

April 19, 2019

Townsend Capital Partners, LLC c/o Mr. Steve Monahan Monahan Pacific 1101 Fifth Avenue, Suite 300 San Rafael, CA 94901

Focused Traffic Impact Analysis for the Cotati ALF Project

Dear Mr. Monahan;

As requested, W-Trans has prepared a focused traffic impact analysis for the proposed Cotati ALF Project. The study is consistent with standard traffic engineering techniques and abides by the standards set forth in the *Cotati General Plan*.

Project Description

The proposed project is to be located on the northwest corner of the Gravenstein Highway (SR 116)/Alder Avenue intersection in the City of Cotati. The purpose of this study was to evaluate potential traffic impacts associated with the proposed senior housing facility, and a 4,000 square foot marijuana dispensary, building on the previous study for another phase of the Cotati Village Project.

Ultimately, as identified in the *Cotati General Plan*, the current Alder Avenue connection to Gravenstein Highway will be closed and traffic re-oriented to a new signalized intersection to the west. It is understood that City staff has expressed a concern about the short-term operation of the Gravenstein Highway/Alder Avenue intersection with the addition of trips associated with the currently proposed phase of the project prior to completion of this planned improvement.

Study Area and Period

The study area includes the tee-intersection of Gravenstein Highway/Alder Avenue. The intersection is stop controlled on the Alder Avenue approach and has no marked crosswalks on any legs.

Alder Avenue is a two-lane roadway that runs north-south, bound by Blodgett Street on the north and Gravenstein Highway on the south. Within the project vicinity Alder Avenue is approximately 28 feet wide and has a posted speed limit of 35 miles per hour (mph).

Gravenstein Highway is a state route connecting US 101 in Cotati to SR 1 on the Sonoma Coast in Jenner. Within Cotati, Gravenstein Highway is currently a four-lane facility for one-quarter mile between Old Redwood Highway and Redwood Drive, transitioning to a two-lane highway to the west and along the frontage of the proposed project's site. The posted speed limit is 45 mph between Redwood Drive and the western city limit, including along the project frontage. On-street bicycle lanes and sidewalks exist on both sides of the street between Old Redwood Drive.

Vehicle operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or

school commute, while the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward-bound commute.

Vehicle volumes were collected in the area in 2017. However, these were lower than the 2011 volumes reported for Gravenstein Highway/Alder Avenue in the *Cotati General Plan Draft Environmental Impact Report* (EIR). To be conservative, the 2011 volumes were used in this analysis for existing conditions.

Regulatory Framework

According to the *Cotati General Plan Policy C1 1.3*, the minimum acceptable Level of Service (LOS) standard for intersections is LOS D. At unsignalized intersections, levels of service shall be determined for both controlled movements and for the Intersection overall. A significant traffic-related impact would occur if implementation of the project would cause an intersection to operate below the General Plan's standard of LOS D, or LOS E for intersections within the boundaries of the Downtown Specific Plan.

At unsignalized intersections, controlled movements operating at LOS E or LOS F are allowable if 1) the intersection is projected to operate at LOS C or better overall, and 2) the projected traffic volume on the controlled movement is 30 vehicles or less per hour on approaches with single lanes, or on multi-lane approaches, 30 vehicles or less per hour on lanes serving left turns and through movements.

Existing Conditions

As indicated in the analysis prepared for the EIR supporting the *Cotati General Plan*, the intersection at Gravenstein Highway/Alder Avenue is currently operating acceptably during the morning and evening peak hours. These results are provided in Table 1 and copies of the LOS calculations for all evaluated scenarios are enclosed.

Table 1– Existing Peak Hour Intersection	on Levels of S	Service		
Study Intersection	AM	Peak	PM F	Peak
Approach	Delay	LOS	Delay	LOS
Gravenstein Hwy (SR 116)/Alder Ave	0.5	А	0.3	А
Southbound (Alder Ave) Approach	12.8	В	19.0	С

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for the minor approach to a two-way stop-controlled intersection are indicated in *italics*

Baseline Conditions

Baseline operating conditions were assessed to reflect the addition of traffic associated with the previously studied phase of the Cotati Village Project that would be constructed and/or become operational before this project. Trip generation and distribution assumptions for the previously studied phase were based on the access study conducted for the Cotati Village Project in October 2015.

The projected traffic associated with the Cotati Village Project was added to the volumes analyzed in the Existing Conditions scenario to determine baseline volumes. Additionally, it is assumed that construction of the Cotati Village Project will include a new eastbound left-turn lane on SR 116, and separate southbound right-turn and left-turn lanes on Alder Avenue. Under these conditions, the study intersection is projected to continue operating acceptably at LOS C or better during the a.m. and p.m. peak hours. The resulting operating conditions are summarized in Table 2.

Table 2– Baseline Peak Hour Intersectio	on Levels of	Service		
Study Intersection	AM F	Peak	PM P	eak
Approach	Delay	LOS	Delay	LOS
Gravenstein Hwy (SR 116)/Alder Ave	0.8	А	0.7	А
Southbound (Alder Ave) Approach	12.9	В	21.0	С

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for the minor approach to a two-way stop-controlled intersection are indicated in *italics*

Trip Generation

The anticipated trip generation for the proposed project was estimated using standard rates published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual*, 10th Edition, 2017 for "Congregate Care Facility" (ITE LU 253) and "Marijuana Dispensary" (ITE LU 882).

As indicated in Table 3, the proposed project is expected to generate an average of 1,264 trips per day, including 51 trips during the a.m. peak hour and 110 trips during the p.m. peak hour.

Table 3– Trip Generatio	n Summ	ary									
Land Use	Units	Da	ily	ļ	AM Peak	Hour		F	PM Peak	Hour	
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out
Proposed											
Congregate Care Facility	125 du	2.02	253	0.07	9	5	4	0.18	23	12	11
Marijuana Dispensary	4 ksf	252.70	1,011	5.85	42	23	19	21.83	87	44	43
Total			1,264		51	28	23		110	56	54

Note: du = dwelling unit; ksf = 1,000 square feet

It is noted that the number of trips generated by the congregate care facility during peak hours is a substantially lower percentage of the daily trips than would be expected if this were a typical residential project. Of the daily trips to the facility, most are employees who work shifts that begin and/or end outside the peak periods, deliveries, and guests. The limited number of peak hour trips are associated with office staff who work more traditional hours, and given the relatively low number of such personnel, it is reasonable for the peak hour trip generation to be a small percentage of daily trips.

Trip Distribution

The pattern used to allocate new project trips to the street network was determined by reviewing existing turning movements at the study intersection, observations of neighborhood travel circulation, and knowledge of traffic patterns in the area and surrounding region. It is noted that for outbound trips many of the residents and some of the dispensary patrons would choose to travel a longer distance, going north to Helman Lane and south on Redwood Drive to make a protected left turn onto Gravenstein Highway at a signalized intersection. The applied distribution assumptions and resulting trips are shown in Table 4.

Mr. Steve Monahan

Table 4– Trip Distribution Assumptior	15			
Route	Percent	Daily Trips	AM Trips	PM Trips
Alder Ave (North of Ford Ln)	25%	316	13	28
Gravenstein Hwy (West of Alder Ave)	25%	316	13	28
Gravenstein Hwy (East of Alder Ave)	50%	632	25	54
TOTAL	100%	1,264	51	110

Baseline plus Project Conditions

Upon the addition of project-related traffic to baseline volumes, the study intersection is expected to operate acceptably overall at LOS A during both peak hours. The controlled approach on southbound Alder Avenue is expected to operate at LOS B during the a.m. peak hour and LOS D during the p.m. peak hour. These results are summarized in Table 5.

Table 5 – Baseline and Baseline plus Pro	oject Peal	k Hour I	ntersecti	on Leve	ls of Serv	vice		
Study Intersection	Ba	seline	Conditior	าร	Ba	seline p	olus Proje	ct
Approach	AM F	Peak	PM F	Peak	AM F	Peak	PM F	Peak
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
Gravenstein Hwy (SR 116)/Alder Ave	0.8	А	0.7	А	1.1	А	1.7	А
Southbound (Alder Ave) Approach	12.9	В	21.0	С	13.7	В	28.3	D

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for the minor approach to a twoway stop-controlled intersection are indicated in *italics*

Finding – The study intersection is expected to continue operating acceptably upon the addition of projectgenerated traffic to Baseline Conditions, assuming planned improvements associated with The Village project.

Recommendation – Should "The Village" project not move forward prior to this proposed project, the eastbound left-turn lane on SR 116 at Alder Avenue would still need to be installed. It is recommended that the traffic impact fees (TIF) owed for this project be applied to the construction of a left-turn pocket as this widening would otherwise be included as part of the City's longer-term plans to provide two lanes in each direction on SR 116. Should the cost of the turn lane exceed the project's TIF obligation, the excess cost would reasonably be borne by the City. Conversely, should the construction cost less than the TIF obligation, the difference would be paid to the City.

Cumulative Ten-Year Horizon Conditions

Conditions at a horizon ten years into the future were also evaluated. To achieve the 2029 horizon year volumes, the net 20-year change in volumes was calculated using existing p.m. peak hour volumes and those projected at buildout within the city limits as presented in the adopted *Cotati General Plan March 2015 Update*. Under future conditions, the Cotati General Plan indicates that the intersection of Gravenstein Highway/Alder Avenue will be eliminated and replaced with a new signalized intersection to the west, as noted in the Project Description. The planned future widening of SR 116 to provide two lanes in each direction and turn lanes is included in the City's Traffic Impact Fee, so funding is planned through this source. These improvements would expand upon the short-term widening recommended to provide an eastbound left-turn lane at Alder Avenue.

Mr. Steve Monahan

For purposes of this evaluation, volumes projected for the new North/South street were assumed to remain on Alder Avenue as it was further assumed the new north/south street would not yet be built. However, estimated traffic volumes utilizing the south leg of the new north/south street were not included as Alder Avenue/Gravenstein Highway does not have a south leg. Seventy percent of the changes in volumes between 2015, when the General Plan was adopted, and the 2035 horizon year were assumed to have occurred within the projected 10-year horizon of 2029. These volumes were further assumed to include the project as it is expected to be constructed and occupied within the ten-year period. These volumes were added to the existing volumes to derive volumes for the Ten-Year Horizon with Project scenario. The project trip generation was then deducted from the Ten-Year Horizon with Project volumes to derive the Ten-Year Horizon (without project) scenario.

As might be expected, with no changes to the intersection's geometry or controls other than the addition of a southbound right-turn lane and an eastbound left-turn lane as part of the Cotati Village Project, operation is anticipated to deteriorate significantly with the increase in traffic projected over the next ten years, with or without the Cotati ALF Project. In fact, the delays estimated for the southbound movement are well beyond what is reasonable and indicate that the theoretical results are unreliable.

If, however, the intersection was signalized, the intersection would be expected to operate acceptably at LOS B with or without the project volumes. These results are summarized in Table 6.

Table 6 – Ten-Year Horizon with and wi	thout Pro	oject PN	Peak Ho	ur Inter	section L	evels of	Service	
Study Intersection Approach	10-Yea Unsign		on w/o P Signa	•	10-Yea Unsign		on with P Signa	-
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
Gravenstein Hwy (SR 116)/Alder Ave	**	F	15.5	В	**	F	19.8	В
Southbound (Alder Ave) Approach	**	F	n/a	n/a	**	F	n/a	n/a

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for the minor approach to a twoway stop-controlled intersection are indicated in *italics*; ** = delay exceeds 120 seconds

Findings – Operation of the study intersection is anticipated to deteriorate significantly with the increase in traffic projected over the next ten years, with or without the proposed project. Upon signalization, the study intersection is expected to operate acceptably at LOS B either with or without the project.

Conclusions and Recommendations

- The anticipated trip generation of the proposed project would result in an average of 1,264 new trips daily, with 51 trips added during the a.m. peak hour and 110 trips added during the p.m. peak hour.
- Under Baseline Conditions, with trips generated by the Cotati Village Project added to existing volumes, the study intersection is expected to continue operating acceptably both overall and on the southbound stop-controlled approach, assuming the addition of a southbound right-turn lane and eastbound left-turn lane provided by the Cotati Village Project.
- With project volumes added to the Baseline Conditions, and assuming the addition of an eastbound left-turn lane and a southbound right turn lane, the study intersection is expected to continue operating acceptably both overall and on the southbound stop-controlled approach.
- Under Cumulative Ten-Year Horizon Conditions and assuming the planned new north-south street has not yet been constructed, signalization of Gravenstein Highway/Alder Avenue will be necessary for the intersection to operate acceptably, with or without the proposed project.

Mr. Steve Monahan

Page 6

- The proposed project can reasonably be expected to have a less-than-significant impact on traffic operation at the intersection of Gravenstein Highway/Alder Avenue.
- The project should pay traffic impact fees as a proportional share contribution toward the installation of planned future improvements to Gravenstein Highway, construction of the new north-south street and a new signal at Gravenstein Highway and either Alder Avenue or the new north-south street.
- Should the eastbound left-turn lane at Alder Avenue not be constructed by The Village project, the TIF funds applicable to this project should be allocated to provide the left-turn pocket on Gravenstein Highway.

We hope this information will be of use to you as you continue forward with the project. Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

TR001552

Sincerely,

Kevin Carstens, PE Associate Engineer

Dalene J. Whitlock, PÉ, PTOE

Senior Principal

DJW/krc/COT091.L2

Enclosure: Level of Service Calculations

Intersection Intersection Int Delay, siveh 0.5 Movement EBL EBL Lane Configurations 4 5 Traffic Voi, vehn 12 44 36 Configurations 4 36 5 11 Configurations 12 443 36 5 11 Conflicting Peds, #hr 0 0 0 0 0 0 Sign Control Free Free Stop Stop Stop 200 200 200 Storage Length - - - 0 - 0 - - -	Intersection Configurations All Int Delay, siveh 0.3 Movement EBT WBT WBR SBR Ame Configurations A A A Lane Configurations A A A Tartific Vol, veh/h 8 573 787 9 5 13 Future Vol, veh/h 8 573 787 9 5 13 Conflicting Peak, #Inr 0 0 0 0 0 0 Sign Control Free Free Free Free Free 513 RT Channelized - None None None None Storage Length - - - 0 - Control - - - 0 -
Factor 100<	Factor 100<
Mov Cap 2 Mareuver - - 365 - Stage 1 - - - 713 - Stage 1 - - - 713 - Stage 1 - - - 713 - Stage 2 - - - 657 - Approach EB WB SB - - HCM Control Delay, s 0.2 0 12.8 - - HCM Locity 0 12.8 - - - - Minor LaneMajor Mmit EBL EBT WB VBRSBLnf - - - - Minor Lane VIC Patio 0.1 -	Mov Cap-2 Maneuver - - 157 - Stage 1 - - - - - 454 - Stage 2 - - - - - - 554 - Stage 2 - - - - - - 554 - Regroach EB WB SB WB SB - - 554 - HCM Control Delay, s 0.1 0 19 - - 554 - - - 554 - - - 554 - - - 554 - - - 554 - - - - - 554 -

10/23/2018

Synchro 10 Report Page 1

Cotati ALF 2018 Update PM Existing

Cotati ALF 2018 Update AM Existing

Synchro 10 Report Page 1

HCM 2010 TWSC 1: Gravenstein Hwy & Alder Ave 10/23/2018	HCM 2010 TWSC 1: Gravenstein Hwy & Alder Ave
Int Delay, siveh 0.8	Int Delay, s/veh 0.7
Movement EBL EBT WBT WBR SBL SBR	Movement EBL EBT WBT WBR SBL SBR
ns 🤺 🕇 🖡 🕈	ns 🤺 🛉 🖡 🔭
26 404 336 15	13 573 787 18
26 404 336 15 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 5/3 /8/ 18 16 2 2 2 2 2
eds,#/nr 0 0 0 0 0 0	eds,#/hr U U U U U U Fron Fron Fron Fron Ston
	LIEE LIEE SIUD
INOL	- NORE - NORE
thorana # 0 0	thorace #
	, ,
- Factor 100 100 100 100 - 0	r Factor 100 100 100 100 - 0
26 404 336 15 16	13 573 787 18 16
Maior/Minor Maior2 Minor2	Maior/Minor Maior/ Maior2 Minor2
low All 351 0 - (low All 805 0 - 0
344	962
456	599
4,12	4.12
301 5.42	sta 1 5.42
•	
2.218 3	2.218 3
uver 1208	Pot Cap-1 Maneuver 819 156 387
Stage 2 638 -	Stage 2 549 -
1208	Mov Cap-1 Maneuver 819 154 387
1euver	1euver
Stage 1	•
Stage Z 038 -	Stage 2 549 -
EB WB	EB
rol Delay, s 0.5 0 12	trol Delay, s 0.2 0
HCMLOS	HCM LOS
Ē	Ē
r MVMT EBL EBI VVBI VVBK SBLNI SI	01 NIVMT EBL EBI VVBI VVBK SBLN1 SE
1208	819 154
0.022	0.016 0.104 0
	31
O(b) 0.1	
	5.0

Cotati ALF 2018 Update AM Baseline

Synchro 10 Report Page 1

Synchro 10 Report Page 1

Cotati ALF 2018 Update PM Baseline

ک wy & Alder Ave 04/17/2019	HCM 2010 TWSC 1: Gravenstein Hwy & Alder Ave
	htersection
11	Int Delay, s/veh 1.7
ebl ebt wbt wbr sbl sbr	Novement EBL EBT WBI XBR SBL SBR
* 4	aurations 🦌 🛧 🔥
336 29 27	27 573 787 46 42
404 336 29 27	27 573 787 46
	#/hr 0 0 0 0 0
Free Free Free Stop	Free Free Free Stop St
None - None -	zed - None - None -
	210
, , , , , , , , , , , , , , , , , , ,	storade.# - 0 0 - 0
0 0	0 - 0
100 100 100 100	Factor 100 100 100 100 100
6 6 2 2	2 6 6 2
336 29 27	27 573 787 46 42
Major2	Major/Minor Major1 Major2 Minor2
365 0 - 0 821 351	Conflicting Flow All 833 0 - 0 1437 810
	810
	•
•	4.12 6.42 6.2
	Sta 1 5.42
•	•
	2.218 -
•	uver 800
•	438
629	532
	er 800
	241
+50	142 423
- 670	Zaña
WB	EB WB
0.6 0 13.7	HCM Control Delay, s 0.4 0 28.3
m	
FRI FRT WRT WRP SRI n/ SRI n2	Minor I anal Major Munth ERI ERT WED SRI 1/1 SRI 1/2
	800
•	0.034 0.296 (
16.7	ay (s) 9.7 40.7 15
C	A E
	12 (

Major/Minor Conflicting Flow All Stage 1 Stage 2

Major1 365

Critical Hdwy Sig 1 - Critical Hdwy Sig 1 - Critical Hdwy Sig 2 - Critical Hdwer 1194 - Critical Hdw Cap-1 Maneuver 1194 - Critical Hdw Cap-1 Maneuver 1194 - Critical Hdw Cap-1 Maneuver - Critical

Approach HCM Control Delay, s HCM LOS

Minor LaneMajor Mwmt Capadity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

HCM 2010 TWSC 1: Gravenstein Hwy & Alder Ave

Lane Configurations Future Vol., vehih 33 4 Future Vol., vehih 33 4 Confitcing Peds, #hr 0 Sign Control Sign Control Storage Length 210 Vehin Median Storage, # -Peak Hour Factor 100 Heavy Vehicles, % 2 Momt Flow 33 4

Intersection Int Delay, s/veh Movement

Cotati ALF 2018 Update AM Baseline Plus Project - All Dispensary Atternative

Synchro 10 Report Page 1

Cotati ALF 2018 Update PM Baseline Plus Project - All Dispensary Attemative

Synchro 10 Report Page 1

	•	t	ŧ	~	≯	*		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	~	*	÷		۶	×		
Traffic Volume (veh/h)	23	826	1025	66	256	94		
Future Volume (veh/h)	23	826	1025	66	256	94		
Number		4	∞ (9	,	16		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pb1)	00.1	00	001	1.00	1.00	1.00		
Adi Sof Flammarkhin	100.1	1700	1700	0001	100.1	00.1		
Adj Sat Flow, vervrinn Adi Flow Rate veh/h	33	826	1/30	0081	756	001		
Adi No. of Lanes	3	1	1	, o	-	5 -		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	2	9	9	9	2	2		
Cap, veh/h	188	1254	1130	109	312	279		
Arrive On Green	0.70	0.70	0.70	0.70	0.18	0.18		
Sat Flow, veh/h	499	1792	1615	156	1774	1583		
Grp Volume(v), veh/h	23	826	0	1124	256	94		
Grp Sat Flow(s),veh/h/ln	499	1792	0	1771	1774	1583		
Q Serve(g_s), s	2.9	18.6	0.0	37.7	10.0	3.8		
Cycle Q Clear(g_c), s	40.6	18.6	0.0	37.7	10.0	3.8		
Prop In Lane	1.00		c	0.09	1.00	1.00		
Lane Grp Cap(c), ven/h	188	1254	0 00	1239	312	6 <i>1</i> 7.		
V/C Ratio(X)	0.12 20	0.00	0.00	0.91	70.0	0.34		
Avall Cap(c_a), vervn UCM ploton Dotio	707	0701		0001	4/9	124		
HUM Platoon Ratio	<u>.</u>	0.0	00.1	0.1	00.1	00.1		
Upsurediti Filter(I) Haiform Dolay (A) - ofytob	00.1 2 B	00.1 2	0.00	00.0	7 90	1.00		
Uninorni Delay (u), Siven Incr Delay (d2), siveh	0.02	- 0	0.0	0.9	40.1 6.6	1.02		
Initial O Delav(rd3) s/ven	0.0		0.0	0.0		00		
%ile BackOfO(50%) veh/ln	0.0	0.0	0.0	20.3	2.5	1.7		
LnGrp Delav(d).s/veh	25.9	6.8	0.0	16.2	35.2	26.8		
LnGrp LOS	U	∢		ш		ပ		
Approach Vol, veh/h		849	1124		350			
Approach Delay, s/veh		7.3	16.2		33.0			
Approach LOS		4	ш		C			
Timer	~	2	e	4	5	9	7	8
Assigned Phs				4		9		8
Phs Duration (G+Y+Rc), s				55.0		17.2	55.0	0
Change Period (Y+Rc), s				4.5		4.5	4	5
Max Green Setting (Gmax), s				61.5		19.5	61.5	5
Max Q Clear Time (g_c+l1), s				42.6		12.0	39.7	.7
Green Ext Time (p_c), s				6.4		0.7	10.8	8
Intersection Summary								
HCM 2010 Ctrl Delay			15.5					
HCM 2010 LOS			a					

Intersection Intersection Int Delay, Sveh 152.2 Movement EBL EBT WBT WBT SBL SBR Lame Configurations Taffe Vol. vehh 23 826 1025 99 256 94 Taffe Vol. vehh 23 826 1025 99 256 94 Configurations 7 6 0 <th></th>	
1522 FEL ET WBT WBT SBL SBR 3 826 1025 99 256 94 23 826 1025 99 256 94 7 0 0 0 0 0 7 100 100 100 100 100 826 1025 99 256 94 210 0 0 0 0 0 210 0 0 100 100 100 100 210 0 0 0 100 100 100 100 210 0 0 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
- - - 409 - 621 - - - 62 - - - - 62 - - - - 62 - - - - 63 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.3 0 \$1009.2 F 11 - - - - - - - 0.037 - - - 0.37 - - - - - - -	
621 - - - 68 267 - - - - 68 267 - - - - 68 267 - - - - 68 267 - - - - - 68 267 - - - - - - 68 - - - - - - - 409 - - - - - - 409 - - - - - - - - 409 - - 0.3 0 \$10092 - - - 68 - - - 68 -	
621 68 267 68 267 68 68 	
- - - - 68 - - - - 316 - - - - - 409 - - - - - 409 - 0.3 0 \$10092 F F 11 EBL BT WBR SBLn15 0.037 - - - 0.037 - - - 621 - - - B - - -	
EB WB SBL01 - 409	
EB WB SB 0.3 0 \$1009.2 F 1 EBL EBT WBT WBR SBLm1 SI 621 68 0.037 58 170.4 B F	
EB WB SB 0.3 0 \$10092 it EBL EBT WBR SBLn1 SI it EBL 68 621 0.337 68 3765 68 0.337 51763 51764 51764 B	
0.3 0 \$10092 F F 11 EBL WBT WBR SBLn1 SI 0.037 68 0.037 51 B F	
mit EBL EBT WBT WBR SBLn1 Si 621 - - 68 037 - - 3765 11 - - 3765 B - - -	
mt EBL EBT WBT WBR SBLn1 SI 621 - - 68 0.337 - - 3765 11 - - \$170.4 B - - 570.4 B - - -	
621 68 0.037 3.765 11 \$1370.4 B F	
0 0037 3.765 0 11 \$1370.4 B F	
alay (s) 11 \$ 1370.4 B F	
B B	
HCM 95th %tile Q(veh) 0.1 27 1.5	
Notes	

Cotati ALF 2018 Update PM Future - All Dispensary Alternative

Synchro 10 Report Page 1

Cotati ALF 2018 Update PM Future with Signal - All Dispensary Alternative

	1	ŧ	~	۶	•		
	FRT	WRT	WBR	IS.	SBR		
and Contrations		•		н В			
Traffic Volume (veh/h) 3		1025	127	282	108		
Entrine Volume (veh/h) 37	7 826	1025	197	282	108		
		8	18	1	16		
(Ob). veh	0	0	0	0	0		
bT) 1.0		,	1.00	1.00	1.00		
	100	1 00	1 00	1 00	1 00		
/h/ln	Ì	1800	1900	1863	1863		
Adi Flow Rate. veh/h 37		1025	127	282	108		
		-	0	-	-		
Peak Hour Factor 1 00	100	1.00	1.00	1 00	100		
h.%		9	9 <u>9</u> 9	00.1	2		
÷	126	1105	137	330	294		
ireen (0.70	0.70	0.19	0.19		
Sat Flow, veh/h 486		1571	195	1774	1583		
veh/h		0	1152	282	108		
Grp Sat Flow(s).veh/h/ln 486	3 1792	0	1766	1774	1583		
		0.0	45.2	12.5	4.8		
	9 20.6	0.0	45.2	12.5	4.8		
			0.11	1.00	1.00		
o(c), veh/h		0	1241	330	294		
V/C Ratio(X) 0.23		0.00	0.93	0.86	0.37		
بد		0	1339	427	381		
HCM Platoon Ratio 1.00	0 1.00	1.00	1.00	1.00	1.00		
		0.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh 32.0	0.6	0.0	10.3	31.9	28.8		
		0.0	10.9	12.6	0.8		
	0.0	0.0	0.0	0.0	0.0		
%lie BackOru(50%),ven/in 0.8		0.0	7.07	0.1	2.2		
		0.0	7 C	₽. C	73.0 V		
ol voh/h	90	1160	2	300	2		
Approach Delay, styren	8.7	21.2		40.4			
Approach LOS	A	0					
Timer	0	c	4	ĸ	ų	7 R	
Acciment Dhe	7	2		2	ی د	0 00	
Phs Duration (G+Y+Rc) s			- 19 1		19.6	615	
Change Period (Y+Rc) s			45		4.5	4.5	
Max Green Setting (Gmax) s			615		19.5	615	
Max O Clear Time (o c+l1), s			52.9		14.5	47.2	
Green Ext Time (p_c), s			4.1		0.6	8.6	
Intersection Summary							
HCM 2010 Ctrl Delav		19.8					
HCM 2010 LOS		-					

h h h h h h h h h h h h h h h h h h h		1000							
	iii Delay, siveri	4.00.							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Movement	EBL	EBT		WBR	SBL	SBR		
	ane Configurations.	F	+	¢		۴	×		
	raffic Vol, veh/h	37	826	1025	127	282	108		
	⁻ uture Vol, veh/h	37	826	1025	127	282	108		
	Conflicting Peds, #/hr	0	0	0	0	0	0		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Free	Free	Free	Free	Stop	Stop		
	RT Channelized	1	None	1	None		None		
	storage Length	210	1	1	'		0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/eh in Median Storage,		0	0	1	0	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade. %	1	0	0	'	0	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	eak Hour Factor	100	10	100	9	100	100		
37 826 1025 127 282 108 Jajor1 Minor2 Minor2 Minor2 108 - 1152 0 - 0 1989 1089 - 1152 0 - 0 1989 1089 - - 1152 0 - - 1089 1089 - - - - 108 -<	leavy Vehicles, %	2	9	9	2	2	2		
	Avmt Flow	37		1025	127	282	108		
		ajor 1	2	lajor2	2	linor2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1152	0	•	0	1989	1089		
	Stage 1	ł	ł	1	1	1089	ł		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Stage 2	'	'	'	•	006	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ritical Hdwy	4.12	1	1	1	6.42	6.22		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ritical Howy Stg 1	1	•	'	•	5.42	•		
	ritical Hdwy Stg 2	1	1	1	'	5.42	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.218	1	1			3.318		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ot Cap-1 Maneuver	909	1	1	'	~ 67	262		
- - - 337 - 606 - - - 63 262 - - - - - 63 263 - - - - - 63 263 - - - - - 63 262 - - - - - 337 - - - - - - 337 - - - - - - 337 - - - - - - 337 - - - - - - 337 - - - - - - 337 - - - - - - 337 - 0.5 0 \$ 124 MBR SBLMI - - - - - - - 63 0.061 - - - - - - - - - - - - - - - - - - - - -<	Stage 1	'	•	'	•	323	•		
606 - - - - 63 262 - - - - - 63 - - 63 - - - 63 - - - 63 - - - - - 63 - - - 63 - <t< td=""><td>Stage 2</td><td>1</td><td>1</td><td>1</td><td>1</td><td>397</td><td>•</td><td></td><td></td></t<>	Stage 2	1	1	1	1	397	•		
606 - - - 63 262 - - - - 63 263 - - - - - 363 - - - - - - 37 - - - - - - - 397 - - - - - - - 397 - - - - - - - 397 -	latoon blocked, %		•	•	•				
EB VB 5134.7 EB VB 5134.7 0.5 0 \$ 1234.7 1.5 303 2.37 303 1.34.7 0.5 303 1.24.7 1.24	lov Cap-1 Maneuver	909	1	1	'	~ 63	262		
- - - 303 - - - - 397 - - - - - 397 - EB WB SB SB - - - 0.5 0 \$ 1234.7 - - - - - 0.5 0 \$ 1234.7 -	lov Cap-2 Maneuver	•	•	•	•	~ 63	•		
EB WB 597 - 5 EB WB 58 0.5 0 \$1234.7 F 606 - 5 63 0.061 - 63 11.3 - 6196.8 11.3 - 63 10.201 - 106.8 10.201 - 106.8 10.201 - 106.8 10.201 - 106.8 10.201 - 106.8 106.8 107.5 10	Stage 1	1	1	1	1	303	1		
EB WB SB 0.5 0 \$1234.7 1 5 5 1 8 8 1 8 8 1 8 8 1 9 1234.7 1 8 8 1 8 8 1 9 8 1 9 4476 1 13 - 4476 1 13 - 5 196.8 1 1 - - 4476 1 1 - - 4476 1 1 - - - 1 - - - - - 1 - - - - - -	Stage 2	1	•	•	•	397	•		
EB WB SB 0.5 0 \$1234.7 F F F t EBL BT WBX SBLnt 606 - - 63 11.3 - - 4476 11.3 - - 4476 11.3 - - - B - - - 63 0.061 - - - - 676 1 - - - - - 6 0.061 - - - - - - - -									
0.5 0 \$1234.7 F F F 606 63 0.061 4476 11.3 4476 11.3 3106.8 B 5	pproach	8		MB		SB			
t EBL EBT WBT WBR SBLn1 606 - 63 0.061 - 4476 11.3 - 4476 11.3 - 51696 10.2 30.8	ICM Control Delay, s	0.5		0	6	234.7			
t EBL EBT WBT WBR SBLIT 606 63 0.061 4476 11.3 \$1996.8 B 30.8	ICM LOS					ш			
606 - - 4476 11.3 - - 6306 11.3 - - 4476 11.3 - - 51696.8 B - - - 30.8 B - - - 30.8	linor Lano Maior Munt		a	ГDТ		N/DD C		0410	
0.606 63 0.061 4.476 11.3 \$16968 B 66 0.2 30.8	יוווטו במופיואומטו ואואווו							DLIIZ	
0.061 4.476 11.3 \$16968 B 566 0.2 30.8	apacity (veh/h)		606	1	'	1		262	
11.3 \$ 1696.8 B F 0.2 30.8	ICM Lane V/C Ratio		0.061	1	1	1	4.476 0	.412	
B F 0.2 30.8 1	ICM Control Delay (s)		11.3	1	1	ب	696.8	28	
0.2 30.8	ICM Lane LOS		ш	'	'	'	ш	Ω	
lotes	ICM 95th %tile Q(veh)		0.2	ľ	1	1	30.8	1.9	
	lotes								

Cotati ALF 2018 Update PM Future plus Project - All Dispensary Alternative

Synchro 10 Report Page 1

Synchro 10 Report Page 1

04/19/2019

HCM 2010 TWSC 1: Gravenstein Hwy & Alder Ave