-shloropropaneNDND8µg/m31,3-DichlorobenzeneNDND8µg/m31,2-Dibromo-thaneNDND8µg/m31,3-DichlorobenzeneNDND8µg/m31,4-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>BromoformNDND8µg/m3n-ButylbenzeneNDND8µg/m3sec-ButylbenzeneNDND8µg/m3tert-ButylbenzeneNDND8µg/m3Carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChloroformNDND8µg/m32-ChlorotolueneNDND10µg/m3DibromochloromethaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-DibromoethaneNDND8µg/m31,3-DichlorobenzeneNDND8µg/m31,1-DichlorobenzeneNDND8µg/m31,2-DichlorobenzeneNDND8µg/m31,3-DichlorobenzeneNDND10µg/m31,1-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m3<</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>n-ButylbenzeneNDND8µg/m3sec-ButylbenzeneNDND8µg/m3tetr-ButylbenzeneNDND8µg/m3Carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChlorobenzeneNDND8µg/m32-ChlorotolueneNDND10µg/m34-ChlorotolueneNDND10µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-dhoromethaneNDND8µg/m31,2-DibromoethaneNDND8µg/m31,2-DibromoethaneNDND8µg/m31,2-DibromoethaneNDND8µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,1-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroetheneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>sec-ButylbenzeneNDNDND8µg/m3tert-ButylbenzeneNDNDND8µg/m3Carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDND8µg/m3ChloroformNDND8µg/m32-ChlorotolueneNDND10µg/m33-ChlorotolueneNDND10µg/m34-ChlorotolueneNDND10µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromoethane (EDB)NDND8µg/m31,2-DibromoethaneNDND10µg/m31,2-DichlorobenzeneNDND10µg/m31,2-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND<</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Carbon tetrachlorideNDND8µg/m3ChlorobenzeneNDNDND8µg/m3ChloroformNDNDND10µg/m32-ChlorotolueneNDND10µg/m34-ChlorotolueneNDND10µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-thane (EDB)NDND8µg/m31,2-DibromoethaneNDND8µg/m31,2-DibromoethaneNDND10µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,3-DichloroptopaneNDND8µg/m31,3-DichloroptopaneNDND8µg/m31,3-Dichloroptopane<</td><td>•</td><td>ND</td><td>ND</td><td></td><td>8</td><td></td></tr><tr><td>ChlorobenzeneNDNDNDChloroformNDNDNDND2-ChlorotolueneNDND10µg/m32-ChlorotolueneNDND10µg/m34-ChlorotolueneNDND10µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromo-thaneNDND8µg/m31,2-Dibromoethane (EDB)NDND8µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m3<tr</td><td>tert-Butylbenzene</td><td>ND</td><td>ND</td><td></td><td></td><td>µg/m3</td></tr><tr><td>ChloroformNDNDNDg/m32-ChlorotolueneNDND10µg/m34-ChlorotolueneNDND10µg/m3bibromochloromethaneNDNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromoethane (EDB)NDND8µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,1-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,3-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>2-ChlorotolueneNDNDI0µg/m34-ChlorotolueneNDNDND10µg/m3DibromochloromethaneNDNDND8µg/m31,2-Dibromo-3-chloropropaneNDNDND8µg/m31,2-Dibromoethane (EDB)NDNDND8µg/m31,2-DichlorobenzeneNDNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m3</</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>4-ChlorotolueneNDND10µg/m3DibromochloromethaneNDNDND8µg/m31,2-Dibromo-3-chloropropaneNDND8µg/m31,2-Dibromoethane (EDB)NDNDND8µg/m3DibromomethaneNDNDND8µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,3-Dichlorop</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>DibromochloromethaneNDND8µg/m31,2-Dibromo-3-chloropropaneNDNDND8µg/m31,2-Dibromoethane (EDB)NDNDND8µg/m3DibromomethaneNDNDND8µg/m31,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m31,3-</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,2-Dibromo-3-chloropropaneNDNDND1,2-Dibromoethane (EDB)NDNDNDDibromomethaneNDNDNDDibromomethaneNDNDND1,2-DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m3DichlorodifluoromethaneNDND10µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-Dic</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,2-Dibromoethane (EDB)NDND8µg/m3DibromomethaneNDNDND8µg/m31,2- DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m31,1-DichlorodifluoromethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroptopaneNDND8µg/m31,2-DichloroptopaneNDND8µg/m31,2-DichloroptopaneNDND8µg/m31,2-DichloroptopaneNDND8µg/m31,3-DichloroptopaneNDND8µg/m32,2-DichloroptopaneNDND8µg/m32,2-DichloroptopaneNDND8µg/m31,3-DichloroptopaneNDND8µg/m31,3-DichloroptopaneNDND8µg/m31,3-Dichloroptopane</td</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>DibromomethaneNDND8µg/m31,2- DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m3DichlorodifluoromethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND</</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,2- DichlorobenzeneNDND10µg/m31,3-DichlorobenzeneNDND10µg/m31,4-DichlorobenzeneNDND10µg/m3DichlorodifluoromethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td>, , ,</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,4-DichlorobenzeneNDND10µg/m3DichlorodifluoromethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td>1,2- Dichlorobenzene</td><td>ND</td><td></td><td></td><td>10</td><td></td></tr><tr><td>DichlorodifluoromethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m3cis-1,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td>1,3-Dichlorobenzene</td><td>ND</td><td>ND</td><td></td><td>10</td><td>µg/m3</td></tr><tr><td>1,1-DichloroethaneNDND8µg/m31,2-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m3cis-1,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,2-DichloroethaneNDND8µg/m31,1-DichloroetheneNDND8µg/m3cis-1,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloroptopaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,1-DichloroetheneNDND8µg/m3cis-1,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>cis-1,2-DichloroetheneNDND8µg/m3trans-1,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>trans-1,2-DichloroetheneNDND8µg/m31,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,2-DichloropropaneNDND8µg/m31,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1,3-DichloropropaneNDND8µg/m32,2-DichloropropaneNDND8µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>2,2-Dichloropropane ND ND 8 µg/m3</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>						

EPA 8260B - Volatile Organics by GC/MS + Oxygenates METHOD SAMPLING Sample ID: **BLANK BLANK** 010219-010219-Jones ID: **Reporting Limit** D1MB1 D1SB1 Units Analytes: cis-1,3-Dichloropropene ND ND 8 $\mu g/m3$ 8 trans-1,3-Dichloropropene ND ND $\mu g/m3$ Ethylbenzene ND ND 8 $\mu g/m3$ ND ND 16 Freon 113 µg/m3 Hexachlorobutadiene ND ND 16 µg/m3 Isopropylbenzene ND ND 8 $\mu g/m3$ ND ND 10 $\mu g/m3$ 4-Isopropyltoluene Methylene chloride ND ND 8 $\mu g/m3$ Naphthalene ND ND 40 µg/m3 8 n-Propylbenzene ND ND µg/m3 Styrene ND ND 8 µg/m3 ND ND 8 1,1,1,2-Tetrachloroethane $\mu g/m3$ 1,1,2,2-Tetrachloroethane ND ND 8 $\mu g/m3$ Tetrachloroethene ND ND 8 $\mu g/m3$ 8 $\mu g/m3$ ND Toluene ND 1.2.3-Trichlorobenzene ND ND 16 µg/m3 1,2,4-Trichlorobenzene ND ND 16 $\mu g/m3$ ND 1,1,1-Trichloroethane ND 8 µg/m3 1,1,2-Trichloroethane ND ND 8 µg/m3 Trichloroethene ND ND 8 $\mu g/m3$ Trichlorofluoromethane ND 10 ND $\mu g/m3$ 1,2,3-Trichloropropane ND ND 8 µg/m3 1,2,4-Trimethylbenzene ND ND 8 µg/m3 1,3,5-Trimethylbenzene ND ND 8 $\mu g/m3$ µg/m3 Vinyl chloride ND ND 8 16 m,p-Xylene ND ND µg/m3 o-Xylene ND ND 8 $\mu g/m3$ MTBE ND ND 40 $\mu g/m3$ Ethyl-tert-butylether ND ND 40 µg/m3 **Di-isopropylether** ND ND 40 $\mu g/m3$ ND ND 40 µg/m3 tert-amylmethylether tert-Butylalcohol ND ND µg/m3 400 **Tracer:** ND ND 80 n-Pentane $\mu g/m3$ ND ND n-Hexane 80 µg/m3 n-Heptane ND ND 80 $\mu g/m3$ **Dilution Factor** 1 1 **QC** Limits **Surrogate Recoveries:** Dibromofluoromethane 92% 62% 60 - 140 Toluene-d₈ 97% 68% 60 - 140 4-Bromofluorobenzene 97% 60 - 140 78% D1-010219- D1-010219-**Batch ID** 01 01

ND= Value less than reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Client Address:	Ninyo & Moore 475 Goddard, Suite 200 Irvine, CA 92618	Report date: Jones Ref. No.:	1/2/2019 D-1572
Attn:	Kristina Hill	Date Sampled:	1/2/2019
		Date Received: Date Analyzed:	1/2/2019 1/2/2019
Project Address:	4511 Katella Ave	Physical State:	Soil Gas
	Cypress, CA		

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Batch ID:	D1-010219-01					
Jones ID:	010219-D1LCS1	010219-D1LCS1		01	0219-D1CC	V1
	LCS	LCSD		Acceptability		Acceptability
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	94%	89%	5.9%	60 - 140	93%	80 - 120
1,1-Dichloroethene	104%	98%	6.0%	60 - 140	116%	80 - 120
Cis-1,2-Dichloroethene	98%	95%	3.9%	70 - 130	103%	80 - 120
1,1,1-Trichloroethane	99%	93%	5.9%	70 - 130	103%	80 - 120
Benzene	113%	110%	3.3%	70 - 130	103%	80 - 120
Trichloroethene	97%	90%	7.6%	70 - 130	101%	80 - 120
Toluene	94%	86%	8.7%	70 - 130	98%	80 - 120
Tetrachloroethene	93%	83%	11.2%	70 - 130	99%	80 - 120
Chlorobenzene	97%	91%	6.1%	70 - 130	97%	80 - 120
Ethylbenzene	102%	90%	12.5%	70 - 130	99%	80 - 120
1,2,4 Trimethylbenzene	99%	85%	15.0%	70 - 130	103%	80 - 120
Gasoline Range Organics (C4-C12)	102%	93%	9.5%	70 - 130	101%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	94%	96%		60 - 140	100%	60 - 140
Toluene-d ₈	98%	96%		60 - 140	102%	60 - 140
4-Bromofluorobenzene	98%	96%		60 - 140	101%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

JONES ENVIRONMENTAL, INC.

Soil-Gas Chain-of-Custody Record

Client Ninyo & Moore Project Name Project Address						Date 01/021 Client Project #	9		Purge Numbe ↓ 3P □ 7P t-In Test: (-			Repo EDD EDF* - *			ge Jones Project # D-1572
4511 Katella Ave Cypress, CA Email						Turn Around Re □ Immediate Atter □ Rush 24 Hours □ Rush 48 Hours □ Rush 72 Hours □ Normal ✓Mobile Lab		n-pen n-hexa n-hep Heliun 1,1-DF	ane tane n	aterial (M)		alysi	s Requ	Magnehelic Vacuum (In/H ₂ O)		Page 1 of 1 Sample Container: GASTIGHT GLASS SYRINGE If different than above, see Notes.
Report To Kristina Hill		Sampler	JJA			Reporting Li		sted sidential	Units 3	Matrix: 3), Air (A), A	8260B (VOCs)			c Vacut	Contai	
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	170	Soil Gas (SG)	EPA 8260	ТРНд		Magnehel	Number of Containers	Notes & Special Instructions
SV1-3	3	1270	1/2/19	9:29	9:35	D-1572-01	200	STEVE.1	M100.002	SG	1	X		<2	1	
SV1-7	3	1340	1/2/19	8:54	8:57	D-1572-02	200	STEVE.2	M100.002	SG	X	X		<2	1	
SV2-4.5	3	1300	1/2/19	9:46	9:51	D-1572-03	200	STEVE.1	118012	SG	X	X		<2	1	
SV2-7.5	3	1340	1/2/19	10:04	10:09	D-1572-04	200	STEVE.2	118012	SG	X	X		<2	1	
SV3-5	3	1310	1/2/19	10:25	10:26	D-1572-05	200	STEVE.1	M100.002	SG	Х	X		<2	1	
SV3-9.5	3	1380	1/2/19	10:55	10:59	D-1572-06	200	STEVE.2	118012	SG	X	X		<2	1	
SV4-5	3	1380	1/2/19	11:13	11:17	D-1572-07	200	STEVE.1	M100.002	SG	Х	Х		<2	1	
SV4-10	3	1310	1/2/19	11:32	11:35	D-1572-08	200	STEVE.2	118012	SG	X	X		8	1	
SV4-10 DUP	3	1390	1/2/19	11:49	11:52	D-1572-09	200	STEVE.2	118012	SG	Х	х		8	1	
Jest Hip	K	Printed Aun	a Hil	/		Received By (Signature)	thi		-	od Narr	ne E	llis			D	Total Number of Containers
IINYO & MOORE Relinquished By (Signature)	F	1/2/2 Printed Nam		1225		Company / JONES ENVIRONMENTAL Received By Laboratory (/2/2011 d Nam		Tim	1225	5		nt signature on this Chain of Custody form constitutes knowledgement that the above analyses have been eated, and the information provided herain is correct
ompany		Date				Company	9 of 9		Dato			Tim				and accurate

2	931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209	
	www.enthalpy.com info-sc@enthalpy.com	MONTROSE
Client: Address:	Ninyo & Moore 475 Goddard Suite 200 Irvine, CA 92618	Lab Request: 410375 Report Date: 01/04/2019 Date Received: 12/27/2018 Client ID: 15461
Attn:	Patrick Cullip	
Comments:	Cypress Ltd Phase II ESA PO# 210784002 APN 244-221-23 Cypress, CA	

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample # Client Sample ID

410375-001 WC-1

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Clarke

Report Review performed by: Ranjit Clarke, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Solid	Client: N	linyo 8	k Moore		Co	llector: Client			
Sampled: 12/27/2018 Sample #: <u>410375-001</u>	Site: Client Sample #: V	VC-1			Sample	е Туре:			
Analyte	R	esult	DF	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA 6010B NELAC	Prep Method: EPA						QCBatchl		
Antimony		ND	1	3	mg/Kg	01/02/19	01/03/19	KLN	
Arsenic		ND	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Barium	e	8.7	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN	
Cadmium		.50	1	0.5	mg/Kg	01/02/19	01/03/19	KLN	
Chromium	1	6.3	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Cobalt	9	.18	1	0.5	mg/Kg	01/02/19	01/03/19	KLN	
Copper	9	.66	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Lead		.98	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Molybdenum		ND	1	1	mg/Kg	01/02/19	01/03/19	KLN	
Nickel		1.3	1	1.5	mg/Kg	01/02/19	01/03/19	KLN	
Selenium		ND	1	3	mg/Kg	01/02/19	01/03/19	KLN	
Silver		ND	1	0.5	mg/Kg	01/02/19	01/03/19	KLN	
Thallium		ND	1	3	mg/Kg	01/02/19	01/03/19	KLN	
Vanadium		3.2	1	0.5	mg/Kg	01/02/19	01/03/19	KLN	
Zinc		0.5	1	5	mg/Kg	01/02/19	01/03/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA						QCBatchl		C1199549
Mercury		ND	2	0.28	mg/Kg	12/31/18	12/31/18	CO	D2
Method: EPA 8015M	Prep Method: EPA	3580A	L				QCBatchl	D: QO	C1199510
TPH (C13 to C22)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
TPH (C23 to C40)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
TPH (C6 to C12)		ND	1	10	mg/Kg	12/29/18	12/31/18	SS	
<u>Surrogate</u>		%	<u>Recovery</u>	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			89	50-150					
Method: EPA 8260B NELAC	Prep Method: EPA	5030					QCBatchl	D: Q	C1199511
1,1,1,2-Tetrachloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1,1-Trichloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1,2,2-Tetrachloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1,2-Trichloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1-Dichloroethene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,1-Dichloropropene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2,3-Trichlorobenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2,3-Trichloropropane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2,4-Trichlorobenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2,4-Trimethylbenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2-Dibromo-3-chloropropane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2-Dibromoethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2-Dichlorobenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2-Dichloroethane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,2-Dichloropropane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,3,5-Trimethylbenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,3-Dichlorobenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
1,3-Dichloropropane		ND	1	5	ug/Kg		12/29/18	ZZ	
1,4-Dichlorobenzene		ND	1	5	ug/Kg		12/29/18	ZZ	
2,2-Dichloropropane		ND	1	5	ug/Kg		12/29/18	ZZ	
2-Butanone (MEK)		ND	1	100	ug/Kg		12/29/18	ZZ	
2-Chlorotoluene		ND	1	5	ug/Kg		12/29/18	ZZ	
4-Chlorotoluene		ND	1	5	ug/Kg		12/29/18	ZZ	
4-Isopropyltoluene		ND	1	5	ug/Kg		12/29/18	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	1	5 100	ug/Kg		12/29/18	ZZ	
Acetone		ND	1	100	ug/Kg		12/29/18	_ZZ	
				Pesulte Reno	vrt			En	thalnv

Enthalpy Analytical, LLC

Sample #: 410325-001 Client Sample #: WC-1 Sample Type: Analyte Result DF RDL Units Prepared Analyzed By Notes Alyl Chioria ND 1 5 ug/kg 1229/18 ZZ Bernsene ND 1 5 ug/kg 1229/18 ZZ Bromochloromethane ND 1 5 ug/kg 1229/18 ZZ Bromochloromethane ND 1 5 ug/kg 1229/18 ZZ Chiorobenzene ND 1 5 ug/kg 1229/18 ZZ Chiorobenne ND 1 5	Matrix: Solid	Client: Ninyo &	Moore		Co	llector: Client			
Aly Chorace ND 1 5 ug/Kq 12/29/18 ZZ Bromobenzene ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Carbon Tetrachonde ND 1 5 ug/Kq 12/29/18 ZZ Chorodibromomethane	Sampled: 12/27/2018 Sample #: <u>410375-001</u>	Site: Client Sample #: WC-1			Sample	е Туре:			
Aly Chorace ND 1 5 ug/Kq 12/29/18 ZZ Bromobenzene ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Bromochonomethane ND 1 5 ug/Kq 12/29/18 ZZ Carbon Tetrachonde ND 1 5 ug/Kq 12/29/18 ZZ Chorodibromomethane	Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Bromochoromethane ND 1 5 ug/Kg 12/29/18 ZZ Bromochoromethane ND 1 5 ug/Kg 1/22/18 ZZ Bromochoromethane ND 1 5 ug/Kg 1/22/18 ZZ Carbon Tetrachoride ND 1 5 ug/Kg 1/22/18 ZZ Chiorobinzone ND 1 5 ug/Kg 1/22/18 ZZ Chiorobinomethane ND 1									
Bromachiaromethane ND 1 5 ug/kg 122/18 ZZ Bromodichioromethane ND 1 5 ug/kg 12/29/18 ZZ Bromotom ND 1 5 ug/kg 12/29/18 ZZ Chorobarizane ND 1 5 ug/kg 12/29/18 ZZ Diboromomethane ND 1 <td< td=""><td>Benzene</td><td>ND</td><td>1</td><td>5</td><td>ug/Kg</td><td></td><td>12/29/18</td><td>ZZ</td><td></td></td<>	Benzene	ND	1	5	ug/Kg		12/29/18	ZZ	
Bromodichizomethane ND 1 5 ug/kg 122918 ZZ Bromoremiane ND 1 5 ug/kg 122918 ZZ Carbon Tetrachiorde ND 1 5 ug/kg 122918 ZZ Carbon Tetrachiorde ND 1 5 ug/kg 122918 ZZ Chioroberszene ND 1 5 ug/kg 122918 ZZ Chioroberszene ND 1 5 ug/kg 122918 ZZ Chioromethane ND 1 5 ug/kg 122918 ZZ Dichioromethane ND 1 5 ug/kg 122918 ZZ Dichioromethane ND 1 5 <td>Bromobenzene</td> <td>ND</td> <td>1</td> <td>5</td> <td>ug/Kg</td> <td></td> <td>12/29/18</td> <td>ZZ</td> <td></td>	Bromobenzene	ND	1	5	ug/Kg		12/29/18	ZZ	
Bromorem ND 1 5 ug/Kg 1229/18 ZZ Bromomethane ND 1 5 ug/Kg 1229/18 ZZ Chlorobbrozene ND 1 5 ug/Kg 1229/18 ZZ cis1.4-dchloro-2-butene ND 1 5 ug/Kg 1229/18 ZZ Dibroromomethane ND 1 5 ug/Kg 1229/18 ZZ Dibroromomethane ND 1 5 ug/Kg 1229/18 ZZ Dibroromomethane ND 1 <t< td=""><td>Bromochloromethane</td><td>ND</td><td>1</td><td>5</td><td>ug/Kg</td><td></td><td>12/29/18</td><td>ZZ</td><td></td></t<>	Bromochloromethane	ND	1	5	ug/Kg		12/29/18	ZZ	
Bromomethane ND 1 5 ug/Kg 1229/18 ZZ Carbon Tetrachiorde ND 1 5 ug/Kg 1229/18 ZZ Chioroberizarie ND 1 5 ug/Kg 1229/18 ZZ Chioromethane ND 1 5 ug/Kg 1229/18 ZZ Chioromethane ND 1 5 ug/Kg 1229/18 ZZ Dichoropropene ND 1 5 ug/Kg 1229/18 ZZ Dichorodhucomethane ND 1 5 ug/Kg 1229/18 ZZ Dichorodhucomethane ND 1 5 ug/Kg 1229/18 ZZ Ethylethyleth (DIPE) ND 1 </td <td>Bromodichloromethane</td> <td>ND</td> <td>1</td> <td>5</td> <td>ug/Kg</td> <td></td> <td>12/29/18</td> <td>ZZ</td> <td></td>	Bromodichloromethane	ND	1	5	ug/Kg		12/29/18	ZZ	
Carbon Tetrachloride ND 1 5 ug/Kg 12/29/18 ZZ Chlorodbrazene ND 1 5 ug/Kg 12/29/18 ZZ Chlorodbromomethane ND 1 5 ug/Kg 12/29/18 ZZ Chlorodbromomethane ND 1 5 ug/Kg 12/29/18 ZZ Chlorodbromomethane ND 1 5 ug/Kg 12/29/18 ZZ Chlorodbroroppene ND 1 5 ug/Kg 12/29/18 ZZ cis.1.3.dichlorosphene ND 1 5 ug/Kg 12/29/18 ZZ cis.1.3.dichlorosphene ND 1 5 ug/Kg 12/29/18 ZZ Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Disorodyletiner (ETBE) <td>Bromoform</td> <td>ND</td> <td>1</td> <td>5</td> <td>ug/Kg</td> <td></td> <td>12/29/18</td> <td>ZZ</td> <td></td>	Bromoform	ND	1	5	ug/Kg		12/29/18	ZZ	
Chlorobenzene ND 1 5 ug/Kg 12/29/18 ZZ Chlorodhromomethane ND 1 5 ug/Kg 12/29/18 ZZ Chlorooftom ND 1 5 ug/Kg 12/29/18 ZZ Chlorooftom ND 1 5 ug/Kg 12/29/18 ZZ Chlorooftom ND 1 5 ug/Kg 12/29/18 ZZ cis1-3Chlohorosthene ND 1 5 ug/Kg 12/29/18 ZZ cis1-1.4-Chloros-2butene ND 1 5 ug/Kg 12/29/18 ZZ Dichoroofthorod/fluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Dichoroofthence/IPE) ND 1 5 ug/Kg 12/29/18 ZZ Einlythenzene ND 1 5 ug/Kg 12/29/18 ZZ Einlythenzene ND 1 5 ug/Kg 12/29/18 ZZ Indytoptidenzene <td< td=""><td>Bromomethane</td><td>ND</td><td>1</td><td>5</td><td>ug/Kg</td><td></td><td>12/29/18</td><td>ZZ</td><td></td></td<>	Bromomethane	ND	1	5	ug/Kg		12/29/18	ZZ	
Chlorodibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Chlorodina ND 1 5 ug/Kg 12/29/18 ZZ Chloromethane ND 1 5 ug/Kg 12/29/18 ZZ Chloromethane ND 1 5 ug/Kg 12/29/18 ZZ cis-1.3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ cis-1.4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Dichoromethane ND 1 5 ug/Kg 12/29/18 ZZ Dichorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Ethylbenzene<	Carbon Tetrachloride	ND	1	5	ug/Kg		12/29/18	ZZ	
Chloroethane ND 1 5 ug/Kg 12/29/18 ZZ Chloroofm ND 1 5 ug/Kg 12/29/18 ZZ Chloronethane ND 1 5 ug/Kg 12/29/18 ZZ cis-1,2-Dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ cis-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Dichoronethane ND 1 5 ug/Kg 12/29/18 ZZ Dichoroptylether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-terbulylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-terbulylether (CIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-terbulylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methy	Chlorobenzene	ND	1	5	ug/Kg		12/29/18	ZZ	
Chioroform ND 1 5 ug/Kg 12/29/18 ZZ Chioromethane ND 1 5 ug/Kg 12/29/18 ZZ cis1-12-Dichloromethene ND 1 5 ug/Kg 12/29/18 ZZ cis1-1-4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Dichoromethane ND 1 5 ug/Kg 12/29/18 ZZ Dichorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Dichorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Ethyle-terbudylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyle-terbudylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Isopropylether (DFE) ND 1 5 ug/Kg 12/29/18 ZZ Methyl-budylethere ND 1 5 ug/Kg 12/29/18 ZZ <	Chlorodibromomethane	ND	1	5	ug/Kg		12/29/18	ZZ	
Chioromethane ND 1 5 ug/kg 12/29/18 22 cis-1.3-2-Dichloroethene ND 1 5 ug/kg 12/29/18 ZZ cis-1.3-dichloropropene ND 1 5 ug/kg 12/29/18 ZZ cis-1.4-dichloro-2-butene ND 1 5 ug/kg 12/29/18 ZZ Disforomomethane ND 1 5 ug/kg 12/29/18 ZZ Disopropyl ether (DIPE) ND 1 5 ug/kg 12/29/18 ZZ Ethyluenzone ND 1 5 ug/kg 12/29/18 ZZ Ethyluenzone ND 1 5 ug/kg 12/29/18 ZZ Ethyluenzone ND 1 5 ug/kg 12/29/18 ZZ Isopropylbenzene ND 1 5 ug/kg 12/29/18 ZZ Isopropylbenzene ND 1 5 ug/kg 12/29/18 ZZ Methylene chloride	Chloroethane	ND	1	5	ug/Kg		12/29/18	ZZ	
cis-1,2-Dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ cis-1,3-dichlorop-pone ND 1 5 ug/Kg 12/29/18 ZZ Dichlorog-Dutene ND 1 5 ug/Kg 12/29/18 ZZ Dichlorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Dichlorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-berzene ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-berzene ND 1 5 ug/Kg 12/29/18 ZZ Isopropyletherzene ND 1 5 ug/Kg 12/29/18 ZZ Isopropyleterzene ND 1 5 ug/Kg 12/29/18 ZZ Methyl-budylether ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Nethylobenzene <td>Chloroform</td> <td></td> <td>1</td> <td>5</td> <td>ug/Kg</td> <td></td> <td></td> <td></td> <td></td>	Chloroform		1	5	ug/Kg				
cis-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ cis-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Disopropyl ether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyloenzene ND 1 5 ug/Kg 12/29/18 ZZ Ethyloenzene ND 1 5 ug/Kg 12/29/18 ZZ Hexachlorobutadiene ND 1 5 ug/Kg 12/29/18 ZZ Isopropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Nophthalene	Chloromethane		1	5	ug/Kg				
cis-1.4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Dichlorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Di-lsopropyl ether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-lertburg/tether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Hexachrobutadiene ND 1 5 ug/Kg 12/29/18 ZZ mand p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methylenzene ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td>1</td> <td>5</td> <td>ug/Kg</td> <td></td> <td></td> <td></td> <td></td>	cis-1,2-Dichloroethene	ND	1	5	ug/Kg				
Dibromomethane ND 1 5 ug/Kg 12/29/18 ZZ Dichlorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Di-lisopropyl ether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-herbulylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-herbulylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Isopropyletherane ND 1 5 ug/Kg 12/29/18 ZZ mand p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methyl-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-bropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-bropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-bropyl	cis-1,3-dichloropropene		1	5	ug/Kg				
Dicklorodifluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Diskopropyl ether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethylsenzene ND 1 5 ug/Kg 12/29/18 ZZ Ethylsentyligher (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Hexachlorobutadiene ND 1 5 ug/Kg 12/29/18 ZZ mand p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Napthhalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene	cis-1,4-dichloro-2-butene		1	5					
Di-isopropyl ether (DIPE) ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-berzene ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-berzene ND 1 5 ug/Kg 12/29/18 ZZ Ethyl-berzene ND 1 5 ug/Kg 12/29/18 ZZ Isopropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ m and p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methyl-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1			1						
Ethylbenzene ND 1 5 ug/rg 12/29/18 ZZ Ethyl-leributyleiter (ETBE) ND 1 5 ug/rg 12/29/18 ZZ Hexachlorobutadiene ND 1 5 ug/rg 12/29/18 ZZ Hexachlorobutadiene ND 1 5 ug/rg 12/29/18 ZZ m and p-Xylene ND 1 5 ug/rg 12/29/18 ZZ Methyl-h-butyl Ether (MTBE) ND 1 5 ug/rg 12/29/18 ZZ Naphthalene ND 1 5 ug/rg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/rg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/rg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/rg 12/29/18 ZZ Styrene ND 1 10 ug/rg 12/29/18 ZZ Tert-butylehorzene ND			1						
Ethyl-tertbutylether (ETBE) ND 1 5 ug/Kg 12/29/18 ZZ Hexachlorobutadiene ND 1 5 ug/Kg 12/29/18 ZZ Isopropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ m and p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ Tert-anylmethylether (TAME) <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1						
Hexachlorobutadiene ND 1 5 ug/Kg 1/2/29/18 ZZ Isopropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ m an p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 <			1						
Isopropylbenzene ND 1 5 ug/Kg 12/29/18 ZZ m and p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Sc-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND			1						
m and p-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 10 ug/Kg 12/29/18 ZZ Tetr-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tetr-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetr-butylbenzene N			-						
Methylene chloride ND 1 5 ug/Kg 12/29/18 ZZ Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 10 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 5 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME)			•						
Methyl-t-butyl Ether (MTBE) ND 1 5 ug/Kg 12/29/18 ZZ Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 10 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trans-1,2-dichloroethene ND<									
Naphthalene ND 1 5 ug/Kg 12/29/18 ZZ N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-anylonethylogonethene ND 1 5 ug/Kg 12/29/18 ZZ Tert-anylonethylogonethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene			-						
N-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 5 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-						
N-propylbenzene ND 1 5 ug/Kg 12/29/18 ZZ o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene N			•						
o-Xylene ND 1 5 ug/Kg 12/29/18 ZZ Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride									
Sec-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 10 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl C			-						
Styrene ND 1 5 ug/Kg 12/29/18 ZZ t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ			1						
t-Butyl alcohol (TBA) ND 1 10 ug/Kg 12/29/18 ZZ Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ	-		1						
Tert-amylmethylether (TAME) ND 1 5 ug/Kg 12/29/18 ZZ Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloroptopene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Kylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ			· · · · · · · · · · · · · · · · · · ·						
Tert-butylbenzene ND 1 5 ug/Kg 12/29/18 ZZ Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Kylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate ½ Recovery Limits Notes	• • •		1						
Tetrachloroethene ND 1 5 ug/Kg 12/29/18 ZZ Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate ½ Recovery Limits Notes Notes	• • • •		1						
Toluene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recvery</u> Limits Notes Notes	-		1						
trans-1,2-dichloroethene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes Notes Notes									
trans-1,3-dichloropropene ND 1 5 ug/Kg 12/29/18 ZZ trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes Notes Notes			1						
trans-1,4-dichloro-2-butene ND 1 5 ug/Kg 12/29/18 ZZ Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes Notes			1						
Trichloroethene ND 1 5 ug/Kg 12/29/18 ZZ Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes Notes			1						
Trichlorofluoromethane ND 1 5 ug/Kg 12/29/18 ZZ Vinyl Chloride ND 1 5 ug/Kg 12/29/18 ZZ Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes		ND	1						
Xylenes (Total) ND 1 5 ug/Kg 12/29/18 ZZ Surrogate <u>% Recovery</u> Limits Notes	Trichlorofluoromethane	ND	1	5			12/29/18	ZZ	
Surrogate <u>% Recovery</u> Limits Notes	Vinyl Chloride	ND	1	5	ug/Kg		12/29/18	ZZ	
	Xylenes (Total)	ND	1	5	ug/Kg		12/29/18	ZZ	
	<u>Surrogate</u>	<u>%</u> F	Recovery	Limits	Notes				
	1,2-Dichloroethane-d4 (SUR)								
4-Bromofluorobenzene (SUR) 97 70-145			97	70-145					
Dibromofluoromethane (SUR) 103 70-145			103	70-145					
Toluene-d8 (SUR) 98 70-145	Toluene-d8 (SUR)		98	70-145					

QCBatchID: QC1199510	Analyst:	ssabir	Method:	EPA 8015M					
Matrix: Solid	Analyzed:	12/29/2018	Instrument:	SVOA-GC (gr	oup)				
		BI	ank Summa	ry					
		Blank							
Analyte		Result	Units		RDL	No	tes		
QC1199510MB1			L	1	1 1		I		
TPH (C10 to C28)		ND	mg/Kg		10				
TPH (C13 to C22)		ND	mg/Kg		10				
TPH (C23 to C40)		ND	mg/Kg		20				
TPH (C28 to C40)		ND	mg/Kg		20				
TPH (C6 to C12)		ND	mg/Kg		10				
TPH (C6 to C44) Total		ND	mg/Kg		20				
TPH (C8 to C10)		ND	mg/Kg		10				
TPH Diesel		ND	mg/Kg		10				
TPH Gasoline		ND	mg/Kg		10				
TPH Motor Oil		ND	mg/Kg		20				
	Lab Conti	rol Spike/ Lab	Control Spi	ke Duplicat	e Summary				
		Spike Amount	Spike Result		Recoveries		Limi	ts	
Analyte		LCS LCSD	LCS LCS	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1199510LCS1				·	•			1	
TPH (C10 to C28)		250	220	mg/Kg	88		60-133		

	Ma	trix Sp	ike/Mat	rix Spik	ce Dupli	icate Sum	mary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199510MS1, QC1199510MSD1										Sc	ource:	410389-001
TPH (C10 to C28)	3300	250	250	3000	3300	mg/Kg	0	0	9.5	70-130	20	NC

·	nicollez	Method:	EPA 8260B			
Matrix: Solid Analyzed:	12/29/2018	Instrument:	VOA-MS (group)			
	Bla	ank Summai	ν			
	Blank					
Analyte	Result	Units		RDL	Notes	
C1199511MB1						
1,1,1,2-Tetrachloroethane	ND	ug/Kg		5		
1,1,1-Trichloroethane	ND	ug/Kg		5		
1,1,2,2-Tetrachloroethane	ND	ug/Kg		5		
1,1,2-Trichloroethane	ND	ug/Kg		5		
1,1,2-Trichlorotrifluoroethane	ND	ug/Kg		5		
1,1-Dichloroethane	ND	ug/Kg		5		
1,1-Dichloroethene	ND	ug/Kg		5		
1,1-Dichloropropene	ND	ug/Kg		5		
1,2,3-Trichlorobenzene	ND	ug/Kg		5		
1,2,3-Trichloropropane	ND	ug/Kg		5		
1,2,4-Trichlorobenzene	ND	ug/Kg		5		
1,2,4-Trimethylbenzene	ND	ug/Kg		5		
1,2-Dibromo-3-chloropropane	ND	ug/Kg		5		
1,2-Dibromoethane	ND	ug/Kg		5		
1,2-Dichlorobenzene	ND	ug/Kg ug/Kg		5		
1,2-Dichloroethane	ND	ug/Kg		5		
1,2-Dichloropropane	ND			5		
	ND	ug/Kg				
1,3,5-Trimethylbenzene		ug/Kg		5		
1,3-Dichlorobenzene	ND	ug/Kg		5		
1,3-Dichloropropane	ND	ug/Kg		5		
1,4-Dichlorobenzene	ND	ug/Kg		5		
2,2-Dichloropropane	ND	ug/Kg		5		
2-Butanone (MEK)	ND	ug/Kg		100		
2-Chlorotoluene	ND	ug/Kg		5		
4-Chlorotoluene	ND	ug/Kg		5		
4-Isopropyltoluene	ND	ug/Kg		5		
4-Methyl-2-pentanone (MIBK)	ND	ug/Kg		5		
Acetone	ND	ug/Kg		100		
Allyl Chloride	ND	ug/Kg		5		
Benzene	ND	ug/Kg		5		
Bromobenzene	ND	ug/Kg		5		
Bromochloromethane	ND	ug/Kg		5		
Bromodichloromethane	ND	ug/Kg		5		
Bromoform	ND	ug/Kg		5		
Bromomethane	ND	ug/Kg		5		
Carbon Tetrachloride	ND	ug/Kg		5		
Chlorobenzene	ND	ug/Kg		5		
Chlorodibromomethane	ND	ug/Kg		5		
Chloroethane	ND	ug/Kg		5		
Chloroform	ND	ug/Kg		5		
Chloromethane	ND	ug/Kg		5		
cis-1,2-Dichloroethene	ND	ug/Kg		5		
cis-1,3-dichloropropene	ND	ug/Kg		5		
cis-1,4-dichloro-2-butene	ND	ug/Kg		5		
Dibromomethane	ND	ug/Kg		5		
Dichlorodifluoromethane	ND	ug/Kg		5		
Di-isopropyl ether (DIPE)	ND	ug/Kg		5		
Ethylbenzene	ND	ug/Kg		5		
Ethyl-tertbutylether (ETBE)	ND	ug/Kg		5		
Hexachlorobutadiene	ND	ug/Kg		5		
Isopropylbenzene	ND	ug/Kg		5		
m and p-Xylene	ND	ug/Kg		5		

QCBatchID: QC1199511	Analyst:	nicollez	Method:	EPA 8260B			
Matrix: Solid	Analyzed:	12/29/2018	Instrument:	VOA-MS (grou	lb)		
		Blank					
Analyte		Result	Units		RDL	Notes	
QC1199511MB1			1	1		1	
Methylene chloride		ND	ug/Kg		5		
Methyl-t-butyl Ether (MTBE)		ND	ug/Kg		5		
Naphthalene		ND	ug/Kg		5		
N-butylbenzene		ND	ug/Kg		5		
N-propylbenzene		ND	ug/Kg		5		
o-Xylene		ND	ug/Kg		5		
Sec-butylbenzene		ND	ug/Kg		5		
Styrene		ND	ug/Kg		5		
t-Butyl alcohol (TBA)		ND	ug/Kg		10		
Tert-amylmethylether (TAME)		ND	ug/Kg		5		
Tert-butylbenzene		ND	ug/Kg		5		
Tetrachloroethene		ND	ug/Kg		5		
Toluene		ND	ug/Kg		5		
trans-1,2-dichloroethene		ND	ug/Kg		5		
trans-1,3-dichloropropene		ND	ug/Kg		5		
trans-1,4-dichloro-2-butene		ND	ug/Kg		5		
Trichloroethene		ND	ug/Kg		5		
Trichlorofluoromethane		ND	ug/Kg		5		
Vinyl Chloride		ND	ug/Kg		5		
Xylenes (Total)		ND	ug/Kg		5		

Lab Control Spike/ Lab Control Spike Duplicate Summary													
	Spike Amount	Spike Resu	ılt	Recoverie	3	Limit	S						
Analyte	LCS LCSD	LCS LC	SD Units	LCS LCS	D RPD	%Rec	RPD	Notes					
QC1199511LCS1		•	L. L	•		1							
1,1-Dichloroethene	50	59	ug/Kg	118		59-172							
Benzene	50	49	ug/Kg	98		62-137							
Chlorobenzene	50	51	ug/Kg	102		60-133							
Methyl-t-butyl Ether (MTBE)	50	38	ug/Kg	76		62-137							
Toluene	50	54	ug/Kg	108		59-139							
Trichloroethene	50	53	ug/Kg	106		66-142							

	Mat	trix Sp	ike/Matı	rix Spil	ke Dupli	cate Sun	nmary					
	Sample	Spike	Spike Amount		Spike Result		Recoveries			Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199511MS1, QC1199511MSD1							•			So	ource:	410375-001
1,1-Dichloroethene	ND	50	50	58	60	ug/Kg	116	120	3.4	59-172	22	
Benzene	0.95	50	50	48	50	ug/Kg	94	98	4.1	62-137	24	
Chlorobenzene	ND	50	50	49	49	ug/Kg	98	98	0.0	60-133	24	
Methyl-t-butyl Ether (MTBE)	ND	50	50	43	44	ug/Kg	86	88	2.3	62-137	21	
Toluene	ND	50	50	51	52	ug/Kg	102	104	1.9	59-139	21	
Trichloroethene	ND	50	50	51	52	ug/Kg	102	104	1.9	66-142	21	

QCBatchID: QC1199549	Analyst:	cota	Method:	EPA 7471A					
Matrix: Solid	Analyzed:	12/31/2018	Instrument:	AAICP-HG1					
		В	lank Summa	ry					
		Blank							
Analyte		Result	Units		RDL	No	otes		
QC1199549MB1	ł		1	•			1		
Mercury		ND	mg/Kg		0.14				
	Lab Conti	rol Spike/ La	b Control Spi	ke Duplicat	te Summary	,			
		Spike Amount	Spike Result		Recoveries		Lim	its	
Analyte		LCS LCSD	LCS LCS	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1199549LCS1	ł		-		•				1
Mercury		0.83	0.82	mg/Kg	99		80-120		
	Mat	rix Spike/Ma	trix Spike Du	olicate Sun	nmary				
	Sample	Spike Amount	Spike Result		Recoveries		Limit	ts	
Analyte	Amount	MS MSD	MS MSE	0 Units	MS MSD	RPD	%Rec	RPD	Notes
QC1199549MS1, QC1199549MSD1			1				Sc	ource:	410397-00

0.83

0.83

ND

0.77

0.72

93

mg/Kg

87

6.7

75-125 20

Mercury

QCBatchID:	QC1199568	Analyst:	dswafford	Method:	EPA 6010B			
Matrix:	Solid	Analyzed:	01/02/2019	Instrument:	AAICP (group)			
			BI	ank Summa	ry			
			Blank					
	Analyte		Result	Units		RDL	Notes	
QC1199568M	IB1			1	-		1	1
Antimony			ND	mg/Kg		3		
Arsenic			ND	mg/Kg		1		
Barium			ND	mg/Kg		1		
Beryllium			ND	mg/Kg		0.5		
Cadmium			ND	mg/Kg		0.5		
Chromium			ND	mg/Kg		1		
Cobalt			ND	mg/Kg		0.5		
Copper			ND	mg/Kg		1		
Lead			ND	mg/Kg		1		
Molybdenun	n		ND	mg/Kg		1		
Nickel			ND	mg/Kg		1.5		
Selenium			ND	mg/Kg		3		
Silver			ND	mg/Kg		0.5		
Thallium			ND	mg/Kg		3		
Vanadium			ND	mg/Kg		0.5		
Zinc			ND	mg/Kg		5		

Lab Control Spike/ Lab Control Spike Duplicate Summary													
	Spike Amount	Spike Result		Recoveries		Limit	s						
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes					
QC1199568LCS1	- I												
Antimony	100	98.6	mg/Kg	99		80-120							
Arsenic	100	95.3	mg/Kg	95		80-120							
Barium	100	102	mg/Kg	102		80-120							
Beryllium	100	91.2	mg/Kg	91		80-120							
Cadmium	100	96.4	mg/Kg	96		80-120							
Chromium	100	93.5	mg/Kg	94		80-120							
Cobalt	100	101	mg/Kg	101		80-120							
Copper	100	95.6	mg/Kg	96		80-120							
Lead	100	103	mg/Kg	103		80-120							
Molybdenum	100	95.9	mg/Kg	96		80-120							
Nickel	100	104	mg/Kg	104		80-120							
Selenium	100	89.4	mg/Kg	89		80-120							
Silver	100	103	mg/Kg	103		80-120							
Thallium	100	98.1	mg/Kg	98		80-120							
Vanadium	100	101	mg/Kg	101		80-120							
Zinc	100	96.1	mg/Kg	96		80-120							

Matrix Spike/Matrix Spike Duplicate Summary													
	Sample Spike Amount		Spike	Spike Result		Reco	veries		Limit	s			
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes	
QC1199568MS1, QC1199568MSD1										Sc	ource:	410305-13	
Antimony	ND	100	100	73.8	58.9	mg/Kg	74	59	22.5	75-125	20	М	
Arsenic	1.63	100	100	111	104	mg/Kg	109	102	6.5	75-125	20		
Barium	112	100	100	214	204	mg/Kg	102	92	4.8	75-125	20		
Beryllium	ND	100	100	98.0	95.8	mg/Kg	98	96	2.3	75-125	20		
Cadmium	0.63	100	100	96.9	90.4	mg/Kg	96	90	6.9	75-125	20		
Chromium	12.0	100	100	107	99.2	mg/Kg	95	87	7.6	75-125	20		
Cobalt	9.08	100	100	110	102	mg/Kg	101	93	7.5	75-125	20		
Copper	13.1	100	100	111	104	mg/Kg	98	91	6.5	75-125	20		
Lead	15.2	100	100	131	120	mg/Kg	116	105	8.8	75-125	20		
Molybdenum	0.56	100	100	105	96.8	mg/Kg	104	96	8.1	75-125	20		

QCBatchID: QC1199568	Analyst:	: dswafford Method: EPA 6010B										
Matrix: Solid	Analyzed:	01/02/2019 Instrument: AAICP (group)										
	Sample	Spike	Amount	Spike	Result		Recoveries			Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1199568MS1, QC1199568MSD1										So	ource:	410305-131
Nickel	9.28	100	100	121	111	mg/Kg	112	102	8.6	75-125	20	
Selenium	ND	100	100	102	95.2	mg/Kg	102	95	6.9	75-125	20	
Silver	ND	100	100	109	100	mg/Kg	109	100	8.6	75-125	20	
Thallium	2.20	100	100	104	98.2	mg/Kg	102	96	5.7	75-125	20	
Vanadium	30.6	100	100	137	127	mg/Kg	106	96	7.6	75-125	20	
Zinc	59.4	100	100	172	159	mg/Kg	113	100	7.9	75-125	20	

Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
C	Possible laboratory contamination.
D D1	RPD was not within control limits. The sample data was reported without further clarification. Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
М	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
P	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2 P3	The sample was preserved within 24 hours of collection in accordance with EPA 218.6. Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended
	due to potential loss of target analytes. Results may be biased low.
Q1 Q2	Analyte Calibration Verification exceeds criteria. The result is estimated. Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
т	Sample was extracted/analyzed past the holding time.
T1	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T3	Sample received and analyzed out of hold time per client's request.
T4 T5	Sample was analyzed out of hold time per client's request.
T6	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable. Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
Deminions	Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

ENTHAL	PY ANALYTICAL, INC.		·		Chain of Cust	ody Re	cord		Tu	rn Arou	ınd Tiı	me (Ru	ish by advanced notice only)
931 W. Bar	rkley Ave, Orange, CA 92868			Lab No	: 41t	127	5		Standard	: >	$\overline{\mathbf{x}}$	4 Day:	3 Day:
Phone: (714)	771-6900 Fax: (714)771-9933			Page:		of	1		2 Day:			1 Day:	Same Day:
Billing: Enthalpy -	Orange			<u></u>	Matrix: A = A	ir DW =	Drinki	ng Wa	ter				
c/o Montrose Env	vironmental Group		HALPY		FL = Food Liquid = Pure Product				•		Prese		$1 = Na_2S_2O_3 2 = HCl 3 = HNO_3$ SO_4 = 5 = NaOH = 6 = Other
P.O. Box 741137,	Los Angeles, CA 90074-1137	ANA	LYTICAL		/=Swab W=W							4 - 112	
CU	STOMER INFORMATION		PROJE	CT INFC	RMATION				Analysis I	Request			Test Instructions / Comments
Company:	Ninyo & Moore		me: U	DVESS	Utd Phase I	ESA	A						
Report To:	Patrick Cullip Eristing Hill	Nu			1002	- 4	<u>AITIA</u>						
Email:	Patrick Cullip Kristing Hill Poullip @ ninupandma	ove.com p.c	D. #:	11	•								
Address:	475 Goddard		dress: A	PN 20	14-22-23)	boloB,	sta					
	Irvine, CA 9261.	8	С	ypres	Δ			351					
Phone:	949-753-7070	Glo	obal ID: 🖌		,	-	<u></u>	102/28					
Fax:	949-753-2071	Sar	mpled By: 🖡	MH (Kristinat	hil	Metal	_\ `	1]				
	Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	Pres.	722V	NN CS					
1 WC-1		12/27/18		SOIL	1-Bozjar	ICE	\boxtimes	$\langle \nabla $					
2							Π						
3													
4													
5													
6													
7													
8													
9													
10													
		ignature			int Name				Compan				Date / Time
¹ Relinquished	By: with	i Hejo	K	istru	a Hill		Ni	Yp c	Mooi	rc/Gil	dogi	37	12/07/18 1535
¹ Received By:	1 601				ym			° R	2r	1	·U	/	12/27/18 1828
² Relinquished	By:			_									
² Received By:													
³ Relinquished	By:												
³ Received By:													

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: <u>Ninyo & Moore</u>	Project:			
Date Received: 12/27/18		√ Yes	No	
Section 2				
Sample(s) received in a cooler? 🚺 Yes, How many? 1	NO (skip section 2)	-	e Temp (°C) (No Cooler)	:
Sample Temp (°C), One from each cooler: #1: <u>8.5</u>	_#2:#3:	#4:		-
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accepta the same day as sample receipt to have a higher temperatu	nce range is <10°C but not frozen). I	t is acceptable		s collected
Shipping Information:	n e us iony us there is evidence that c	oonng nas beg	un.j	
Section 3				
Was the cooler packed with:IceIce Packs PaperNone	Bubble Wrap Styre	ofoam		
Paper None Cooler Temp (°C): #1: -0.1 #2:	Other #3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		·∟3		<u>''''</u>
Are sample IDs present?		✓ ✓		the of the second second second second
Are sampling dates & times present?		\checkmark		
Is a relinquished signature present?		✓		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			√	
If custody seals are present, were they intact?				\checkmark
Are all samples sealed in plastic bags? (Recommended for		✓		
Did all samples arrive intact? If no, indicate in Section 4 b				
Did all bottle labels agree with COC? (ID, dates and times		 ✓ 		
Were the samples collected in the correct containers for		 ✓ 		
Are the containers labeled with the correct preserve				· ·
Is there headspace in the VOA vials greater than 5-6 mm Was a sufficient amount of sample submitted for the req		1		
		✓		
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified				
Project Manager's response:	Emai l (email sent to,	/on}:	/	
i roject manager s response.				
Completed By:Enthalpy Analytical, a subsidiary of M		4		
931 W. Barkley Ave, Orange, CA 92868 • www.enthalp		9		
www.enthap Sample Acceptance Che	•			

APPENDIX E

Waste Manifest

Ninyo & Moore | APN 241-221-23, Cypress, California | 210784002 R | January 29, 2019

	Manifest		SOIL SAF		F CA – T lous Soils	PST	✓ Manifest # ↓					
	Date of Shipment:	Responsible for	Payment: Tr	ansport	Truck #:	Facility #:		Approval Num	ber:	Lo	ad #	
	1 1					A07		49939				
	Generator's Name and Billing A	Address:			Generator's Phon							
	CITY OF CYPRES				714-229-67 Person to Contact						-	
	5275 ORANGE AV		SS		reison to contact							
	CYPRESS, CA 0	0630			FAX#:			Customer Acco	ount Number			
	Consultant's Name and Billing	Address:			Consultant's Pho	ne #:						
					Person to Contact							
					FAX#:			Customer Acco	ount Number			
	Generation Site (Transport from		وستريب و و ستريب استريب		Site Phone #:							
ant —	WEST CERRITOS A	VENUE AND L			Person to Contact	:						
Generator and/or Consultant	CYPRESS, CA 906	30			FAX#:							
r Co	Designated Facility (Transport	to): (name & address)			Facility Phone #:							
o/pu	SOIL SAFE				(800) 862-4 Person to Contact							
or al	12328 HIBISCUS . ADELANTO, CA 9				JOE PROV	ANSAL						
erati	ADELANIO, DA S	2001			FAX#: (760) 246-1	7000					1963	
Gene	Transporter Name and Mailing	Address:			Transporter's Pho	the state of the s					-	
Ĭ	BELSHIRE				949-460-52			C,A	R0001830	213		
	25971 TOWNE CE	INTRE DRIVE			Person to Contact		-		AE0047			
	FOOTHILL RANCH				LARRY MC FAX#:	101 MAR	1	Customer Acco	450647 ount Number			
			BESI: 302635		949-460-52							
	Description of Soil	and the second	Contaminated by:	Appro	x. Qty: Descr	iption of De	livery	Gross Weight	Tare Weight	Net W	/eight	
	Sand Corganic Corganic Clay Corganic Co	0 - 10% 10 - 20% 20% - over	Gas Diesel Other	00	, DM S	0.1						
	Sand Organic Clay Other	0 - 10% 10 - 20% 20% - over	Gas Diesel Other									
	List any exception to items liste	d above:				Scale Ticket	ŧ					
	Generator's and/or consult Sheet completed and certifi in any way.	ant's certification: ied by me/us for th	I/We certify that th e Generation Site s	te soil r shown i	eferenced herein above and nothin	is taken en 1g has been	tirely fro added o	m those soils d r done to such	lescried in th soil that wo	ie Soil ould ai	Data lter it	
		A	Itant 🗆		nature and date:	top	12		Month	Day	Year	
er	Transporter's certification:	I/We acknowledge	e receipt of the soil	referen								
Transporter	condition as when received without off-loading, adding						he Gener	ration Site to i	the Designa	ted Fa	cility	
Trai	Print or Type Name:	Thomas	Trust	Sig	nature and date:				Month	Day	Year	
ity	Discrepancies:					6						
I Facility												
cling	Recycling Facility certifies	the receipt of the s	oil covered by this			d above:						
Recycling	Print or Type Name:	ROVANSAL		Sig	nature and date:							
Ľ	w. 1	and the second star										
Pleas	e print or type.		E SA RES ES	h.		No. 1						

355 South Grand Avenue, Ste. 2450 | Los Angeles, California 90071 | p. 213.488.5111

ARIZONA | CALIFORNIA | COLORADO | NEVADA | TEXAS | UTAH

www.ninyoandmoore.com