

Geotechnical Services

A Report Prepared for:

BKF Engineers 4675 MacArthur Court, Suite 400 Newport Beach, CA 92660

GEOTECHNICAL REPORT PICO RIVERA REGIONAL BIKEWAY PROJECT PICO RIVERA, CALIFORNIA

Project No. 2018-027

By

Hours

Britton Howay, EIT Staff Engineer

Somadevan Niranjanan Geotechnical Engineer 2819

Diaz•Yourman & Associates 1616 East 17th Street Santa Ana, CA 92705

April 8, 2019

TABLE OF CONTENTS

1	IN	TRODUCTION	1
2	DA	TA REVIEW, FIELD EXPLORATION, AND LABORATORY TESTING	3
	2.1	DATA REVIEW	3
	2.2	FIELD EXPLORATION	
	2.3	LABORATORY TESTING	4
3	SI	TE CONDITIONS	6
	3.1	SURFACE CONDITIONS	6
	3.2	SUBSURFACE CONDITIONS	7
	3.3	GROUNDWATER	9
4	СС	ONCLUSIONS AND RECOMMENDATIONS	10
	4.1	NEW PAVEMENT DESIGN	10
	4.2	SOIL INFILTRATION CHARACTERISTICS	
	4.3	EARTHWORK	12
	4.4	EXCAVATIONS AND TEMPORARY AND PERMANENT SLOPES	13
	4.5	SOIL CORROSION POTENTIAL	
	4.6	CONCRETE FLATWORK	14
5	PL	AN REVIEW, CONSTRUCTION OBSERVATION, AND TESTING	15
6	LIN	MITATIONS	16
7	BI	BLIOGRAPHY	17

LIST OF FIGURES

Figure 1 - VICINITY MAP	1
Figure 2 - SITE PLAN	5
Figure 3 - PAVEMENT THICKNESS	11

LIST OF TABLES

7
3
)
3
ŀ
3

LIST OF APPENDICES

APPENDIX A	A - PROJECT	PLANS
------------	-------------	-------

APPENDIX B - FIELD EXPLORATION

APPENDIX C - LABORATORY TESTING

1 INTRODUCTION

This report presents the results of the geotechnical services performed by Diaz•Yourman & Associates (DYA) for the proposed Pico Rivera Regional Bikeway Project (Project) planned for Mines Avenue (between Paramount Boulevard and west of the spreading grounds that are located west of the San Gabriel River) and Dunlap Crossing Road (between east of the San Gabriel River) and Dunlap Crossing Road (between east of the San Gabriel River) and Class I and II bike lanes are proposed along Dunlap Crossing Road. In addition to the bike lanes, the entire street will be subject to reconstruction. Installations of bioswales and reconfigurations of parking lanes are also proposed. These improvements are part of the overall Project. The Project plans show the proposed improvements and are provided in Appendix A. The other portion of the Project is to construct a pedestrian bridge structure over the San Gabriel River approximately 2,600 feet north of Mines Avenue. The proposed pedestrian bridge will connect the existing Paseo Del Rio, which runs on the west side of the San Gabriel River. BKF Engineers authorized this work on October 25, 2018, with a written contract.

The Project alignment is shown on the Vicinity Map, Figure 1.

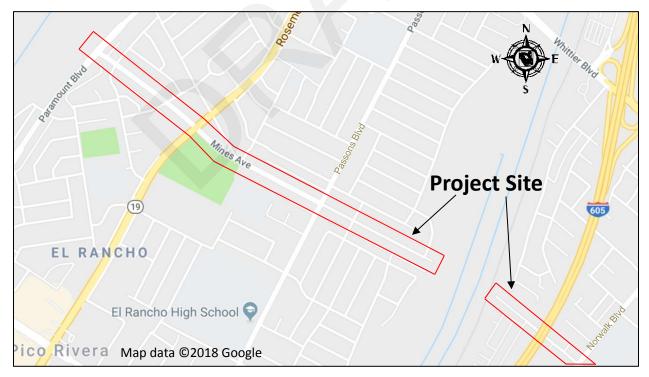


Figure 1 - VICINITY MAP

This report presents the geotechnical recommendations required for the improvements associated with Mines Avenue and Dunlap Crossing Road. A separate report will be prepared to provide the geotechnical information required for the design of the proposed pedestrian bridge over the San Gabriel River.

The purpose of DYA's investigation was to provide geotechnical input for the design of the proposed Project associated with Mines Avenue and Dunlap Crossing Road. The scope of our services consisted of:

- Reviewing available geotechnical data.
- Performing a field exploration.
- Performing a laboratory testing program.
- Performing analyses for new pavement sections, infiltration characteristics, and corrosion potential.
- Preparing a report summarizing our geotechnical findings.

Our scope of services excluded any investigation needed to evaluate the presence of hazardous materials in the soil or water at the Project Site.

2 DATA REVIEW, FIELD EXPLORATION, AND LABORATORY TESTING

2.1 DATA REVIEW

Geotechnical data from the Project vicinity presented in previous reports and state databases were reviewed to supplement site data collected during this exploration. A list of the documents reviewed is presented in the bibliography (Section 7).

2.2 FIELD EXPLORATION

An encroachment permit to perform the borings and infiltration tests was obtained from the City of Pico Rivera on November 27, 2018, prior to performing the field activities.

After obtaining the encroachment permit, the field exploration locations were marked in the field and Underground Service Alert was notified. The selection of the locations of the borings was based on areal coverage of the Project site, site access, underground utility conflicts, and minimizing traffic impacts. The field exploration locations were subsequently checked for underground utilities using geophysical techniques. The geophysical survey was performed by Southwest Geophysics, Inc. During the geophysical survey, at the location of Boring DYB-06, the geophysical survey crew received high responses that were suspected to be indicative of metal objects of some kind. Similar responses were observed when the survey was extended several hundred feet away from this location. Because of this issue, an alternative location (Boring DYB-06A) was selected and drilled using hand-auger techniques for safety concerns.

A total of six borings drilled to a depth of 6.5 feet were proposed for this portion of the Project. The field exploration, conducted on December 6, 2018, and January 29, 2019, consisted of drilling five soil borings using hollow-stem-auger drilling techniques and performing 1 handauger boring at the locations shown on Figure 2.

Five borings (DYB-01 through DYB-05) were located along Mines Avenue and one boring (DYB-06A) was on Dunlap Crossing Road. Our field engineer observed the drilling operations and collected drive samples, smaller size samples in ziploc bags, and bulk samples for visual examination and subsequent laboratory testing. Limited numbers of drive samples were collected with a 2.4-inch-inside-diameter (3.0-inch-outside-diameter) modified California split-barrel sampler lined with brass tubes with dimensions in accordance with ASTM International (ASTM) D3550 because of underground utility conflicts. Drive samplers were driven with a 140-pound automatic trip hammer falling 30 inches. The hammer blows required to drive the

modified California sampler were converted to equivalent standard penetration test (SPT) N-values by multiplying by 0.65 (N = 0.65 x modified California blows per foot).

At two boring locations (DYB-01 and DYB-05), field permeability tests were performed at depths in the upper 5 feet, in general accordance with the County of Los Angeles Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration (2017).

After borings and infiltration tests were completed, the boreholes were backfilled with soil cuttings and pea gravel. The surfaces of the boreholes were patched with cold patch asphalt.

Details of the field exploration, including sampling procedures and boring logs, are presented in Appendix B.

2.3 LABORATORY TESTING

Soil samples collected from the borings were re-examined in the laboratory to substantiate field classifications. Selected soil samples were tested for density, moisture content, sieve analysis, hydrometer, Atterberg limits, compaction characteristics, permeability, pavement-supporting capacity (R-Value), and corrosion potential. Laboratory test data are summarized on the boring logs provided in Appendix B and are presented on individual test reports in Appendix C.

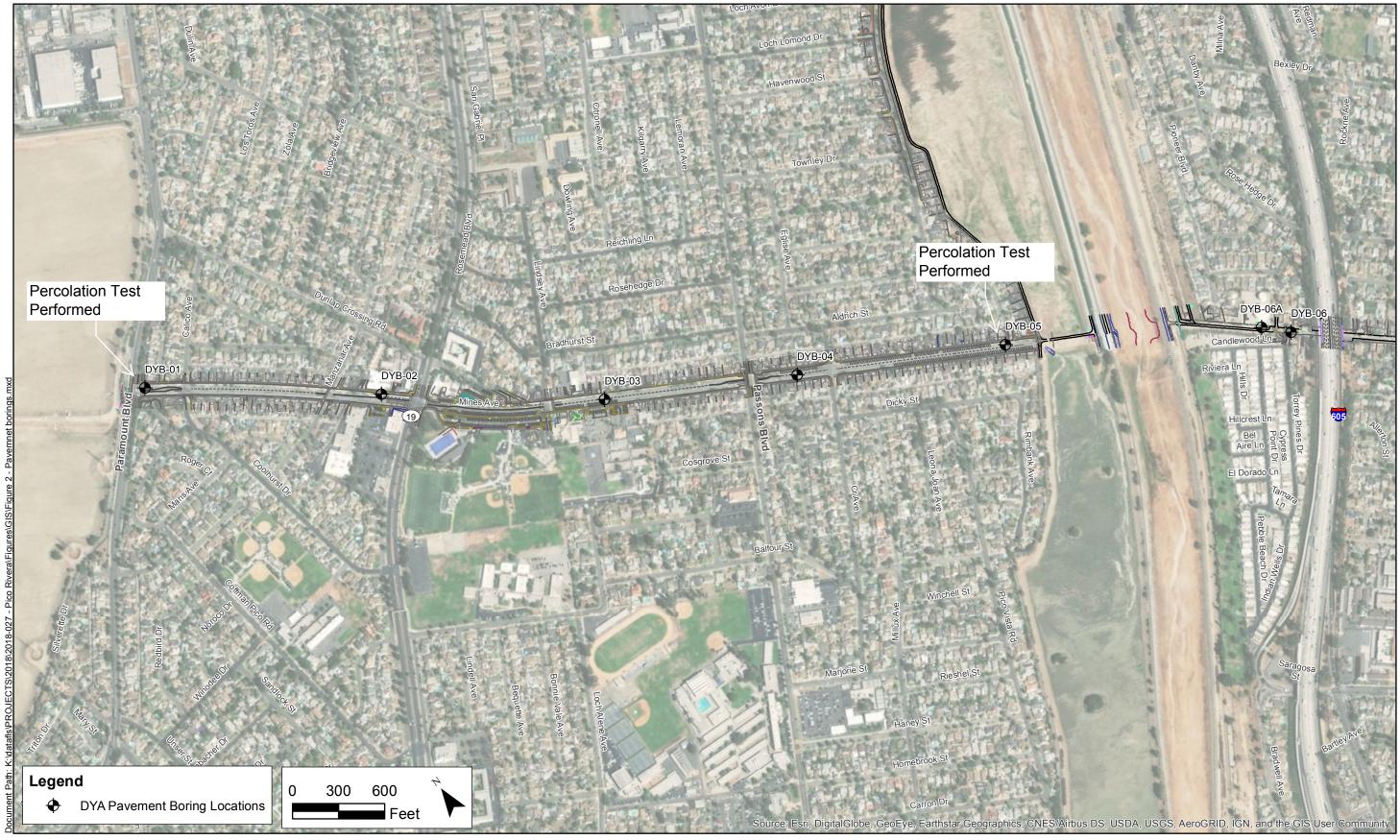


Figure 2 - SITE PLAN

3 SITE CONDITIONS

3.1 SURFACE CONDITIONS

The entire length of the Project site runs approximately 1.5 miles through a residential zone that mainly includes single-family residences, a shopping center, a public school, and a church. Mines Avenue is aligned northwest to southeast and is the main roadway within the Project limits that provides access to neighboring streets and three major roadways, Paramount Boulevard, Rosemead Boulevard, and Passons Boulevard. In addition, approximately 0.3 miles of roadway on Dunlap Crossing Road is also included within the Project limits. Dunlap Crossing Road is directly in line with Mines Avenue but separated by the San Gabriel River and continues in a northwest to southeast alignment. A majority of Mines Avenue features one lane in each direction with occasional turning lanes at various intersections. Parking stalls are provided along a majority of Mines Avenue. Dunlap Crossing Road also has one lane in each direction and as the road travels northwest towards the San Gabriel River, the westbound lane becomes a gravel road while the eastbound lane continues as asphalt concrete (AC). Based on the site reconnaissance on November 15, 2018, the majority of the pavement surface conditions along Mines Avenue can be considered poor with moderate to severe pavement surface distresses that include longitudinal, transverse, and alligator cracks; except the pavement from Rosemead Boulevard to Lindsey Avenue is considered in good condition. This section looks newly paved or overlaid. The Dunlap Crossing Road segment is considered fair to poor with pavement surface distresses that include severe longitudinal, transverse, and alligator cracks.

Concrete curbs, gutters, and manholes were present along the entire roadway and multiple overhead utility lines crossed within Mines Avenue. No curbs, gutters, or manholes were observed in the Dunlap Crossing Road segment.

The thickness of the existing pavement structural sections along Mines Avenue, based on field exploration, consisted of approximately 1 to 5 inches of AC and 5 to 11 inches of aggregate base (AB), as shown in Table 1. The hand-auger location (Boring DYA-06A) on Dunlap Crossing Road was performed on the gravel road side to avoid underground utility conflicts. During the investigation at this location, it was found that two thin layers of AC, a total of 5 inches, were present beneath the gravel surface.

In the Dunlop Crossing Road segment, especially near the location of Boring DYB-06 and several hundred feet east and west, high responses were observed during the geophysical survey that were suspected to be indicative of metal objects of some kind.

BORING ID	AC THICKNESS (inches)	AB THICKNESS (inches)
DYB-01	5	11
DYB-02	3	8
DYB-03	2	7
DYB-04	1	5
DYB-05	3.5	6
DYB-06A	5	
Note(s): See Site Plan, Figure 2, for bo See Appendix B for boring log		

Table 1 - EXISTING PAVEMENT SECTIONS SUMMARY

3.2 SUBSURFACE CONDITIONS

Based on the current field exploration performed by DYA, the upper 5 feet of the subsurface soils along Mines Avenue and Dunlap Crossing Road predominantly consisted of silty sands with various amounts of silt.

The subsurface soils encountered in the upper 5 feet are considered to have very low expansion potential based on expansion index tests and correlations to Atterberg Limits (United States Bureau of Reclamation [USBR], 1998). Based on a total of five R-value test results, the R-values ranged from 42 to 79. The in situ and optimum moisture contents and in situ and maximum unit weights of the subsurface materials are summarized in Table 2.

BORING ID	DEPTH (feet)	SOIL TYPE	IN SITU MOISTURE CONTENT (%)	OPTIMUM MOISTURE CONTENT ¹ (%)	IN SITU DRY UNIT WEIGHT (pcf)	MAXIMUM DRY UNIT WEIGHT ¹ (pcf)	RELATIVE COMPACTION (%)
	2.5	SM	8.8	5.0	116.1	404.0	86
DYB-01	5	SM	4.4	5.0	95.8	134.8	71
	2.5	SM	8.3				
DYB-02	5	SM	10.1				
	2.5	SM	13.4	10.0		110.0	
DYB-03	5	SM	13.3	10.0		112.0	
	1.5	ML	12.8				
DYB-04	3.5	ML	12.3				
DYB-05	2.5	SM	9.9	7.4		123.0	
	2	SM	10.3	7.0	92.3	407.0	73
DYB-06A	4.5	SM	5.4	7.9	-	127.2	

Table 2 - SUBSURFACE SOIL CHARACTERISTICS

Note(s):

1. Based on the bulk samples from the upper 5 feet.

• Soil classification based on ASTM Soil Classification System (ASTM D2487 and 2488).

 We were unable to collect drive samples at Borings DYB-02 through DYB-05 because of safety concerns as we suspected potential underground utilities may be close to our boring locations. In situ moisture contents and in situ dry weights were from laboratory testing. The optimum moisture contents and maximum dry densities were obtained from four samples only. The relative compaction values presented above may be an indication of the subsurface soil conditions but may not represent the actual representation due to sample disturbance during sampling and transportation.

• pcf = pounds per cubic foot.

Two in situ percolation tests based on the County of Los Angeles Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration (2017) were performed at a depth of 5 feet at two boring locations; DYB-01 and DYB-05. In addition to in situ infiltration tests, grain size data and correlations based on the Kozeny-Carman equation (Chapuis and Aubertin, 2003) were used to determine infiltration rates at boring locations DYB-02, DYB-03, DYB-04, and DYB-06A. A summary of the infiltration rates is provided in Table 3. The soil infiltration characteristics are further discussed in Section 4.2.

LOCATION	INFILTRATION RATE (inches/hour)
	(inches/hour)
DYB-01 ¹	0.4
DYB-02 ²	0.5
DYB-03 ²	0.3
DYB-04 ²	0.2
DYB-05 ¹	1.0
DYB-06A ²	0.4

Table 3 - INFILTRATION RATE SUMMARY

Note(s):

1. Infiltration rate based on the County of Los Angeles Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration (2017).

2. Correlations to infiltration rate based on the Kozeny-Carman equation (Chapuis and Aubertin, 2003).

3.3 **GROUNDWATER**

Groundwater was not encountered during our field exploration to the depth explored to 6.5 feet below ground surface (bgs). Based on the review of available data from GeoTracker GAMA (2019) in the vicinity of the Project site, nearby groundwater monitoring wells measured groundwater levels as shallow as 31 feet bgs. However, based on historically highest groundwater data contours published by the California Geological Survey ([CGS], formerly California Division of Mines and Geology [CDMG], 1998), the historically highest groundwater level within the Project limits has been reported between 10 and 18 feet bgs.

4 CONCLUSIONS AND RECOMMENDATIONS

We understand that the entire pavement sections will be removed as part of the Project and new pavement sections will be constructed. Therefore, existing pavement surface conditions will not pose any issues. However, as noted in the Dunlop Crossing Road segment, we recommend, due to the strong signals that the geophysicists encountered during the geophysical survey, that a detailed investigation be conducted to evaluate the potential presence of metal objects beneath the existing pavement.

The site soils consisted primarily of silty sand with in situ moisture contents slightly above optimum; see Table 2 for details. Therefore, they will likely require moisture-conditioning (drying) prior to compaction. We do not anticipate major compaction-related issues based on types of soils and in situ moisture contents. Proper moisture-conditioning and recompaction is the key for reconstruction projects.

4.1 NEW PAVEMENT DESIGN

The recommend minimum pavement thicknesses (flexible and rigid) are presented on Figure 3. The recommended minimum pavement sections are based on the following:

- Caltrans design method (2017a, b).
- California R-value of 42.
- Subgrade Type I and South Coast Pavement Climate Region.
- Traffic indices (TIs) of 8 and 9 provided by BKF Engineers.

The minimum thickness of compacted basement soil and aggregate (AB) are outlined on Figure 3. The basement soils should be firm, hard, and unyielding, and not "pumping" prior to placing the AB. The AB requirements and specifications are outlined on Figure 3. If the basement soil cannot be compacted, the soil should be overexcavated as noted in Section 4.3.

		ARHI	M/JPCP/HM/	A Course		▲		
	Base	Base Course			Total Pavem	I Pavement Section		
	ment Soil							
						Sul	bgrade	
			MINIM		IESS (inche	s)		
	ARHM/I	HMA/AB	НМА	A/AB	ARHM	//HMA	JPCP	
							TI = 8 and 9 Without Latera	
COURSE	TI = 8	TI = 9	TI = 8	TI = 9	TI = 8	TI = 9	Support	
COURSE	TI = 8	TI = 9 2	TI = 8 	TI = 9 	TI = 8 2	TI = 9 2		
ARHM ¹			TI = 8 5	TI = 9 6				
	2	2			2	2	Support 	

1. Asphalt rubber hot mix (ARHM) should satisfy the requirements of the Standard Specifications for Public Works Construction (Greenbook) Sections 203 and 302 (Building News, 2018).

 Hot mix asphalt (HMA) and jointed plain concrete pavement (JPCP) should satisfy the requirements of Caltrans Standard Specifications Sections 39 and 40 (Caltrans, 2018a), respectively, or Greenbook Sections 203 and 302, and 201 and 302 (Building News, 2018), respectively.

3. Base course = Type II AB or crushed miscellaneous base (CMB), in accordance with Caltrans Standard Specifications Section 26 (Caltrans, 2018a) or Greenbook Sections 200-2.4 (Building News, 2018), respectively. The minimum relative compaction is 95% in accordance with ASTM D1557.

4. Compacted in-place natural basement soil or fill; at least 95% relative compaction.

5. Basement soil can be replaced if required; see Section 4.3.

4.2 SOIL INFILTRATION CHARACTERISTICS

Based on field percolation tests and the Kozeny-Carman equation, a range of infiltration rates from 0.2 inches to 1 inch per hour were determined. The infiltration rate based on one laboratory test was determined to be an outlier based on subsurface soil types encountered at the site and our experience. Based on percent fines, encountered soil type in the field, and past experience, we consider 0.4 inches per hour as an appropriate design infiltration rate for this site. The County of Los Angeles requires an infiltration rate of 0.3 inches per hour and depth to groundwater (infiltration device invert separation) greater than 10 feet bgs as minimum requirements for infiltration considerations. Any site with potential for previous contamination should be investigated. The soil types should be confirmed in the field during installation of infiltration devices.

4.3 EARTHWORK

Minor earthwork (cuts and fills less than 2 to 3 feet) may be required to construct the new pavement and provide compacted soil beneath pavement.

Prior to the start of construction, the following should be performed:

- All utilities should be located in the field and rerouted, removed, abandoned, or protected.
- Utility owners should be notified of the planned work so that utility work can be performed concurrently with or prior to construction.
- Areas to be graded should be stripped of debris and the material removed from the site.

The bottom of the excavation should then be:

- Scarified to a depth of 8 inches.
- Moisture-conditioned to approximately 2% above optimum moisture content.
- Compacted to at least 95% relative compaction.¹

The compacted subgrade soils should be firm, hard, and unyielding.

Fill should be compacted by:

- Placing in loose layers less than 8 inches thick.
- Moisture-conditioning to 2% above optimum moisture content.
- Compacting to at least 95% relative compaction.

Import granular materials for fill should meet the criteria in Table 4.

¹ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by ASTM D1557 test method. Optimum moisture content is the moisture content corresponding to the maximum dry density, as determined by the ASTM D1557 test method.

Table 4 - IMPORT FILL CRITERIA

CRITERIA	IMPORT FILL				
Maximum particle size (inches)	2				
Maximum liquid limit (%)	10				
Maximum plasticity index (%)	5				
Maximum percentage passing the #200 sieve (%)	30				
R-value (minimum) ¹	42				
R-value (minimum) 42 Note(s): 1. Minimum R-value of 42 required for fills for pavement construction. 2. Import fill to the Project site should be tested for corrosion potential and free from contamination.					

Site grading may be accomplished with conventional heavy-duty construction equipment. The fill should be compacted using soil compactors designed specifically for compaction or vibratory padded drum rollers as defined by the latest Caterpillar Performance Handbook or equivalent.

4.4 EXCAVATIONS AND TEMPORARY AND PERMANENT SLOPES

We do not anticipate major excavation or shoring work during construction. However, the stability of temporary excavations is a function of several factors, including the total time the excavation is exposed, moisture condition, soil type and consistency, and contractor's operations. The contractor is responsible for excavation safety. As a guideline, temporary construction excavations should be planned with slopes no steeper than 1.5H:1V (horizontal to vertical). The contractor should strictly adhere to grading requirements of the City of Pico Rivera and/or the County of Los Angeles and applicable health and safety regulations, including those of the Occupational Safety and Health Administration (OSHA).

Permanent compacted fill slopes (if any) should be planned no steeper than 2H:1V. The slopes should be paved or covered with vegetation to reduce surface erosion.

4.5 SOIL CORROSION POTENTIAL

A total of four soil samples collected during the current exploration were tested for pH, soluble chloride and soluble sulfate, and soil electrical resistivity for corrosion potential, as summarized in Table 5. The corrosion potential test results are presented in Appendix C.

Also, presented in Table 5 are Caltrans (2018b) and County of Los Angeles (2013) corrosion criteria. Based on Caltrans and County of Los Angeles standards and the chemical test results, the on-site soils do not present a corrosive environment.

TEST TYPE	CRITERIA FOR CORROSIVE MATERIALS	RANGE OF TEST VALUE	
pH ¹	< 5.5	8.0 - 8.9	
Water-Soluble Sulfate Content (ppm) ¹	> 2,000	18 - 60	
Water-Soluble Chloride Content (ppm) ¹	> 500	18 - 30	
Minimum Electrical Resistivity (ohms-cm) ²	< 1,000	2,546 - 13,400	
Note(s): 1. Caltrans (2018b). 2. County of Los Angeles (2013).			
 ppm = parts per million. 			

Table 5 - CORROSION POTENTIAL

Borrow soils imported to the Project site should be tested for corrosion potential.

4.6 CONCRETE FLATWORK

Concrete flatwork (i.e., hardscape, sidewalks, curbs, and gutters) can be adversely influenced if underlain by potentially expansive soils. The on-site soils were classified as having very low potential for expansion; therefore, the potential for the on-site soils to affect any concrete flatwork is considered to be very low.

5 PLAN REVIEW, CONSTRUCTION OBSERVATION, AND TESTING

DYA should be retained to review the finished grading earthwork and specifications for conformance with the intent of our recommendations. The review will enable DYA to modify the recommendations if final design conditions are different than presently understood.

During construction, DYA should provide field observation and testing to check that the site and subgrade preparation, base material quality, and compaction conform to the intent of these recommendations and the job specifications. This would allow DYA to develop supplemental recommendations as appropriate for the actual soil conditions encountered and the specific construction techniques used by the contractor.

As needed during construction, DYA should be retained to consult on geotechnical questions, construction problems, and unanticipated site conditions.

6 LIMITATIONS

This report has been prepared for this Project in accordance with generally accepted geotechnical engineering practices common to the local area. No other warranty, expressed or implied, is made.

The analyses and recommendations contained in this report are based on the field exploration and laboratory testing conducted in the area. The results of the field investigation indicate subsurface conditions only at the specific locations and times, and only to the depths penetrated. They do not necessarily reflect strata variations that may exist between such locations. Although subsurface conditions have been explored as part of the investigation, we have not conducted chemical laboratory testing on the samples obtained, nor evaluated the site with respect to the presence or potential presence of contaminated soil or groundwater conditions.

The validity of our recommendations is based in part on assumptions about the stratigraphy. Observations during construction can help confirm such assumptions. If subsurface conditions different from those described are noted during construction, recommendations in this report must be reevaluated. DYA should be retained to observe earthwork construction in order to help confirm that our assumptions and recommendations are valid or to modify them accordingly. In accordance with California Building Code Chapter 17 Section 1704A, DYA cannot assume responsibility or liability for the adequacy of recommendations if we do not observe construction.

This report is intended for use only for the project described. In the event that any changes in the nature, design, or location of the facilities are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by DYA.

7 BIBLIOGRAPHY

ASTM International, 2010, Annual Book of Standards, Vol. 4.08 and 4.09, Soil and Rock.

Building News, 2018, "Greenbook," Standard Specifications for Public Works Construction.

- California Geological Survey, 1998, Seismic Hazard Zone Report for the Whittier 7.5-minute quadrangle, Los Angeles and Orange Counties, California 1998.
- Caltrans, 2017a, California Highway Design Manual, Chapter 600, Pavement Engineering, November 20, 2017.
- Caltrans, 2017b, California Highway Design Manual, Chapter 630, Flexible Pavement, November 20, 2017.
- Caltrans, 2018a, Caltrans Standard Specifications.
- Caltrans, 2018b, Corrosion Guidelines, Material Engineering and Testing Services, Corrosion Technology Branch, November 2012.
- Chapuis, Robert P., and Michel Aubertin, 2003, On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils, Published on the NRC Research Press Web Site at http://cgi.nrc.ca on May 20, 2003.
- County of Los Angeles, 2013, Manual for Preparation of Geotechnical Reports, Geotechnical and Material, Engineering Division, July 1, 2013.
- County of Los Angeles, 2017, Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration.
- Geotracker, 2019, http://geotracker.waterboards.ca.gov/gama/gamamap.
- United States Department of the Interior, Bureau of Reclamation, 1998, Earth Manual, Third Edition, Earth Sciences and Research Laboratory, Geotechnical Research.

APPENDIX A -PROJECT PLANS (Not Available)

K:\DATAFLS\PROJECTS\2018\2018-027 - PICO RIVERA\REPORT\PAVEMENT\GEOTECHNICAL REPORT (MINES AVE) V2 (04-08-2019).DOCX

APPENDIX B -FIELD EXPLORATION

K:\DATAFLS\PROJECTS\2018\2018-027 - PICO RIVERA\REPORT\PAVEMENT\GEOTECHNICAL REPORT (MINES AVE) V2 (04-08-2019).DOCX

APPENDIX B - FIELD EXPLORATION

The current field exploration for the Project consisted of drilling six borings (DYB-01 through DYB-06A). The approximate boring locations are shown on the Site Plan, Figure 2.

Prior to drilling the borings, the field exploration locations were marked in the field and Underground Service Alert (USA) was notified. The field exploration locations were subsequently checked for underground utilities using geophysical techniques. During the geophysical survey, the geophysics team picked up strong signals indicating metal and suspected reinforcement rebar to be present beneath the asphalt over the entirety of the USA marked location. The boring location DYB-06 had to be abandoned and a new boring location, DYB-06A, was surveyed and marked for hand auguring. The geophysical survey was performed by Southwest Geophysics, Inc.

Five borings were drilled by 2R Drilling, Inc., on December 6th, 2018, with a truck-mounted CME-75 drill rig using hollow-stem-auger drilling techniques to a maximum depth of 6.5 feet, and one boring was drilled using a hand auger (DYB-06A) due to underground utility conflicts. Our field engineer observed the drilling operations and collected drive samples for visual examination and subsequent laboratory testing. Drive samples were collected with a 2.4-inch-inside-diameter (3.0-inch-outside-diameter) modified California split-barrel sampler lined with stainless steel tubes in accordance with ASTM International (ASTM) D1586. The California split-barrel sampler was driven with a 140-pound automatic trip hammer falling 30 inches. The hammer used during the field exploration had an efficiency rating of 80% per 2R Drilling, Inc.

The hammer blows required to drive the modified California sampler were converted to equivalent standard penetration test (SPT) N-values by multiplying by 0.65 (N = 0.65 x modified California blows per foot).

Soils encountered in the borings were classified in general accordance with the ASTM International (ASTM) Soil Classification System (ASTM D2487 and 2488), summarized on Plate B1. Boring logs presented on Plates B2 through B7 were prepared from visual examination of the samples, cuttings obtained during drilling operations, and results of laboratory tests.

Groundwater was not encountered during the field exploration. Borings were backfilled with soil cuttings along with pea gravel and the surface patched with cold patch asphalt.

SOIL CLASSIFICATION SYSTEM-ASTM D2487

	MAJOR DIVISIONS		SYM	BOLS	TYPICAL	
	WAJOR DIVISION	15	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
COARSE-GRAINED SOILS	MORE THAN 50% OF	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
UCIES	COARSE FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SANDY	(LITTLE OR NO FINES)		SP	POORLY GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES	
		SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
		(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE-GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% OF MATERIAL IS SMALLER				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
THAN NO. 200 SIEVE SIZE	E SILTS AND LIQUID LIMIT GREATER CLAYS THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
	HIGHLY ORGANIC SOIL	S		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

"Push" Sampler

Split Barrel "Drive" Sampler With Liner

Standard Penetration Test (SPT) Sampler

Dual-Mass Dynamic Cone Penetration (DCP) Test

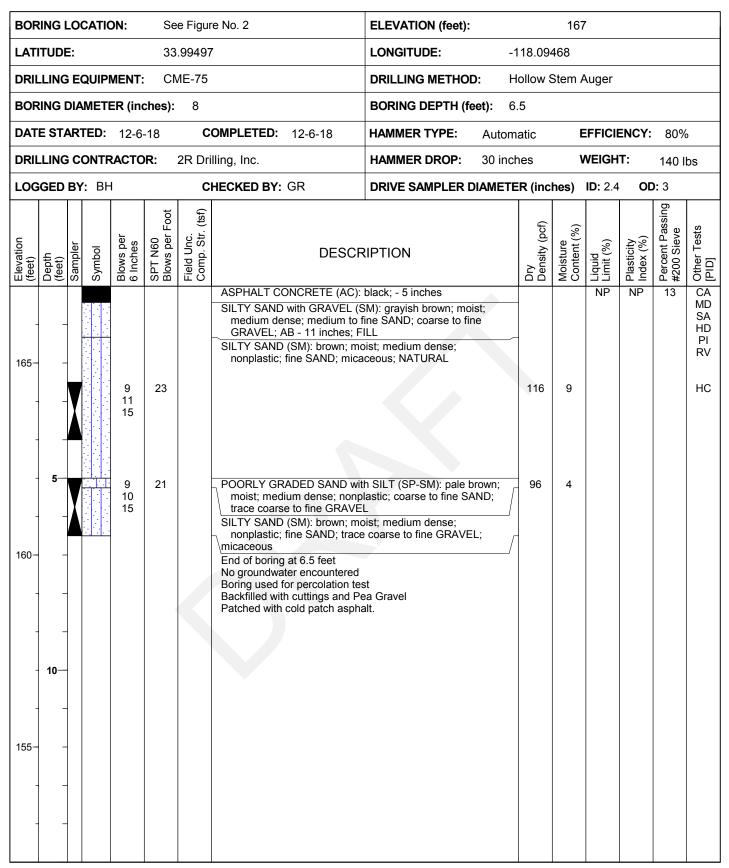
Concrete/Rock Core

Groundwater Surface

SPT "N" = 0.65 x modified California blows per foot

NP = Nonplastic
EI = Expansion Index Test
SG = Specific Gravity
SE = Sand Equivalent
UC = Unconfined Comp.
CD = Consol. Drained Triaxial.
CU = Consol. Undrained Triaxial.
UU = Undrained, Unconsol. Triaxial.
RV = R-Value
CA = Chemical Analysis
DS = Direct Shear

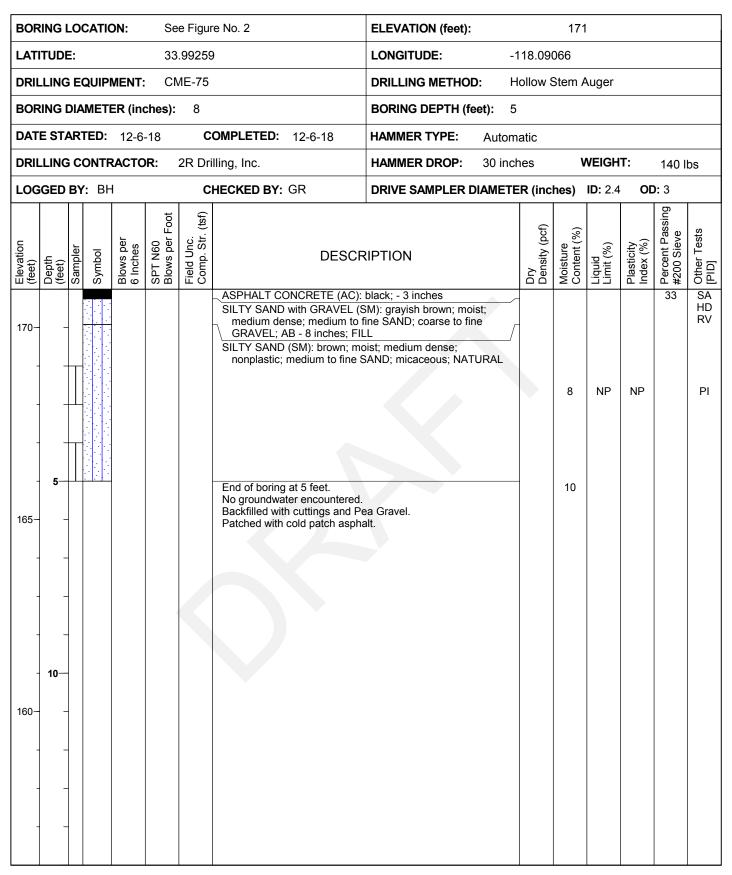
CN = Consolidation


CP = Collapse Potential SA = Grain size; HD = Hydrometer

MD = Compaction Test

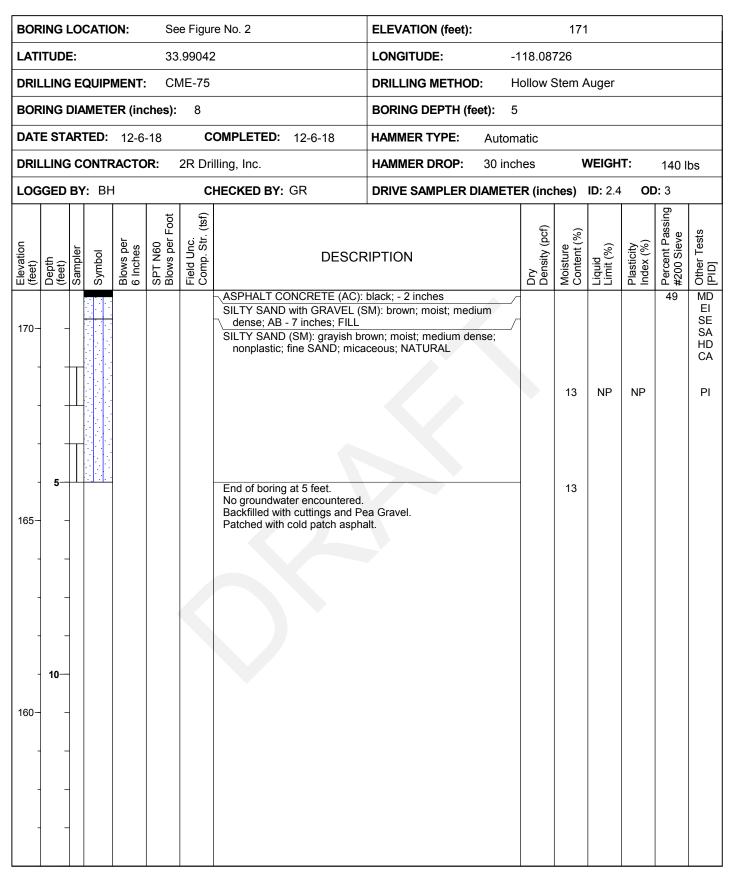
HC = Hydraulic Conductivity Test

CBR = California Bearing Ratio

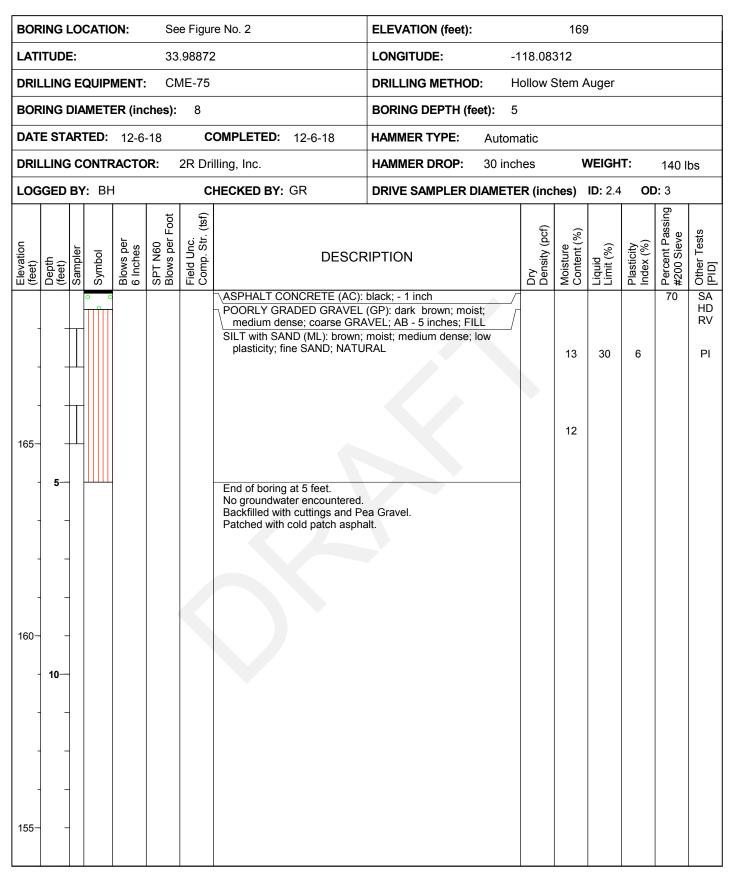

[PID] Reading in ppm above background

Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027

Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ


-

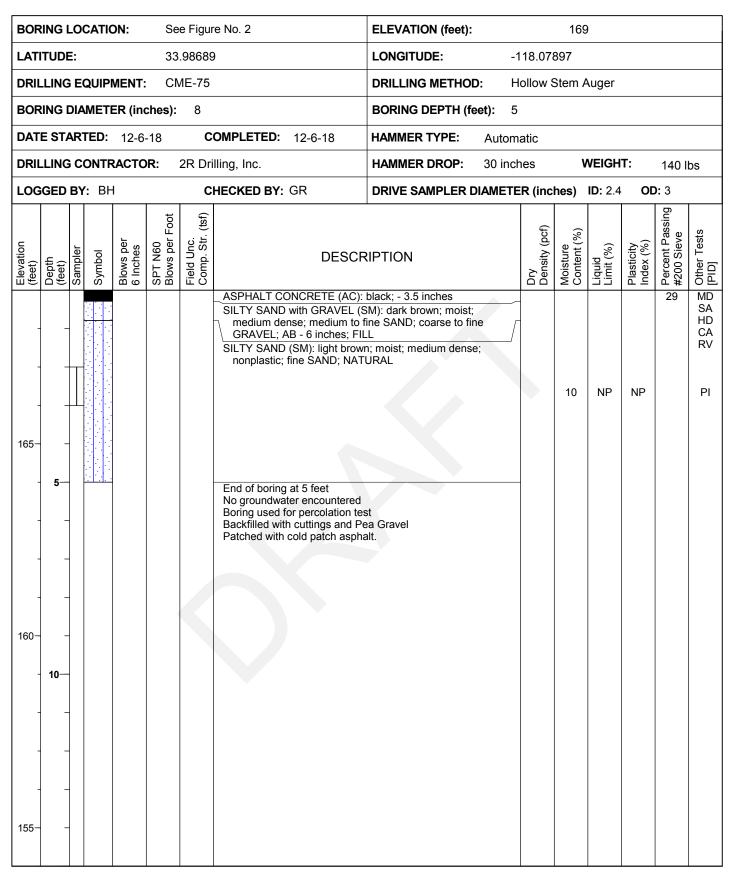
Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027


Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ

-

Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027

Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ



PLATE

B5

Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027

Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ

PLATE

B6

Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027

Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ

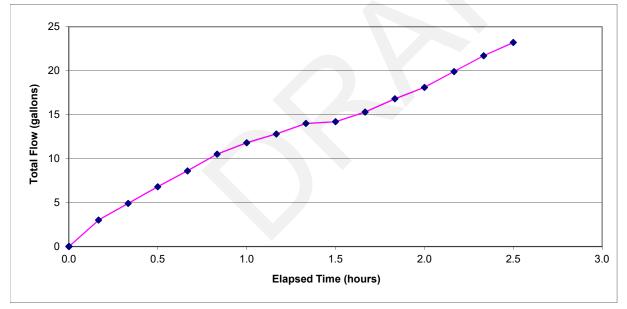
BORING LOCATION: See Figure No. 2	ELEVATION (feet):	165	
LATITUDE: 33.98454	LONGITUDE: -118.0	7424	
DRILLING EQUIPMENT: CME-75	DRILLING METHOD: Hand	∖uger	
BORING DIAMETER (inches): 4	BORING DEPTH (feet): 6		
DATE STARTED: 1-29-19 COMPLETED: 1-29-19	HAMMER TYPE: N/A	EFFICIENCY:	N/A%
DRILLING CONTRACTOR: DYA	HAMMER DROP: N/A inches	WEIGHT:	N/A lbs
LOGGED BY: BH CHECKED BY: GR	DRIVE SAMPLER DIAMETER (in	ches) ID: 2.4 OI	D: 3
Elevation (feet) Depth (feet) Symbol Blows per Blows per Blows per Comp. Str. (tsf)		Moisture Content (%) Liquid Limit (%) Plasticity Index (%)	Percent Passing #200 Sieve Other Tests [PID]
SILTY SAND with GRAVEL	SM): brown; moist; coarse to RAVEL; FILL - two thin layers underneath gravel surface		Δ ¥ Ο Ϥ 23 CA SA RV HD

Page 1 of 1 Pico Rivera Regional Bikeway Project Project No. 2018-027

Library: DYLIB.GLB; Template: DYLG; Prj ID: 2018-027.GPJ

B7

PROJECT NO. DATE FIELD DATA BY COMPUTED BY CHECKED BY


2018-027
12/7/2018
OB
BH
OB

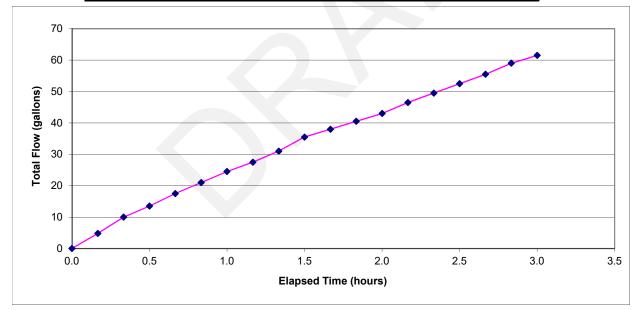
PROJECT: 2018-027 SUBJECT: Percolation Rate LOCATION: Pico Rivera (DYB-01) DATE OF TEST: 12/6/2018

Purpose: Calculate percolation rate in accordance with LADPW guidelines.

Reference: LADPW Guidelines

Height of water in well, h	58	inches	
Depth to bottom of well	5	feet	
Radius of well, r	4	inches	
Discharge rate of water from the well for steady-state condition, q	8.36	gallons per hour	
Water temperature, T	54	deg. F	

Note: Line shows data considered to have achieved 'steady state' flow.


Percolation Rate	1.3	inches per hour
Infiltration Rate (max per LADPW)	0.43	inches per hour

				2018-027 12/7/2018
	& ASSOCIATES		FIELD DATA BY	GR
	Geotechnical Services		COMPUTED BY	B.H.
			CHECKED BY	OB
PROJECT:	2018-027			
SUBJECT:	Percolation rate			
LOCATION:	Pico Rivera (DYB-05)	DATE OF TEST:	12/6/2018	

Purpose: Calculate percolation rate in accordance with LADPW guidelines.

Reference: LADPW Guidelines

Height of water in well, h	58	inches
Depth to bottom of well	5	feet
Radius of well, r	4	inches
Discharge rate of water from the well for steady-state condition, q	19.90	gallons per hour
Water temperature, T	54	deg. F

Note: Line shows data considered to have achieved 'steady state' flow.

Percolation Rate	3.05	inches per hour
Infiltration Rate (max per LADPW guideline	1.02	inches per hour

APPENDIX C -LABORATORY TESTING

K:\DATAFLS\PROJECTS\2018\2018-027 - PICO RIVERA\REPORT\PAVEMENT\GEOTECHNICAL REPORT (MINES AVE) V2 (04-08-2019).DOCX

APPENDIX C - LABORATORY TESTING

Diaz•Yourman & Associates selected soil samples to be tested and tests to be performed on the selected samples. Laboratory testing was performed by Hushmand Associates, Inc. Laboratory data are summarized on the boring logs and presented on Plates C1 through C21. A summary of the geotechnical laboratory testing is presented in Table C1.

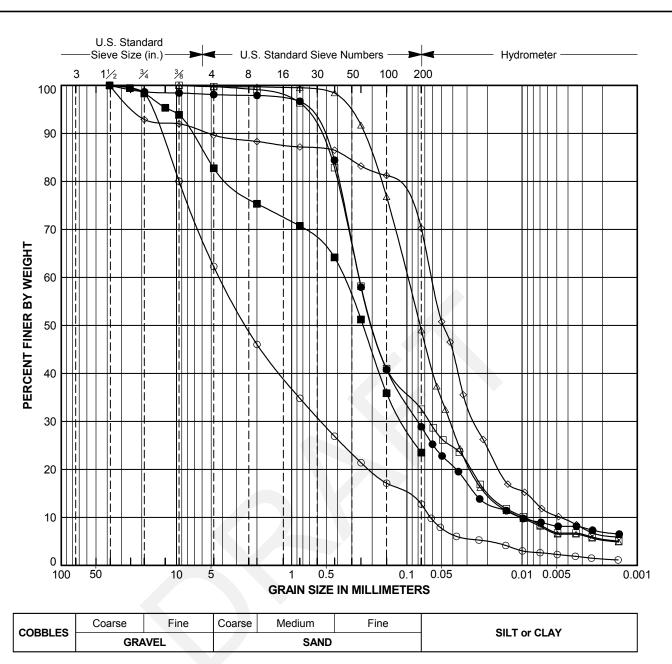
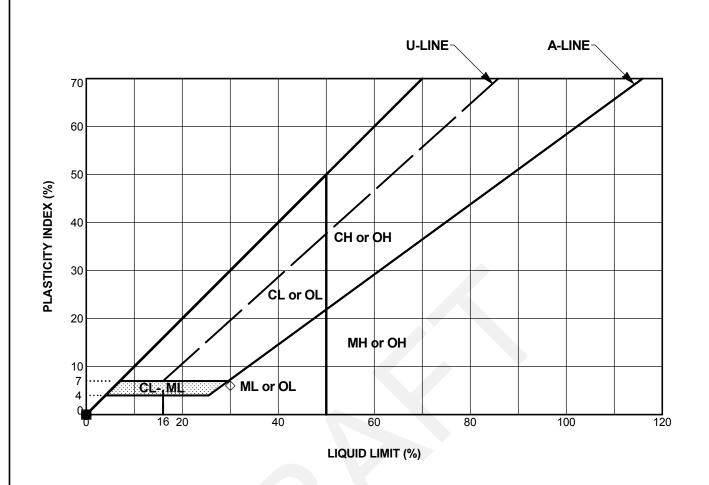

TEST NAME	PROCEDURE	PURPOSE	LOCATION
Percent Passing the No. 200 Sieve	ASTM D1140	Classification, index properties	Boring Logs
Moisture Content, Dry Density	ASTM D2216	Classification, index properties	Boring Logs
Grain-Size Distribution	ASTM D422	Classification, index properties	Plate C1
Atterberg Limits	ASTM D4318	Expansion potential, classification, index properties	Plate C2
Expansion Index	ASTM D4829	Potential for expanding soil	Plate C3
Sand Equivalent	CTM 217	Proportion of fine material	Plate C4
Hydraulic Conductivity	ASTM D5084-10	Hydraulic conductivity of soil	Plate C5
Compaction	ASTM D1557	Earthwork	Plates C6 through C9
Resistance (R-) Value	ASTM D2844 CTM 301	Pavement thickness design	Plates C10 through C19
pН	CTM 532	Corrosion potential	Plates C20 and C21
Resistivity	CTM 532	Corrosion potential	Plates C20 and C21
Soluble Sulfates	CTM 417-B	Corrosion potential	Plates C20 and C21
Soluble Chlorides	CTM 422	Corrosion potential	Plates C20 and C21

Table C1 - LABORATORY TESTING SUMMARY

• CTM = California (Caltrans) Test Method.


Laboratory Testing by:

Symbol	Source	Depth (feet)	Classification	Natural M. C. (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing #200 Sieve
\odot	DYB-01	1.5	SILTY SAND (SM)		NP	NP	13
	DYB-02	1.5	SILTY SAND (SM)				33
\bigtriangleup	DYB-03	1.5	SILTY SAND (SM)				49
\diamond	DYB-04	1.5	SILT WITH SAND (ML)	13	30	6	70
	DYB-05	1.5	SILTY SAND (SM)				29
	DYB-06A	1.5	SILTY SAND (SM)				23

PARTICLE SIZE ANALYSIS

Pico Rivera Regional Bikeway Project

Project No. 2018-027

Laboratory Testing by:

Test Method: ASTM D4318

Symbol	Source	Depth (feet)	Classification	Natural M. C. (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing #200 Sieve
\odot	DYB-01	1.5	SILTY SAND (SM)		NP	NP	NP	13
	DYB-02	2.5	SILTY SAND (SM)	8	NP	NP	NP	
\bigtriangleup	DYB-03	2.5	SILTY SAND (SM)	13	NP	NP	NP	
\diamond	DYB-04	1.5	SILT WITH SAND (ML)	13	30	24	6	70
•	DYB-05	2.5	SILTY SAND (SM)	10	NP	NP	NP	

PLASTICITY CHART

Pico Rivera Regional Bikeway Project

Project No. 2018-027

EXPANSION INDEX

ASTM D4829

Diaz yourman
Pico Rivera Bikeway
2018-027
DYB-03
BULK
0-5

Soil Description: Brown, Silty Sand (SM)

INITIAL SPECIMEN INFO					
Wt. of wet soil + cont.	164.78	g			
Wt. of dry soil + cont.	148.04	g			
Wt. of container	11.70	g			
Wt. of water	16.74	g			
Wt. of dry soil	136.34	g			
Moisture Content	12.28	%			
Wt. of wet soil + ring	569.24	g			
Wt. of ring	190.76	g			
Wt. of wet soil	378.48	g			
Wet density of soil	114.7	pcf			
Dry density of soil	102.1	pcf			
Specific gravity of soil	2.68	_			
Saturation	51.6	%			

HAI Project No.:	DYAL-18-025
Apparatus #:	1
Tested by:	MB
Checked by:	KL

1/2/2019

FINAL SPECIMEN INFO Wt. of wet soil + cont. 596.05 g Wt. of dry soil + cont. 527.85 g Wt. of container 190.76 g Wt. of water 68.20 g Wt. of dry soil 337.09 g **Moisture Content** % 20.2 Elapsed Dial Time Δ h, Expansion Date & Time Reading (min) 1/8/2019 9:24 0 0 -0.0000 1/8/2019 9:34 10 -Add Distilled Water to Sample 0.0000 1/9/2019 9:24 1440 0.0000

Date:

Expansion Index =

0

SAND EQUIVALENT TEST CTM 217

Client:	Diaz yourman
Project Name:	Pico Rivera Bikeway
Project No.:	2018-027
Boring No.:	DYB-03
Sample No.:	Bulk
Soil Description:	Brown, Silty Sand (SM)

HAI Project No.: DYAL-18-025 Tested by: KL Checked by: KL/MJ Date: 01/02/19

PLATE

C4

T1	T2	Т3	Т4	R1	R2	SE	Average SE
10:00	10:10	10:11	10:31	8.30	1.80	22	
10:03	10:13	10:14	10:34	7.60	1.90	25	24
10:06	10:16	10:17	10:37	7.80	1.80	24	

T1 = Starting Time T2 = (T1 + 10 min) Begin Agitation (100 cycles in 30 sec) T3 = Settlement Starting Time T4 = (T3 + 20 min) Take Clay Reading (R1) and Sand Reading (R2)

Sand Equivalent = R2 / R1 * 100 Record SE as Next Higher Integer

Client:	Diaz yourman
Project Name:	Pico Rivera Bikeway
Project No.:	2018-027
Boring No.:	DYB-01
Sample No:	1
Sample Type:	Undisturbed Tube
Sample Description:	Brown, Silty Sand (SM)

1. SPECIMEN INFORMATION

HYDRAULIC CONDUCTIVITY

ASTM D5084-10

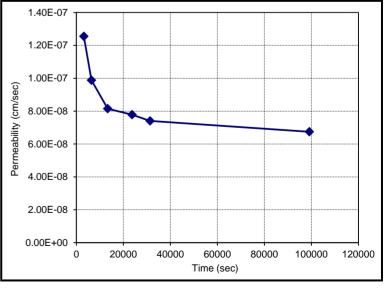
HAI Project No.:	DYAL-18-025
Tested by:	KL
Checked by:	KL
Date:	1/2/2019

Specimen Information	Initial			Final	
Average Diameter (D):	2.399 in	6.09 cm	2.419 in	6.14 cm	
Average Height (H):	3.105 in	7.89 cm	3.000 in	7.62 cm	
Sample Area (A)	4.520 in ²	29.16 cm ²	4.596 in ²	29.65 cm ²	
Total Volume (V):	14.035 in ³	229.99 cm ³	13.787 in ³	225.94 cm ³	
Wt. Wet soil (gr)	45	455.86		485.04	
Wt. Dry soil (gr)	41	410.74		410.74	
Moisture Content (%)	8	8.8		18.1	
Wet Density (pcf)	123.7		134.0		
Dry Density (pcf)	11	111.5		113.4	

2. SATURATION PHASE (B VALUE)

APPLIED PRESSURE	Initial (i)	Final (f)	∆ (i-f)	В (%)	
Cell Pressure	56	61	5	100%	
Back Pressure	53.1	58.1	5	- 100%	

4. HYDRAULIC CONDUCTIVITY TEST (Method C)


Test No.	Elapsed Time ∆t (sec)	Δh_1 (cm)	∆h₂ (cm)	K (cm/s)
1	3180	167.35	166.79	1.25E-07
2	3240	166.79	166.34	9.88E-08
3	6900	166.34	165.55	8.15E-08
4	10380	165.55	164.42	7.79E-08
5	7680	164.42	163.63	7.41E-08
6	67740	163.63	157.43	6.74E-08

Test Temp (ºC):	21
Correction factor for Temp T ^o :	0.9810
Hydraulic Conductivity (cm/sec):	7.52E-08
Corrected Hydraulic Conductivity for T ^o (cm/sec):	7.38E-08

3. CONSOLIDATION PHASE

	Cell Pressure Back Pressure	61.0 58.9			Effective Pressure	2.1	(psi)
	Time (min)		Volur	Volume Reading (cc)		Cell	
			Тор	Bottom	ΔV (cc)	Reading	ΔV (cc)
	0		7.8	7.1	0	8.0	0
	1159		6.0	6.9	2.0	8.2	0.8

5. Permeability Phase

PLATE

Client :	Diaz yourman	HAI Project No.:	DYAL-18-025
Project Name:	Pico Rivera Bikeway	Tested by:	GA
Project Number:	2018-027	Checked by:	KL
Boring Number:	DYB-01	Date:	01/02/19
Sample No:	Bulk	Mold size (in):	6"
Depth (ft) :	0-5	Procedure:	С
Soil Description:	Brown, Silty Sand with Gravel (SM)	% Ret. on 3/4":	1.4

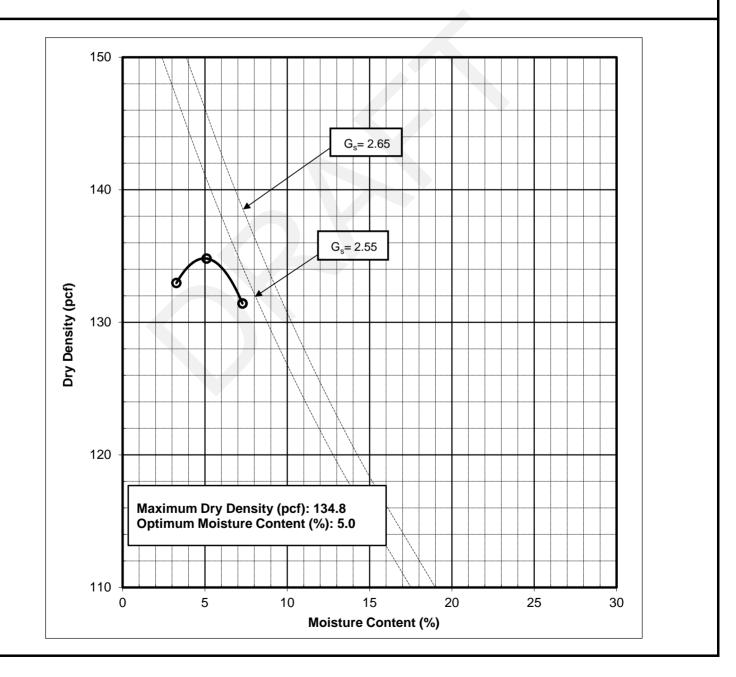
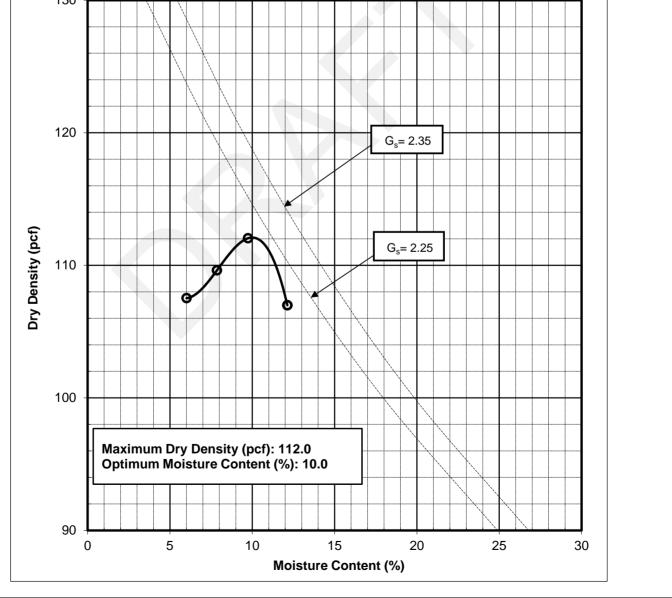
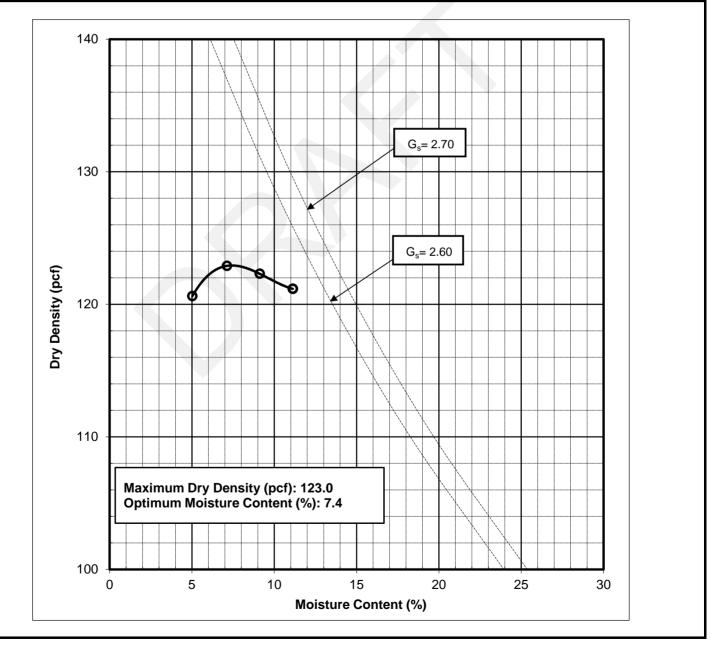
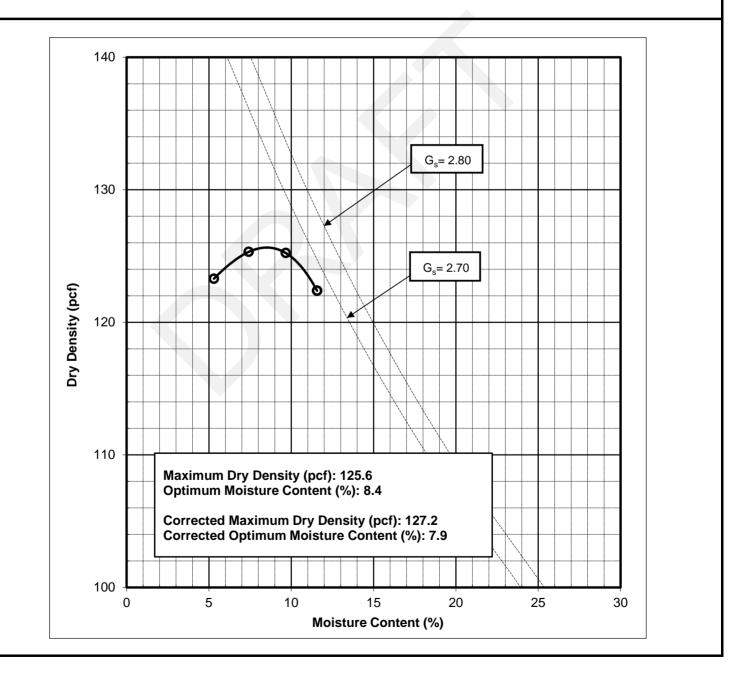



PLATE C6



Client :	Diaz yourman	HAI Project No.:	DYAL-18-025
Project Name:	Pico Rivera Bikeway	Tested by:	GA
Project Number:	2018-027	Checked by:	KL
Boring Number:	DYB-03	Date:	01/02/19
Sample No:	Bulk	Mold size (in):	4"
Depth (ft) :	0-5	Procedure:	А
Soil Description:	Brown, Silty Sand (SM)	% Ret. On #4:	0.3
[
130			7



Client :	Diaz yourman	HAI Project No.:	DYAL-18-025
Project Name:	Pico Rivera Bikeway	Tested by:	GA
Project Number:	2018-027	Checked by:	KL
Boring Number:	DYB-05	Date:	01/02/19
Sample No:	Bulk	Mold size (in):	4"
Depth (ft) :	0-5	Procedure:	А
Soil Description:	Brown, Silty Sand (SM)	% Ret. On #4:	1.9

Client :	Diaz yourman	HAI Project No.: [DYAL-18-025-2
Project Name:	Pico Rivera Bikeway	Tested by:	GA/MB
Project Number:	2018-027	Checked by:	KL
Boring Number:	DYB-06A	Date:	01/30/19
Sample No:	Bulk	Mold size (in):	4"
Depth (ft) :	0-5	Procedure:	В
Soil Description:	Brown, Silty Sand with Gravel (SM)	% Ret. on 3/8":	6.3

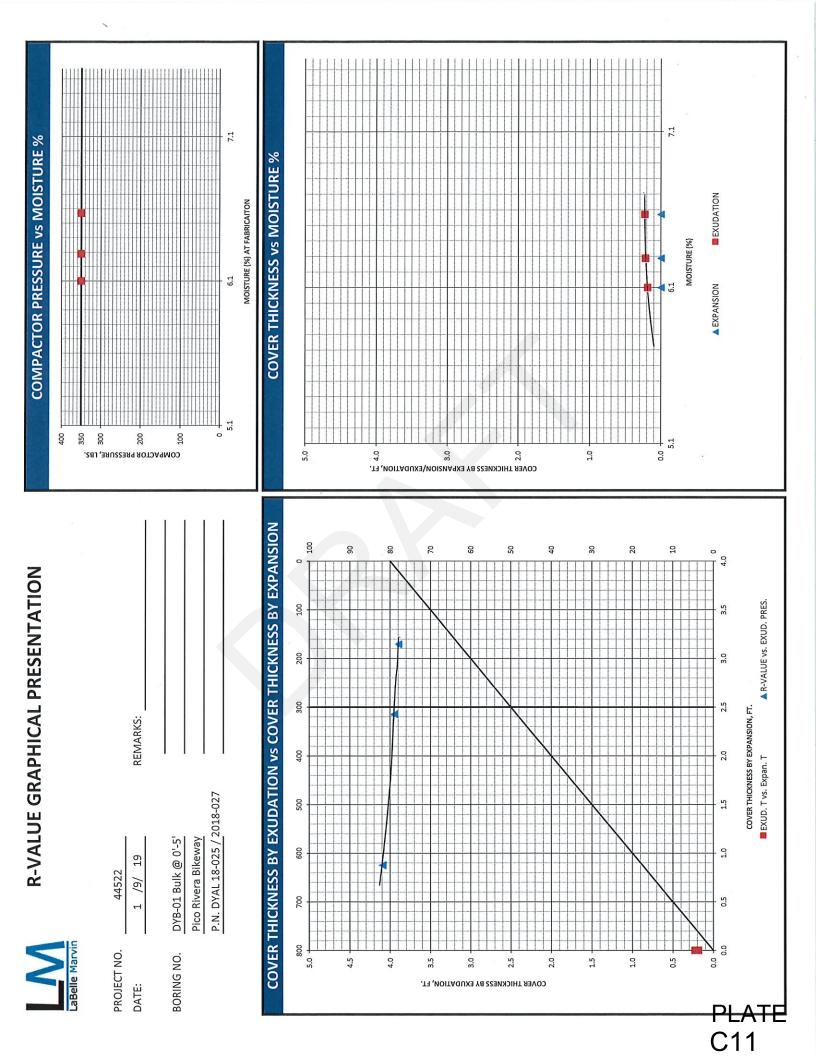
PROJECT No.	44522
DATE:	1/9/2019

BORING NO.

DYB-01 Bulk @ 0'-5' Pico Rivera Bikeway P.N. DYAL 18-025 / 2018-027

SAMPLE DESCRIPTION: Brwon Gravelly Sand

R-VALUE TESTING DATA CA TEST 301					
	SPECI				
	а	b	С		
Mold ID Number	13	15	6		
Water added, grams	30	35	32		
Initial Test Water, %	6.1	6.6	6.3		
Compact Gage Pressure,psi	350	350	350		
Exudation Pressure, psi	625	171	315		
Height Sample, Inches	2.43	2.46	2.44		
Gross Weight Mold, grams	3078	3062	3070		
Tare Weight Mold, grams	1968	1943	1958		
Sample Wet Weight, grams	1110	1119	1112		
Expansion, Inches x 10exp-4	0	0	0		
Stability 2,000 lbs (160psi)	9 / 16	11 / 19	10 / 18		
Turns Displacement	4.74	5.24	4.98		
R-Value Uncorrected	83	78	80		
R-Value Corrected	82	78	79		
Dry Density, pcf	130.4	129.3	129.9		


DESIGN CALCULATION DATA

Traffic Index	Assumed:	4.0	4.0	4.0
G.E. by Stability		0.18	0.23	0.22
G. E. by Expansion		0.00	0.00	0.00

		79	Examined & Checked: 1 /9/ 19
Equilibrium R-Value		by	
		EXUDATION	OROFESS/04
	Gf = 1.4% Retained o	1.25 n the	C 20659
REMARKS:	3/4" Sieve.		the lite
	Baskets Used.		Steven R. Marvin, RCE 30659
	Partial Free Drai	nage.	FOFCALIFORM

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

PLATE

PROJECT No.	44522	
DATE:	1/9/2019	

BORING NO.

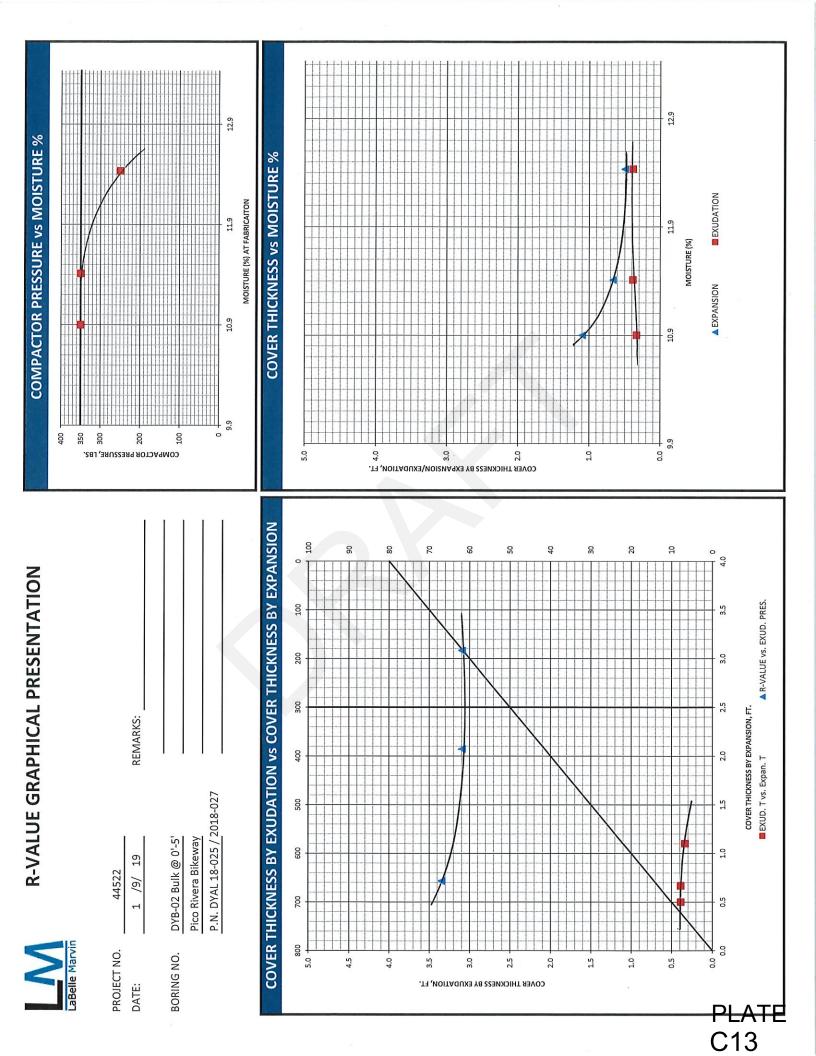
DYB-02 Bulk @ 0'-5' Pico Rivera Bikeway P.N. DYAL 18-025 / 2018-027

SAMPLE DESCRIPTION: Brown Silty Sand

R-VALUE TESTING DATA CA TEST 301					
		SPECIMEN ID			
	а	b	C		
Mold ID Number	10	11	12		
Water added, grams	20	10	5		
Initial Test Water, %	12.5	11.5	10.9		
Compact Gage Pressure, psi	250	350	350		
Exudation Pressure, psi	184	386	657		
Height Sample, Inches	2.48	2.40	2.39		
Gross Weight Mold, grams	3030	3009	3003		
Tare Weight Mold, grams	1947	1952	1948		
Sample Wet Weight, grams	1083	1057	1055		
Expansion, Inches x 10exp-4	15	20	33		
Stability 2,000 lbs (160psi)	17 / 35	16 / 33	15 / 28		
Turns Displacement	5.58	5.30	5.18		
R-Value Uncorrected	62	64	69		
R-Value Corrected	62	62	67		
Dry Density, pcf	117.6	119.7	120.6		

DESIGN CALCULATION DATA

Traffic Index	Assumed:	4.0	4.0	4.0
G.E. by Stability		0.39	0.39	0.34
G. E. by Expansion		0.50	0.67	1.10


		61	Examined & Checked: 1 /9/ 19
Equilibrium R-Value		by	A REAL PROFESSION
	14	EXPANSION	PROFESSION
REMARKS:	Gf = 0.0% Retained o 3/4" Sieve.	1.25 n the	Steven R. Marying RCE 30659

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

PLATE

C12

LaBelle Marvin, Inc. | 2700 South Grand Avenue | Santa Ana, CA 92705 | 714-514-3565

44522	
1/9/2019	

BORING NO. DYB-05 Bulk @ 0'-5' Pico Rivera Bikeway

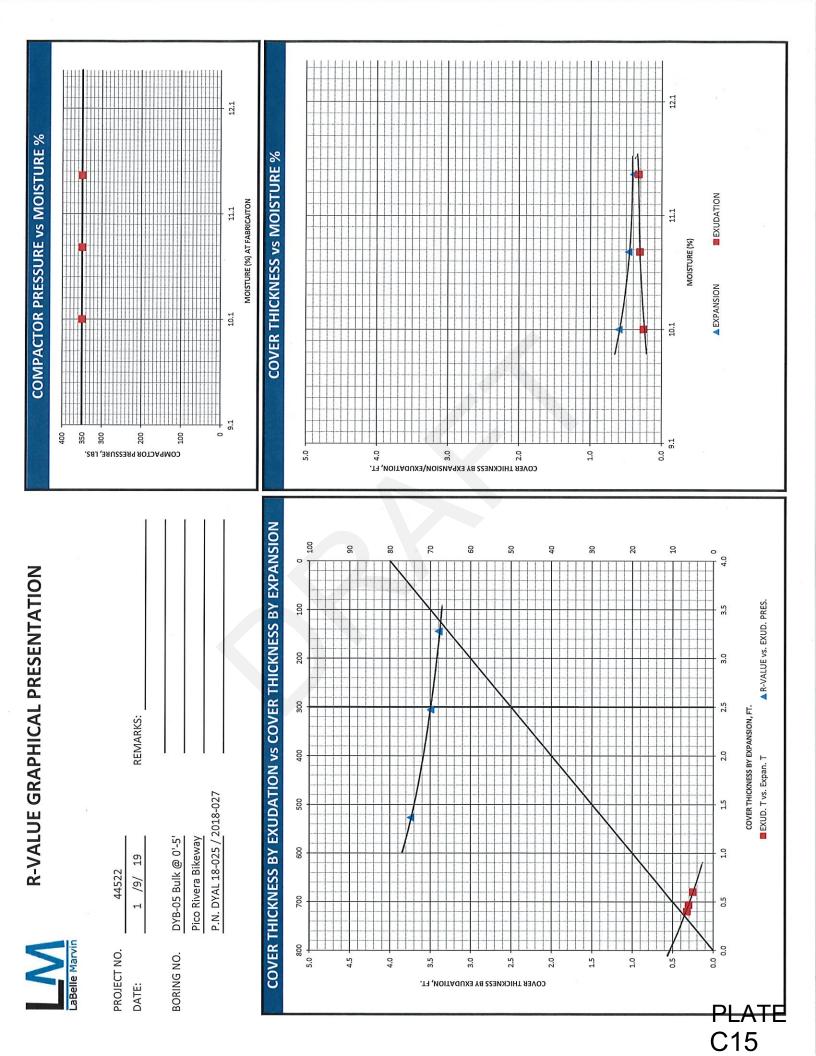
P.N. DYAL 18-025 / 2018-027

SAMPLE DESCRIPTION: Brown Silty Sand

R-VALUE TESTING DATA CA TEST 301					
	en e	SPECIMEN ID			
н. 	а	b	С		
Mold ID Number	7	8	9		
Water added, grams	67	60	53		
Initial Test Water, %	11.5	10.8	10.1		
Compact Gage Pressure,psi	350	350	350		
Exudation Pressure, psi	145	306	527		
Height Sample, Inches	2.57	2.57	2.57		
Gross Weight Mold, grams	3068	3053	2891		
Tare Weight Mold, grams	1955	1950	1775		
Sample Wet Weight, grams	1113	1103	1116		
Expansion, Inches x 10exp-4	12	14	18		
Stability 2,000 lbs (160psi)	15 / 30	14 / 27	12 / 23		
Turns Displacement	5.58	5.41	5.36		
R-Value Uncorrected	66	69	74		
R-Value Corrected	68	70	75		
Dry Density, pcf	117.7	117.4	119.5		

DESIGN CALCULATION DATA

Traffic Index	Assumed:	4.0	4.0	4.0
G.E. by Stability		0.33	0.31	0.26
G. E. by Expansion		0.40	0.47	0.60


		64	Examined & Checked: 1 /9/ 19
Equilibrium R-Value		by	and the second
		EXPANSION	OPROFESSIONA
			AS SEL MAD TO
	Gf =	1.25	86
0.0% Retained o		n the	₩ 3 0659
REMARKS:	3/4" Sieve.		Hard All
			Steven R. Mallin, RGE 80659
	Partial Free Drai	nage.	FOFCALIFO

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

PLATE

C14

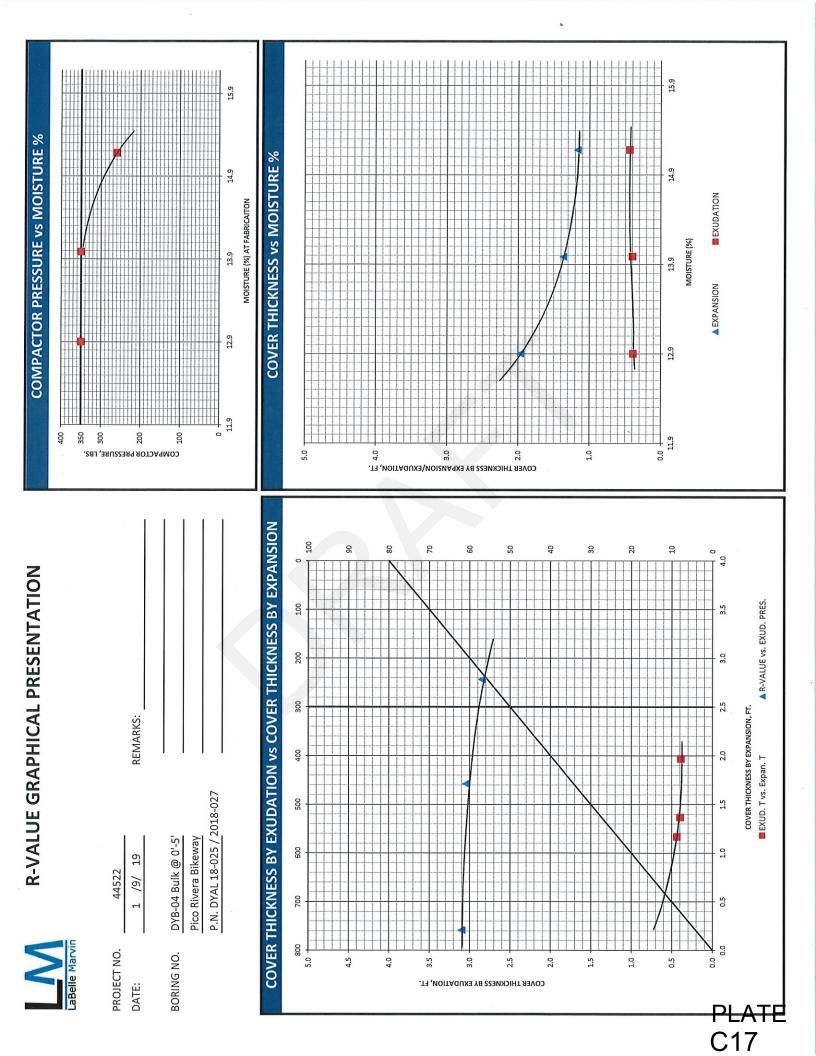
LaBelle Marvin, Inc. | 2700 South Grand Avenue | Santa Ana, CA 92705 | 714-514-3565

PROJECT No.	44522
DATE:	1/9/2019

BORING NO.

DYB-04 Bulk @ 0'-5' Pico Rivera Bikeway P.N. DYAL 18-025 / 2018-027

SAMPLE DESCRIPTION: Brown Silty Fine Sand


R-VALUE TESTING DATA CA TEST 301							
	SPECIMEN ID						
	а	b	С				
Mold ID Number	1	2	4				
Water added, grams	50	61	40				
Initial Test Water, %	14.0	15.2	12.9				
Compact Gage Pressure,psi	350	260	350				
Exudation Pressure, psi	458	244	759				
Height Sample, Inches	2.48	2.53	2.48				
Gross Weight Mold, grams	2982	2988	2976				
Tare Weight Mold, grams	1946	1956	1959				
Sample Wet Weight, grams	1036	1032	1017				
Expansion, Inches x 10exp-4	41	35	59				
Stability 2,000 lbs (160psi)	18 / 36	19 / 39	17 / 35				
Turns Displacement	5.48	5.92	5.43				
R-Value Uncorrected	61	57	62				
R-Value Corrected	61	57	62				
Dry Density, pcf	111.0	107.3	110.0				

DESIGN CALCULATION DATA

Traffic Index	Assumed:	4.0	4.0	4.0
G.E. by Stability		0.40	0.44	0.39
G. E. by Expansion		1.37	1.17	1.97

		42	Examined & Checked:	1 /9/ 19
Equilibrium R-Value		by		
		EXPANSION	ED PROFESSION	Kaj
	(A.		CE R. Ma	
	Gf =	1.25	1000000	
	2.7% Retained o	n the	C 30689	R
REMARKS:	3/4" Sieve.		Here	All
			Steven & Marvin RCE	1065
			OFCALIFO	

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301. PLATE

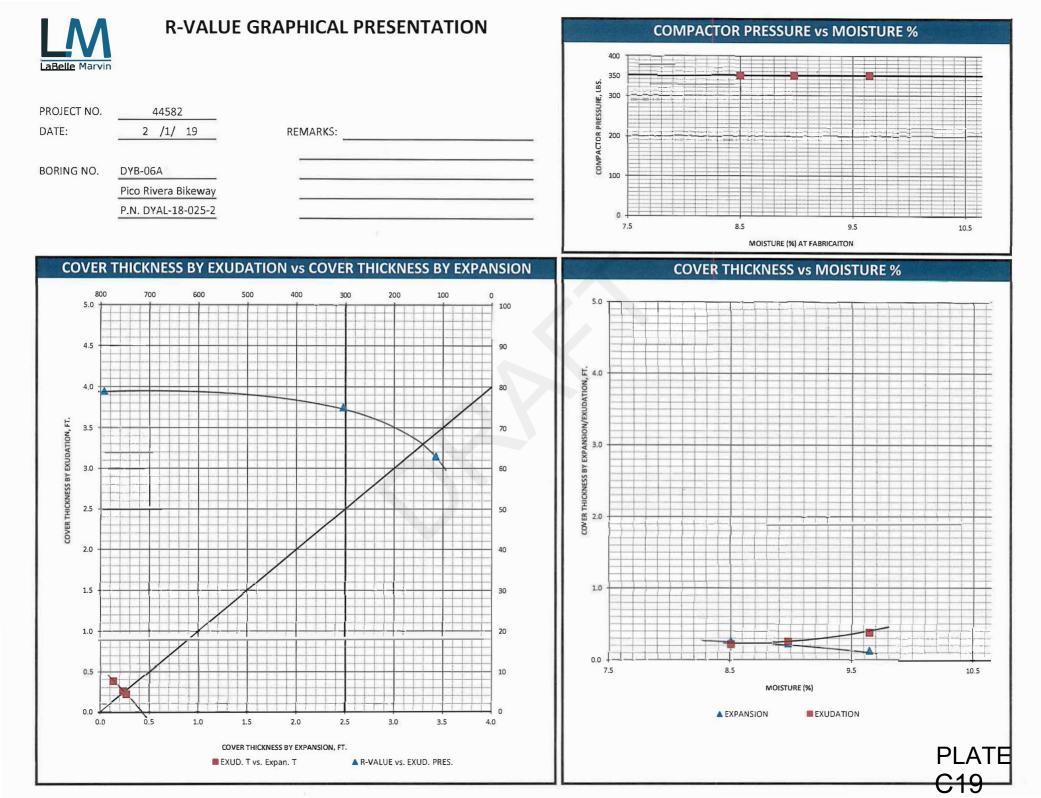
PROJECT No.	44582	
DATE:	2/1/2019	

DYB-06A

BORING NO.

Pico Rivera Bikeway	
P.N. DYAL-18-025-2	

SAMPLE DESCRIPTION: Brown Sand


R-VALUE TESTING DATA | CA TEST 301 SPECIMEN ID b а С Mold ID Number 1 2 3 Water added, grams 40 47 35 8.5 Initial Test Water, % 9.0 9.7 Compact Gage Pressure, psi 350 350 350 Exudation Pressure, psi 305 115 793 2.48 Height Sample, Inches 2.51 2.51 Gross Weight Mold, grams 3093 3093 3077 1959 1954 1947 Tare Weight Mold, grams Sample Wet Weight, grams 1134 1139 1130 Expansion, Inches x 10exp-4 7 4 8 13 / 22 Stability 2,000 lbs (160psi) 16 / 27 23 / 40 4.08 4.24 **Turns Displacement** 4.44 75 63 79 **R-Value Uncorrected** 79 **R-Value** Corrected 75 63 Dry Density, pcf 125.6 125.4 127.2

DESIGN CALCULATION DATA

Traffic Index Assumed	4.0	4.0	4.0
G.E. by Stability	0.26	0.38	0.22
G. E. by Expansion	0.23	0.13	0.27

		75	Examined & Checked:	2 /1/	19
Equilibrium R-Value		by			
		EXUDATION	PROFESSIONAL		
	<u> </u>		STAR R. MAR		
	Gf =	1.25	19 9 00050		
	2.0% Retained o	n the	C 30629		
REMARKS:	3/4" Sieve.		- Hall	14	>
			Steven Bo Marvin, BCE	0659	
			ATEOFCALIFO	and the second	

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

Soil Analysis Lab Results

Client: HAI Job Name: Pico Rivera Bikeway Client Job Number: DYAL-18-025 Project X Job Number: S190104A January 7, 2019

	Method	ASTM G187			ASTM D516		TM 12B	ASTM G51
Bore# /	Depth	Resistivity		Sulfates		Chlorides		pН
Description		As Rec'd Minimum						
	(ft)	(Ohm-cm)	(Ohm-cm)	(mg/kg)	(wt%)	(mg/kg)	(wt%)	
DYB-01 Bulk	0.0-5.0	32,830	13,400	30	0.0030	30	0.0030	8.69
DYB-03 Bulk	0.0-5.0	22,780	7,370	21	0.0021	21	0.0021	8.66
DYB-05 Bulk	0.0-5.0	45,560	12,060	18	0.0018	24	0.0024	8.89

Unk = Unknown

NT = Not TestedND = 0 = Not Detected

mg/kg = milligrams per kilogram (parts per million) of dry soil weight Chemical Analysis performed on 1:3 Soil-To-Water extract

Please call if you have any questions.

Prepared by,

Ernesto Padilla, BSME Field Engineer

Respectfully Submitted,

Eddie Hernandez, M.Sc., P.E. Sr. Corrosion Consultant NACE Corrosion Technologist #16592 Professional Engineer California No. M37102 ehernandez@projectxcorrosion.com

PLATE C20

Soil Analysis Lab Results

Client: HAI Job Name: Pico Rivera Bikeway Client Job Number: DYAL-18-025-2 Project X Job Number: S190201B February 6, 2019

	Method	ASTM G187		ASTM D516		ASTM D512B		ASTM G51
Bore# /	Depth	Resistivity		Sulfates		Chlorides		pН
Description		As Rec'd Minimum						
	(ft)	(Ohm-cm)	(Ohm-cm)	(mg/kg)	(wt%)	(mg/kg)	(wt%)	
DYB-06A Bulk	0.0-5.0	9,380	2,546	60	0.0060	18	0.0018	7.97

Unk = Unknown NT = Not Tested ND = 0 = Not Detected mg/kg = milligrams per kilogram (parts per million) of dry soil weight Chemical Analysis performed on 1:3 Soil-To-Water extract

Please call if you have any questions.

Prepared by,

Nathan Jacob Lab Technician

Respectfully Submitted,

Eddie Hernandez, M.Sc., P.E. Sr. Corrosion Consultant NACE Corrosion Technologist #16592 Professional Engineer California No. M37102 <u>ehernandez@projectxcorrosion.com</u>

PLATE C21

DISTRIBUTION

1 copy: Ms. Sheila Amparo, PE BKF Engineers 4675 MacArthur Court, Suite 400 Newport Beach, CA 92660

QUALITY CONTROL REVIEWER

Saroj Weeraratne, PhD, PE, GE Associate Engineer

BH/SN:sjd/dr

K:\DATAFLS\PROJECTS\2018\2018-027 - PICO RIVERA\REPORT\PAVEMENT\GEOTECHNICAL REPORT (MINES AVE) V2 (04-08-2019).DOCX

