RECON

Noise Analysis for the Blue Wave Hotel and Residential Project Imperial Beach, California

Prepared for Blue Wave Enterprise LLC 11273 Caminito Aclara San Diego, CA 92126 Contact: David Brienza

Prepared by RECON Environmental, Inc. 1927 Fifth Avenue San Diego, CA 92101 P 619.308.9333

RECON Number 9010 December 17, 2018

Jessich Hominey

Jessica Fleming, Environmental Analyst

TABLE OF CONTENTS

Acro	onyms	and Abbreviationsiii	i
Exe	cutive	Summary1	L
	Cons	truction Noise1	Ĺ
	Vehi	cle Traffic Noise	2
	On-s	ite Generated Noise4	ł
1.0	Intr	oduction4	ŀ
	1.1	Project Description4	ł
	1.2	Fundamentals of Noise	3
2.0	Арр	licable Standards)
	2.1	City of Imperial Beach General Plan)
	2.2	City of Imperial Beach Municipal Code10)
	2.3	California Code of Regulations11	L
3.0	Exis	sting Conditions12)
4.0	Ana	lysis Methodology14	ŀ
	4.1	Construction Noise Analysis	ł
	4.2	Traffic Noise Analysis	5
	4.3	On-site Generated Noise Analysis17	1
5.0	Fut	ure Acoustical Environment and Impacts18	\$
	5.1	Construction Noise	3
	5.2	Vehicle Traffic Noise20)
	5.3	On-site Generated Noise26	3
6.0	Con	clusions29)
	6.1	Construction Noise)
	6.2	Vehicle Traffic Noise29)
	6.3	On-site Generated Noise31	L
7.0	Ref	erences Cited	2
FIG	URES		
1:	Regi	onal Location	5
9.	Droid	oct Location on Aprial Photograph	

2:	Project Location on Aerial Photograph	
3:	Site Plan	
4:	Noise Measurement Locations	
5:	Construction Noise Contours	19
	Vehicle Traffic Noise Contours	21
7:	Modeled Receivers and Barrier Locations	23
8a:	On-Site Generated Noise Contours –Daytime	
8b:	On-Site Generated Noise Contours – Nighttime	

TABLE OF CONTENTS (cont.)

TABLES

1:	City of Imperial Beach Land Use – Noise Compatibility Guidelines	10
2:	County of San Diego Noise Ordinance Sound Level Limits	11
3:	Noise Measurements	14
4:	15-minute Traffic Counts	14
5:	Typical Construction Equipment Noise Levels	15
6:	On-Site Noise Compatibility Traffic Parameters	16
7:	Traffic Volumes	17
8:	Construction Noise Levels	20
9:	Future Vehicle Traffic Noise Levels without Barriers	22
10:	Future Vehicle Traffic Noise Levels at Exterior Use Areas	
	with and without Barriers	24
11:	Traffic Noise Levels with and without Project and Ambient Noise Increase	26
12:	On-Site Generated Noise Levels at Adjacent Property Lines	29

ATTACHMENTS

- 2: HVAC Specifications
- 3: SoundPLAN Data Construction Noise
- 4: SoundPLAN Data Vehicle Traffic Noise
- 5: FHWA RD-77-108 Off-Site Vehicle Traffic Noise
- 6: SoundPLAN Data On-Site Noise Sources

Acronyms and Abbreviations

ADT CalGreen Caltrans City CNEL dB dB(A) FHWA HVAC Leq Leq(8) Lpw MSCP project BV	Average daily traffic California Green Building Standards Code California Department of Transportation City of San Diego community noise equivalent level decibel A-weighted decibel Federal Highway Administration heating, ventilation, and air conditioning one-hour equivalent noise level eight-hour equivalent noise level sound power level Multiple Species Conservation Program Blue Wave Hotel and Residential project
MSCP	Multiple Species Conservation Program

Executive Summary

The Blue Wave Hotel and Residential project (project) site is located at 550 State Route 75 (SR-75) in the city of Imperial Beach, California. The <u>1.27</u>1.3-acre project site is currently undeveloped. The project would construct an approximate $73, \underline{847228}$ -gross-square-foot multi-use facility consisting of a four-story building containing <u>5140</u> residential dwelling units and <u>4751</u> hotel rooms. In addition, the project would construct 6,675 square feet of office/shop/restaurant space in a two-story building, and <u>1.2051,168</u> square feet of retail space.

This report discusses potential noise impacts from the construction and operation of the project. As part of this assessment, noise levels due to vehicle traffic were calculated and evaluated against City of Imperial Beach (City) noise and land use compatibility guidelines. In addition to compatibility, the potential for noise to impact adjacent receivers from future on-site sources and construction activity was assessed. Where impacts were identified, measures have been identified to comply with the City's noise standards. A summary of the findings is provided below.

Construction Noise

Project construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, building construction, loading, unloading, and placing materials and paving. Construction noise would potentially result in short-term impacts to surrounding properties. Residential uses are located north and east of the project site, and a recreational vehicle (RV) park is located south of the project site. The Municipal Code does not set daytime noise level limits on construction activities. However, the City commonly uses the County of San Diego's Noise Ordinance limit of 75 A-weighted decibels [dB(A)] eight-hour equivalent noise level ($L_{eq(8)}$) at residential uses during the daytime hours.

As calculated in this analysis, construction noise levels are not anticipated to exceed 75 dB(A) $L_{eq(8)}$ at the adjacent residential uses. Although the existing adjacent residences would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities would occur during the daytime hours and would comply with Section 9.32.020(H) of the City's Municipal Code. As construction activities associated with the project would comply with Municipal Code Section 9.32.020(H) and daytime noise levels would not exceed 75 dB(A) L_{eq} at adjacent residential uses, temporary increases in noise levels from construction activities would be less than significant.

Vehicle Traffic Noise

On-site Noise Compatibility

The main source of noise at the project site is vehicle traffic on SR-75. Exterior use areas include a rooftop pool for residential use, a second-floor breweryrestaurant terrace, and a ground-floor kids play area and courtyard. Due to the unique mixed-use nature of the project, various standards were applied based on the primary use of the area. The residential and transient lodging standards were applied to the residential uses (including the pool deck) and hotel uses, the playground standards were applied to the kids play area and courtyard, and the commercial standards were applied to the second-floor breweryrestaurant terrace. As shown, residential uses are "acceptable" with exterior noise levels up to 60 community noise equivalent level (CNEL) and "conditionally acceptable" with exterior noise levels up to 70 CNEL. Hotel uses are "acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 75 CNEL.

As calculated in this analysis, noise levels at the kids play area and courtyard would range from 66 to 68 CNEL and would be considered "acceptable" with playground uses, and noise levels at the second-floor terrace would range from 67 to 70 CNEL and would be considered "acceptable" with commercial uses. However, exterior noise levels at the rooftop pool deck would range from 63 to 64 CNEL and would be considered "conditionally acceptable" with residential uses. Therefore, mitigation would be required to reduce noise levels to comply with the City's compatibility standards. Based on the current site plan, required mitigation would include a 3.5-foot barrier adjacent to the rooftop pool. By incorporating this barrier in to the project, exterior noise levels would be reduced to 60 CNEL or less.

MM N-1: On-site Noise Barrier. Prior to the issuance of building permits, the City shall verify the building plans state the following and identify noise barriers, as applicable:

Exterior noise levels at the rooftop pool deck identified as Receivers 31 through 33 on Noise Analysis Figure 7 shall be reduced to the City's Noise Element threshold of 60 CNEL for residential uses. Noise reduction for exterior traffic noise impacts can be accomplished through an on-site noise barrier. A 3.5-foot-high barrier adjacent to the rooftop pool, as shown in Noise Analysis Figure 7, shall be constructed. The sound attenuation wall must be solid and free of cracks or holes. It can be constructed of masonry, wood, plastic, fiberglass, steel, or a combination of those materials, as long as there are no cracks or gaps, through or below the wall. Any seams or cracks must be filled or caulked. If wood is used, it can be tongue and groove and must be at least one-inch total thickness or have a density of at least 4 pounds per square foot.

The interior noise level standard for residential units and sleeping units (e.g., hotel rooms) is 45 CNEL. Assuming standard light-frame construction with double-glazed windows, interior noise levels would be reduced to 45 CNEL or less in buildings exposed to exterior noise levels of 70 CNEL or less. Exterior noise levels at the residential and hotel façades would range from 40 to 72 CNEL. Exterior noise levels would exceed 70 CNEL at the building façades located closest to SR-75 (Receivers 8, 9, 23, 24, and 25). For the residential units and hotel rooms located where exterior noise exceeds 70 CNEL, building components that achieve a greater composite sound transmission class (STC) rating of up to 27 dB would be required.

MM N-2: Interior Noise. Prior to the issuance of building permits for the hotel and residential buildings, the City shall verify the building plans state the following and identify sound resistant construction specifications, as applicable:

Interior noise levels shall be reduced to 45 CNEL or less in all habitable rooms for the residential units and hotel rooms located adjacent to Receivers 8, 9, 23, 24, and 25 as identified in Noise Analysis Figure 7. Sound-resistant construction for walls adjacent to these receivers shall achieve a combined minimum STC rating ranging of 27 dB. This can be achieved with typical exterior wall construction consisting of wood framing, drywall, insulation, and exterior stucco siding, and window and door components with a minimum STC rating of 27. This minimum STC rating shall be identified on the building plans window and door schedule.

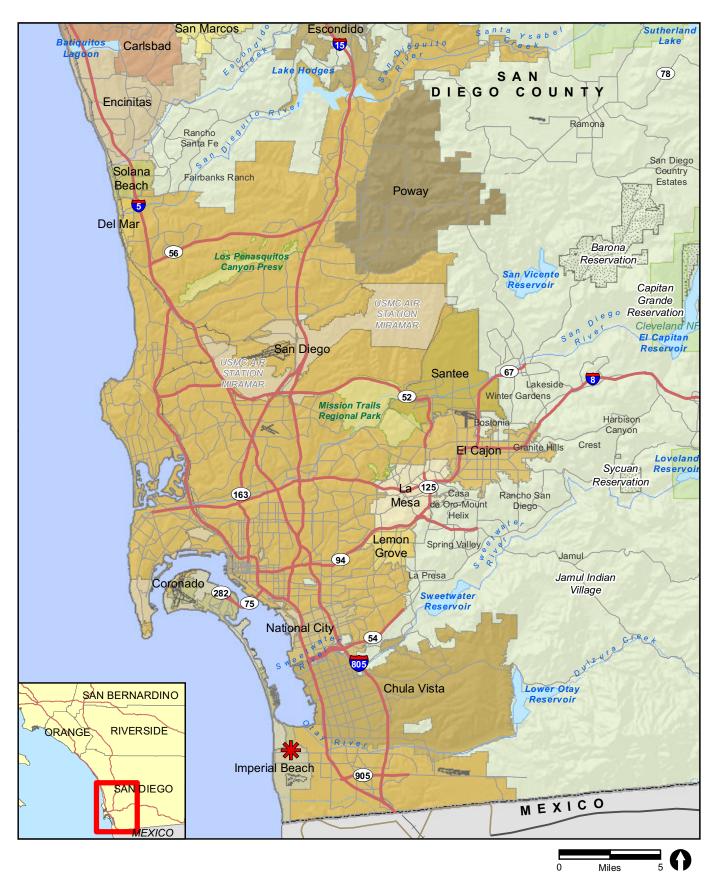
Off-site Vehicle Traffic Noise

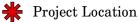
The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways, nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. A substantial noise increase is defined as an increase of 3 dB, which would require a doubling of traffic volumes.

Based on the project traffic report, the project would generate 1,227 trips per day (Linscott, Law & Greenspan 2018). Given the existing traffic volumes on affected roadways, direct offsite noise level increases due to the project would be less than 1 dB. Therefore, direct offsite noise impacts associated with the project would be less than significant.

The cumulative "year 2040 with project" increase over the existing condition would range from less than 1 dB to 3 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase.

On-site Generated Noise


The City's Municipal Code does not identify specific property line noise standards for stationary noise sources; however, the City commonly utilizes the County of San Diego's Noise Ordinance limits for projects within the City. The most restrictive property line noise level limits are 50 dB(A) L_{eq} between 7:00 a.m. and 10:00 p.m. and 45 dB(A) L_{eq} between 10:00 p.m. and 7:00 a.m. The primary noise sources on-site would be rooftop heating, ventilation, and air conditioning (HVAC) equipment, occasional music at the second-floor breweryrestaurant terrace, and people gathering on the rooftop pool deck. Noise levels due to these sources were modeled at the adjacent properties. As calculated in this analysis, daytime on-site generated noise levels with all HVAC units operating at full capacity, music playing and people gathered on the breweryrestaurant terrace, and people gathered on the pool deck would range from 36 to 44 dB(A) L_{eq} at the adjacent properties, and nighttime noise levels with all HVAC units operating at full capacity would range from 32 to 44 dB(A) L_{eq} at the adjacent properties. Noise levels noise levels would be less than the most restrictive noise limit of 45 dB(A) L_{eq} .


1.0 Introduction

1.1 Project Description

The Blue Wave Hotel and Residential project (project) site is located at 550 State Route 75 (SR-75) in the city of Imperial Beach, California. Figure 1 shows the regional location. An aerial photograph of the project site and vicinity is shown in Figure 2. The project site is bounded by SR-75 to the southwest, residential uses to the north and east, and restaurants to the southeast. A recreational vehicle (RV) park and commercial uses are located on the opposite side of SR-75 to the southwest. The portion of the project site adjacent to SR-75 is currently undeveloped and the portion adjacent to 7th Street is developed with a single-family home and accessory structure.

The project involves the construction of an approximately 73,<u>847</u>228-square-foot multi-use facility. The facility would include one four-story Z-shaped hotel/apartment building that follows the northern perimeter of the site, and a separate two-story building with a restaurant along the southwestern perimeter. Overall, the project would provide 51 residential dwelling units (40,149 square feet), 47 hotel rooms (18,148 square feet), 1,800 square feet of courtyard patio space, 4,306 square feet of a pool terrace, 6,675 square feet of office/shop/restaurant space, <u>21,99519,976</u> square feet of interior and exterior corridor space, and 1,7680 square feet of outdoor deck space. Figure 3 shows the proposed site plan. A wireless communication facility may also be included in the project, with any necessary back-up generator and equipment provided inside of a building.

RECON

FIGURE 1 Regional Location

0 Feet

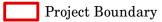
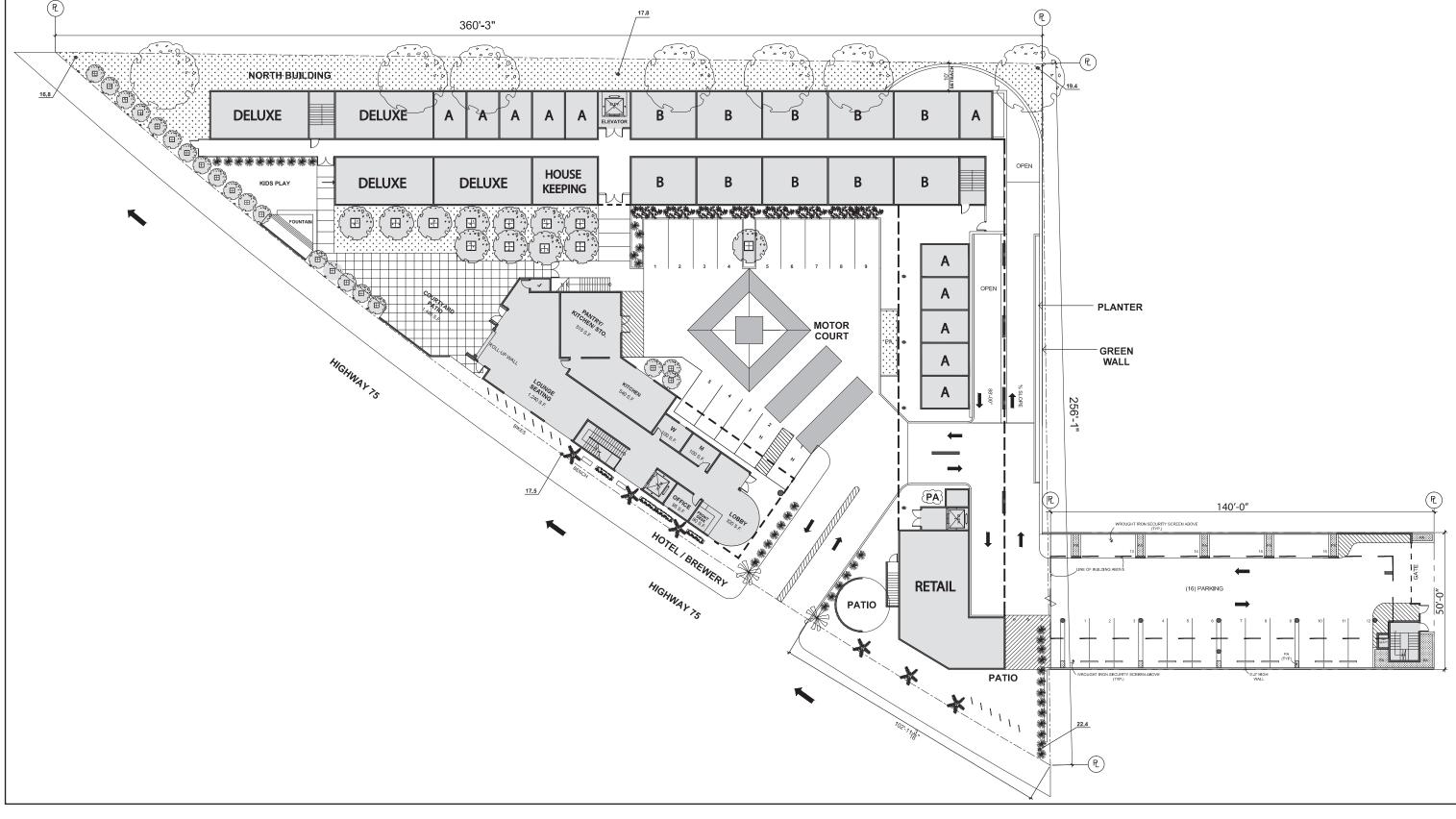



FIGURE 2 RECON \\serverfs01\gis\JOBS5\9010\common_gis\fig2_nos.mxd 8/15/2018 fmm Map Source: M + C Corp

0 Feet 25

The residential component would consist of 30 one-bedroom apartments and 21 twobedroom apartments, for a total of 51 dwelling units. The third and fourth floors of the facility would consist only of residential apartments and studios, while 11 one-bedroom units would be located on the second floor. A pool would be provided to serve the residential component of the project and may be utilized occasionally by residents to host private daytime events.

The hotel area would consist of three unit types: micro, standard, and deluxe. The first and second floors of the facility would contain 10 and 9 micro units, respectively. In addition, the first and second floors would both contain 10 standard units and 4 deluxe units, while a manager's unit would be located on the first floor. The total hotel dwelling unit count would be 47 units.

The office/shop/restaurant space would consist of a two-story building, totaling 6,675 square feet. The first floor would contain a lobby, front desk/reception area, and office space, in addition to a lounge seating area, a kitchen and associated pantry area, as well as restrooms. A roll-up wall would be located at the westerly end of the lounge area, which would provide access to a 1,800-square-foot outdoor courtyard patio area. The second floor would consist of a bar area and associated storage room, a lounge, office space, and restrooms. In addition, a 1,768-square-foot deck area and 405-square foot eco roof-would be constructed on the second floor. Entertainment, such as music, may occur in the outdoor patio area at the restaurant until approximately 9:00 p.m.

1.2 Fundamentals of Noise

Sound levels are described in units called the decibel (dB). Decibels are measured on a logarithmic scale that quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by 3 dB; a halving of the energy would result in a 3 dB decrease.

Additionally, in technical terms, sound levels are described as either a "sound power level" or a "sound pressure level," which while commonly confused are two distinct characteristics of sound. Both share the same unit of measure, the dB. However, sound power, expressed as L_{pw} , is the energy converted into sound by the source. The L_{pw} is used to estimate how far a noise will travel and to predict the sound levels at various distances from the source. As sound energy travels through the air, it creates a sound wave that exerts pressure on receivers such as an eardrum or microphone and is the sound pressure level. Noise measurement instruments only measure sound pressure, and noise level limits used in standards are generally sound pressure levels.

The human ear is not equally sensitive to all frequencies within the sound spectrum. To accommodate this phenomenon, the A-scale, which approximates the frequency response of the average young ear when listening to most ordinary everyday sounds, was devised. When people make relative judgments of the loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Therefore, the

"A-weighted" noise scale is used for measurements and standards involving the human perception of noise. Noise levels using A-weighted measurements are designated with the notation dB(A).

The impact of noise is not a function of loudness alone. The time of day when noise occurs and the duration of the noise are also important. In addition, most noise that lasts for more than a few seconds is variable in its intensity. Consequently, a variety of noise descriptors has been developed. The noise descriptors used for this study are the one-hour equivalent noise level (L_{eq}), the community noise equivalent level (CNEL), and the sound exposure level (SEL). The CNEL is a 24-hour equivalent sound level. The CNEL calculation applies an additional 5 dB(A) penalty to noise occurring during evening hours, between 7:00 p.m. and 10:00 p.m., and an additional 10 dB(A) penalty is added to noise occurring during the night, between 10:00 p.m. and 7:00 a.m. These increases for certain times are intended to account for the added sensitivity of humans to noise during the evening and night. The SEL is a noise level over a stated period of time or event and normalized to one second.

Sound from a small, localized source (approximating a "point" source) radiates uniformly outward as it travels away from the source in a spherical pattern, known as geometric spreading. The sound level decreases or drops off at a rate of 6 dB(A) for each doubling of the distance.

Traffic noise is not a single, stationary point source of sound. The movement of vehicles makes the source of the sound appear to emanate from a line (line source) rather than a point when viewed over some time interval. The drop-off rate for a line source is 3 dB(A) for each doubling of distance.

The propagation of noise is also affected by the intervening ground, known as ground absorption. A hard site (such as parking lots or smooth bodies of water) receives no additional ground attenuation, and the changes in noise levels with distance (drop-off rate) are simply the geometric spreading of the source. A soft site (such as soft dirt, grass, or scattered bushes and trees) receives an additional ground attenuation value of 1.5 dB(A) per doubling of distance. Thus, a point source over a soft site would attenuate at 7.5 dB(A) per doubling of distance.

Human perception of noise has no simple correlation with acoustical energy. A change in noise levels is generally perceived as follows: 3 dB(A) barely perceptible, 5 dB(A) readily perceptible, and 10 dB(A) perceived as a doubling or halving of noise (California Department of Transportation [Caltrans] 2013).

2.0 Applicable Standards

2.1 City of Imperial Beach General Plan

The City's Noise Element of the General Plan specifies compatibility standards for different land use categories (Table 1). The project proposes a hotel and residential uses along with a retail space and a <u>breweryrestaurant</u>. Exterior use areas include a rooftop pool for

residential use, a second-floor breweryrestaurant terrace, and a ground-floor kids play area and courtyard. Due to the unique mixed-use nature of the project, various standards were applied based on the primary use of the area. The residential and transient lodging standards were applied to the residential uses (including the pool deck) and hotel uses, the playground standards were applied to the kids play area and courtyard, and the commercial standards were applied to the second-floor breweryrestaurant terrace. As shown, residential uses are "acceptable" with exterior noise levels up to 60 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL. Hotel uses are "acceptable" with exterior noise levels up to 60 CNEL and "conditionally acceptable" with exterior noise levels up to 75 CNEL. Playgrounds are "acceptable" with exterior noise levels up to 70 CNEL and "conditionally acceptable" with exterior noise levels up to 75 CNEL. Commercial uses "acceptable" with exterior noise levels up to 75 CNEL.

City of Im	Tab perial Beach Land Use	ole 1 – Noise	Con	npatibili	tv Guide	lines	
				<u> </u>		re [dB(A) G	CNEL]
Land Use C	Category	6	0	65	70	75	80
Residential, Theaters, Audi Meeting Halls, Churches	toriums, Music Halls,						
Transient Lodging – Motels	s, Hotels						
Schools, Libraries, Museums, Hospitals, Nursing Homes							
Playgrounds, Parks							
Commercial and Office Bui	ldings						
Acceptable	Specific land use is satis	Specific land use is satisfactory. No noise mitigation measures are required.					
Conditionally Acceptable	Use should be permitted only after careful study and inclusion of protective measures as needed to satisfy the policies of the Noise Element.						
Unacceptable	Development is usually not feasible in accordance with the goals of the Noise Element.						
SOURCE: City of Imperial E	Beach 2015.						

According to the City Noise Element, "[f]or areas where the noise environment is conditionally acceptable for a particular land use, development shall be allowed only after noise mitigation has been incorporated into the design of the project to reduce noise levels." Therefore, if noise levels are in the "conditionally acceptable" levels, the City requires exterior noise levels to be reduced to comply with the "acceptable" noise level for the particular land use.

2.2 City of Imperial Beach Municipal Code

2.2.1 Construction Noise

Construction noise is regulated by Chapter 9.32 of the Imperial Beach Municipal Code. According to Section 9.32.020(H), the use of any tools, power machinery, or equipment so as

to cause noises disturbing to the comfort and repose of any person residing or working in the vicinity, or in excess of 75 dB(A) L_{eq} , between the hours of 10:00 p.m. and 7:00 a.m. is prohibited, except when the same is necessary for emergency repairs required for the health and safety of any member of the community. The Municipal Code does not set daytime noise level limits on construction activities. However, for purposes of environmental review the City uses the County of San Diego's Noise Ordinance limit of 75 dB(A) $L_{eq(8)}$ at residential uses during the daytime hours.

2.2.2 On-Site Generated Noise

The City's Municipal Code does not identify specific property line noise standards for stationary noise sources; however, for purposes of environmental review, the City utilizes the County's Noise Ordinance limits for projects within the City (Table 2). As shown, the most restrictive property line noise level limits are 50 dB(A) L_{eq} between 7:00 a.m. and 10:00 p.m. and 45 dB(A) L_{eq} between 10:00 p.m. and 7:00 a.m.

Table 2 County of San Diego Noise Ordinance Sound Level Limits							
Zone (1) RS, RD, RR, RMH, A70, A72, S80, S81, S90, S92, RV, and RU with a General Plan Land Use	Applicable Hours 7 a.m. to 10 p.m.	Sound Level Limit dB(A) L _{eq} 50					
Designation density of less than 10.9 dwelling units per acre.	10 p.m. to 7 a.m.	45					
(2) RRO, RC, RM, S86, V5, RV and RU with a General Plan Land Use Designation density of 10.9 or more dwelling units per acre.	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	55 50					
(3) S-94, V4 and all other commercial zones.	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	60 55					
(4) V1 V2	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	55 55					
V1 V2 V3	10 p.m. to 7 a.m. 7 a.m. to 10 p.m.	50 70 65					
(5) M-50, M-52, and M-54	10 p.m. to 7 a.m. Anytime	70					
 (6) S82, M56 and M58 (7) S88 (see subsection (c) below) SOURCE: County Noise Ordinance, Section 36.404. 	Anytime	75					
$dB(A) L_{eq} = A$ -weighted decibels average sound level.							

2.3 California Code of Regulations

Interior noise levels for habitable rooms are regulated also by Title 24 of the California Code of Regulations California Noise Insulation Standards. Title 24, Chapter 12, Section 1207.4, of the California Building Code requires that interior noise levels attributable to exterior sources not exceed 45 CNEL in any habitable room. A habitable room is a room used for living, sleeping, eating, or cooking. Bathrooms, closets, hallways, utility spaces, and similar areas are not considered habitable rooms for this regulation (24 California Code of Regulations, Chapter 12, Section 1207.4 2016).

Section 5.507, Environmental Comfort, of Part 11 of Title 24 (California Green Building Standards Code [CalGreen]) addresses interior noise control in non-residential buildings. This section provides the minimum Sound Transmission Class (STC) and Outdoor–Indoor Sound Transmission Class for wall, roof–ceiling assemblies, and windows for buildings located within the 65 dB(A) CNEL contour of an airport, freeway, expressway, railroad, industrial source, or fixed guideway source as determined by the Noise Element of the General Plan. As indicated, buildings shall be constructed to provide an interior noise environment attributable to exterior sources that does not exceed an hourly average equivalent level of 50 dB(A) L_{eq} .

3.0 Existing Conditions

Existing noise levels at the project site were measured on June 21, 2018, using one Larson-Davis LxT Sound Expert Sound Level Meters, serial number 3828. The following parameters were used:

Filter:	A-weighted
Response:	Slow
Time History Period:	5 seconds


The meter was calibrated before and after each measurement. The meter was set 5 feet above the ground level for each measurement.

Noise measurements were taken to obtain typical ambient noise levels at the project site and in the vicinity. The weather was cool and overcast. Two 15-minute measurements were taken, as described below. The primary sources of on-site noise were due to traffic on SR-75. The measurement locations are shown on Figure 4, and detailed data is contained in Attachment 1. Noise measurements are summarized in Table 3, and vehicle traffic counts are summarized in Table 4.

Measurement 1 was located at the southern edge of the project site, approximately 40 feet northeast of SR-75. The main source of noise at this location was vehicle traffic on SR-75. During the 15-minute measurement period, vehicle traffic on SR-75 was counted. The average measured noise level was $69.5 \text{ dB}(A) \text{ L}_{eq}$.

Measurement 2 was located at the northern property line, approximately 130 feet northeast of SR-75. The main source of noise at this location was vehicle traffic on SR-75. A 5-foot wooden fence along the property line obstructed line-of-sight to SR-75 and was observed to reduce traffic noise levels. The average measured noise level was 54.9 dB(A) L_{eq} .

Project Boundary

Noise Measurement Locations

FIGURE 4 Noise Measurement Locations

RECON \\serverfs01\gis\JOBS5\9010\common_gis\fig4_nos.mxd_8/15/2018_fmm

Table 3 Noise Measurements										
Measurement	Location	Time	Noise Sources	Leq	L90	L10				
1	Southern end of project site	1:10 р.м. – 1:25 р.м.	V. h. h. to (Charace CD 77	69.5	55.0	69.2				
2	Northern end of project site	1:35 р.м. – 1:50 р.м.	Vehicle traffic on SR-75	54.9	49.4	57.8				
NOTE: Noise me	NOTE: Noise measurement data is contained in Attachment 1.									

Table 4 15-minute Traffic Counts										
	Medium Heavy									
Measurement	Roadway	Direction	Autos	Trucks	Trucks	Buses	Motorcycles			
1	SR-75	Northwest-bound	116	1	0	0	1			
1	51-75	Southeast-bound	166	1	1	1	1			

4.0 Analysis Methodology

Noise level predictions and contour mapping were developed using noise modeling software, SoundPlan Essential, version 3.0 (Navcon Engineering 2015). SoundPLAN calculates noise propagation based on the International Organization for Standardization method (ISO 9613-2 – Acoustics, Attenuation of Sound during Propagation Outdoors). The model calculates noise levels at selected receiver locations using input parameter estimates such as total noise generated by each noise source; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. The model outputs can be developed as noise level contour maps or noise levels at specific receivers. In all cases, receivers were modeled at 5 feet above ground elevation, which represents the average height of the human ear.

4.1 Construction Noise Analysis

Project construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, building construction, loading, unloading, and placing materials and paving. Diesel engine-driven trucks also would bring materials to the site and remove the soils from excavation.

Construction equipment with a diesel engine typically generates maximum noise levels from 80 to 90 dB(A) L_{eq} at a distance of 50 feet (FHWA 2006). Table 5 summarizes typical construction equipment noise levels.

During excavation, grading, and paving operations, equipment moves to different locations and goes through varying load cycles, and there are breaks for the operators and for non-equipment tasks, such as measurement. Although maximum noise levels may be 80 to 90 dB(A) at a distance of 50 feet during most construction activities, hourly average noise levels from the grading phase of construction would be 82 dB(A) L_{eq} at 50 feet from the center of construction activity when assessing the loudest pieces of equipment working simultaneously.

Table 5					
Typical Construction E		Transfered Deuters			
Et	Noise Level at 50 Feet	Typical Duty			
Equipment	[dB(A) L _{eq}] ¹	Cycle 20%			
Auger Drill Rig Backhoe	85				
	80	40%			
Blasting	94	1%			
Chain Saw	85	20%			
Clam Shovel	93	20%			
Compactor (ground)	80	20%			
Compressor (air)	80	40%			
Concrete Mixer Truck	85	40%			
Concrete Pump	82	20%			
Concrete Saw	90	20%			
Crane (mobile or stationary)	85	20%			
Dozer	85	40%			
Dump Truck	84	40%			
Excavator	85	40%			
Front End Loader	80	40%			
Generator (25 kilovolt ampts or less)	70	50%			
Generator (more than 25 kilovolt amps)	82	50%			
Grader	85	40%			
Hydra Break Ram	90	10%			
Impact Pile Driver (diesel or drop)	95	20%			
Insitu Soil Sampling Rig	84	20%			
Jackhammer	85	20%			
Mounted Impact Hammer (hoe ram)	90	20%			
Paver	85	50%			
Pneumatic Tools	85	50%			
Pumps	77	50%			
Rock Drill	85	20%			
Roller	74	40%			
Scraper	85	40%			
Tractor	84	40%			
Vacuum Excavator (vac-truck)	85	40%			
Vibratory Concrete Mixer	80	20%			
Vibratory Pile Driver	95	20%			
SOURCE: FHWA 2006.					
¹ Noise levels based on those specified in F	HWA Road Construction	Noise Model.			

4.2 Traffic Noise Analysis

4.2.1 On-site Noise Compatibility

The SoundPLAN program uses the Federal Highway Administration (FHWA) Traffic Noise Model algorithms and reference levels to calculate traffic noise levels at selected receiver locations. The model uses various input parameters, such as projected hourly average traffic rates; vehicle mix, distribution, and speed; roadway lengths and gradients; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. Receivers, roadways, and barriers were input into the model using three-dimensional coordinates. The locations of future buildings were obtained from project drawings.

The main source of traffic noise at the project site is vehicle traffic on SR-75. SR-75 is a four-lane Major Arterial adjacent to and north of the project site, and a six-lane Major Arterial east of 7th Street. For the purpose of the future traffic noise compatibility analysis, future year 2040 plus project traffic volumes were modeled. These volumes are summarized in Table 6. Vehicle classification mixes were obtained from the Caltrans truck counts (Caltrans 2015). According to Caltrans truck counts, SR-75 carries 97.2 percent automobiles, 1.8 percent medium trucks, and 1.0 percent heavy trucks. Caltrans does not maintain traffic counts for motorcycles or buses. For the purposes of this analysis, 2 percent of the automobiles were modeled as motorcycles (1 percent) and buses (1 percent). Peak hour traffic volumes were calculated as 10 percent of the total average daily traffic (ADT). Based on Caltrans traffic counts (Caltrans 2016), this is conservative. Calculations were completed for a peak daytime hour, and the resulting noise levels were weighted and combined into CNEL values. Typically, the predicted CNEL and the maximum daytime hourly L_{eq} calculated are equal.

Table 6 On-Site Noise Compatibility Traffic Parameters									
	Year 2040				Vehicle	e Mix (p	ercent)		
	+ Project	Total							
	Volume	Peak Hour	Speed						
Roadway	(ADT)	Volume	(mph)	Auto	MT	HT	Bus	MC	
SR-75									
North of Rainbow Drive	31,930	3,193	55	95.2	1.8	1.0	1.0	1.0	
Rainbow Drive to 7 th Street	27,011	2,701	40	95.2	1.8	1.0	1.0	1.0	
7 th Street to Delaware Street	34,623	3,462	40	95.2	1.8	1.0	1.0	1.0	
Delaware Street to 9 th Street	42,369	4,237	40	95.2	1.8	1.0	1.0	1.0	
ADT = average daily traffic; mph = miles per hour;									
Auto = Automobile, MT = Medium	Fruck, HT = H	eavy Truck, M	C = Motorcy	ycle					

Table 6 summarizes the traffic parameters used in this compatibility analysis.

4.2.2 Off-site Vehicle Traffic Noise

Off-site traffic noise was modeled using the FHWA Traffic Noise Prediction Model algorithms and reference levels. Traffic noise levels were calculated at 50 feet from the centerline of the affected roadways to determine the noise level increase associated with the project. The model uses various input parameters, such as traffic volumes, vehicle mix, distribution, and speed.

The main source of local roadway traffic noise in the vicinity of the project site would be vehicle traffic on SR-75, Palm Avenue, and Rainbow Drive. Traffic noise levels were calculated based on the total average daily traffic volume on each roadway segment. For modeling purposes, "hard" ground conditions were used for the analysis of future

conditions, since a majority of the project area is paved and the hard site provides the most conservative impact assessment.

Existing and cumulative (year 2040) traffic volumes with and without the project were obtained from the project traffic report (Linscott, Law & Greenspan, Engineers 2018). Table 7 summarizes the traffic volumes for the analyzed segments of SR-75, Palm Avenue, and Rainbow Drive. Modeled noise levels do not account for shielding provided by intervening barriers and structures.

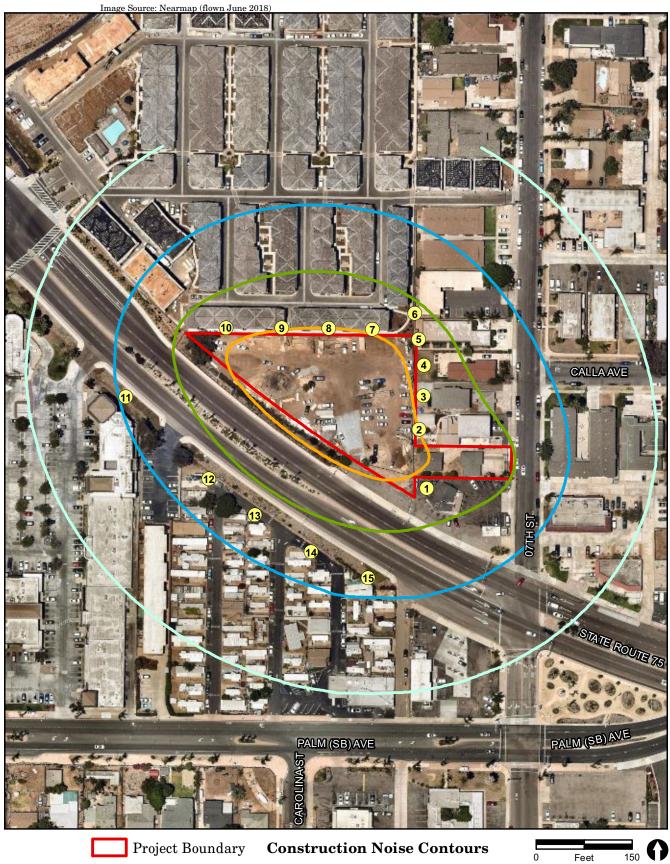
Table 7 Traffic Volumes						
		Existing +		Year 2040 +		
Roadway Segment	Existing	Project	Year 2040	Project		
SR-75						
North of Rainbow Drive/	19.300	19.600	31.630	31.930		
Project Driveway	19,300	19,000	51,030	31,930		
Rainbow Drive/	16 400	17 001	26.320	97.011		
Project Driveway to 7 th Street	16,400	17,091	20,320	27,011		
7 th Street to Delaware Street	20,900	21,513	34,010	34,623		
Delaware Street to 9 th Street	23,400	23,989	41,780	42,369		
9 th Street to Florida Street	34,500	35,041	46,970	47,511		
Palm Avenue						
Rainbow Drive to SR-75	13,640	13,820	14,940	15,120		
Rainbow Drive						
SR-75 to Palm Avenue	5,710	5,710	5,490	5,490		

4.3 On-site Generated Noise Analysis

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential and hotel use, such as vehicles arriving and leaving, children at play, and landscape maintenance machinery. None of these noise sources is anticipated to violate the County's Noise Ordinance standards that the City utilizes, or result in a substantial permanent increase in existing noise levels. However, the project would HVAC units that have the potential to produce noise in excess of the limits (see Table 2). The project would also include occasional music at the outdoor patio area and outdoor pool events that have the potential to produce noise levels in excess of the limits. The wireless facility back-up generator and equipment is not anticipated to result in noise in excess of the limit due to it being located within a structure.

It is not known at this time which manufacturer, brand, or model of unit or units will be selected for use in the project. HVAC units would be located on the rooftop of the buildings. Typical, a capacity of 1-ton per 500 to 600 square feet is required for residential and hotel space. For the purposes of this analysis, to determine what general noise levels the HVAC units would generate, it was assumed that the residential and hotel rooftop units would be similar to a Trane split system unit (Trane Model HDR) with a sound power level of 72 dB(A). An HVAC unit would also be located on the roof of the lobby/breweryrestaurant building. Typically, a capacity of 1-ton per 340 square feet would be required for commercial buildings. Based on this, the building would require an HVAC capacity of approximately

16 tons. Based on review of manufacturer specifications for a sample unit (Trane Model T/YSCE120ED), a representative noise level for a 10-ton unit would be a sound power level of 79 dB. Two of these units were modeled on the roof of the lobby/breweryrestaurant building. The unit specification sheets for the modeled HVAC units are included in Attachment 2. As a worst-case scenario, all HVAC units were modeled at full capacity during the daytime and nighttime hours.


The project would also include two outdoor use areas that could generate noise: the breweryrestaurant terrace and the rooftop pool deck. As discussed, entertainment, such as music, may occur in the outdoor patio area at the restaurant until approximately 9:00 p.m. The SoundPLAN emissions database contains sound power levels for various noise sources. According to the SoundPLAN emissions database, restaurants with modest conversation generate a sound power level of 75 dB while restaurants with music generate a sound power level of 80 dB. The sound power level of 75 dB was modeled as a representative noise level for the pool deck, and a sound power level of 80 dB was modeled as a representative noise level for the second-floor breweryrestaurant terrace with music. These areas would not be in use during the nighttime hours.

5.0 Future Acoustical Environment and Impacts

5.1 Construction Noise

Noise associated with the grading, building, and paving for the project would potentially result in short-term impacts to surrounding properties. Residential uses are located north and east of the project site, and an RV park is located south of the project site. A variety of noise-generating equipment would be used during the construction phase of the project, such as excavators, backhoes, front-end loaders, and concrete saws, along with others. The exact number and pieces of construction equipment required are not known at this time. Although maximum noise levels may be 80 to 90 dB(A) at a distance of 50 feet during most construction activities, hourly average noise levels would be lower when taking into account the equipment usage factors. The loudest phase of construction would be the grading/excavation phase and would include dozers, loaders, and excavators. Construction noise levels were calculated based on all three pieces of equipment being active simultaneously.

Construction noise is considered a point source and would attenuate at approximately 6 dB(A) for every doubling of distance. Average hourly noise levels due to simultaneous activity would be 82 dB(A) L_{eq} at 50 feet. To reflect the nature of grading and construction activities, equipment was modeled as an area source distributed over the project footprint. The total sound energy of the area source was modeled with all pieces of equipment operating simultaneously. Noise levels were modeled at a series of 15 receivers located at the adjacent uses. The results are summarized in Table 8. Modeled receiver locations and construction noise contours are shown in Figure 5. SoundPLAN data is contained in Attachment 3.

 Project Boundary
 Construction Noise Contours

 Modeled Receivers
 60 dB(A) Leq

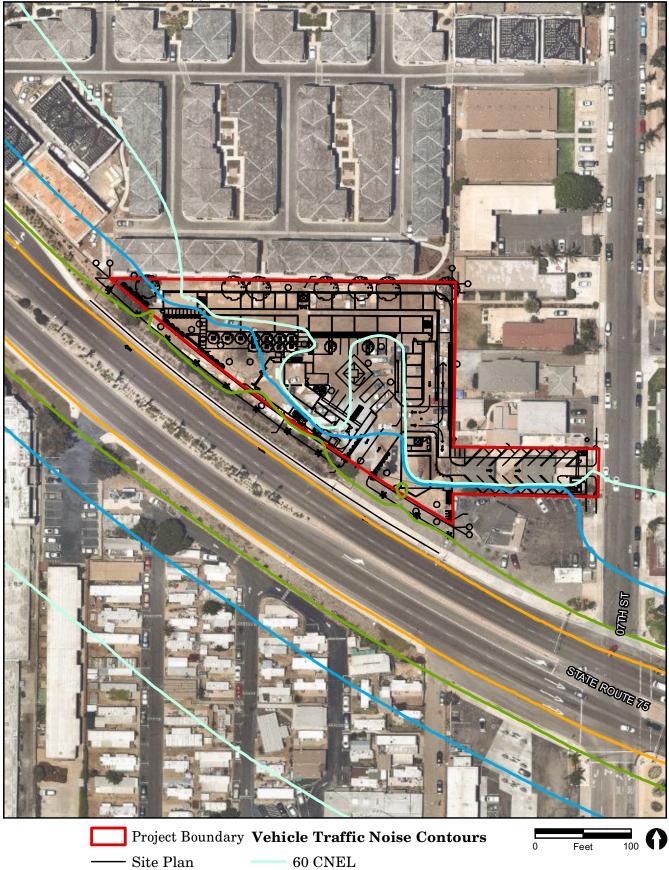
 65 dB(A) Leq
 70 dB(A) Leq

 70 dB(A) Leq
 75 dB(A) Leq

 Construction
 Construction

FIGURE 5 Construction Noise Contours

\\serverfs01\gis\JOBS5\9010\common_gis\fig5_nos.mxd 8/15/2018 fmm

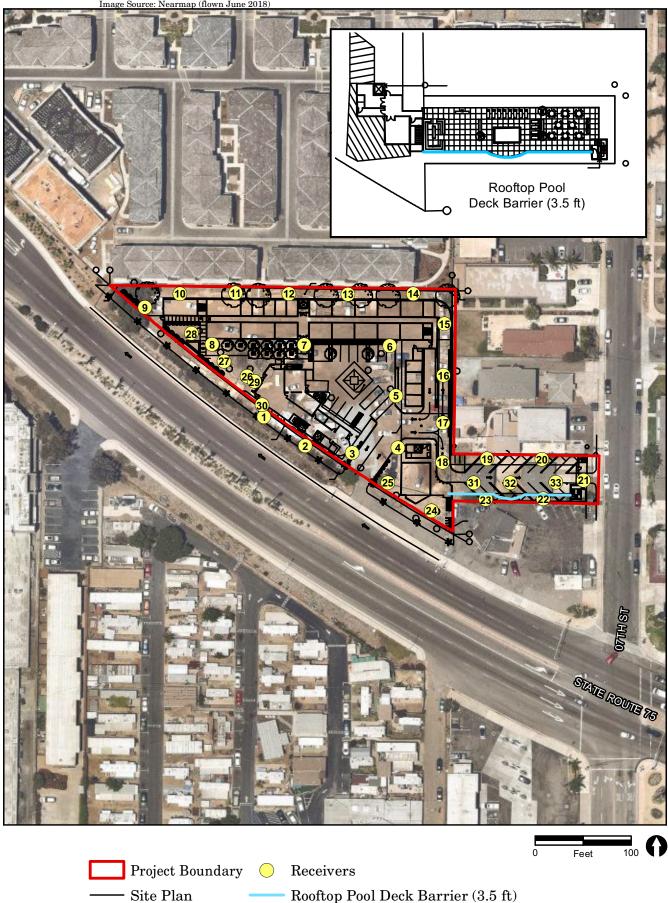

Table 8 Construction Noise Levels						
Construction Noise Levels						
Receiver	Land Use	[dB(A) L _{eq}]				
1	Restaurant	73				
2	Residential	75				
3	Residential	74				
4	Residential	73				
5	Residential	73				
6	Residential	72				
7	Residential	75				
8	Residential	75				
9	Residential	75				
10	Residential	74				
11	Commercial	66				
12	RV Park	68				
13	RV Park	68				
14	RV Park	67				
15	RV Park	66				
dB(A) L _{eq} = A-weighted decibels equivalent noise level						

As shown, construction noise levels are not anticipated to exceed 75 dB(A) L_{eq} at the adjacent residential uses. Although the existing adjacent residences would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities would occur during the daytime hours and would comply with Section 9.32.020(H) of the City's Municipal Code. As construction activities associated with the project would comply with Municipal Code Section 9.32.020(H) and daytime noise levels would not exceed 75 dB(A) L_{eq} at adjacent residential uses, temporary increases in noise levels from construction activities would be less than significant.

5.2 Vehicle Traffic Noise

5.2.1 On-site Noise Compatibility

Vehicle traffic noise level contours across the project site were calculated using SoundPLAN. These contours take into account shielding provided by proposed buildings, topography, and proposed grading. These noise contours are shown in Figure 6. As shown, first-floor exterior noise levels would exceed 60 CNEL at the portion of the project site closest to SR-75.


------ 65 CNEL ------ 70 CNEL

RECON 75 CNEL

FIGURE 6 Vehicle Traffic Noise Contours To determine exterior noise levels at the exterior use areas and the building façades, noise levels were modeled at 33 specific receiver locations, as shown in Figure 7. Exterior noise levels were modeled at the exterior use areas (pool, deck, courtyard, and kids play area) for the purposes of determine compatibility with the City's exterior noise standards (see Section 2.1). Exterior noise levels were modeled at first- through fourth-floor building façade elevations to determine the need for an interior analysis. The results are summarized in Table 9. SoundPLAN data are provided in Attachment 4.

Table 9							
Future Vehicle Traffic Noise Levels without Barriers							
-			Exterior Noise Level (CNEL)				
Receiver	Location	1 st Floor	2 nd Floor	3 rd Floor	4 th Floor	Roof	
1	Lobby/Office/ BreweryRestaurant Building Façade		71				
2	Lobby/Office/ Brewery <u>Restaurant</u> Building Façade	70	73				
3	Lobby/Office/ Brewery<u>Restaurant</u> Building Façade	67	70				
4	Hotel/Residential Building Façade	66	68	68	67		
5	Hotel/Residential Building Façade	62	64	64	64		
6	Hotel/Residential Building Façade	60	62	63	63		
7	Hotel/Residential Building Façade	61	62	63	65		
8	Hotel/Residential Building Façade	68	69	70	71		
9	Hotel/Residential Building Façade	70	72	72	71		
10	Hotel/Residential Building Façade	60	64	64	64		
11	Hotel/Residential Building Façade	57	61	62	62		
12	Hotel/Residential Building Façade	56	60	61	60		
13	Hotel/Residential Building Façade	56	59	59	59		
14	Hotel/Residential Building Façade	55	57	58	58		
15	Hotel/Residential Building Façade	50	51	51	52		
16	Hotel/Residential Building Façade	49	50	50	51		
17	Hotel/Residential Building Façade	42	41	44	47		
18	Hotel/Residential Building Façade	40	43	43	48		
19	Residential Building Façade	40	41	43	46		
20	Residential Building Façade	40	41	41	46		
21	Residential Building Façade	59	62	62	62		
22	Residential Building Façade	68	70	70	70		
23	Residential Building Façade	68	71	71	71		
24			71	72	71		
25			71	71	71		
26							
27							
28	Kids Play Area	68					
29	Second-Floor Terrace		67				
30	Second-Floor Terrace		70				
31	Rooftop Pool					64	
32	Rooftop Pool					63	
33	Rooftop Pool					63	

Nearmap (flown June 2018

Rooftop Pool Deck Barrier (3.5 ft)

FIGURE 7

Modeled Receivers and Barrier Locations

RECON M:\JOBS5\9010\common_gis\fig7_nos.mxd 9/10/2018 fmm

Exterior Use Areas

The exterior use areas include the courtyard (Receivers 26 and 27), kids play area (Receiver 28), deck (Receivers 29 and 30), and pool (Receivers 31, 32, and 33). As discussed in Section 2.1, the residential standard of 60 CNEL was applied to the rooftop pool deck, the playground standard of 70 CNEL was applied to the ground-floor kids play area and courtyard, and the commercial standard of 75 CNEL was applied to the second-floor breweryrestaurant terrace. As shown, noise levels at the kids play area and courtyard would range from 66 to 68 CNEL, and noise levels at the second-floor breweryrestaurant terrace would range from 67 to 70 CNEL. These areas would be compatible with the City's playground and commercial "acceptable" noise level limits of 70 and 75 CNEL, respectively.

As shown in Table 9, exterior noise levels at the rooftop pool deck would range from 63 to 64 CNEL and would be considered "conditionally acceptable" with residential uses. A 3.5-foot-high barrier was modeled adjacent to the rooftop pool, as shown in Figure 7. Noise levels with and without this barrier are summarized in Table 10. As shown, with incorporation of this barrier, exterior noise levels at the rooftop pool deck would be reduced to 60 CNEL or less.

Table 10 Future Vehicle Traffic Noise Levels at Exterior Use Areas with and without Barriers				
	Exterior Noise Level (CNEL)			
Receiver	Location	Without Barriers	With Barriers	
31	Rooftop Pool	64	59	
32	Rooftop Pool	63	58	
33	Rooftop Pool	63	59	

MM N-1: On-site Noise Barrier. Prior to the issuance of building permits, the City shall verify the building plans state the following and identify noise barrier, as applicable:

Exterior noise levels at the rooftop pool deck identified as Receivers 31 through 33 on Figure 7 shall be reduced to the City's Noise Element threshold of 60 CNEL for residential uses. Noise reduction for exterior traffic noise impacts can be accomplished through an on-site noise barrier. A 3.5-foot-high barrier adjacent to the rooftop pool, as shown in Figure 7, shall be constructed. The sound attenuation wall must be solid and free of cracks or holes. It can be constructed of masonry, wood, plastic, fiberglass, steel, or a combination of those materials, as long as there are no cracks or gaps, through or below the wall. Any seams or cracks must be filled or caulked. If wood is used, it can be tongue and groove and must be at least one-inch total thickness or have a density of at least 4 pounds per square foot.

Interior Noise

Interior noise levels can be reduced through standard construction techniques. When windows are closed, standard construction techniques provide various exterior-to-interior noise level reductions depending on the type of structure and window. According to the FHWA's Highway Traffic Noise Analysis and Abatement Guidance, buildings with masonry façades and double-glazed windows in the closed position provide a noise level reduction of 35 dB, while light-frame structures with double glazed windows in the closed position would provide noise level reductions of 25 dB (FHWA 2011).

Non-residential portions of the project would be exposed to exterior noise levels up to 73 CNEL. Assuming standard light-frame construction with double-glazed windows, peak hour interior noise levels would be reduced 48 dB(A) L_{eq} which would be less than the 50 dB(A) L_{eq} standard specified in CalGreen Section 5.507.

The interior noise level standard for residential units and sleeping units (e.g., hotel rooms) is 45 CNEL. Assuming standard light-frame construction with double-glazed windows, interior noise levels would be reduced to 45 CNEL or less in buildings exposed to exterior noise levels of 70 CNEL or less. Exterior noise levels at the residential and hotel façades would range from 40 to 72 CNEL. Exterior noise levels would exceed 70 CNEL at the building façades located closest to SR-75 (Receivers 8, 9, 23, 24, and 25). For the residential units and hotel rooms located where exterior noise exceeds 70 CNEL, building components (i.e., exterior wall construction, windows, and doors) that achieve a greater composite STC rating of up to 27 dB would be required.

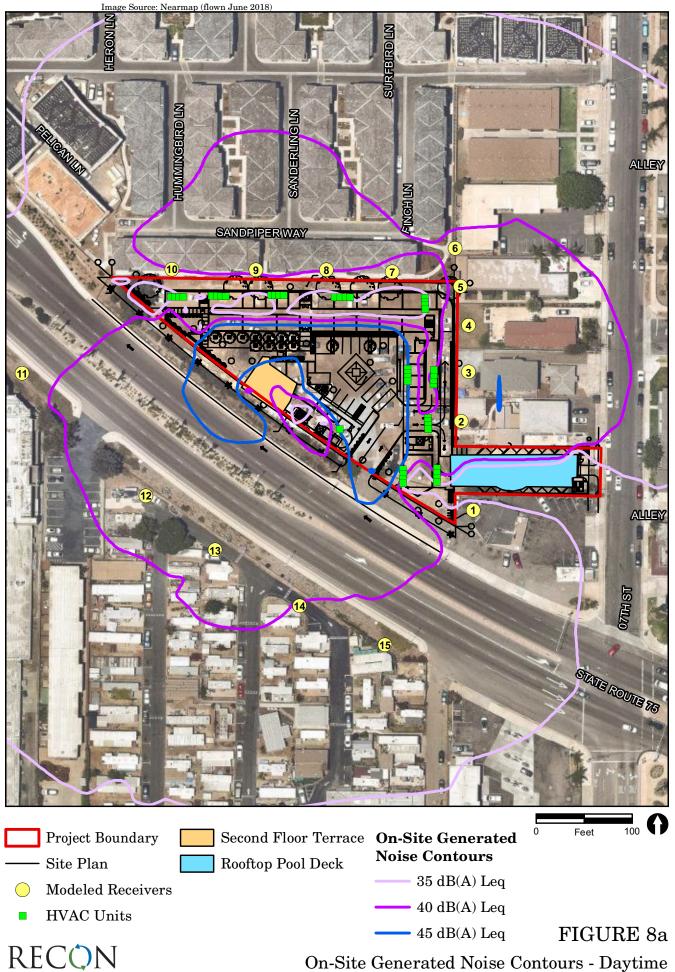
MM N-2: Interior Noise. Prior to the issuance of building permits for the hotel and residential buildings, the City shall verify the building plans state the following and identify sound resistant construction specifications, as applicable:

Interior noise levels shall be reduced to 45 CNEL or less in all habitable rooms for the residential units and hotel rooms located adjacent to Receivers 8, 9, 23, 24, and 25 as identified in Figure 7. Sound-resistant construction for walls adjacent to these receivers shall achieve a combined minimum STC rating ranging of 27 dB. This can be achieved with typical exterior wall construction consisting of wood framing, drywall, insulation, and exterior stucco siding, and window and door components with a minimum STC rating of 27. This minimum STC rating shall be identified on the building plans window and door schedule.

5.2.2 Off-Site Vehicle Traffic Noise

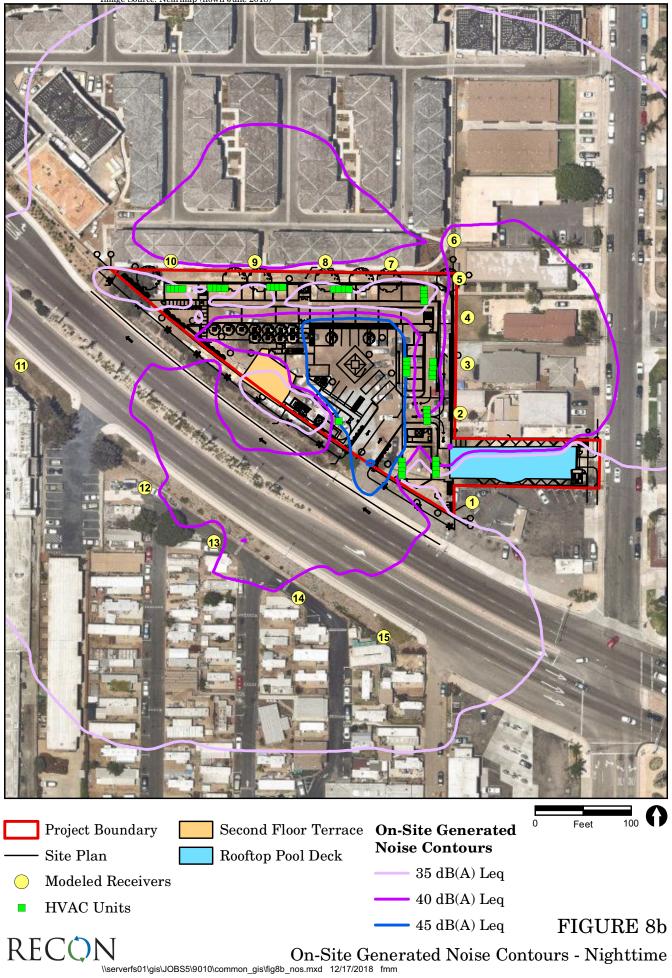
The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. While changes in noise levels would occur along any roadway where project-related traffic occurs, for noise assessment purposes, noise level increases are assumed to be greatest nearest the project site, as this location would represent the greatest concentration of project-related traffic. A substantial noise increase is defined as an increase of 3 dB.

Table 11 presents a conservative assessment of traffic noise levels based on the existing, existing plus project, year 2040, and year 2040 plus project noise levels generated by traffic. Table 11 also summarizes the traffic noise level increases due to the project. Noise level calculations are contained in Attachment 5.


Table 11 Traffic Noise Levels with and without Project and Ambient Noise Increase (CNEL)							
	Existing			Year 2040			Total
Roadway Segment	Without Project	With Project	Increase	Without Project	With Project	Increase	Increase Over Existing
SR-75	Tioject	Tioject	merease	Tigect	Tigett	merease	LAISting
North of Rainbow Drive/ Project Driveway	71	71	<1	73	73	<1	2
Rainbow Drive/ Project Driveway to 7 th Street	71	71	<1	73	73	<1	2
7 th Street to Delaware Street	72	72	<1	74	74	<1	2
Delaware Street to 9 th Street	72	72	<1	75	75	<1	<3
9 th Street to Florida Street	74	74	<1	75	75	<1	1
Palm Avenue							
Rainbow Drive to SR-75	68	69	<1	69	69	<1	<1
Rainbow Drive							
SR-75 to Palm Avenue	63	63	<1	63	63	<1	<1

As shown in Table 11, direct off-site noise level increases due to the project would be less than 1 dB. Therefore, direct off-site noise impacts associated with the project would be less than significant.

Similar to direct traffic noise impacts, a cumulative traffic noise impact occurs when the noise level would exceed the applicable standard and a substantial noise level increase compared to existing noise occurs. As shown, the total year 2040 with project increase over the existing condition would range from less than 1 dB to less than 3 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase, and cumulative traffic noise impacts associated with the project would be less than significant.


5.3 **On-site Generated Noise**

The primary noise sources on-site would be rooftop HVAC equipment, people gathering, and occasional music at the second-floor <u>breweryrestaurant</u> terrace, and people gathering on the rooftop pool deck. Using the on-site noise source parameters discussed in Section 4.3, noise levels were modeled at a series of 15 receivers located at the adjacent property lines. Modeled receivers and the on-site generated noise contours during the daytime and nighttime hours are shown in Figures 8a and 8b, respectively. Modeled data is included in Attachment 6. Future projected noise levels are summarized in Table 12.

M:\JOBS5\9010\common_gis\fig8a_nos.mxd 12/17/2018 fmm

Nearmap (flown June 2018)

Table 12						
On-Site Generated Noise Levels at Adjacent Property Lines						
		Nighttime Noise Level				
	Daytime Noise Level	[dB(A) L _{eq}]				
Receiver	[dB(A) L _{eq}]	(i.e., no terrace or pool)				
1	36	32				
2	44	43				
3	44	44				
4	43	43				
5	41	41				
6	41	41				
7	39	38				
8	41	41				
9	41	41				
10	40	40				
11	38	36				
12	42	40				
13	41	39				
14	40	39				
15	39	38				

As shown, daytime on-site generated noise levels with all HVAC units operating at full capacity, people gathered and music playing on the <u>breweryrestaurant</u> terrace, and people gathered on the pool deck would range from 36 to 44 dB(A) L_{eq} at the adjacent properties, and nighttime noise levels with all HVAC units operating at full capacity would range from 32 to 44 dB(A) L_{eq} at the adjacent properties. Noise levels would be less than the most restrictive noise limit of 45 dB(A) L_{eq} .

6.0 Conclusions

6.1 Construction Noise

As shown in Table 8, construction noise levels are not anticipated to exceed 75 dB(A) $L_{eq(8)}$ at the adjacent residential uses. Although the existing adjacent residences would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities would occur during the daytime hours and would comply with Section 9.32.020(H) of the City's Municipal Code. As construction activities associated with the project would comply with Municipal Code Section 9.32.020(H) and daytime noise levels would not exceed 75 dB(A) L_{eq} at adjacent residential uses, temporary increases in noise levels from construction activities would be less than significant.

6.2 Vehicle Traffic Noise

6.2.1 On-site Noise Compatibility

The main source of noise at the project site is vehicle traffic on SR-75. Exterior use areas include a rooftop pool for residential use, a second-floor breweryrestaurant terrace, and a ground-floor kids play area and courtyard. Due to the unique mixed-use nature of the

project, various standards were applied based on the primary use of the area. The residential and transient lodging standards were applied to the residential uses (including the pool deck) and hotel uses, the playground standards were applied to the kids play area and courtyard, and the commercial standards were applied to the second-floor breweryrestaurant terrace. According to the City's General Plan, residential uses are "acceptable" with exterior noise levels up to 60 CNEL and "conditionally acceptable" with exterior noise levels up to 70 CNEL. Hotel uses are "acceptable" with exterior noise levels up to 70 CNEL. Hotel uses are "acceptable" with exterior noise levels up to 75 CNEL. Playgrounds are "acceptable" with exterior noise levels up to 75 CNEL. Commercial uses "acceptable" with exterior noise levels up to 75 CNEL.

As shown in Table 9, noise levels at the kids play area and courtyard would range from 66 to 68 CNEL and would be considered "acceptable" with playground uses, and noise levels at the second-floor terrace would range from 67 to 70 CNEL and would be considered "acceptable" with commercial uses. However, exterior noise levels at the rooftop pool deck would range from 63 to 64 CNEL and would be considered "conditionally acceptable" with residential uses. Therefore, mitigation would be required to reduce noise levels to comply with the City's compatibility standards. Based on the current site plan, required mitigation would include a 3.5-foot-high barrier adjacent to the rooftop pool. By incorporating this barrier in to the project, exterior noise levels would be reduced to 60 CNEL or less.

MM N-1: On-site Noise Barrier. Prior to the issuance of building permits, the City shall verify the building plans state the following and identify noise barriers, as applicable:

Exterior noise levels at the rooftop pool deck identified as Receivers 31 through 33 on Figure 7 shall be reduced to the City's Noise Element threshold of 60 CNEL for residential uses. Noise reduction for exterior traffic noise impacts can be accomplished through an on-site noise barrier. A 3.5-foot-high barrier adjacent to the rooftop pool, as shown in Figure 7, shall be constructed. The sound attenuation wall must be solid and free of cracks or holes. It can be constructed of masonry, wood, plastic, fiberglass, steel, or a combination of those materials, as long as there are no cracks or gaps, through or below the wall. Any seams or cracks must be filled or caulked. If wood is used, it can be tongue and groove and must be at least one-inch total thickness or have a density of at least 4 pounds per square foot.

The interior noise level standard for residential units and sleeping units (e.g., hotel rooms) is 45 CNEL. Assuming standard light-frame construction with double-glazed windows, interior noise levels would be reduced to 45 CNEL or less in buildings exposed to exterior noise levels of 70 CNEL or less. Exterior noise levels at the residential and hotel façades would range from 40 to 72 CNEL. Exterior noise levels would exceed 70 CNEL at the building façades located closest to SR-75 (Receivers 8, 9, 23, 24, and 25). For the residential units and hotel rooms located where exterior noise exceeds 70 CNEL, building components that achieve a greater composite STC rating of up to 27 dB would be required.

MM N-2: Interior Noise. Prior to the issuance of building permits for the hotel and residential buildings, the City shall verify the building plans state the following and identify sound resistant construction specifications, as applicable:

Interior noise levels shall be reduced to 45 CNEL or less in all habitable rooms for the residential units and hotel rooms located adjacent to Receivers 8, 9, 23, 24, and 25 as identified in Figure 7. Sound-resistant construction for walls adjacent to these receivers shall achieve a combined minimum STC rating ranging of 27 dB. This can be achieved with typical exterior wall construction consisting of wood framing, drywall, insulation, and exterior stucco siding, and window and door components with a minimum STC rating of 27. This minimum STC rating shall be identified on the building plans window and door schedule.

6.2.2 Off-site Vehicle Traffic Noise

The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways, nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. A substantial noise increase is defined as an increase of 3 dB, which would require a doubling of traffic volumes.

Based on the project traffic report, the project would generate 1,227 trips per day (Linscott, Law, and Greenspan 2018). As shown in Table 11, given the existing traffic volumes on affected roadways, direct off-site noise level increases due to the project would be less than 1 dB. Therefore, direct off-site noise impacts associated with the project would be less than significant. The cumulative year 2040 with project increase over the existing condition would range from less than 1 dB to 3 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase.

6.3 On-site Generated Noise

The primary noise sources on-site would be rooftop HVAC equipment, occasional music at the second-floor <u>breweryrestaurant</u> terrace, and people gathering on the rooftop pool deck. Noise levels due to these sources were modeled at the adjacent properties. As shown in Table 12, daytime on-site generated noise levels with all HVAC units operating at full capacity, music playing and people gathered on the <u>breweryrestaurant</u> terrace, and people gathered on the pool deck would range from 36 to 44 dB(A) L_{eq} at the adjacent properties, and nighttime noise levels with all HVAC units operating at full capacity would range from 32 to 44 dB(A) L_{eq} at the adjacent properties. Noise levels would be less than the most restrictive noise limit of 45 dB(A) L_{eq} .

7.0 References Cited

California Code of Regulations

2016 2016 California Building Code, California Code of Regulations, Title 24, Chapter 12 Interior Environment, Section 1207, Sound Transmission, accessed at http://www.bsc.ca.gov/codes.aspx.

California Department of Transportation (Caltrans)

- 2013 Technical Noise Supplement. November.
- 2015 2015 Annual Average Daily Truck Traffic on the California State Highway System.
- 2016 2016 Peak Hour Volumes. Print Traffic Book. Report OTM32420.
- Federal Highway Administration (FHWA)
 - 2006 Roadway Construction Noise Model User's Guide. FHWA-HEP-05-054, SOT-VNTSC-FHWA-05-01. Final Report. January 2006.
 - 2011 Highway Traffic Noise: Analysis and Abatement Guidance. FHWA-HEP-10-025. December 2011.
- Imperial Beach, City of
 - 2015 General Plan and Local Coastal Plan. Updated November 2015.

Linscott, Law & Greenspan, Engineers

2018 Traffic Impact Analysis for Blue Wave IB Mixed-Use. LLG Ref. 3-18-2909. September 2018.

Navcon Engineering, Inc.

2015 SoundPLAN Essential version 3.0

ATTACHMENTS

ATTACHMENT 1

Noise Measurement Data

9010 Blue Wave Noise Measurement Data

Summary Filename	LxT_Data.004	
Serial Number	3828	
Model	SoundExpert™ LxT	
Firmware Version	2.302	
User		
Location		
Job Description		
Note		
Measurement Description		
Start	2018/06/21 13:10:37	
Stop	2018/06/21 13:25:38	
Duration	0:15:01.3	
Run Time	0:15:01.3	
Pause	0:00:00.0	
Pre Calibration	2018/06/21 13:05:39	
Post Calibration	None	
Calibration Deviation		
Overall Settings		
RMS Weight	A Weighting	
Peak Weight	A Weighting	
Detector	Slow	
Preamp	PRMLxT1L	
Microphone Correction	Off	
Integration Method	Linear	
OBA Range	Normal	
OBA Bandwidth	1/1 and 1/3	
OBA Freq. Weighting	A Weighting	
OBA Max Spectrum Overload	At Lmax 121.8 dB	
Overload	A	С
Under Range Peak	78.1	75.1
Under Range Limit	27.1	25.8
Noise Floor	16.8	16.7
Results		
LAeq	69.5 dB	
LAE	99.0 dB	
EA	886.343 μPa²h	
LApeak (max)	2018/06/21 13:11:59	107.6 dB
LASmax	2018/06/21 13:11:59	93.0 dB
LASmin	2018/06/21 13:21:23	52.6 dB
SEA	-99.9 dB	
LAS > 85.0 dB (Exceedence Counts / Duration)	1	4.9 s
LAS > 115.0 dB (Exceedence Counts / Duration)	0	0.0 s
LApeak > 135.0 dB (Exceedence Counts / Duration)	0	0.0 s
LApeak > 137.0 dB (Exceedence Counts / Duration)	0	0.0 s
LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s

Community Noise	Ldn LDay 07:00-22:00 LNight 22:00-07:00	Lden LDay 07:00-19:00	LEvening 19:00-22:00	LNight 22:00-07:00
	69.5 69.5 -9	9.9 69.5 69.	5 -99.	9 -99.9
LCeq	75.4 dB			
LAeq	69.5 dB			
LCeq - LAeq	5.9 dB			
LAleq	72.2 dB			
LAeq	69.5 dB			
LAleq - LAeq	2.7 dB			
# Overloads	0			
Overload Duration	0.0 s			
# OBA Overloads	0			
OBA Overload Duration	0.0 s			
Statistics				
LAS5.00	70.7 dB			
LAS10.00	69.2 dB			
LAS33.30	63.9 dB			
LAS50.00	61.0 dB			
LAS66.60	58.5 dB			
LAS90.00	55.0 dB			

Z 80.1 dB 33.1 dB 22.9 dB

9010 Blue Wave Noise Measurement Data

Summary Filename	LxT_Data.005				
Serial Number	3828				
Model	SoundExpert™ LxT				
Firmware Version	2.302				
User					
Location					
Job Description					
Note					
Measurement Description					
Start	2018/06/21 13:35:37				
Stop	2018/06/21 13:50:38				
Duration	0:15:00.8				
Run Time	0:15:00.8				
Pause	0:00:00.0				
Pre Calibration	2018/06/21 13:34:10				
Post Calibration	None				
Calibration Deviation					
Overall Settings					
RMS Weight	A Weighting				
Peak Weight	A Weighting				
Detector	Slow				
Preamp	PRMLxT1L				
Microphone Correction	Off				
ntegration Method	Linear				
OBA Range	Normal				
OBA Bandwidth	1/1 and 1/3				
OBA Freq. Weighting	A Weighting				
OBA Max Spectrum	At Lmax				
Overload	121.8 dB	~			
Inder Range Deak	A 78.1	C 75 1			
Under Range Peak Under Range Limit	78.1 27.1	75.1 25.8			
Noise Floor	27.1 16.8	25.8 16.7			
	10.0				
Results _Aeq	54.9 dB				
_Aeq _AE	54.9 dB 84.4 dB				
EA	84.4 αB 30.595 μPa²h				
LApeak (max)	2018/06/21 13:37:09	86.1 dB			
LASmax	2018/06/21 13:37:09	63.1 dB			
LASmin	2018/06/21 13:45:28	46.8 dB			
SEA	-99.9 dB	-10.0 UD			
LAS > 85.0 dB (Exceedence Counts / Duration)	0	0.0 s			
_AS > 115.0 dB (Exceedence Counts / Duration)	0	0.0 s			
_Apeak > 135.0 dB (Exceedence Counts / Duration)	0	0.0 s			
_Apeak > 137.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s			

Community Noise	Ldn LDay 07:00-22:00 LNight 22:00-07:00 Lden LDay 07:00-19:00 LEvening 19:00-22:00 LNight 22:00-07:00
	54.9 54.9 54.9 54.9 -99.9 -99.9
LCeq	68.5 dB
LAeq	54.9 dB
LCeq - LAeq	13.6 dB
LAleq	56.2 dB
LAeq	54.9 dB
LAleq - LAeq	1.4 dB
# Overloads	0
Overload Duration	0.0 s
# OBA Overloads	0
OBA Overload Duration	0.0 s
Statistics	
LAS5.00	58.9 dB
LAS10.00	57.8 dB
LAS33.30	55.1 dB
LAS50.00	53.8 dB
LAS66.60	52.4 dB
LAS90.00	49.4 dB

Z 80.1 dB 33.1 dB 22.9 dB

ATTACHMENT 2

HVAC Specifications

38HDR Performance[™] Series Air Conditioner with Puron[®] Refrigerant 1–1/2 to 5 Nominal Tons

Product Data

Carrier's Air Conditioners with Puron[®] refrigerant provide a collection of features unmatched by any other family of equipment. The 38HDR has been designed utilizing Carrier's Puron refrigerant. The environmentally sound refrigerant allows you to make a responsible decision in the protection of the earth's ozone layer.

This product has been designed and manufactured to meet Energy Star[®] criteria for energy efficiency when matched with appropriate coil components. Refer to the combination ratings in the Product Data for system combinations that meet Energy Star[®] guidelines.

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Energy Efficiency

• 13 - 15 SEER/10.9 - 12.5 EER

Sound

• Levels as low as 68 dBA

Design Features

- New aesthetics
- Small footprint, same as old model and "stackable"
- WeatherArmor[™] cabinet
 - All steel cabinet construction
 - Baked on powder paint
 - Mesh coil guard

Reliability, Quality and Toughness

- Scroll compressor
- Crankcase Heater standard on sizes 030-060
- Factory-supplied filter drier
- High pressure switch
- Low pressure switch
- Line lengths up to 250' (76.2 m)
- Low ambient operation (down to -20°F/-28.9°C) with low ambient accessories.

MODEL NUMBER NOMENCLATURE 8 2 4 5 6 7 9 10 1 3 11 12 13 Ν Ν А А A/N Ν Ν A/N A/N A/N Ν Ν Ν 3 8 н D R 0 8 А 0 0 3 0 1 Product HDR = Horizontal Discharge **Cooling Capacity** Variations Open Open Voltage Minor Series **Condensing Unit** Series 3=208/230-1 0=Not 0=Not 0, 1, 2... 38=AC/HP Major Model 1,000 Btuh Nominal A=Standard 5=208/230-3 Defined Defined 6=460/3

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program For verification of certification for individual products, go to www.ahridirectory.org.

CERTIFIED₇₇

QMI-SAI Global

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency when matched with appropriate coil components. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturing refrigerant charging and air flow instructions. Failure to confirm proper charge and air flow may reduce energy efficiency and shorten equipment life.

PHYSICAL DATA

UNIT 38HDR	018	024	030	036	048	060				
NOMINAL CAPACITY (Tons)	1.5	2.0	2.50	3.0	4.0	5.0				
OPERATING WEIGHT Ib (kg)	155 (70.3)	180 (81.6)	200 (90.7)	218 (98.9)	284 (128.8)	294 (133.4)				
REFRIGERANT TYPE	R-410A									
METERING DEVICE		TXV								
CHARGE lb (kg)	6.3 (2.86)	6.0 (2.73)	8.7 (3.95)	8.7 (3.95)	11.5 (5.23)	12.0 (5.45)				
COMPRESSOR			•							
Туре			S	croll						
Oil Charge (POE – oz)	25.0	25.0	25.0	25.0	42.0	42.0				
Crankcase Heater (watts)	—	—	40	40	40	40				
OUTDOOR FAN			•			•				
Rpm/Cfm	840/1720	840/1720	850/3900	850/3900	850/3900	850/3900				
Diameter in. (mm)	18 (457)	18 (457)	24 (610)	24 (610)	24 (610)	24 (610)				
No. Blades	3	3	3	3	3	3				
Motor hp (w)	1/8 (93)	1/8 (93)	1/4 (187)	1/4 (187)	1/4 (187)	1/4 (187)				
OUTDOOR COIL			•			•				
Face Area (sq ft)	5.8	7.3	12.1	12.1	14.1	14.1				
No. Rows	2	2	2	2	2	2				
FPI	20	20	20	20	20	20				
HIGH PRESSURE SWITCH				•						
Cut-In (psig) Cutout (psig)	420 ± 25	420 ± 25	420 ± 25	420 ± 25	420 ± 25	420 ± 25				
	650 ± 10	650 ± 10	650 ± 10	650 ± 10	650 ± 10	650 ± 10				
LOW PRESSURE SWITCH										
Cut-In (psig) Cutout (psig)	45 ± 25	45 ± 25	45 ± 25	45 ± 25	45 ± 25	45 ± 25				
()	20 ± 5	20 ± 5	20 ± 5	20 ± 5	20 ± 5	20 ± 5				
REFRIGERANT LINES										
Connection Type			-	weat						
Max. Liquid Line* (in.) OD	3/8	3/8	3/8	3/8	3/8	3/8				
Rated Vapor Line† (in.) OD	5/8	5/8	3/4	3/4	7/8	1-1/8**				
CONTROLS										
Control Voltage‡			. 24	1 vac						
System Voltage	208/230 v	208/230 v	208/230 v		and 3 Phase, 460 v	, 3 Phase				
FINISH * See Liauid Line Sizing For Cooling Only St			0	àray						

* See Liquid Line Sizing For Cooling Only Systems with Puron Refrigerant tables.

† Units are rated with 25 ft (7.6 m) of lineset length. See Vapor Line Sizing and Cooling Capacity Loss table when using other sizes and lengths of lineset.

‡ 24 v and a minimum of 40 va is provided in the fan coil unit.

** Vapor connection size is 7/8 inch.

FPI – Fins Per Inch

POE - Polyol Ester

REFRIGERANT PIPING LENGTH LIMITATIONS

Liquid Line Sizing and Maximum Total Equivalent Lengths[†] for Cooling Only Systems with Puron® Refrigerant:

The maximum allowable length of a residential split system depends on the liquid line diameter and vertical separation between indoor and outdoor units.

Maximum Total Equivalent Length

See Table below for liquid line sizing and maximum lengths :

				Outd	oor Unit B	ELOW Inc	loor Unit				
Size Liquid Line		Liquid Line		AC with Pu	ron Refriger		n Total Equiva ertical Separa	alent Length†: ition ft (m)	Outdoor unit	BELOW Indo	or
0.20	Connection	Diam. w/ TXV	0-5 (0-1.5)	6-10 (1.8-3.0)	11-20 (3.4-6.1)	21-30 (6.4-9.1)	31-40 (9.4-12.2)	41-50 (12.5-15.2)	51–60 (15.5–18.3)	61-70 (18.6-21.3)	71-80 (21.6-24.4)
018		1/4	150	150	125	100	100	75			
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	225*	150
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*
024		1/4	75	75	75	50	50				
AC with	3/8	5/16	250*	250*	250*	250*	250*	225*	175	125	100
Puron	Puron	3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*
030		1/4	30								
AC with	3/8	5/16	175	225*	200	175	125	100	75		
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*
036 AC with	3/8	5/16	175	150	150	100	100	100	75		
Puron	5/0	3//8	250*	250*	250*	250*	250*	250*	250*	250*	250*
048 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	230	160	
060 AC with Puron	3/8	3/8	250*	250*	250*	225*	190	150	110		

* Maximum actual length not to exceed 200 ft (61 m)

† Total equivalent length accounts for losses due to elbows or fitting. See the Long Line Guideline for details.

-- = outside acceptable range

Maximum Total Equivalent Length Outdoor Unit ABOVE Indoor Unit

					III ADUVE I					
Size	Size Liquid Line	Liquid Line	AC v	nit ABOVE Inc	loor					
0120	Connection	Diam. w/ TXV	25 (7.6)	26-50 (7.9-15.2)	51-75 (15.5-22.9)	76-100 (23.2-30.5)	101-125 (30.8-38.1)	126-150 (38.4-45.7)	151–175 (46.0–53.3)	176-200 (53.6-61.0)
018		1/4	175	250*	250*	250*	250*	250*	250*	250*
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*
024		1/4	100	125	175	200	225*	250*	250*	250*
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*
030		1/4	30							
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*
036 AC with	3/8	5/16	225*	250*	250*	250*	250*	250*	250*	250*
Puron	5/6	3/8	250*	250*	250*	250*	250*	250*	250*	250*
048 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	250*	250*
060 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	250*	250*

* Maximum actual length not to exceed 200 ft (61 m)

† Total equivalent length accounts for losses due to elbows or fitting. See the Long Line Guideline for details.

-- = outside acceptable range

REFRIGERANT CHARGE ADJUSTMENTS

Liquid Line Size	Puron Charge oz/ft (g/m)
3/8	0.60 (17.74) (Factory charge for lineset = 9 oz / 266.16 g)
5/16	0.40 (11.83)
1/4	0.27 (7.98)

Units are factory charged for 15 ft (4.6 m) of 3/8" liquid line. The factory charge for 3/8" lineset 9 oz (266.16 g). When using other length or diameter liquid lines, charge adjustments are required per the chart above.

Charging Formula:

[(Lineset oz/ft x total length) – (factory charge for lineset)] = charge adjustment

Example 1: System has 15 ft of line set using existing 1/4" liquid line. What charge adjustment is required?

Formula: (.27 oz/ft x 15 ft) - (9 oz) = (-4.95) oz.

Net result is to remove 4.95 oz of refrigerant from the system

Example 2: System has 45 ft of existing 5/16" liquid line. What is the charge adjustment?

Formula: (.40 oz/ft. x 45ft) - (9 oz.) = 9 oz.

Net result is to add 9 oz of refrigerant to the system

LONG LINE APPLICATIONS

An application is considered Long Line, when the refrigerant level in the system requires the use of accessories to maintain acceptable refrigerant management for systems reliability. See Accessory Usage Guideline table for required accessories. Defining a system as long line depends on the liquid line diameter, actual length of the tubing, and vertical separation between the indoor and outdoor units.

For Air Conditioner systems, the chart below shows when an application is considered Long Line.

AC WITH PURON® REFRIGERANT LONG LINE DESCRIPTION ft (m) Beyond these lengths, long line accessories are required

Liquid Line Size	Units On Same Level	Outdoor Below Indoor	Outdoor Above Indoor
1/4	No accessories needed within allowed lengths	No accessories needed within allowed lengths	175 (53.3)
5/16	120 (36.6)	50 (15.2) vertical or 120 (36.6) total	120 (36.6)
3/8	80 (24.4)	35 (10.7) vertical or 80 24.4) total	80 (24.4)

Note: See Long Line Guideline for details

VAPOR LINE SIZING AND COOLING CAPACITY LOSS

Acceptable vapor line diameters provide adequate oil return to the compressor while avoiding excessive capacity loss. The suction line diameters shown in the chart below are acceptable for AC systems with Puron refrigerant:

Unit Nominal	Maximum Liquid Line	Vapor Line Diameters	Cooling Capacity Loss (%) Total Equivalent Line Length ft. (m)									
Size (Ptub)	Diameters (In. OD)	(In. OD)	26-50 (7.9-15.2)	51-80 (15.5-24.4)	81-100 (24.7-30.5)	101–125 (30.8–38.1)	126-150 (38.4-45.7)	151 – 175 (46.0 – 53.3)	176-200 (53.6-61.0)	201-225 (61.3-68.6)	226-250 (68.9-76.2)	
018		1/2	1	2	3	5	6	7	8	9	11	
1 Stage AC with	3/8	5/8	0	1	1	1	2	2	2	3	3	
Puron		3/4	0	0	0	0	1	1	1	1	1	
024		5/8	0	1	2	2	3	3	4	5	5	
1 Stage AC with	3/8	3/4	0	0	1	1	1	1	1	2	2	
Puron		7/8	0	0	0	0	0	1	1	1	1	
030		5/8	1	2	3	3	4	5	6	7	8	
1 Stage AC with	3/8	3/4	0	0	1	1	1	2	2	2	3	
Puron		7/8	0	0	0	0	1	1	1	1	1	
036		5/8	1	2	4	5	6	8	9	10	12	
1 Stage AC with	3/8	3/4	0	1	1	2	2	3	3	4	4	
Puron		7/8	0	0	0	1	1	1	1	2	2	
048		3/4	0	1	2	3	4	5	5	6	7	
1 Stage AC with	3/8	7/8	0	0	1	1	2	2	2	3	3	
Puron		1 1/8	0	0	0	0	0	0	0	1	1	
060		3/4	1	2	4	5	6	7	9	10	11	
1 Stage AC with	3/8	7/8	0	1	2	2	3	4	4	5	5	
Puron		1 1/8	0	0	0	1	1	1	1	1	1	

Vapor Line Sizing and Cooling Capacity Losses — Puron® Refrigerant 1-Stage Air Conditioner Applications

Applications in this area may be long line and may have height restrictions. See the Residential Piping and Long Line Guideline

ACCESSORY THERMOSTATS

THERMOSTAT / SUBBASE PKG.	DESCRIPTION					
TP-PRH01-A	Programmable Thermidistat					
TP-NRH01-A	programmable Thermidistat					
TP-PAC01	rmance Series Programmable AC Stat					
TP-NAC01	formance Series Non-programmable AC Stat					
TSTATCCSEN01-B	Outdoor Air Temperature Sensor					
TSTATXXBBP01	Backplate for Builder's Thermostat					
TSTATXXNBP01	Backplate for Non-Programmable Thermostat					
TSTATXXPBP01	Backplate for Programmable Thermostat					
TSTATXXCNV10	Thermostat Conversion Kit (4 to 5 wires) – 10 Pack					

ACCESSORIES

KIT NUMBER	KIT NAME	018	024	030	036	048	060
KAACH1401AAA	Crankcase Heater	Х	Х				
Standard	Crankcase Heater			S	S	S	S
KAAFT0101AAA	Evaporator Freeze Stat	Х	Х	Х	Х	Х	Х
KAATD0101TDR	Time Delay Relay	Х	Х	Х	Х	Х	Х
KAAWS0101AAA	Winter Start Kit (for low ambient)	х	х	x	x	х	х
53DS-900086	Low Ambient Control (Puron)	х	х	x	x	х	Х
53DS-900070	Wind Baffle	Х					
53DS-900087	Wind Baffle		Х				
53DS-900071	Wind Baffle			Х	Х		
53DS-900088	Wind Baffle					Х	Х
53DS-900075	Stacking Kit	Х	Х				
53DS-900076	Stacking Kit			Х	Х	Х	Х
53DS-900077	Wall Mounting Kit	Х	Х				
53DS-900078	Wall Mounting Kit			Х	Х	Х	Х

X = Accessory, S = Standard

ACCESSORY USAGE GUIDELINE

REQUIRED FOR LOW-AMBIENT COOLING APPLICATIONS (Below 55°F/12.8°C)	REQUIRED FOR LONG LINE APPLICATIONS* (Over 80 ft. / 24.4 m)	REQUIRED FOR SEA COAST APPLICATIONS (Within 2 miles / 3.2 km)
Yes	Yes	No
Yes	Yes	No
Yes	No	No
Yes	Yes	Yes
No	See Longline Application Guideline	No
Yes	No	No
Yes	No	No
	COOLING APPLICATIONS (Below 55°F/12.8°C) Yes Yes Yes Yes No Yes	REQUIRED FOR LOW - AMBIENT COOLING APPLICATIONS (Below 55°F/12.8°C) LONG LINE APPLICATIONS* (Over 80 ft. / 24.4 m) Yes Yes Yes No Yes No

For tubing line sets between 80 and 200 ft. (24.38 and 60.96 m) and/or 35 ft. (10.7 m) vertical differential, refer to Residential Piping and Longline Guideline.

Accessory Description and Usage (Listed Alphabetically)

1. Crankcase Heater

An electric resistance heater which mounts to the base of the compressor to keep the lubricant warm during off cycles. Improves compressor lubrication on restart and minimizes the chance of liquid slugging.

Usage Guideline:

Required in low ambient cooling applications.

Required in long line applications.

Suggested in all commercial applications.

2. Evaporator Freeze Thermostat

An SPST temperature-actuated switch that stops unit operation when evaporator reaches freeze-up conditions.

Usage Guideline:

Required when low ambient kit has been added.

3. Low-Ambient Control

A fan-speed control device activated by a temperature sensor, designed to control condenser fan motor speed in response to the saturated, condensing temperature during operation in cooling mode only. For outdoor temperatures down to -20° F (-28.9° C), it maintains condensing temperature at 100° F $\pm 10^{\circ}$ F (37.8° C $\pm 5.5^{\circ}$ C).

Usage Guideline:

A Low Ambient Controller must be used when cooling operation is used at outdoor temperatures below 55° F (12.8°C).

Suggested for all commercial applications.

4. Outdoor Air Temperature Sensor

Designed for use with Carrier Thermostats listed in this publication. This device enables the thermostat to display the outdoor temperature. This device also

is required to enable special thermostat features such as auxiliary heat lock out.

Usage Guideline:

Suggested for all Carrier thermostats listed in this publication.

5. Thermostatic Expansion Valve (TXV)

A modulating flow-control valve which meters refrigerant liquid flow rate into the evaporator in response to the superheat of the refrigerant gas leaving the evaporator.

Kit includes valve, adapter tubes, and external equalizer tube. Hard shut off types are available.

NOTE: When using a hard shut off TXV with single phase reciprocating compressors, a Compressor Start Assist Capacitor and Relay is required.

Usage Guideline:

Accessory required to meet AHRI rating and system reliability, where indoor not equipped.

Hard shut off TXV or LLS required in air conditioner long line applications.

Required for use on all zoning systems.

6. Time-Delay Relay

An SPST delay relay which briefly continues operation of indoor blower motor to provide additional cooling after the compressor cycles off.

NOTE: Most indoor unit controls include this feature. For those that do not, use the guideline below.

Usage Guideline:

Accessory required to meet AHRI rating, where indoor

not equipped.

7. Winter Start Control

This control is designed to alleviate nuisance opening of the low-pressure switch by bypassing it for the first 3 minutes of operation.

ELECTRICAL DATA

V–PH–Hz				ESSOR	00100	or fan N	IUTUR	MIN	FUSE/CKT
	Min	Max	RLA	LRA	FLA	NEC Hp	kW Out	CKT AMPS	BKR AMPS
208/230-1-60	187	253	9.0	48.0	0.8	0.125	0.09	12.1	20
208/230-1-60	187	253	13.5	58.3	0.8	0.125	0.09	17.7	25
208/230-1-60	187	253	14.1	73.0	1.5	0.250	0.19	19.1	30
208/230-1-60	187	253	14.1	77.0	1.5	0.250	0.19	19.1	30
208/230-3-60	187	253	9.2	71.0	1.5	0.250	0.19	13.0	20
460-3-60	414	506	5.6	38.0	0.8	0.250	0.19	7.9	10
208/230-1-60	187	253	19.9	109.0	1.5	0.250	0.19	26.4	40
208/230-3-60	187	253	13.1	83.1	1.5	0.250	0.19	17.9	25
460-3-60	414	506	6.1	41.0	0.8	0.250	0.19	8.4	15
208/230-1-60	187	253	26.4	134.0	1.5	0.250	0.19	34.5	60
208/230-3-60	187	253	16.0	110.0	1.5	0.250	0.19	21.5	30
460-3-60	414	506	7.8	52.0	0.8	0.250	0.19	10.6	15
	208/230-1-60 208/230-1-60 208/230-3-60 208/230-3-60 208/230-1-60 208/230-3-60 208/230-3-60 208/230-1-60 208/230-3-60 460-3-60	208/230-1-60 187 208/230-1-60 187 208/230-1-60 187 208/230-1-60 187 208/230-1-60 187 208/230-3-60 187 208/230-3-60 187 208/230-3-60 187 208/230-1-60 187 208/230-1-60 187 208/230-3-60 187 208/230-3-60 187 208/230-1-60 187 208/230-3-60 187 460-3-60 414 208/230-3-60 187 460-3-60 414	208/230-1-60 187 253 208/230-1-60 187 253 208/230-1-60 187 253 208/230-1-60 187 253 208/230-1-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-1-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253 208/230-3-60 187 253	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	208/230-1-60 187 253 9.0 48.0 208/230-1-60 187 253 13.5 58.3 208/230-1-60 187 253 14.1 73.0 208/230-1-60 187 253 14.1 77.0 208/230-1-60 187 253 9.2 71.0 208/230-3-60 187 253 9.2 71.0 460-3-60 414 506 5.6 38.0 208/230-1-60 187 253 19.9 109.0 208/230-3-60 187 253 13.1 83.1 460-3-60 414 506 6.1 41.0 208/230-1-60 187 253 26.4 134.0 208/230-1-60 187 253 26.4 134.0 208/230-3-60 187 253 16.0 110.0	208/230-1-60 187 253 9.0 48.0 0.8 $208/230-1-60$ 187 253 13.5 58.3 0.8 $208/230-1-60$ 187 253 14.1 73.0 1.5 $208/230-1-60$ 187 253 14.1 77.0 1.5 $208/230-3-60$ 187 253 9.2 71.0 1.5 $208/230-3-60$ 187 253 9.2 71.0 1.5 $208/230-3-60$ 414 506 5.6 38.0 0.8 $208/230-1-60$ 187 253 19.9 109.0 1.5 $208/230-3-60$ 187 253 13.1 83.1 1.5 $460-3-60$ 414 506 6.1 41.0 0.8 $208/230-1-60$ 187 253 26.4 134.0 1.5 $208/230-3-60$ 187 253 16.0 110.0 1.5 $460-3-60$ 414 506 7.8 52.0 0.8	Image: Constraint of the system Image: Consystem Image: Constraint of the syst	208/230-1-60 187 253 9.0 48.0 0.8 0.125 0.09 $208/230-1-60$ 187 253 13.5 58.3 0.8 0.125 0.09 $208/230-1-60$ 187 253 14.1 73.0 1.5 0.250 0.19 $208/230-1-60$ 187 253 14.1 77.0 1.5 0.250 0.19 $208/230-1-60$ 187 253 14.1 77.0 1.5 0.250 0.19 $208/230-3-60$ 187 253 9.2 71.0 1.5 0.250 0.19 $208/230-1-60$ 187 253 19.9 109.0 1.5 0.250 0.19 $208/230-3-60$ 187 253 13.1 83.1 1.5 0.250 0.19 $208/230-3-60$ 414 506 6.1 41.0 0.8 0.250 0.19 $208/230-1-60$ 187 253 26.4 134.0 1.5 0.250 0.19 $208/230-3-60$ 414 506 6.1 41.0 0.8 0.250 0.19 $208/230-3-60$ 187 253 16.0 110.0 1.5 0.250 0.19 $208/230-3-60$ 414 506 7.8 52.0 0.8 0.250 0.19	208/230-1-60 187 253 9.0 48.0 0.8 0.125 0.09 12.1 208/230-1-60 187 253 13.5 58.3 0.8 0.125 0.09 12.1 208/230-1-60 187 253 13.5 58.3 0.8 0.125 0.09 17.7 208/230-1-60 187 253 14.1 73.0 1.5 0.250 0.19 19.1 208/230-1-60 187 253 14.1 77.0 1.5 0.250 0.19 19.1 208/230-3-60 187 253 9.2 71.0 1.5 0.250 0.19 13.0 460-3-60 414 506 5.6 38.0 0.8 0.250 0.19 7.9 208/230-1-60 187 253 19.9 109.0 1.5 0.250 0.19 26.4 208/230-3-60 187 253 13.1 83.1 1.5 0.250 0.19 34.5 208/230-1-60

* Permissible limits of the voltage range at which the unit will operate satisfactorily

FLA – Full Load Amps

HACR - Heating, Air Conditioning, Refrigeration

LRA – Locked Rotor Amps

NEC - National Electrical Code

RLA - Rated Load Amps (compressor)

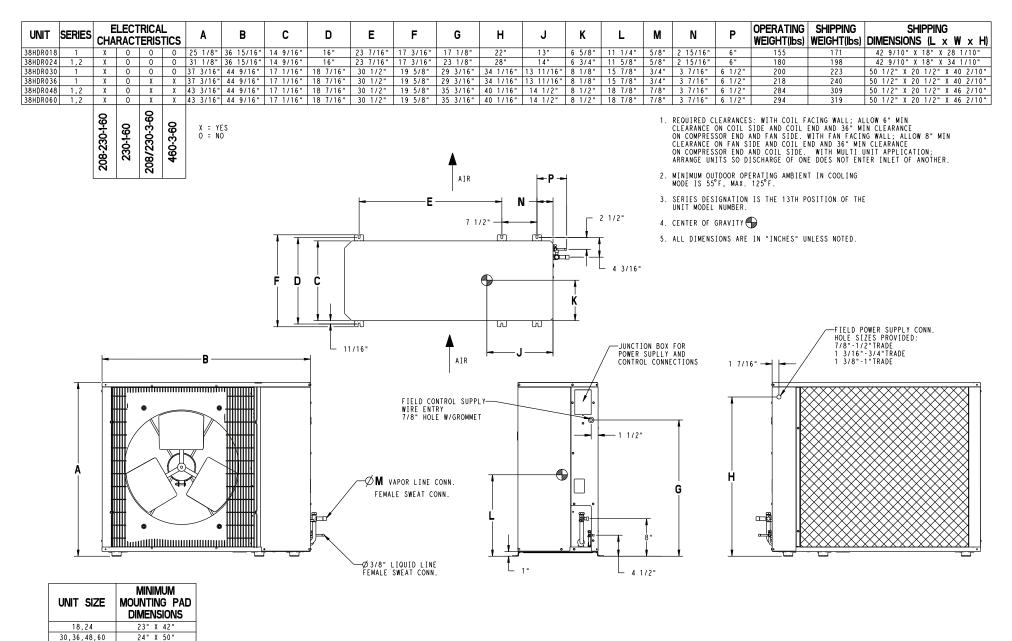
NOTE: Control circuit is 24–V on all units and requires external power source. Copper wire must be used from service disconnect to unit. All motors/compressors contain internal overload protection.

Complies with 2007 requirements of ASHRAE Standards 90.1

A-WEIGHTED SOUND POWER (dBA)

	Standard		Typical	Octave Band	Spectrum (dBA) (without tone	adjustment)	
Unit Size	Rating (dBA)	125	250	500	1000	2000	4000	8000
018-31	68	52.0	57.5	60.5	63.5	60.5	57.5	46.5
024-32	69	57.5	61.5	63.0	61.0	60.0	56.0	45.0
030-31	72	56.5	63.0	65.0	66.0	64.0	62.5	57.0
036-31	72	65.0	61.5	63.5	65.0	64.5	61.0	54.5
048-32	72	58.5	61.0	64.0	67.5	66.0	64.0	57.0
060-32	72	63.0	61.5	64.0	66.5	66.0	64.5	55.5

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).


CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

UNIT SIZE-VOLTAGE, SERIES	REQUIRED SUBCOOLING °F (°C)
018-31	12 (6.7)
024-32	12 (6.7)
030-31	12 (6.7)
036-31	12 (6.7)
048-32	12 (6.7)
060-32	12 (6.7)

38HDR

DIMENSIONS - ENGLISH

 ∞

DIMENSIONS - SI

 18,24
 584.2 X 1066.8

 30,36,48,60
 609.6 X 1270.0

	SERIE			FRICA FERIS		A	В	С	D	E	F	G	н	J	к	L	м	N	P		WEIGHT(KG)	SHIPPING DIMENSIONS (L × W × H)
38HDR018	1	X	0	0	0	638.2	938.2	369.9	406.4	595.3	436.6	435.0	558.8	330.2	168.3	285.8	15.9	74.6	152.		77.7	1090.2 X 457.7 X 714.3
38HDR024 38HDR030	1,2		0	0	0	790.6 944.6	938.2 1131.9	369.9 433.4	406.4	595.3 774.7	436.6 498.5	587.4 741.4	711.2 865.2	355.6 347.7	171.5 206.4	295.3 403.2	15.9 19.0	74.6	152.		90.0	1090.2 X 457.7 X 866.7 1282.7 X 520.7 X 1020.7
38HDR036	1	X	0	T X	X	944.6	1131.9	433.4	468.3	774.7	498.5	741.4	865.2	347.7	206.4	403.2	19.0	87.3	165.		109.0	1282.7 X 520.7 X 1020.7
38HDR048	1,2	X	0	X	X	1097.0	1131.9	433.4	468.3	774.7	498.5	893.8	1017.6	368.3	215.9	479.4	22.2	87.3	165.	1 129.0	140.4	1282.7 X 520.7 X 1173.1
38HDR060	1,2	X	0	X	X	1097.0	1131.9	433.4	468.3	774.7	498.5	893.8	1017.6	368.3	215.9	479.4	22.2	87.3	165.	1 133.6	145.0	1282.7 X 520.7 X 1173.1
		208-230-1-60	230-1-60	208/230-3-60	460-3-60	X = Y O = N4						AIR		⊢P	-=-			ON C CLEA ON C ARRA	COMPRESS ARANCE C COMPRESS ANGE UNI	SOR END AND FAN DN FAN SIDE AND SOR END AND COIL	SIDE. WITH FAN COIL END AND 9 SIDE. WITH M OF ONE DOES N	LL; ALLOW 152.4 MIN 914.4 MIN CLEARANCE FACING WALL; ALLOW 203.2 MIN 14.4 MIN CLEARANCE ULTI UNIT APPLICATION; OT ENTER INLET OF ANOTHER. LING
												E		N +				3. SERI		IGNATION IS THE		
													190.5 🗕			63.5		4 CENT	FROF	GRAVITY		
													d d			-				9		
								ĪĪ	1	$\langle $						1		J. ALL	DIMENSI	IONS ARE IN "MM"	UNLESS NUTED.	
														E S	┶╍──ऻ	+						
														Ĩ		└ 106.4						
								F D	Ç				\$		•							
															L L							
															n 							
													- 60									
										00											-FIELD POWE	R SUPPLY CONN.
									L	17.5		-		.						/	HOLE SIZES	PROVIDED:
						_						AIR	-	J — -	1	-JUNCTION					22.22 - 12 30.16 - 19	.05 TRADE
		-				-B		-				I				POWER SU CONTROL			36	.5-+ /	34.92 - 25	
	A		•							W	IELD CONTRY IRE ENTRY 2.22 HOLE '					- 38.1	ĥ					
	V		•							Ó M vapor female sw	EAT CONN.	L				203.	2 2					
U	NIT S		Moun Dim	INIMU ITING IENSIO	PAD DNS				∽_¢ F	Ó9.53 LIQU EMALE SWEA	ID LINE T CONN.		L 25.4	I		L 114.3						

TESTED AHRI COMBINATION RATINGS*

NOTE: Ratings contained in this document are subject to change at any time.

For AHRI ratings certificates, please refer to the AHRI directory <u>www.ahridirectory.org</u> Additional ratings and system combinations can be accessed via the Carrier database at:

http://cactaxcredits.info/carrier-ratings/ac_ratings_srch.php

Equipment performance calculator can be accessed at: <u>http://rpmob.wrightsoft.com/</u>

Model Number	Indoor Model	Furnace Model	Capacity	EER	SEER
38HDR024-32	CNPV*2414A**+TDR		23,400	11.0	13.0
38HDR030-31	CNPV*3014A**+TDR		28,000	11.0	13.0
38HDR036-31	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR036-51	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR036-61	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR048-32	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR048-52	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR048-62	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR060-32	CNPV*6024A**+TDR		57,000	11.0	13.0
38HDR060-52	CNPV*6024A**+TDR		57,000	11.0	13.0
38HDR060-62	CNPV*6024A**+TDR		57,000	11.0	13.0

* AHRI = Air Conditioning, Heating & Refrigeration Institute

EER — Energy Efficiency Ratio

SEER — Seasonal Energy Efficiency Ratio

TDR — Time – Delay Relay. In most cases, only 1 method should be used to achieve TDR function. Using more than 1 method in a system may cause degradation in performance. Use either the accessory Time – Delay Relay KAATD0101TDR or a furnace equipped with TDR. Most Carrier furnaces are equipped with TDR.

NOTES:

1. Ratings are net values reflecting the effects of circulating fan motor heat. Supplemental electric heat is not included.

2. Tested outdoor/indoor combinations have been tested in accordance with DOE test procedures for central air conditioners. Ratings for other combinations are determined under DOE computer simulation procedures.

3. Determine actual CFM values obtainable for your system by referring to fan performance data in fan coil or furnace coil literature.

4. Do not apply with capillary tube coils as performance and reliability are significantly affected.

DETAILED COOLING CAPACITIES*

EVADO	RATOR AIR								CONDENSER	ENTERING A	IR TEMPER	ATURES °F (°C)	_					
LVAFU			75 (23.9)			85 (29.4)			95 (35)			105 (40.6)			115 (46.1)			125 (51.7)	
	EWB	Capac	ity MBtuh†	Total	Capaci	ty MBtuh†	Total	Capaci	ty MBtuh†	Total	Capaci	ty MBtuh†	Total	Capaci	ty MBtuh†	Total	Capacit	y MBtuh†	Total
CFM	° F (° C)	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**
	ľ						38HDF	R018 Outdoo	r Section Wit	h CNPV*1814	A** Indoor	Section							
	72 (22.2)	20.28	9.40	1.22	19.31	9.07	1.36	18.30	8.73	1.52	17.26	8.38	1.69	16.14	8.01	1.87	14.90	7.61	2.07
525	67(19.4)	18.53	11.50	1.22	17.65	11.17	1.36	16.72	10.82	1.52	15.76	10.47	1.69	14.72	10.09	1.87	13.59	9.69	2.07
525	62 (16.7)	16.93	13.58	1.23	16.13	13.24	1.37	15.29	12.89	1.52	14.43	12.52	1.69	13.57	13.57	1.87	12.71	12.71	2.07
	57 (13.9)	16.35	16.35	1.23	15.72	15.72	1.37	15.05	15.05	1.52	14.34	14.34	1.69	13.57	13.57	1.87	12.71	12.71	2.07
	72(22.2)	20.65	9.87	1.25	19.63	9.53	1.39	18.59	9.18	1.54	17.50	8.83	1.71	16.34	8.46	1.90	15.05	8.05	2.10
600	67(19.4)	18.90	12.25	1.25	17.97	11.91	1.39	17.00	11.56	1.55	16.00	11.20	1.72	14.93	10.82	1.90	13.75	10.41	2.10
000	62 (16.7)	17.33	14.61	1.25	16.51	14.26	1.39	15.67	15.61	1.55	14.91	14.91	1.72	14.08	14.08	1.90	13.16	13.16	2.10
	57 (13.9)	17.07	17.07	1.25	16.39	16.39	1.39	15.67	15.67	1.55	14.91	14.91	1.72	14.08	14.08	1.90	13.16	13.16	2.10
	72 (22.2)	20.91	10.30	1.27	19.86	9.96	1.41	18.78	9.61	1.57	17.67	9.26	1.74	16.47	8.88	1.93	15.15	8.46	2.13
675	67 (19.4)	19.16	12.97	1.27	18.20	12.62	1.42	17.20	12.27	1.57	16.18	11.90	1.74	15.07	11.52	1.93	13.87	11.09	2.13
0/0	62 (16.7)	17.70	17.52	1.28	16.94	16.94	1.42	16.17	16.17	1.57	15.37	15.37	1.74	14.49	14.49	1.93	13.52	13.52	2.13
	57(13.9)	17.67	17.67	1.28	16.94	16.94	1.42	16.17	16.17	1.57	15.37	15.37	1.74	14.49	14.49	1.93	13.52	13.52	2.13
EVADO	RATOR AIR							(CONDENSER	ENTERING A	R TEMPER/	ATURES °F (°	C)						
EVAPOR	AT OR AIR		75 (23.9)			85 (29.4)			95 (35)			105 (40.6)			115 (46.1)			125 (51.7)	
CFM	EWB	Capacity	/ MBtuh†	Total	Capacity	MBtuh†	Total	Capacity	/ MBtuh†	Total	Capacity	/ MBtuh†	Total	Capacity	/ MBtuh†	Total	Capacity	MBtuh†	Total
CFIN	° F (° C)	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**
							38HDF	R024 Outdoo	or Section Wit	h CNPV*2414	A** Indoor								
	72 (22.2)	28.11	13.59	1.69	26.70	13.09	1.89	25.17	12.55	2.10	23.54	11.98	2.33	21.76	11.38	2.58	19.78	10.71	2.84
700	67(19.4)	25.68	16.61	1.68	24.41	16.11	1.87	23.04	15.58	2.09	21.58	15.02	2.32	19.98	14.42	2.57	18.21	13.77	2.83
100	62 (16.7)	23.47	19.61	1.67	22.34	19.11	1.86	21.13	18.58	2.08	19.86	18.01	2.31	18.57	18.57	2.55	17.23	17.23	2.82
	57 (13.9)	22.67	22.67	1.67	21.77	21.77	1.86	20.81	20.81	2.07	19.75	19.75	2.31	18.57	18.57	2.55	17.23	17.23	2.82
	72(22.2)	28.62	14.25	1.73	27.14	13.73	1.93	25.53	13.18	2.14	23.83	12.61	2.37	21.98	11.99	2.62	19.92	11.32	2.88
800	67(19.4)	26.18	17.67	1.72	24.84	17.16	1.91	23.40	16.61	2.13	21.88	16.05	2.36	20.22	15.43	2.61	18.38	14.76	2.87
	62 (16.7)	24.02	21.07	1.71	22.85	20.54	1.90	21.63	21.51	2.12	20.48	20.48	2.35	19.20	19.20	2.60	17.75	17.75	2.86
	57 (13.9)	23.64	23.64	1.71	22.68	22.68	1.90	21.62	21.62	2.12	20.48	20.48	2.35	19.20	19.20	2.60	17.75	17.75	2.86
	72 (22.2)	28.99	14.87	1.77	27.45	14.34	1.96	25.78	13.78	2.18	24.03	13.20	2.41	22.12	12.57	2.66	20.00	11.89	2.92
900	67 (19.4)	26.54	18.68	1.76	25.15	18.16	1.95	23.66	17.61	2.17	22.09	17.03	2.40	20.38	16.40	2.65	18.50	15.71	2.91
	62 (16.7)	24.51	22.41	1.75	23.41	23.41	1.94	22.28	22.28	2.16	21.06	21.06	2.39	19.70	19.70	2.64	18.15	18.15	2.91
	57(13.9)	24.45	24.45	1.75	23.41	23.41	1.94	22.28	22.28	2.16	21.06	21.06	2.39	19.70	19.70	2.64	18.15	18.15	2.91

See notes on pg. 13

11

38HDR

DETAILED COOLING CAPACITIES* (CONT.)

EVADO	ATOR AIR								CONDENSER	R ENTERING A	IR TEMPER	ATURES °F ((°C)						
EVAPOR			75 (23.9)			85 (29.4)			95 (35)			105 (40.6)			115 (46.1)			125 (51.7))
CFM	EWB	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total
CFIN	° F (° C)	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**
							38HDI	R030 Outdo	or Section Wi	th CNPV*3014	A** Indoor	Section							
	72 (22.2)	33.74	16.03	2.06	32.29	15.52	2.29	30.76	14.99	2.54	29.12	14.43	2.81	27.36	13.84	3.11	25.42	13.19	3.44
875	67(19.4)	30.65	19.58	2.06	29.32	19.06	2.29	27.90	18.51	2.54	26.39	17.94	2.81	24.76	17.34	3.11	22.97	16.69	3.43
0/5	62 (16.7)	28.07	23.01	2.07	26.73	22.59	2.29	25.47	22.03	2.54	24.10	21.45	2.81	22.76	22.72	3.11	21.45	21.45	3.43
	57 (13.9)	27.14	27.14	2.07	26.16	26.16	2.29	25.11	25.11	2.53	24.01	24.01	2.80	22.78	22.78	3.11	21.43	21.43	3.43
	72(22.2)	34.29	16.79	2.11	32.87	16.29	2.34	31.28	15.69	2.58	29.58	15.18	2.86	27.57	14.54	3.17	25.64	13.91	3.49
1000	67(19.4)	31.27	20.81	2.11	29.84	20.29	2.34	28.40	19.75	2.58	26.82	19.17	2.86	24.99	18.52	3.16	23.21	17.87	3.49
1000	62 (16.7)	28.72	24.92	2.11	27.38	24.26	2.34	26.11	26.11	2.58	24.94	24.94	2.85	23.54	23.54	3.16	22.22	22.22	3.48
	57 (13.9)	28.28	28.28	2.11	27.23	27.23	2.34	26.13	26.13	2.58	24.94	24.94	2.85	23.54	23.54	3.16	22.22	22.22	3.48
	72 (22.2)	34.76	17.52	2.16	33.30	17.00	2.39	31.65	16.46	2.63	29.90	15.89	2.91	28.03	15.27	3.21	25.95	14.60	3.53
1125	67 (19.4)	31.86	21.48	2.16	30.25	21.46	2.38	28.76	20.92	2.63	27.14	20.32	2.90	25.39	19.69	3.21	23.44	18.98	3.54
1125	62 (16.7)	29.27	29.04	2.16	28.12	28.12	2.38	26.98	26.98	2.63	25.71	25.71	2.90	24.35	24.35	3.20	22.84	22.84	3.53
	57(13.9)	29.23	29.23	2.16	28.13	28.13	2.38	26.99	26.99	2.63	25.71	25.71	2.90	24.23	24.23	3.21	22.85	22.85	3.53
EVAPOR	ATOR AIR								CONDENSEF	RENTERING A	IR TEMPER	ATURES °F ((°C)						
			75 (23.9)			85 (29.4)			95 (35)			105 (40.6))		115 (46.1)			125 (51.7)	
CFM	EWB	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total Svstem	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total System
CFIVI	° F (° C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	System KW**	Total	Sens‡	KW**
							38HDI	R036 Outdo	or Section Wi	th CNPV*4221	A** Indoor	Section		1					
	72 (22.2)	39.85	18.85	2.42	38.03	18.23	2.68	36.08	17.58	2.98	33.99	16.89	3.30	31.72	16.14	3.65	29.20	15.33	4.03
1050	67(19.4)	36.33	23.19	2.42	34.67	22.57	2.68	32.91	21.91	2.98	31.02	21.23	3.30	28.99	20.49	3.65	26.73	19.69	4.04
1050	62 (16.7)	33.23	27.51	2.42	31.75	26.88	2.68	30.20	26.20	2.98	28.60	28.45	3.30	27.06	27.06	3.65	25.34	25.34	4.03
	57 (13.9)	32.46	32.46	2.42	31.26	31.26	2.68	29.98	29.98	2.98	28.59	28.59	3.30	27.06	27.06	3.65	25.34	25.34	4.03
	72(22.2)	40.51	19.77	2.48	38.61	19.14	2.74	36.57	18.47	3.04	34.40	17.77	3.36	32.04	17.01	3.71	29.42	16.18	4.09
1200	67(19.4)	36.97	24.67	2.48	35.23	24.04	2.74	33.40	23.38	3.04	31.45	22.68	3.36	29.33	21.93	3.71	27.00	21.10	4.09
1200	62 (16.7)	34.01	29.52	2.48	32.53	32.23	2.74	31.11	31.11	3.04	29.61	29.61	3.36	27.97	27.97	3.71	26.12	26.12	4.09
	57 (13.9)	33.78	33.78	2.48	32.49	32.49	2.74	31.11	31.11	3.04	29.62	29.62	3.36	27.97	27.97	3.71	26.12	26.12	4.09
	72 (22.2)	40.99	20.64	2.54	39.02	19.99	2.80	36.91	19.31	3.09	34.67	18.60	3.42	32.24	17.83	3.77	29.54	16.99	4.15
	67 (19.4)	37.43	26.09	2.54	35.65	25.45	2.80	33.76	24.78	3.10	31.75	24.06	3.42	29.58	23.29	3.77	27.20	22.42	4.15
1350		04.96	34.86	2.54	33.49	33.49	2.80	32.02	32.02	3.10	30.44	30.44	3.42	28.70	28.70	3.77	26.73	26.73	4.15
1350	62 (16.7)	34.86	34.00	2.54	00.43	33.49	2.80	OE.OE	02.02	0.10	30.44	00.44	3.42	20.10	2011 0	3.77	26.73	26.73	

See notes on pg. 13

CONDENSER ENTERING AIR TEMPERATURES °F (°C) EVAPORATOR AIR 75 (23.9) 85 (29.4) 95 (35) 105 (40.6) 115 (46.1) 125 (51.7) Capacity MBtuht Total Capacity MBtuht Total Capacity MBtuh† Total Capacity MBtuh† Total Capacity MBtuht Total Capacity MBtuh† Total FWB CFM Svstem System Svstem System System System °F (°C) Total Total Total Sens‡ Total Sens‡ Total Total Senst Sens‡ Senst Sens‡ **KW** K**W** **KW** KW**** **KW** KW**** 48 Outdoor Section With CNPV*4821A** Indoor Section 38HDR0 57.22 54.16 50.83 23.69 43.24 38.87 72 (22.2) 27.09 3.31 26.03 3.74 24.90 4.20 47.23 4.69 22.38 5.21 20.99 5.76 67(19.4) 52.21 33.21 3.33 49.49 32.17 3.76 46.57 31.08 4.22 43.40 29.91 4.71 39.95 28.66 5.23 36.03 27.26 5.77 1460 62 (16.7) 47.74 39.31 3.35 45.37 38.29 3.78 42.88 37.19 4.23 40.25 39.91 4.72 37.64 37.64 5.23 34.63 34.63 5.78 57 (13.9) 46.44 46.44 3.36 44.53 44.53 3.78 42.48 42.48 4.23 40.21 40.21 4.72 37.65 37.65 5.23 34.63 34.63 5.78 72(22.2) 58.13 28.26 3.37 54 91 27.17 3.81 51.42 26.01 4 27 47.67 24.78 4.76 43.52 23 45 5.28 39.26 22.10 5 84 67(19.4) 53.07 35.09 3.40 50.21 34.03 3.83 47.16 32.91 4.29 43.87 31.73 4.78 40.28 30.44 5.30 36.23 28.99 5.85 1650 62 (16.7) 48.75 41.89 3.42 46.32 40.79 3.85 43.85 43.85 4.30 41.42 41.42 4.79 38.64 38.64 5.31 35.37 35.37 5.85 57 (13.9) 48.17 48.17 3.43 46.11 46.11 3.85 43.88 43.88 4.30 41.42 41.42 4.79 38.64 38.64 5.31 35.37 35.37 5.85 25.87 5.36 72 (22.2) 58.83 29.41 3.45 55.48 28.31 3.88 51.86 27.12 4.35 47.97 4.84 43.73 24.52 39.89 23.26 5.92 67 (19.4) 53.74 36.97 50.78 35.90 3.91 47.62 34.76 4.37 44.22 33.55 4.86 40.51 32.22 5.38 30.70 3 48 36 39 5.93 1850 45.09 42.44 62 (16.7) 49.74 44.35 3.50 47.48 47.48 3.92 45.09 4.38 42.44 4.87 39.46 39.46 5.38 35.96 35.96 5.93 49.69 57(13.9) 49.69 3.50 47.49 47.49 3.92 45.09 45.09 4.38 42.45 42.45 4.87 39.46 39.46 5.38 35.97 35.97 5.93 CONDENSER ENTERING AIR TEMPERATURES °F (°C) EVAPORATOR AIR 75 (23.9) 85 (29.4) 95 (35) 105 (40.6) 115 (46.1) 125 (51.7) Total Total Total Total Total Total Capacity MBtuh† Capacity MBtuh† Capacity MBtuh† Capacity MBtuh† Capacity MBtuh† Capacity MBtuh† EWB CFM System System System System System System °F (°C) Total Sens‡ Total Sens‡ Total Sens‡ KW** Total Sens‡ KW** Total Sens‡ KW** Total Sens‡ **ќ**₩** **ќ**₩** **ќ**₩** 60 Outdoor Section W CNPV*602 ** Indoor Section 38HDF 72 (22.2) 68.88 33.36 4.20 65.13 32.05 4.64 60.97 30.62 5.12 56.47 29.10 5.64 51.66 27.52 6.20 46.31 25.80 6.80 67(19.4) 63.28 41.18 4.15 59.98 39.91 4.59 56.34 38.52 5.08 52.38 37.05 5.60 48.00 35.44 6.17 43.23 33.69 6.77 1750 46.30 48.95 55.37 47.69 4.55 52.27 5.04 48.85 5.57 45.63 45.63 6.15 41.69 62 (16.7) 58.24 4.11 48.91 41.69 6.76 57 (13.9) 56.77 56.77 4.09 54.45 54.45 4.54 51.86 51.86 5.03 48.95 48.95 5.57 45.63 45.63 6.15 41.69 41.69 6.76 72(22.2) 69.89 34.93 4.31 65.94 33.59 4.75 61.58 32.12 5.23 56.96 30.59 5.74 52.01 29.02 6.31 47.30 27.45 6.92 67(19.4) 64.28 43.75 4.26 60.81 42.45 4.70 57.00 41.04 5.18 52.88 39.53 5.71 48.32 37.86 6.27 43.82 36.17 6.88 2000 53.58 46.78 59 48 52.47 56 55 4 66 53 58 50 40 50.40 5 68 46 78 6 26 42 62 62 (16.7) 4 22 51 08 5 15 42 62 6 87 58.96 58.96 56.42 53.58 53.58 50.40 50.40 5.68 46.78 6.26 42.60 42.60 57 (13.9) 4.21 56 42 4 66 5.15 46.78 6.87 72 (22.2) 70.60 36.41 4.42 66.50 35.04 4.86 61.97 33.55 5.33 57.25 32.02 5.85 52.14 30.44 6.41 48.41 29.01 7.04 67 (19.4) 65.01 46.21 4.37 61.41 44.89 4.81 57.46 43.44 5.29 53.20 41.88 5.81 48.56 40.17 6.37 44.28 38 42 6.99 2250 62 (16.7) 60.67 60.67 4.33 58.00 58.00 4.78 54.94 54.94 5.26 51.52 51.52 5.79 47.63 47.63 6.36 43.18 43.18 6.98 54.94 51.52 57(13.9) 60.73 60.73 4.33 58.00 58.00 54.94 5.26 51.52 5.79 47.63 47.63 6.36 43.14 43.14 4.78 6.98

DETAILED COOLING CAPACITIES* (CONT.)

13

NOTE: When the required data fall between the published data, interpolation may be performed. Extrapolation is not an acceptable practice.

* Detailed cooling capacities are based on indoor and outdoor unit at the same elevation per the latest edition of AHRI standard 210/240. If additional tubing length and/or indoor unit is located above outdoor unit, a slight variation in capacity may occur.

† Total and sensible capacities are net capacities. Blower motor heat has been subtracted.

‡ Sensible capacities shown are based on 80° F (27° C) entering air at the indoor coil. For sensible capacities at other than 80° F (27° C), deduct 835 Btuh (245 kW) per 1000 CFM (480 L/S) of indoor coil air per degree below 80° F (27° C), or add 835 Btuh (245 kW) per 1000 CFM (480 L/S) of indoor coil air per degree above 80° F (27° C). When the required data fall between the published data, interpolation may be performed.

** Total system kW is total of indoor and outdoor unit kilowatts.

TSS				CONDENSE	CONDENSER ENTERING AIR TEMPERATURES °F (°C)	R TEMPERATU	RES °F (°C)
°F (°C)		55 (12.8)	65 (18.3)	75 (23.9)	85 (29.4)	95 (35)	105 (40.6)
			·	38HDR018-31	018-31	·	ļ
	TCG	16.20	15.30	14.30	13.40	12.40	11.40
30 (- 1.6)	SDT	67.40	77.00	86.50	96.00	105.50	114.90
	KW	0.86	0.98	1.11	1.26	1.42	1.59
	TCG	17.90	16.90	15.90	14.80	13.80	12.70
35 (1.7)	SDT	68.50	78.00	87.50	97.00	106.40	115.80
	KW	0.86	0.98	1.11	1.26	1.42	1.59
	TCG	19.70	18.60	17.50	16.40	15.20	14.10
40 (4.4)	SDT	69.70	79.10	88.60	98.00	107.40	116.80
	KW	0.85	0.97	1.11	1.26	1.42	1.60
	TCG	21.60	20.40	19.20	18.00	16.80	15.50
45 (7.2)	SDI	70.90	80.30	89.70	1 00	108.40	117.70
	TCG	23.60	22.30	21.10	19.70	18.40	17.00
50 (10)	SDT	72.20	81.50	90.80	100.10	109.40	118.60
	КW	0.85	0.97	1.11	1.26	1.42	1.60
	TCG	25.70	24.30	22.90	21.50	20.00	18.60
55 (12.8)	SDT	73.50	82.70	92.00	101.20	110.40	119.60
	KW	0.85	0.97	1.10	1.25	1.42	1.60
				38HDR024-32	024-32		
	TCG	22.10	20.90	19.60	18.30	16.90	15.50
30 (-1.6)	SDT	69.00	78.50	88.00	97.40	106.80	116.10
	КW	1.08	1.24	1.41	1.60	1.80	2.02
	TCG	24.30	23.00	21.70	20.30	18.80	17.20
35 (1.7)	SDT	70.30	79.80	89.20	98.60	107.90	117.10
	ΚW	1.09	1.24	1.42	1.61	1.82	2.04
	TCG	26.80	25.30	23.90	22.30	20.70	19.00
40 (4.4)	SDT	71.70	81.10	90.50	99.80	109.10	118.20
	KW	1.10	1.26	1.43	1.62	1.83	2.06
	TCG	29.40	27.80	26.20	24.50	22.70	20.90

38HDR

See notes on page 15	55 (12.8)			50 (10)		45 (7.2)		40 (4.4)			35 (1.7)		30 (-1.6)			55 (12.8)		50 (10)			45 (7.2)		40 (4.4)		35 (1.7)		ou (- 1.o)	20 1-1 61		0.71) 66	SE (1) 8)		50 (10)		45 (7.2)		40 (4.4)		35 (1.7)		30 (- I.8)	201 1 00		55 (12.8)		50 (10)		45 (7.2)		40 (4.4)		35 (1.7)		(o.1 -) oo	20 / - 1 6)	°F (°C)
age 15	SDT	TCG	KW .	SDT	TON NA	SDT	TCG	SDT	TCG	KW.	SDT	KW	SDT	TCG	KW	SDT	TCG	SDT	TCG	KW	SDT	TOO NA	SDT	TCG	SDT	TCG	KW		TOO	KN -	TCG	KW	SDT	KW	SDT	TCG	SDT	TCG	SDT	TCG	KN -	TCG	KW	SDT	TCG	SDT	TCG	SDT	TCG	SDT	TCG	KW	TCG	KV -		
	77.40	48.00	1.52	43.90 75.90	1.51	74.60	40.10	73.30	36.50	1.50	72.00	33 20	70.90	30.10	1.32	78.30	41.70	1 20	38.20	1.31	34.80 75.60	1.31	74.30	31.70	73.10	28.80	1.30	26.20	0000	1.13	35.00	1.12	74.80	32 10	73.20	29.40	71.70	26.80	1.09	24.30	1.08	22.10	0.85	73.50	25.70	72.20	23.60	0.90	21.60	69.70	19.70	0.86	17.90	0.86	16.20	55 (12.8)
	87.10	45.70	1.73	41./U 85.80	1.72	84.40	38.10	4 70	34.60	1.71	82.00	1.71	80.80	28.50	1.51	88.50	39.70	1 50	36.20	1.50	33.10 85.90	1.49	84.70	1.49 30.10	1 /0	27.30	02.30 1.48	24.70 82 30	07 70	1.29	33.10	1.28	84.10	30 40	82.60	27.80	81.10	25.30	79.80	23.00	1.24	20.90	0.97	82.70	24.30	81.50	22.30	0 <u>9</u> 7	20.40	79.10	18.60	/8.00	16.90	0.98	15.30	65 (18.3)
	97.00	43.30	1.97	39.50 95.70	1.96	94.40	36.00	93.20	32.70	1.95	29.00	1.94 20 70	90.90	26.80	1.72 38HDE	98.90	37.60	97.60	34.30	1.71	31.20 96.40	1.70	95.20	28.40	94.00	25.70	1.69	23.20	38HDF	1.47	31.20	1.46	93.30	1.44 28 60	91.90	1.43 26.20	90.50	23.90	1.42	21.70	1.41	19.60	1.10 38HDF	92.00	22.90	90.80	21.10	89.70	19.20	1 11	17.50	87.50 1.11	15.90	1.11	14.30	CONDENSE 75 (23.9) 38HDF
							2.22 33.80		30.70	2.21	102.10	2.20	101.00	25.10	1.96	109.40	35.50	108.20	32.30	1.95	29.40 107.10	1.94	105.90	26.60	104.80	24.10	1.69 1.92	103 80	1030-31	1.66	29.10	1.65	102.40	1.64	101.10	1.62 24.50	1 80	22.30	98.60 1.61	20.30	97.40 1.60	18.30	0.9/ 1.10 1.25 1.42 38HDR024-32	101.20	21.50	100.10	19.70	1 26	18.00	98.00	16.40	97.00 1.26	14.80	1.26	13.40	CONDENSER ENTERING AIR TEMPERATURES °F (° C) 75 (23.9) 85 (29.4) 95 (35) 105 (40.6) 38HDR018–31
1.00	116.70 אקר כי	38.30	2.54	34.90 115.50	2.51	113.80	31.70	113.40										119.20	30.30	2.22	27.40 118.10	2.22	117.10	24.80	116.10	22.40	2.19	20.10	0	1.88	26.90	1.86	111.50	1.85 24.80	110.20	22.70	109.10	20.70	107.90	18.80	1.80	16.90	1.42	110.40	20.00	109.40	18.40	108.40	16.80	107.40	15.20	1.42	13.80	1.42	12.40	IR TEMPERATU 95 (35)
	126.80	35.70	2.89	32.40 125.90	2.86	124.50	29.40	123.60	26.60	2.85	122.80	2.83	121.60	21.50	2.55	131.20	31.10	130.30	28.20	2.54	129.40	2.53	128.60	23.00	127.70	20.60	2.50	18.40	10 10	2.10	24.60	2.09	120.40	2.08	119.30	20.90	118.20	19.00	2 04	17.20	2.02	15.50	1.60	119.60	18.60	118.60	17.00	117.70	15.50	116.80	14.10	115.80	12.70	1.59	11.40	JRES °F (°C) 105 (40.6)
0.10	137.00	33.10	3.27	30.00 136.20	3.26	135.20	3.23 27.10	134.10	24.40	3.21	133.30	3.19	132.30	19.60	2.89	141.80	29.00	141.10	26.20	2.88	140.60	2.87	140.00	21.20	139.50 3 86	18.90	2.84	130.00		2.35	130 20	2.33	129.20	2.32	128.30	18.90	127.30	17.20	126.30	15.60	2.25	14.00													10.30	<u> -</u>
0.00	146.70 3.66	30.50	3.66	146.00	3.65	145.30	3.03 24.80	144.50	22.30	3.60	143.80	3.58	143.30	17.60	3.20	150.90	27.10	3 20	24.40	3.19	21.90 150.10	3.18	149.70	دا .5 19.60	3 15	17.40	140.90 3.12	15.30		2.60	19.50	2.59	137.90	2.57	137.10	2.55 16.70	136.30	15.30	135.40	13.80	2.48	12.40	2.00	137.70	15.40	136.90	14.10	2 00	12.80	135.30	11.60	1.34.50	10.40	1.96	9.20	125 (51.7)

See notes on page 15

14

CONDENSER ONLY RATINGS* CONTINUED

SST				CONDENSE	R ENTERING A	R TEMPERATU	RES °F (°C)		
°F (°C)		55 (12.8)	65 (18.3)	75 (23.9)	85 (29.4)	95 (35)	105 (40.6)	115 (46.1)	125 (51.7)
				38HDR	048-32				
	TCG	48.40	45.50	42.50	39.50	36.20	32.90	30.60	28.10
30 (-1.6)	SDT	67.90	77.30	86.70	96.00	105.40	114.70	124.30	133.80
	KW	2.05	2.39	2.75	3.15	3.56	4.01	4.49	5.00
	TCG	53.40	50.20	46.90	43.40	39.60	35.70	34.00	25.50
35 (1.7)	SDT	69.10	78.40	87.80	97.00	106.20	115.40	125.10	133.00
	KW	2.02	2.37	2.74	3.14	3.56	4.01	4.51	4.99
	TCG	58.70	55.10	51.40	47.50	43.10	38.30	33.00	27.10
40 (4.4)	SDT	70.40	79.60	88.90	98.00	107.10	116.10	124.80	133.40
. ,	KW	1.99	2.35	2.72	3.13	3.55	4.01	4.49	4.99
	TCG	64.30	60.30	56.20	51.60	46.90	41.20	35.20	28.90
45 (7.2)	SDT	71.80	80.90	90.00	99.10	108.10	116.80	125.40	133.80
	KW	1.96	2.32	2.70	3.11	3.54	4.00	4.48	4.99
	TCG	70.30	65.80	61.10	55.80	50.40	44.20	37.30	34.60
50 (10)	SDT	73.30	82.30	91.20	100.10	108.90	117.50	125.90	135.30
, í	KW	1.92	2.29	2.68	3.09	3.52	3.98	4.46	5.01
	TCG	76.50	71.40	66.00	60.30	54.00	47.00	50.70	41.10
55 (12.8)	SDT	74.80	83.60	92.50	101.20	109.80	118.20	129.40	137.00
. ,	KW	1.88	2.25	2.64	3.06	3.49	3.95	4.57	5.05
			1	38HDR	060-32	1		1	1
	TCG	59.30	55.30	50.90	46.20	40.40	37.90	33.80	30.30
30 (-1.6)	SDT	70.10	79.30	88.40	97.40	106.20	115.80	124.90	134.20
, ,	KW	2.59	2.93	3.31	3.73	4.19	4.72	5.31	5.90
	TCG	64.70	60.20	55.50	50.00	43.30	42.40	31.50	33.10
35 (1.7)	SDT	71.40	80.50	89.50	98.40	106.90	116.90	124.20	134.90
` ´	KW	2.62	2.97	3.34	3.76	4.21	4.76	5.25	5.93
	TCG	69.90	65.30	60.10	53.80	55.90	47.40	31.70	35.60
40 (4.4)	SDT	72.70	81.70	90.60	99.30	110.10	118.10	124.20	135.50
` ´	KW	2.66	3.00	3.38	3.78	4.34	4.81	5.24	5.96
	TCG	76.00	70.80	64.80	57.40	56.00	54.60	48.50	47.70
45 (7.2)	SDT	74.10	83.00	91.80	100.20	110.00	119.90	128.60	138.80
	KW	2.71	3.04	3.40	3.80	4.32	4.89	5.43	6.08
	TCG	82.20	76.70	69.30	70.90	61.80	58.60	30.50	52.10
50 (10)	SDT	75.60	84.40	92.80	103.40	111.40	120.90	123.80	139.80
· /	KW	2.75	3.09	3.42	3.99	4.38	4.93	5.16	6.13
	TCG	95.20	87.70	88.40	74.60	75.40	53.90	46.10	60.30
55 (12.8)	SDT	78.80	87.10	97.50	104.30	114.70	119.50	127.70	141.70
` '	KW	2.85	3.13	3.74	3.95	4.56	4.78	5.33	6.25

* AHRI listing applies only to systems shown in Combination Ratings table.

KW – Outdoor Unit Kilowatts Only.

SDT – Saturated Temperature Leaving Compressor (° F)

SST - Saturated Temperature Entering Compressor (° F/° C)

TCG - Gross Cooling Capacity (1000 Btuh)

GUIDE SPECIFICATIONS GENERAL

System Description

Outdoor-mounted, air-cooled, split-system air conditioner unit suitable for ground or rooftop installation. Unit consists of a hermetic compressor, an air-cooled coil, propeller-type condenser fan, and a control box. Unit will discharge supply air horizontally as shown on contract drawings. Unit will be used in a refrigeration circuit to match up to a packaged fan coil or coil unit.

Quality Assurance

- Unit will be rated in accordance with the latest edition of AHRI Standard 210.
- Unit will be certified for capacity and efficiency, and listed in the latest AHRI directory.
- Unit construction will comply with latest edition of ANSI/ ASHRAE and with NEC.
- Unit will be constructed in accordance with UL standards and will carry the UL label of approval. Unit will have c-UL approval.
- Unit cabinet will be capable of withstanding Federal Test

Method Standard No. 141 (Method 6061) 500-hr salt spray test.

- Air-cooled condenser coils will be leak tested and pressure tested
- Unit constructed in ISO9001 approved facility.

Delivery, Storage, and Handling

 Unit will be shipped as single package only and is stored and handled per unit manufacturer's recommendations.

Warranty (for inclusion by specifying engineer)

— U.S. and Canada only.

PRODUCTS

Equipment

— Factory assembled, single piece, air-cooled air conditioner unit. Contained within the unit enclosure is all factory wiring, piping, controls, compressor, refrigerant charge Puron[®] (R-410A), and special features required prior to field start-up.

Unit Cabinet

— Unit cabinet will be constructed of galvanized steel, bonderized, and coated with a powder coat paint.

Fans

— Condenser fan will be direct-drive propeller type, discharging air horizontally.

AIR-COOLED, SPLIT-SYSTEM AIR CONDITIONER 38HDR 1-1/2 TO 5 NOMINAL TONS

Condenser fan motors will be totally enclosed, 1-phase

- type with class B insulation and permanently lubricated bearings. Shafts will be corrosion resistant.
- Fan blades will be statically and dynamically balanced.
- Condenser fan openings will be equipped with coated steel wire safety guards.

Compressor

- Compressor will be hermetically sealed.
- Compressor will be mounted on rubber vibration isolators.

Condenser Coil

- Condenser coil will be air cooled.
- Coil will be constructed of aluminum fins mechanically bonded to copper tubes which are then cleaned, dehydrated, and sealed.

Refrigeration Components

- Refrigeration circuit components will include liquid-line front-seating shutoff valve with sweat connections, vapor-line front-seating shutoff valve with sweat connections, system charge of Puron[®] (R-410A) refrigerant, and compressor oil.
- Unit will be equipped with high-pressure switch, low pressure switch and filter drier for Puron refrigerant.

Operating Characteristics

- The capacity of the unit will meet or exceed Btuh at a suction temperature of _____ °F/°C. The power consumption at full load will not exceed _____ kW.
- Combination of the unit and the evaporator or fan coil unit will have a total net cooling capacity of Btuh or greater at conditions of _____ CFM entering air temperature at the evaporator at _____ °F/°C wet bulb and _____ °F/°C dry bulb, and air entering the unit at _____ °F/°C.
- The system will have a SEER of _____ Btuh/watt or greater at DOE conditions.

Electrical Requirements

- Nominal unit electrical characteristics will be _____v, single phase, 60 hz. The unit will be capable of satisfactory operation within voltage limits of _____v to _____v.
- Nominal unit electrical characteristics will be v, three phase, 60 hz. The unit will be capable of satisfactory operation within voltage limits of v to v.
- Unit electrical power will be single point connection.
- Control circuit will be 24v.

Special Features

 Refer to section of this literature identifying accessories and descriptions for specific features and available enhancements.

38HDR

SYSTEM DESIGN SUMMARY

- 1. Intended for outdoor installation with free air inlet and outlet. Outdoor fan external static pressure available is less than 0.01-in. wc.
- 2. Minimum outdoor operating air temperature without low-ambient operation accessory is 55°F (12.8°C).
- 3. Maximum outdoor operating air temperature is 125°F (51.7°C).
- 4. For reliable operation, unit should be level in all horizontal planes.
- 5. For interconnecting refrigerant tube lengths greater than 80 ft (23.4 m) and/or 35 ft (10.7 m) vertical differential, consult Residential Piping and Longline Guideline and Service Manual available from equipment distributor.
- 6. If any refrigerant tubing is buried, provide a 6 in. (152.4 mm) vertical rise to the valve connections at the unit. Refrigerant tubing lengths up to 36 in. (914.4 mm) may be buried without further consideration. Do not bury refrigerant lines longer than 36 in. (914.4 mm).
- 7. Use only copper wire for electric connection at unit. Aluminum and clad aluminum are not acceptable for the type of connector provided.
- 8. Do not apply capillary tube indoor coils to these units.
- 9. Factory-supplied filter drier must be installed.

Copyright 2012 Carrier Corp. • 7310 W. Morris St. • Indianapolis, IN 46231

Replaces: 38HDR-3PD

	Unit Model	Fan	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turn	
Tons	Number	Sheave	Open	Open	Open	Open	Open	Open	Closed
5	WSC060ED	AK44x3/4"	N/A	720	791	861	931	1002	1072
6	WSC072ED	AK56x1"	N/A	558	612	665	718	772	825
71⁄2	WSC090ED	AK57x1"	N/A	688	737	787	837	887	N/A
10	WSC120ED	AK105X1"	N/A	724	776	828	880	932	984

Table 6. Standard motor & low static drive accessory sheave/fan speed (rpm)

Note: Factory set at 3 turns open.

Table 7. Standard motor & high static drive accessory sheave/fan speed (rpm)

	Unit Model	Fan	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turn	
Tons	Number	Sheave	Open	Open	Open	Open	Open	Open	Closed
6	WSC072ED	AK56x1"	N/A	968	1018	1068	1118	1169	1219
7 <i>1</i> /2	WSC090ED	AK57x1"	1053	1091	1129	1166	1204	1242	N/A
10	WSC120ED	AK105X1"	1110	1159	1209	1258	1308	1357	N/A

Note: Factory set at 3 turns open.

Table 8. Oversized motor & high static drive accessory sheave/fan speed (rpm)

Tons	Unit Model Number	Fan Sheave	6 Turns Open	5 Turns Open	4 Turns Open	3 Turns Open	2 Turns Open	1 Turn Open	Closed
71⁄2	WSC090ED	AK85x1"	1186	1249	1311	1373	1436	N/A	N/A

Note: Factory set at 3 turns open.

Table 9. Outdoor sound power level – dB (ref. 10 – 2 W)

	Unit Model	Octave Center Frequency								
Tons	Number	63	125	250	500	1000	2000	4000	8000	dBA
5	T/YSC060ED	84	91	79	77	74	71	68	63	80
6	T/YSC072ED	83	90	86	82	79	75	70	63	85
7 <i>1</i> /2	T/YSC090ED	83	90	86	83	80	75	71	64	85
8.5	T/YSC102ED	83	89	84	81	77	72	69	62	83
10	T/YSC120ED	83	86	80	77	73	69	66	60	79

Note: Tests follow ARI270-95.

Table 10. Outdoor sound power level-dB (ref. 10-12 W)

	Unit Model	Octave Center Frequency								
Tons	Number	63	125	250	500	1000	2000	4000	8000	dBA
5	WSC060ED	84	91	79	77	74	71	68	63	80
6	WSC072ED	83	90	86	82	79	75	70	63	85
7 <i>1</i> /2	WSC090ED	83	90	86	83	80	75	71	64	85
10	WSC120ED	83	86	80	77	73	69	66	60	79

Note: Tests follow ARI270-95.

ATTACHMENT 3

SoundPLAN Data – Construction Noise

9010 Blue Wave SoundPLAN Data - Construction

		Level	Corrections		
Source name	Reference	Leq1	Cwall	CI	CT
		dB(A)	dB(A)	dB(A)	dB(A)
Construction	Lw/unit	114	-	-	-2

9010 Blue Wave SoundPLAN Data - Construction

	Coord	linates			Limit	Level w/o NP	Level w NP	Difference	Conflict
No.	х	Y	Floor	Height	Leq1	Leq1	Leq1	Leq1	Leq1
	in m	neter		m	dB(A)	dB(A)	dB(A)	dB	dB
1	488877.05	3605287.69	1.FI	1.5	-	73.4	0	-73.4	-
2	488873.05	3605315.81	1.FI	1.5	-	74.9	0	-74.9	-
3	488875.12	3605331.50	1.FI	1.5	-	74.0	0	-74.0	-
4	488875.12	3605346.30	1.FI	1.5	-	73.2	0	-73.2	-
5	488872.46	3605358.58	1.FI	1.5	-	72.6	0	-72.6	-
6	488870.68	3605370.87	1.FI	1.5	-	71.0	0	-71.0	-
7	488850.70	3605363.17	1.FI	1.5	-	74.5	0	-74.5	-
8	488829.84	3605363.62	1.FI	1.5	-	75.0	0	-75.0	-
9	488807.49	3605363.47	1.FI	1.5	-	74.9	0	-74.9	-
10	488780.85	3605363.47	1.FI	1.5	-	73.5	0	-73.5	-
11	488733.49	3605330.02	1.FI	1.5	-	65.5	0	-65.5	-
12	488773.15	3605291.54	1.FI	1.5	-	67.8	0	-67.8	-
13	488795.20	3605274.37	1.FI	1.5	-	67.8	0	-67.8	-
14	488822.14	3605256.91	1.FI	1.5	-	67.3	0	-67.3	-
15	488849.37	3605244.77	1.FI	1.5	-	66.4	0	-66.4	-

ATTACHMENT 4

SoundPLAN Data – Vehicle Traffic Noise

		Traffic values				Control	Constr.	Affect		Gradient
Stationing	ADT	Vehicles type	Vehicle name	day	Speed	device	Speed	veh.	Road surface	Min / Max
km	Veh/24h	vernoles type	veniele name	Veh/h	km/h		km/h	%		%
	thwest-bound	d Traffic directic	on: In entry dir					,,,		,0
0+000	101664		-	4236	-	none	-	-	Average (of DGAC and PCC)	0
0+000		Automobiles	-	4034		none	-	-	Average (of DGAC and PCC)	0
0+000	101664	Medium trucks	-	76	64	none	-	-	Average (of DGAC and PCC)	0
0+000	101664	Heavy trucks	-	42	64	none	-	-	Average (of DGAC and PCC)	0
0+000	101664	Buses	-	42	64	none	-	-	Average (of DGAC and PCC)	0
0+000	101664	Motorcycles	-	42	64	none	-	-	Average (of DGAC and PCC)	0
0+000	101664	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	0
0+206	83112	Total	-	3463	-	none	-	-	Average (of DGAC and PCC)	0
0+206		Automobiles	-	3296		none	-	-	Average (of DGAC and PCC)	0
0+206		Medium trucks	-	62		none	-	-	Average (of DGAC and PCC)	0
0+206		Heavy trucks	-	35		none	-	-	Average (of DGAC and PCC)	0
0+206		Buses	-	35		none	-	-	Average (of DGAC and PCC)	0
0+206		Motorcycles	-	35	64	none	-	-	Average (of DGAC and PCC)	0
0+206		Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	0
0+359	63912		-	2701		none	-	-	Average (of DGAC and PCC)	0
0+359		Automobiles	-	2571		none	-	-	Average (of DGAC and PCC)	0
0+359		Medium trucks	-	49		none	-	-	Average (of DGAC and PCC)	0
0+359		Heavy trucks	-	27		none	-	-	Average (of DGAC and PCC)	0
0+359		Buses	-	27		none	-	-	Average (of DGAC and PCC)	0
0+359		Motorcycles	-	27	64	none	-	-	Average (of DGAC and PCC)	0
0+359		Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	0
0+639	76632		-	3193		none	-	-	Average (of DGAC and PCC)	0
0+639 0+639		Automobiles Medium trucks	-	3040		none	-	-	Average (of DGAC and PCC)	0 0
0+639 0+639			-	57 32		none	-	-	Average (of DGAC and PCC)	-
0+639 0+639		Heavy trucks Buses	-	32		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	0 0
0+639 0+639		Motorcycles	-	32		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	0
0+639 0+639		Auxiliary Vehicle	-	- 32	- 04		-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	0
0+039 1+003	- 10032	Auxiliary vehicle	-	-	-	none	-	-		-
	theast-boun	d Traffic directio	on: In entry dir	ection		-	-	-	-	-
0+000	76632		-	3193	-	none	-	-	Average (of DGAC and PCC)	0
0+000		Automobiles	-	3040		none	-	-	Average (of DGAC and PCC)	0
0+000		Medium trucks	-	57		none	-	-	Average (of DGAC and PCC)	0
0+000		Heavy trucks	-	32		none	-	-	Average (of DGAC and PCC)	0
0+000		Buses	-	32		none	-	-	Average (of DGAC and PCC)	0
0+000		Motorcycles	-	32		none	-	-	Average (of DGAC and PCC)	0
0+000		Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	-	-	2701	-	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	Automobiles	-	2571	64	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	Medium trucks	-	49	64	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	Heavy trucks	-	27	64	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	Buses	-	27	64	none	-	-	Average (of DGAC and PCC)	0
0+380	63912	Motorcycles	-	27	64	none	-	-	Average (of DGAC and PCC)	0
0+380		Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	0
0+653	83112		-	3463		none	-	-	Average (of DGAC and PCC)	0
0+653		Automobiles	-	3296		none	-	-	Average (of DGAC and PCC)	0
0+653		Medium trucks	-	62		none	-	-	Average (of DGAC and PCC)	0
0+653		Heavy trucks	-	35		none	-	-	Average (of DGAC and PCC)	0
0+653		Buses	-	35		none	-	-	Average (of DGAC and PCC)	0
0+653		Motorcycles	-	35	64	none	-	-	Average (of DGAC and PCC)	0
0+653		Auxiliary Vehicle	-	•	-	none	-	-	Average (of DGAC and PCC)	0
0+840	101664		-	4236		none	-	-	Average (of DGAC and PCC)	0
0+840		Automobiles	-	4034		none	-	-	Average (of DGAC and PCC)	0
0+840		Medium trucks	-	76		none	-	-	Average (of DGAC and PCC)	0
0+840		Heavy trucks	-	42		none	-	-	Average (of DGAC and PCC)	0
0+840	101664		-	42		none	-	-	Average (of DGAC and PCC)	0
0+840 0+840		Motorcycles	-	42	. 64	none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	0 0
0+840 1+020	-	Auxiliary Vehicle	-	-	-	none -	-	-	-	-
1.020										

No.	Coordinates X Y	Floor	Height	Limit L(Aeq1h)	Level w/o NP L(Aeq1h)	Level w. NP L(Aeq1h)	Difference L(Aeq1h)	Conflict L(Aeq1h)
	in meter		m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	488810.98 3605319.27	1.FI	2.23	-	70.2	70.2	0.0	-
1	488810.98 3605319.27	2.Fl	7.43	-	71.0	73.0	2.0	-
2	488824.16 3605310.23	1.FI	2.23	-	70.1	70.1	0.0	-
2	488824.16 3605310.23	2.FI	7.43	-	72.9	72.9	0.0	-
3	488839.16 3605307.97	1.FI	2.23	-	66.5	66.5	0.0	-
3	488839.16 3605307.97	2.Fl	7.43	-	69.5	69.5	0.0	-
4	488853.63 3605309.86	1.Fl	2.23	-	65.6	65.6	0.0	-
4	488853.63 3605309.86	2.Fl	4.93	-	67.9	67.9	0.0	-
4	488853.63 3605309.86	3.FI	7.63	-	68.0	67.9	-0.1	-
4	488853.63 3605309.86	4.FI	10.33	-	67.3	67.2	-0.1	-
5	488852.77 3605326.29	1.FI	2.23	-	62.0	61.9	-0.1	-
5	488852.77 3605326.29	2.Fl	4.93	-	64.0	63.9	-0.1	-
5	488852.77 3605326.29	3.FI	7.63	-	64.4	64.1	-0.3	-
5	488852.77 3605326.29	4.FI	10.33	-	64.3	64.0	-0.3	-
6	488850.81 3605342.03	1.FI	2.23	-	60.1	59.6	-0.5	-
6	488850.81 3605342.03	2.Fl	4.93	-	61.6	61.1	-0.5	-
6	488850.81 3605342.03	3.FI	7.63	-	62.6	62.0	-0.6	-
6	488850.81 3605342.03	4.FI	10.33	-	62.6	62.1	-0.5	-
7	488823.58 3605342.24	1.FI	2.23	-	60.5	57.6	-2.9	-
7	488823.58 3605342.24	2.Fl	4.93	-	61.6	59.4	-2.2	-
7	488823.58 3605342.24	3.FI	7.63	-	62.7	61.4	-1.3	-
7	488823.58 3605342.24	4.FI	10.33	-	64.5	63.7	-0.8	-
8	488794.40 3605342.18	1.Fl	2.23	-	67.8	60.8	-7.0	-
8	488794.40 3605342.18	2.Fl	4.93	-	69.2	66.6	-2.6	-
8	488794.40 3605342.18	3.FI	7.63	-	69.7	69.7	0.0	-
8	488794.40 3605342.18	4.FI	10.33	-	70.6	70.5	-0.1	-
9	488772.90 3605353.74	1.Fl	2.23	-	70.0	70.0	0.0	-
9	488772.90 3605353.74	2.Fl	4.93	-	72.3	72.3	0.0	-
9	488772.90 3605353.74	3.Fl	7.63	-	72.2	72.2	0.0	-
9	488772.90 3605353.74	4.Fl	10.33	-	71.2	71.2	0.0	-
10	488784.04 3605358.28	1.Fl	2.23	-	59.8	59.8	0.0	-
10	488784.04 3605358.28	2.Fl	4.93	-	63.5	63.5	0.0	-
10	488784.04 3605358.28	3.Fl	7.63	-	64.0	64.0	0.0	-
10	488784.04 3605358.28	4.Fl	10.33	-	63.8 57.2	63.8 57.2	0.0	-
11	488801.65 3605358.60	1.Fl	2.23	-	57.2	57.2	0.0	-
11	488801.65 3605358.60	2.Fl	4.93	-	61.4	61.4	0.0	-
11	488801.65 3605358.60	3.Fl	7.63	-	62.2	62.2	0.0	-
11	488801.65 3605358.60	4.Fl	10.33	-	61.8	61.8	0.0	-
12	488818.62 3605358.50 488818.62 3605358.50	1.Fl	2.23	-	55.7	55.7	0.0	-
12 12	488818.62 3605358.50	2.Fl	4.93	-	59.9 60.7	59.9 60.7	0.0 0.0	-
12	488818.62 3605358.50	3.FI 4.FI	7.63 10.33	-	60.3	60.3	0.0	-
12	488837.42 3605358.50	4.Fi 1.Fl	2.23	-	55.5	55.5	0.0	-
13	488837.42 3605358.50	2.Fl	4.93	_	58.6	58.6	0.0	_
13	488837.42 3605358.50	3.FI	7.63	_	59.2	59.2	0.0	
13	488837.42 3605358.50	4.Fl	10.33		58.8	58.8	0.0	
14	488858.06 3605358.82	4.11 1.Fl	2.23	_	55.1	55.1	0.0	_
14	488858.06 3605358.82	2.Fl	4.93	_	57.4	57.4	0.0	_
14	488858.06 3605358.82	3.FI	7.63	_	58.0	58.0	0.0	_
14	488858.06 3605358.82	4.Fl	10.33	_	57.5	57.5	0.0	_
15	488868.11 3605349.20	1.Fl	2.23	_	49.5	49.4	-0.1	_
15	488868.11 3605349.20	2.Fl	4.93	-	49.5 51.1	49.4 51.1	0.0	-
15	488868.11 3605349.20	3.FI	7.63	_	51.4	51.6	0.0	-
15	488868.11 3605349.20	3.FI 4.FI	10.33	-	52.4	52.7	0.2	-
16	488867.90 3605332.88	4.Fi 1.Fl	2.23	-	48.5	48.4	-0.1	_
16	488867.90 3605332.88	1.FI 2.FI	2.23 4.93	-	48.5 50.0	40.4 50.0	-0.1	-
16	488867.90 3605332.88	2.FI 3.FI	4.93 7.63	-	50.0	50.4	0.0	-
16	488867.90 3605332.88	4.Fl	10.33	-	50.8	51.7	0.9	-
17	488867.79 3605317.86	1.Fl	2.23	-	42.4	42.1	-0.3	-
17	488867.79 3605317.86	2.Fl	4.93	-	41.0	40.9	-0.1	-
		·				1010	0.1	

17	488867.79 3605317.86	3.FI	7.63	-	44.1	43.4	-0.7	-
17	488867.79 3605317.86	4.FI	10.33	-	47.1	47.1	0.0	-
18	488867.79 3605305.43	1.FI	2.23	-	39.6	39.3	-0.3	-
18	488867.79 3605305.43	2.FI	4.93	-	42.8	42.4	-0.4	-
18	488867.79 3605305.43	3.FI	7.63	-	43.4	43.2	-0.2	-
18	488867.79 3605305.43	4.FI	10.33	-	47.3	47.4	0.1	-
19	488881.98 3605306.46	1.FI	2.23	-	39.4	39.3	-0.1	-
19	488881.98 3605306.46	2.FI	4.93	-	40.5	39.4	-1.1	-
19	488881.98 3605306.46	3.FI	7.63	-	43.3	42.5	-0.8	-
19	488881.98 3605306.46	4.FI	10.33	-	46.3	46.0	-0.3	-
20	488899.35 3605306.48	1.FI	2.23	-	40.0	40.0	0.0	-
20	488899.35 3605306.48	2.FI	4.93	-	40.9	40.4	-0.5	-
20	488899.35 3605306.48	3.FI	7.63	-	41.2	40.5	-0.7	-
20	488899.35 3605306.48	4.FI	10.33	-	45.3	45.2	-0.1	-
21	488912.64 3605299.92	1.FI	2.23	-	59.2	59.2	0.0	-
21	488912.64 3605299.92	2.FI	4.93	-	61.5	61.5	0.0	-
21	488912.64 3605299.92	3.FI	7.63	-	62.2	62.2	0.0	-
21	488912.64 3605299.92	4.FI	10.33	-	62.2	62.2	0.0	-
22	488899.89 3605293.87	1.Fl	2.23	-	67.5	62.0	-5.5	-
22	488899.89 3605293.87	2.Fl	4.93	-	69.8	64.2	-5.6	-
22	488899.89 3605293.87	3.FI	7.63	-	70.1	65.5	-4.6	-
22	488899.89 3605293.87	4.Fl	10.33	-	69.7	66.1	-3.6	-
23	488881.62 3605293.51	1.FI	2.23	-	68.4	68.4	0.0	-
23	488881.62 3605293.51	2.Fl	4.93	-	70.7	70.7	0.0	-
23	488881.62 3605293.51	3.FI	7.63	-	71.0	71.0	0.0	-
23	488881.62 3605293.51	4.Fl	10.33	-	70.5	70.5	0.0	-
24	488864.33 3605289.98	1.FI	2.23	-	68.5	68.5	0.0	-
24	488864.33 3605289.98	2.Fl	4.93	-	71.2	71.2	0.0	-
24	488864.33 3605289.98	3.Fl	7.63	-	71.7	71.7	0.0	-
24	488864.33 3605289.98	4.FI	10.33	-	71.3	71.3	0.0	-
25	488850.50 3605298.73	1.Fl	2.23	-	69.0	69.0	0.0	-
25	488850.50 3605298.73	2.Fl	4.93	-	71.3	71.3	0.0	-
25	488850.50 3605298.73	3.Fl	7.63	-	71.3	71.3	0.0	-
25	488850.50 3605298.73	4.Fl	10.33	-	70.6	70.6	0.0	-
26	488805.64 3605332.11	1.Fl	2.23	-	66.4	59.6	-6.8	-
27	488798.30 3605336.88	1.Fl	2.23	-	67.3	60.3	-7.0	-
28	488787.77 3605345.57	1.Fl	2.23	-	68.1	60.4	-7.6	-
29	488808.04 3605330.81	1.Fl	6.93	-	66.5	59.2	-7.3	-
30	488810.14 3605322.77	1.Fl	6.93	-	69.6	59.6	-10.0	-
31	488877.73 3605298.95	1.Fl	13.03	-	64.0	59.3	-4.7	-
32	488889.30 3605298.95	1.Fl	13.03	-	62.6	58.3	-4.3	-
33	488903.78 3605299.16	1.Fl	13.03	-	63.4	59.3	-4.1	-

Source name	Lane	Level w/o NP L(Aeq1h) dB(A)	Level w. NP L(Aeq1h) dB(A)
1 1.FI 70.2	70.2		UD(A)
SR-75 Northwest-bound	70.2	68.5	68.5
SR-75 Southeast-bound		65.1	65.1
1 2.Fl 71.0	73.0	00.1	00.1
SR-75 Northwest-bound	75.0	69.4	71.4
SR-75 Southeast-bound		65.9	67.9
2 1.Fl 70.1	70.1	05.9	07.9
SR-75 Northwest-bound	70.1	60 F	60 F
		68.5	68.5
SR-75 Southeast-bound	70.0	65.0	65.0
2 2.Fl 72.9	72.9	74.0	74.0
SR-75 Northwest-bound		71.3	71.3
SR-75 Southeast-bound		67.8	67.8
3 1.Fl 66.5	66.5		
SR-75 Northwest-bound		64.6	64.6
SR-75 Southeast-bound		62.1	62.1
3 2.FI 69.5	69.5		
SR-75 Northwest-bound		67.6	67.6
SR-75 Southeast-bound		65.0	65.0
4 1.Fl 65.6	65.6		
SR-75 Northwest-bound		63.5	63.5
SR-75 Southeast-bound		61.5	61.5
4 2.FI 67.9	67.9		
SR-75 Northwest-bound		65.8	65.8
SR-75 Southeast-bound		63.7	63.7
4 3.FI 68.0	67.9		
SR-75 Northwest-bound		65.9	65.8
SR-75 Southeast-bound		63.8	63.7
4 4.Fl 67.3	67.2		
SR-75 Northwest-bound		65.0	64.9
SR-75 Southeast-bound		63.4	63.4
5 1.FI 62.0	61.9		
SR-75 Northwest-bound		59.7	59.5
SR-75 Southeast-bound		58.2	58.1
5 2.Fl 64.0	63.9		
SR-75 Northwest-bound	0010	61.7	61.5
SR-75 Southeast-bound		60.3	60.1
5 3.Fl 64.4	64.1	0010	0011
SR-75 Northwest-bound	0	62.0	61.8
SR-75 Southeast-bound		60.6	60.3
5 4.Fl 64.3	64.0	00.0	00.0
SR-75 Northwest-bound	04.0	61.8	61.6
SR-75 Southeast-bound		60.5	60.3
6 1.Fl 60.1	59.6	00.0	00.0
SR-75 Northwest-bound	55.0	57.7	57.1
SR-75 Southeast-bound		56.4	55.9
6 2.Fl 61.6	61.1	50.4	55.5
SR-75 Northwest-bound	01.1	59.2	58.6
SR-75 Northwest-bound		58.0	57.6
	62.0	00.0	07.0
6 3.FI 62.6	02.0	60.4	50 /
SR-75 Northwest-bound		60.1	59.4 58.5
SR-75 Southeast-bound	62.4	59.0	58.5
6 4.Fl 62.6	62.1		

SR-75 Northwest-bound		60.1	59.5
SR-75 Southeast-bound		59.0	58.7
7 1.Fl 60.5	57.6	0010	
SR-75 Northwest-bound	57.0	58.2	55.1
SR-75 Southeast-bound		56.6	54.1
7 2.Fl 61.6	59.4		
SR-75 Northwest-bound		59.3	56.9
SR-75 Southeast-bound		57.8	55.8
7 3.Fl 62.7	61.4	0110	0010
	01.4	60.0	E0 E
SR-75 Northwest-bound		60.2	58.5
SR-75 Southeast-bound		59.1	58.3
7 4.Fl 64.5	63.7		
SR-75 Northwest-bound		61.9	61.1
SR-75 Southeast-bound		61.0	60.2
8 1.FI 67.8	60.8	• • • •	
SR-75 Northwest-bound	00.0	65.9	58.8
SR-75 Southeast-bound		63.3	56.5
8 2.Fl 69.2	66.6		
SR-75 Northwest-bound		67.5	64.2
SR-75 Southeast-bound		64.4	62.9
8 3.Fl 69.7	69.7	• • • •	0210
	03.7	67.6	67.7
SR-75 Northwest-bound		67.6	67.7
SR-75 Southeast-bound		65.5	65.5
8 4.Fl 70.6	70.5		
SR-75 Northwest-bound		68.7	68.6
SR-75 Southeast-bound		66.2	66.0
9 1.FI 70.0	70.0	•••	
SR-75 Northwest-bound	10.0	68.2	68.2
SR-75 Southeast-bound		65.2	65.2
9 2.Fl 72.3	72.3		
SR-75 Northwest-bound		70.7	70.7
SR-75 Southeast-bound		67.2	67.2
9 3.Fl 72.2	72.2		
SR-75 Northwest-bound		70.5	70.5
		67.4	
SR-75 Southeast-bound	74.0	07.4	67.4
9 4.FI 71.2	71.2		
SR-75 Northwest-bound		69.5	69.5
SR-75 Southeast-bound		66.5	66.5
10 1.Fl 59.8	59.8		
SR-75 Northwest-bound		57.7	57.7
SR-75 Southeast-bound		55.6	55.6
	00 F	55.0	55.0
10 2.Fl 63.5	63.5		
SR-75 Northwest-bound		61.4	61.4
SR-75 Southeast-bound		59.4	59.4
10 3.Fl 64.0	64.0		
SR-75 Northwest-bound		62.0	62.0
SR-75 Southeast-bound		59.7	59.7
	62.0	53.1	53.1
10 4.Fl 63.8	63.8	~	• • •
SR-75 Northwest-bound		61.8	61.8
SR-75 Southeast-bound		59.3	59.3
11 1.Fl 57.2	57.2		
SR-75 Northwest-bound		54.9	54.9
SR-75 Southeast-bound		53.4	53.4
	61.4	JJ.T	00.4
-	01.4	F0 4	FO 4
SR-75 Northwest-bound		59.1	59.1

SR-75 Southeast-bound		57.7	57.7
11 3.Fl 62.2	62.2		
SR-75 Northwest-bound		59.8	59.8
SR-75 Southeast-bound		58.4	58.4
11 4.Fl 61.8	61.8	0011	0011
SR-75 Northwest-bound	01.0	59.6	59.6
SR-75 Southeast-bound		57.9	57.9
12 1.FI 55.7	55.7		
SR-75 Northwest-bound		53.2	53.2
SR-75 Southeast-bound		52.0	52.0
12 2.Fl 59.9	59.9		
SR-75 Northwest-bound		57.5	57.5
SR-75 Southeast-bound		56.3	56.3
12 3.Fl 60.7	60.7		
SR-75 Northwest-bound		58.2	58.2
SR-75 Southeast-bound		57.1	57.1
12 4.Fl 60.3	60.3	07.1	07.1
SR-75 Northwest-bound	00.0	57.8	57.8
SR-75 Southeast-bound		56.7	56.7
13 1.FI 55.5	55.5		
SR-75 Northwest-bound		53.0	53.0
SR-75 Southeast-bound		51.9	51.9
13 2.Fl 58.6	58.6		
SR-75 Northwest-bound		56.0	56.0
SR-75 Southeast-bound		55.0	55.0
13 3.Fl 59.2	59.2		
SR-75 Northwest-bound		56.7	56.7
SR-75 Southeast-bound		55.7	55.7
13 4.Fl 58.8	58.8	00.7	55.7
SR-75 Northwest-bound	50.0	56.2	56.0
			56.2
SR-75 Southeast-bound	/	55.4	55.4
14 1.Fl 55.1	55.1		
SR-75 Northwest-bound		52.5	52.5
SR-75 Southeast-bound		51.6	51.6
14 2.Fl 57.4	57.4		
SR-75 Northwest-bound		54.8	54.8
SR-75 Southeast-bound		53.9	53.9
14 3.Fl 58.0	58.0		
SR-75 Northwest-bound		55.4	55.4
SR-75 Southeast-bound		54.5	54.5
14 4.Fl 57.5	57.5		
SR-75 Northwest-bound	0110	54.8	54.8
SR-75 Southeast-bound		54.2	54.2
	49.4	54.2	54.2
	49.4	47.0	40.0
SR-75 Northwest-bound		47.0	46.9
SR-75 Southeast-bound		45.9	45.9
15 2.Fl 51.1	51.1		
SR-75 Northwest-bound		48.6	48.6
SR-75 Southeast-bound		47.5	47.5
15 3.FI 51.4	51.6		
SR-75 Northwest-bound		49.0	49.2
SR-75 Southeast-bound		47.6	47.8
15 4.Fl 52.4	52.7		
SR-75 Northwest-bound		49.9	50.2
SR-75 Southeast-bound		48.8	49.1

16 1.Fl 48.5	48.4		
	40.4	16.1	46.0
SR-75 Northwest-bound		46.1 44.7	46.0 44.6
SR-75 Southeast-bound	50.0	44.7	44.0
16 2.Fl 50.0	50.0		47 7
SR-75 Northwest-bound		47.7	47.7
SR-75 Southeast-bound		46.1	46.2
16 3.Fl 50.3	50.4		
SR-75 Northwest-bound		48.0	48.1
SR-75 Southeast-bound		46.4	46.6
16 4.Fl 50.8	51.7		
SR-75 Northwest-bound		48.4	49.1
SR-75 Southeast-bound		47.2	48.1
17 1.Fl 42.4	42.1		
SR-75 Northwest-bound		39.5	39.2
SR-75 Southeast-bound		39.3	38.9
17 2.Fl 41.0	40.9		0010
SR-75 Northwest-bound	10.0	38.0	38.2
SR-75 Southeast-bound		37.9	37.7
17 3.Fl 44.1	43.4	57.5	57.7
	43.4	11 1	40.4
SR-75 Northwest-bound		41.1	40.4
SR-75 Southeast-bound	47 4	41.0	40.3
17 4.Fl 47.1	47.1		
SR-75 Northwest-bound		44.2	44.2
SR-75 Southeast-bound		43.9	43.9
18 1.Fl 39.6	39.3		
SR-75 Northwest-bound		37.0	36.8
SR-75 Southeast-bound		36.0	35.7
18 2.Fl 42.8	42.4		
SR-75 Northwest-bound		39.8	39.4
SR-75 Southeast-bound		39.9	39.4
18 3.Fl 43.4	43.2		
SR-75 Northwest-bound		40.6	40.4
SR-75 Southeast-bound		40.3	39.9
18 4.Fl 47.3	47.4		0010
SR-75 Northwest-bound		44.4	44.6
SR-75 Southeast-bound		44.2	44.3
19 1.Fl 39.4	39.3	77.2	44.5
SR-75 Northwest-bound	59.5	26.6	36.5
		36.6	36.0
SR-75 Southeast-bound	20.4	36.3	30.0
19 2.Fl 40.5	39.4	07 5	00 F
SR-75 Northwest-bound		37.5	36.5
SR-75 Southeast-bound		37.4	36.3
19 3.Fl 43.3	42.5		
SR-75 Northwest-bound		40.2	39.6
SR-75 Southeast-bound		40.2	39.3
19 4.Fl 46.3	46.0		
SR-75 Northwest-bound		43.5	43.2
SR-75 Southeast-bound		43.1	42.8
20 1.FI 40.0	40.0		
SR-75 Northwest-bound		37.2	37.3
SR-75 Southeast-bound		36.8	36.7
20 2.Fl 40.9	40.4		
SR-75 Northwest-bound		38.2	37.6
SR-75 Southeast-bound		37.6	37.1
20 3.Fl 41.2	40.5	0.10	07.1
20 0.11 41.2	-0.J		

SR-75 Northwest-bound		38.2	37.6
SR-75 Southeast-bound		38.2	37.3
20 4.Fl 45.3	45.2		
SR-75 Northwest-bound	10.2	42.4	42.3
SR-75 Southeast-bound		42.1	42.0
21 1.Fl 59.2	59.2		
SR-75 Northwest-bound		56.8	56.8
SR-75 Southeast-bound		55.5	55.5
21 2.Fl 61.5	61.5		
SR-75 Northwest-bound		59.0	59.0
SR-75 Southeast-bound			
	~~~~	57.9	57.9
21 3.Fl 62.2	62.2		
SR-75 Northwest-bound		59.7	59.7
SR-75 Southeast-bound		58.5	58.5
21 4.Fl 62.2	62.2		
SR-75 Northwest-bound		59.8	59.8
SR-75 Southeast-bound		58.5	58.5
	<u> </u>	50.5	56.5
22 1.Fl 67.5	62.0		
SR-75 Northwest-bound		65.2	59.7
SR-75 Southeast-bound		63.6	58.0
22 2.Fl 69.8	64.2		
SR-75 Northwest-bound		67.4	61.9
SR-75 Southeast-bound		65.9	60.4
		05.9	00.4
22 3.FI 70.1	65.5		
SR-75 Northwest-bound		67.9	63.2
SR-75 Southeast-bound		66.2	61.5
22 4.Fl 69.7	66.1		
SR-75 Northwest-bound		67.5	63.8
SR-75 Southeast-bound		65.8	62.2
23 1.Fl 68.4	68.4	00.0	02.2
	00.4	00.0	00.0
SR-75 Northwest-bound		66.2	66.2
SR-75 Southeast-bound		64.3	64.3
23 2.Fl 70.7	70.7		
SR-75 Northwest-bound		68.5	68.5
SR-75 Southeast-bound		66.6	66.6
23 3.Fl 71.0	71.0		
SR-75 Northwest-bound	71.0	68.9	68.9
SR-75 Southeast-bound		66.8	66.8
23 4.Fl 70.5	70.5		
SR-75 Northwest-bound		68.2	68.2
SR-75 Southeast-bound		66.5	66.5
24 1.Fl 68.5	68.5		
SR-75 Northwest-bound	00.0	66.6	66.6
SR-75 Southeast-bound		63.9	63.9
24 2.Fl 71.2	71.2		
SR-75 Northwest-bound		69.4	69.4
SR-75 Southeast-bound		66.5	66.5
24 3.Fl 71.7	71.7		
SR-75 Northwest-bound		69.9	69.9
SR-75 Southeast-bound		67.0	67.0
	74.0	01.0	07.0
24 4.Fl 71.3	71.3	~~ <del>-</del>	oc -
SR-75 Northwest-bound		69.5	69.5
SR-75 Southeast-bound		66.6	66.6
25 1.Fl 69.0	69.0		
SR-75 Northwest-bound		67.1	67.1
		-	

## 9010 Blue Wave SoundPLAN Data - Vehicle Traffic

SR-75 Southeast-bound		64.4	64.4
25 2.Fl 71.3	71.3		
SR-75 Northwest-bound		69.6	69.6
SR-75 Southeast-bound		66.4	66.4
25 3.Fl 71.3	71.3		
SR-75 Northwest-bound		69.4	69.4
SR-75 Southeast-bound		66.6	66.6
25 4.Fl 70.6	70.6		
SR-75 Northwest-bound		68.8	68.8
SR-75 Southeast-bound		65.9	65.9
26 1.Fl 66.4	59.6		
SR-75 Northwest-bound		64.5	57.5
SR-75 Southeast-bound		62.0	55.4
27 1.Fl 67.3	60.3		
SR-75 Northwest-bound		65.4	58.3
SR-75 Southeast-bound		62.8	55.9
28 1.Fl 68.1	60.5		
SR-75 Northwest-bound		66.2	58.6
SR-75 Southeast-bound		63.5	56.0
29 1.Fl 66.5	59.2		
SR-75 Northwest-bound		64.3	56.7
SR-75 Southeast-bound		62.4	55.6
30 1.FI 69.6	59.6		
SR-75 Northwest-bound		67.8	57.4
SR-75 Southeast-bound		64.9	55.6
31 1.Fl 64.0	59.3		
SR-75 Northwest-bound		61.2	56.4
SR-75 Southeast-bound		60.7	56.2
32 1.FI 62.6	58.3		
SR-75 Northwest-bound		59.8	55.5
SR-75 Southeast-bound		59.4	55.1
33 1.Fl 63.4	59.3		
SR-75 Northwest-bound		60.7	56.4
SR-75 Southeast-bound		60.1	56.1

# **ATTACHMENT 5**

# FHWA RD-77-108 – Off-Site Traffic Noise

	Roadway	Segment	Existing	Existing + Project	Difference	2040	2040 + Project	Difference	Increase Over Existing
1	SR-75	North of Rainbow Drive/Project Driveway	71.2	71.2	0.0	73.3	73.4	0.1	2.2
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	70.5	70.7	0.2	72.5	72.6	0.1	2.1
3	SR-75	7th Street to Delaware Street	71.5	71.6	0.1	73.6	73.7	0.1	2.2
4	SR-75	Delaware Street to 9th Street	72.0	72.1	0.1	74.5	74.6	0.1	2.6
5	SR-75	9th Street to Florida Street	73.7	73.8	0.1	75.0	75.1	0.1	1.4
6	Palm Avenue	Rainbow Drive to SR-75	68.4	68.5	0.1	68.8	68.9	0.1	0.5
7	Rainbow Drive	SR-75 to Palm Avenue	63.3	63.3	0.0	63.1	63.1	0.0	-0.2

### FHWA RD-77-108 Traffic Noise Prediction Model

Project Name : Blue Wave Project Number : 9010 Modeled Condition : Existing, Existing + Project

Surface Refelction: CNEL Assessment Metric: Hard Peak ratio to ADT: 10.00 Traffic Desc. (Peak or ADT) : ADT

Data Input Sheet

				Speed	Distance						
Segmen	t Roadway	Segment	Traffic Vol.	(Mph)	to CL	% Autos	%MT	% HT	Day %	Eve %	Night % K-Factor
EXISTIN	IG										
1	SR-75	North of Rainbow Drive/Project Driveway	19,300	45	50	97.20	1.80	1.00	80.00	10.00	10.00
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	16,400	45	50	97.20	1.80	1.00	80.00	10.00	10.00
3	SR-75	7th Street to Delaware Street	20,900	45	50	97.20	1.80	1.00	80.00	10.00	10.00
4	SR-75	Delaware Street to 9th Street	23,400	45	50	97.20	1.80	1.00	80.00	10.00	10.00
5	SR-75	9th Street to Florida Street	34,500	45	50	97.20	1.80	1.00	80.00	10.00	10.00
6	Palm Avenue	Rainbow Drive to SR-75	13,640	40	50	97.20	1.80	1.00	80.00	10.00	10.00
7	Rainbow Drive	SR-75 to Palm Avenue	5,710	35	50	97.20	1.80	1.00	80.00	10.00	10.00
EXISTIN	IG + PROJECT										
1	SR-75	North of Rainbow Drive/Project Driveway	19,600	45	50	97.20	1.80	1.00	80.00	10.00	10.00
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	17,091	45	50	97.20	1.80	1.00	80.00	10.00	10.00
3	SR-75	7th Street to Delaware Street	21,513	45	50	97.20	1.80	1.00	80.00	10.00	10.00
4	SR-75	Delaware Street to 9th Street	23,989	45	50	97.20	1.80	1.00	80.00	10.00	10.00
5	SR-75	9th Street to Florida Street	35,041	45	50	97.20	1.80	1.00	80.00	10.00	10.00
6	Palm Avenue	Rainbow Drive to SR-75	13,820	40	50	97.20	1.80	1.00	80.00	10.00	10.00
7	Rainbow Drive	SR-75 to Palm Avenue	5,710	35	50	97.20	1.80	1.00	80.00	10.00	10.00

## FHWA RD-77-108 Traffic Noise Prediction Model

Predicted Noise Levels

Project Name : Blue Wave Project Number : 9010 Modeled Condition : Existing, Existing + Project Assessment Metric: Hard

			Noise Levels, dBA Hard					Distance to Traffic Noise Level Contours, Feet						
Segmen	t Roadway	Segment	Auto	MT	HT	Total	75 dB	70 dB	65 dB	60 dB	55 dB	50 dB		
EXISTIN	IG													
1	SR-75	North of Rainbow Drive/Project Driveway	70.0	60.9	62.9	71	21	66	208	659	2,084	6,591		
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	69.3	60.2	62.1	71	18	56	177	561	1,774	5,610		
3	SR-75	7th Street to Delaware Street	70.3	61.3	63.2	72	22	71	223	706	2,233	7,063		
4	SR-75	Delaware Street to 9th Street	70.8	61.7	63.7	72	25	79	251	792	2,506	7,924		
5	SR-75	9th Street to Florida Street	72.5	63.4	65.4	74	37	117	371	1,172	3,707	11,721		
6	Palm Avenue	Rainbow Drive to SR-75	67.0	58.6	60.9	68	11	35	109	346	1,094	3,459		
7	Rainbow Drive	SR-75 to Palm Avenue	61.5	53.9	56.6	63	3	11	34	107	338	1,069		
EXISTIN	IG + PROJECT													
1	SR-75	North of Rainbow Drive/Project Driveway	70.0	61.0	62.9	71	21	66	208	659	2,084	6,591		
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	69.5	60.4	62.3	71	19	59	186	587	1,858	5,874		
3	SR-75	7th Street to Delaware Street	70.5	61.4	63.3	72	23	72	229	723	2,285	7,227		
4	SR-75	Delaware Street to 9th Street	70.9	61.9	63.8	72	26	81	256	811	2,564	8,109		
5	SR-75	9th Street to Florida Street	72.6	63.5	65.4	74	38	120	379	1,199	3,793	11,994		
6	Palm Avenue	Rainbow Drive to SR-75	67.1	58.7	60.9	69	11	35	112	354	1,119	3,540		
7	Rainbow Drive	SR-75 to Palm Avenue	61.5	53.9	56.6	63	3	11	34	107	338	1,069		

### FHWA RD-77-108 Traffic Noise Prediction Model

Project Name : Blue Wave Project Number : 9010 Modeled Condition : 2040, 2040 + Project

Surface Refelction: CNEL Assessment Metric: Hard Peak ratio to ADT: 10.00 Traffic Desc. (Peak or ADT) : ADT

Data Input Sheet

				Speed	Distance						
Segmen	t Roadway	Segment	Traffic Vol.	(Mph)	to CL	% Autos	%MT	% HT	Day %	Eve %	Night % K-Factor
2040											
1	SR-75	North of Rainbow Drive/Project Driveway	31,630	45	50	97.20	1.80	1.00	80.00	10.00	10.00
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	26,320	45	50	97.20	1.80	1.00	80.00	10.00	10.00
3	SR-75	7th Street to Delaware Street	34,010	45	50	97.20	1.80	1.00	80.00	10.00	10.00
4	SR-75	Delaware Street to 9th Street	41,780	45	50	97.20	1.80	1.00	80.00	10.00	10.00
5	SR-75	9th Street to Florida Street	46,970	45	50	97.20	1.80	1.00	80.00	10.00	10.00
6	Palm Avenue	Rainbow Drive to SR-75	14,940	40	50	97.20	1.80	1.00	80.00	10.00	10.00
7	Rainbow Drive	SR-75 to Palm Avenue	5,490	35	50	97.20	1.80	1.00	80.00	10.00	10.00
2040 + F	ROJECT										
1	SR-75	North of Rainbow Drive/Project Driveway	31,930	45	50	97.20	1.80	1.00	80.00	10.00	10.00
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	27,011	45	50	97.20	1.80	1.00	80.00	10.00	10.00
3	SR-75	7th Street to Delaware Street	34,623	45	50	97.20	1.80	1.00	80.00	10.00	10.00
4	SR-75	Delaware Street to 9th Street	42,369	45	50	97.20	1.80	1.00	80.00	10.00	10.00
5	SR-75	9th Street to Florida Street	47,511	45	50	97.20	1.80	1.00	80.00	10.00	10.00
6	Palm Avenue	Rainbow Drive to SR-75	15,120	40	50	97.20	1.80	1.00	80.00	10.00	10.00
7	Rainbow Drive	SR-75 to Palm Avenue	5,490	35	50	97.20	1.80	1.00	80.00	10.00	10.00

## FHWA RD-77-108 Traffic Noise Prediction Model

Predicted Noise Levels

Project Name : Blue Wave Project Number : 9010 Modeled Condition : 2040, 2040 + Project Assessment Metric: Hard

			Noise Levels, dBA Hard					Distance to Traffic Noise Level Contours, Feet						
Segmen	t Roadway	Segment	Auto	MT	HT	Total	75 dB	70 dB	65 dB	60 dB	55 dB	50 dB		
2040														
1	SR-75	North of Rainbow Drive/Project Driveway	72.1	63.1	65.0	73	34	107	338	1,069	3,380	10,690		
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	71.3	62.3	64.2	73	28	89	281	889	2,812	8,891		
3	SR-75	7th Street to Delaware Street	72.4	63.4	65.3	74	36	115	362	1,145	3,622	11,454		
4	SR-75	Delaware Street to 9th Street	73.3	64.3	66.2	75	45	141	446	1,409	4,456	14,092		
5	SR-75	9th Street to Florida Street	73.8	64.8	66.7	75	50	158	500	1,581	5,000	15,811		
6	Palm Avenue	Rainbow Drive to SR-75	67.4	59.0	61.3	69	12	38	120	379	1,199	3,793		
7	Rainbow Drive	SR-75 to Palm Avenue	61.4	53.7	56.4	63	3	10	32	102	323	1,021		
2040 + F	PROJECT													
1	SR-75	North of Rainbow Drive/Project Driveway	72.2	63.1	65.0	73	35	109	346	1,094	3,459	10,939		
2	SR-75	Rainbow Drive/Project Driveway to 7th Street	71.4	62.4	64.3	73	29	91	288	910	2,877	9,099		
3	SR-75	7th Street to Delaware Street	72.5	63.4	65.4	74	37	117	371	1,172	3,707	11,721		
4	SR-75	Delaware Street to 9th Street	73.4	64.3	66.3	75	46	144	456	1,442	4,560	14,420		
5	SR-75	9th Street to Florida Street	73.9	64.8	66.8	75	51	162	512	1,618	5,116	16,180		
6	Palm Avenue	Rainbow Drive to SR-75	67.4	59.0	61.3	69	12	39	123	388	1,227	3,881		
7	Rainbow Drive	SR-75 to Palm Avenue	61.4	53.7	56.4	63	3	10	32	102	323	1,021		

# **ATTACHMENT 6**

# SoundPLAN Data – On-Site Noise Sources

		Le	vel		Corrections	
Source name	Reference	Leq1	Leq2	Kwall	CI	СТ
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
HVAC1	Unit	81	81	-	-	-
HVAC2	Unit	72	72	-	-	-
HVAC3	Unit	72	72	-	-	-
HVAC4	Unit	72	72	-	-	-
HVAC5	Unit	72	72	-	-	-
HVAC6	Unit	72	72	-	-	-
HVAC7	Unit	72	72	-	-	-
HVAC8	Unit	72	72	-	-	-
HVAC9	Unit	72	72	-	-	-
HVAC10	Unit	72	72	-	-	-
HVAC11	Unit	72	72	-	-	-
HVAC12	Unit	72	72	-	-	-
HVAC13	Unit	72	72	-	-	-
HVAC14	Unit	72	72	-	-	-
HVAC15	Unit	72	72	-	-	-
HVAC16	Unit	72	72	-	-	-
HVAC17	Unit	72	72	-	-	-
HVAC18	Unit	72	72	-	-	-
HVAC19	Unit	72	72	-	-	-
HVAC20	Unit	72	72	-	-	-
HVAC21	Unit	72	72	-	-	-
HVAC22	Unit	72	72	-	-	-
HVAC23	Unit	72	72	-	-	-
HVAC24	Unit	72	72	-	-	-
HVAC25	Unit	72	72	-	-	-
HVAC26	Unit	72	72	-	-	-
HVAC27	Unit	72	72	-	-	-
HVAC28	Unit	72	72	-	-	-
HVAC29	Unit	72	72	-	-	-
HVAC30	Unit	72	72	-	-	-
HVAC31	Unit	72	72	-	-	-
HVAC32	Unit	72	72	-	-	-
HVAC33	Unit	72	72	-	-	-
HVAC34	Unit	72	72	-	-	-
HVAC35	Unit	72	72	-	-	-
HVAC36	Unit	72	72	-	-	-
HVAC37	Unit	72	72	-	-	-
HVAC38	Unit	72	72	-	-	-
HVAC39	Unit	72	72	-	-	-
HVAC40	Unit	72	72	-	-	-
HVAC41	Unit	72	72	-	-	-
Brewery Terrace		80	-	-	-	-
Pool Deck	Unit	75	-	-	-	-

	Coordinates			Limit		Level	w/o NP	Level	w. NP	Diffe	rence	Cor	nflict
No.	X Y	Floor	Height	Leq1	Leq2	Leq1	Leq2	Leq1	Leq2	Leq1	Leq2	Leq1	Leq2
	in meter		m	dB(A)		dB	(A)	dB	(A)	dB	(A)	dB	8(A)
1	488877.05 3605287.69	1.Fl	2.23	-	-	35.6	32.4	0	0	-35.6	-32.4	-	-
2	488873.05 3605315.81	1.Fl	2.23	-	-	43.6	43.0	0	0	-43.6	-43.0	-	-
3	488875.12 3605331.50	1.Fl	2.23	-	-	44.3	43.9	0	0	-44.3	-43.9	-	-
4	488875.12 3605346.30	1.Fl	2.23	-	-	43.0	42.5	0	0	-43.0	-42.5	-	-
5	488872.46 3605358.58	1.Fl	2.23	-	-	41.4	41.0	0	0	-41.4	-41.0	-	-
6	488870.68 3605370.87	1.Fl	2.23	-	-	40.7	40.5	0	0	-40.7	-40.5	-	-
7	488850.70 3605363.17	1.FI	2.23	-	-	38.5	38.4	0	0	-38.5	-38.4	-	-
8	488829.84 3605363.62	1.Fl	2.23	-	-	40.5	40.5	0	0	-40.5	-40.5	-	-
9	488807.49 3605363.47	1.FI	2.23	-	-	41.3	41.3	0	0	-41.3	-41.3	-	-
10	488780.85 3605363.47	1.Fl	2.23	-	-	40.3	40.3	0	0	-40.3	-40.3	-	-
11	488733.49 3605330.02	1.FI	2.23	-	-	37.7	36.1	0	0	-37.7	-36.1	-	-
12	488773.15 3605291.54	1.Fl	2.23	-	-	41.8	39.9	0	0	-41.8	-39.9	-	-
13	488795.20 3605274.37	1.FI	2.23	-	-	41.2	39.4	0	0	-41.2	-39.4	-	-
14	488822.14 3605256.91	1.Fl	2.23	-	-	39.9	38.9	0	0	-39.9	-38.9	-	-
15	488849.37 3605244.77	1.FI	2.23	-	-	38.5	37.8	0	0	-38.5	-37.8	-	-

Receivers

Source name         Len         Len         ME(A)         ME(A)         ME(A)           1         1.FL         35.6         32.4         0.0         0.0           Brewery Terrace         12.9         0.0         0         0           HVAC1         22.2         22.2         0         0           HVAC2         14.5         14.5         0         0           HVAC5         14.5         14.5         0         0           HVAC6         11.5         11.5         0         0           HVAC5         11.5         11.5         0         0           HVAC6         11.5         11.5         0         0           HVAC6         7.1         7.3         0         0           HVAC11         7.3         7.3         0         0           HVAC12         7.4         7.7         7.7         0         0           HVAC13         7.7         7.7         7.7         0         0           HVAC14         6.0         6.0         0         0         0           HVAC15         5.1         5.1         0         0         0           HVAC16						Level w/o NP		Level w. NP		
dB(A)         dB(A)           1         1.F1         35.6         32.4         0.0         0         0           HVAC1         22.2         22.2         0         0         0           HVAC2         14.2         14.2         0         0           HVAC3         14.5         14.5         0         0           HVAC4         14.9         14.9         0         0           HVAC5         15.3         15.3         0         0           HVAC5         11.3         11.3         0         0           HVAC6         11.3         11.3         0         0           HVAC7         11.3         11.3         0         0           HVAC8         10.9         10.9         0         0           HVAC14         7.4         7.4         0         0           HVAC15         6.0         6.0         0         0           HVAC14         7.4         7.4         0         0           HVAC15         5.0         5.0         0         0           HVAC14         6.0         6.0         0         0           HVAC15         11.0 <td< td=""><td>Source name</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Source name									
Brewery Terrace         12.9         0.0         0           HVAC1         22.22         0         0           HVAC2         14.2         14.2         0         0           HVAC3         14.5         14.5         0         0           HVAC4         14.9         14.9         0         0           HVAC5         15.3         15.3         0         0           HVAC6         11.5         11.5         0         0           HVAC6         11.3         11.3         0         0           HVAC6         11.3         11.3         0         0           HVAC1         7.3         7.3         0         0           HVAC13         7.4         7.4         0         0           HVAC14         6.0         6.0         0         0           HVAC15         6.1         6.1         0         0           HVAC16         5.1         5.1         0         0           HVAC18         5.0         5.0         0         0           HVAC29         3.1         5.1         0         0           HVAC215         4.0         4.0         0										
HVACI       22.2       22.2       0       0         HVAC2       14.2       14.2       0       0         HVAC3       14.5       14.5       0       0         HVAC4       14.9       14.9       0       0         HVAC5       15.3       15.3       0       0         HVAC6       11.5       11.5       0       0         HVAC6       10.9       10.9       0       0         HVAC7       13.3       11.3       0       0         HVAC8       10.9       10.9       0       0         HVAC10       7.1       7.1       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC14       5.0       5.0       0       0         HVAC15       5.1       5.1       0       0         HVAC14       5.0       5.0       0       0         HVAC15       3.3       3.3       0       0         HVAC14       3.9       3.9       0       0	1 1.Fl	35.6	32.4	0.0	0.0					
HVAC2       14.2       14.2       0       0         HVAC3       14.5       0       0         HVAC4       14.9       14.9       0       0         HVAC5       15.3       15.3       0       0         HVAC6       11.5       15.5       0       0         HVAC6       11.3       11.3       0       0         HVAC7       11.3       11.3       0       0         HVAC8       10.9       10.6       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       7.4       0       0         HVAC14       6.0       6.0       0       0       0         HVAC15       6.1       6.1       0       0       0         HVAC16       5.1       5.1       0       0       0         HVAC17       6.1       6.1       0       0       0         HVAC18       5.0       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0       0	Brewery Terrace	;				12.9	0.0	0		
HVAC3       14.5       14.5       14.5       0       0         HVAC4       14.9       0       0         HVAC5       15.3       15.3       0       0         HVAC6       11.5       11.5       0       0         HVAC6       11.3       11.3       0       0         HVAC8       10.9       10.9       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.0       6.0       0       0         HVAC16       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC24       3.3       3.3       0       0	HVAC1					22.2	22.2	0	0	
HVAC4       14.9       14.9       0       0         HVAC5       15.3       15.3       0       0         HVAC6       11.5       11.5       0       0         HVAC7       11.3       11.3       0       0         HVAC8       10.9       10.9       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC16       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC16       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       3.3       3.3       0       0     <	HVAC2					14.2	14.2	0	0	
HVAC4       14.9       14.9       0       0         HVAC5       15.3       15.3       0       0         HVAC6       11.5       11.5       0       0         HVAC7       11.3       11.3       0       0         HVAC8       10.9       10.9       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC16       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC16       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       3.3       3.3       0       0     <	HVAC3					14.5	14.5	0	0	
HVACS       15.3       15.3       0       0         HVAC6       11.5       11.5       0       0         HVAC7       11.3       11.3       0       0         HVAC8       10.9       10.9       0       0         HVAC9       10.6       10.6       0       0         HVAC10       7.1       7.1       0       0         HVAC12       7.4       7.4       0       0         HVAC13       6.0       6.0       0       0         HVAC14       6.1       6.1       0       0         HVAC15       6.0       6.0       0       0         HVAC16       5.1       5.1       0       0         HVAC18       5.0       5.0       0       0         HVAC20       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       0       0       0         HVAC26       3.3       3.3       0       0 <td>HVAC4</td> <td></td> <td></td> <td></td> <td></td> <td>14.9</td> <td>14.9</td> <td>0</td> <td></td>	HVAC4					14.9	14.9	0		
HVAC6       11.5       11.5       0       0         HVAC7       11.3       11.3       0       0         HVAC9       10.9       10.9       0       0         HVAC9       10.6       10.6       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC20       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.3       3.3       0       0         HVAC24       3.9       3.9       9       0       0         HVAC25       3.4       3.4       0       0       0         HVAC26       3.5       3.5	HVAC5					15.3	15.3	0		
HVAC7       11.3       11.3       0.0       0         HVAC8       10.9       10.9       0.0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.0       6.1       0       0         HVAC16       5.1       5.1       0       0         HVAC18       5.0       5.0       0       0         HVAC20       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.9       3.9       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       3.9       3.9       0       0         HVAC26       3.9       3.9       0       0	HVAC6									
HVACB       10.9       10.6       0.0       0         HVAC19       10.6       10.6       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC19       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       3.4       3.4       0       0         HVAC33       19.7       19.7       0       0										
HVAC9       10.6       10.6       0       0         HVAC10       7.1       7.1       0       0         HVAC11       7.3       7.3       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC16       5.1       5.1       0       0         HVAC19       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC21       3.8       3.8       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       2.3       2.3       0       0         HVAC26       3.4       3.4       0       0										
HVAC10       7,1       7,1       7,1       0       0         HVAC11       7,3       7,3       0       0         HVAC12       7,4       7,4       0       0         HVAC13       7,7       7,7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC17       6.1       6.1       0       0         HVAC20       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC33       19.7       19.7       0       0         HVAC34       23.9       23.9       0										
HVAC11       7.3       7.3       7.4       0       0         HVAC12       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC16       5.0       5.0       0       0         HVAC19       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       3.4       3.4       0       0         HVAC26       3.5       3.5       0       0         HVAC28       3.9       19.7       0       0         HVAC29       3.5       3.5       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       0       0										
HVAC12       7.4       7.4       7.4       0       0         HVAC13       7.7       7.7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.0       6.0       0       0         HVAC16       6.1       6.1       0       0         HVAC17       6.1       6.1       0       0         HVAC19       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       3.4       3.4       0       0         HVAC26       3.5       3.5       0       0         HVAC28       3.4       0       0       0         HVAC31       18.5       19.7       0       0         HVAC32       23.9       23.9       0       0         HVAC33       19.7       10.2       0										
HVAC13       7,7       7,7       0       0         HVAC14       6.0       6.0       0       0         HVAC15       6.1       6.1       0       0         HVAC16       6.1       6.1       0       0         HVAC17       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC20       5.1       5.1       0       0         HVAC21       3.8       3.8       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       23.9       0       0										
HVAC14       6.0       6.0       0       0         HVAC15       6.0       6.0       0       0         HVAC16       6.1       6.1       0       0         HVAC17       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC19       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC21       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       23.9       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.6       24.6       0       0										
HVAC15       6.0       6.0       0       0         HVAC16       6.1       6.1       0       0         HVAC17       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC19       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       19.7       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       23.9       0       0         HVAC35       23.9       0       0       0										
HVAC16       6.1       6.1       6.1       0       0         HVAC17       5.0       5.0       0       0         HVAC18       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       0       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC25       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       2.3       2.3       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       2.3       0       0         HVAC35       23.7       0.0       0       0         HVAC38       10.5       10.5       0										
HVAC17       6.1       6.1       6.1       0       0         HVAC18       5.0       5.0       0       0         HVAC20       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC21       3.8       3.8       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       23.9       23.9       0       0         HVAC34       22.3       22.3       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC39       10.5       10.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
HVAC18       5.0       5.0       0       0         HVAC19       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC33       19.7       0       0       0         HVAC34       23.9       23.9       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC38       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
HVAC19       5.1       5.1       5.1       0       0         HVAC20       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       0       0       0         HVAC36       10.2       10.2       0       0         HVAC35       23.9       0       0       0         HVAC36       10.2       10.2       0       0         HVAC37       24.6       24.6       0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
HVAC20       5.1       5.1       5.1       0       0         HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       23.9       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.6       0       0         HVAC38       10.2       10.5       0       0         HVAC39       10.7       10.7       0       0         HVAC40       11.0       11.0										
HVAC21       5.1       5.1       0       0         HVAC22       3.8       3.8       0       0         HVAC23       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       0       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       0.5       0       0         HVAC36       32.7       0.0       0       0         HVAC40       11.0       11.0       0										
HVAC22       3.8       3.8       3.8       0       0         HVAC23       3.8       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       19.7       19.7       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       23.9       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC39       10.2       10.2       0       0         HVAC41       10.7       10.7       0       0         HVAC2       29.3       29.3       0       0         HVAC4       19.3										
HVAC23       3.8       3.8       3.8       0       0         HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC29       32.7       0.0       0       0         Pool Deck       20.0       0       0       0         HVAC29       19.3       19.3										
HVAC24       3.9       3.9       0       0         HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC32       18.5       18.5       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       19.3       19.3       0       0         Pool Deck       29.3       29.3       0       0         HVAC2       29.3       29.3       0								0		
HVAC25       4.0       4.0       0       0         HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       11.0       11.0       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         IF 43.6       43.0       0.0       0.0       0       0         HVAC1       19.3       19.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
HVAC26       3.3       3.3       0       0         HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       22.3       0       0       0         HVAC34       22.3       23.9       0       0         HVAC35       24.4       24.4       0       0         HVAC38       10.2       10.2       0       0         HVAC38       10.2       10.2       0       0         HVAC40       11.0       11.0       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         HVAC41       19.3       19.3       0       0       0         HVAC1       <	HVAC24					3.9	3.9	0	0	
HVAC27       3.3       3.3       0       0         HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.1       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         Pool Deck       29.3       29.3       0       0       0         HVAC1	HVAC25					4.0	4.0	0	0	
HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC38       10.2       10.2       0       0         HVAC40       10.5       10.5       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         Pool Deck       20.0       0       0       0       0       0         Pool Deck       29.3       29.3       0       0       0         HVAC2       19.3       19.3       0       0	HVAC26					3.3	3.3	0	0	
HVAC28       3.4       3.4       0       0         HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC38       10.2       10.2       0       0         HVAC40       10.5       10.5       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         Pool Deck       20.0       0       0       0       0       0         Pool Deck       29.3       29.3       0       0       0         HVAC2       19.3       19.3       0       0	HVAC27					3.3	3.3	0	0	
HVAC29       3.5       3.5       0       0         HVAC30       18.1       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC39       10.2       10.2       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pol Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         Pol Deck       29.3       29.3       0       0       0         HVAC2       19.3       19.3       0       0       0         HVAC3       29.3       29.3       0       0	HVAC28					3.4	3.4	0		
HVAC30       18.1       18.1       0       0         HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC40       10.7       10.5       0       0         HVAC41       10.0       10.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0       0         Pool Deck       32.7       0.0       0       0       0         2       1.Fl       43.6       43.0       0.0       0       0         HVAC21       19.3       19.3       0       0       0         HVAC33       29.3       29.3       0	HVAC29					3.5	3.5	0		
HVAC31       18.5       18.5       0       0         HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC40       10.7       10.7       0       0         HVAC41       32.7       0.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.FI       43.6       43.0       0.0       0       0         Pool Deck       32.7       0.0       0       0       0         2       1.FI       43.6       43.0       0.0       0       0         HVAC21       19.3       19.3       0       0       0         HVAC23       29.3       29.3       0       0       0         HVAC3       29.5       29.5										
HVAC32       18.9       18.9       0       0         HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0       0         Pool Deck       32.7       0.0       0       0       0         2       1.Fl       43.6       43.0       0.0       0       0         HVAC1       19.3       19.3       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.5       29.5										
HVAC33       19.7       19.7       0       0         HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.3       29.3       0       0       0         HVAC3       29.3       29.3       0       0       0         HVAC4       29.5       29.5       0       0       0         HVAC5       29.7       29.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
HVAC34       22.3       22.3       0       0         HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.3       29.3       0       0       0         HVAC4       29.3       29.3       0       0       0         HVAC4       29.5       29.5       0       0       0         HVAC5       29.7       29.7       0       0       0										
HVAC35       23.9       23.9       0       0         HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.3       29.3       0       0       0         HVAC4       29.5       29.5       0       0       0         HVAC5       29.7       29.7       0       0       0										
HVAC36       24.4       24.4       0       0         HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.5       29.5       0       0       0         HVAC3       29.7       29.7       29.7       0       0										
HVAC37       24.6       24.6       0       0         HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       29.3       29.3       0       0       0         HVAC4       29.5       29.5       0       0										
HVAC38       10.2       10.2       0       0         HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0         HVAC2       29.3       29.3       0       0         HVAC3       29.3       29.3       0       0         HVAC3       29.5       29.5       0       0										
HVAC39       10.5       10.5       0       0         HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC2       29.3       29.3       0       0       0         HVAC3       1       29.3       29.3       0       0         HVAC4       29.5       29.5       0       0         HVAC5       29.7       29.7       0       0										
HVAC40       10.7       10.7       0       0         HVAC41       11.0       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0       0       0         Brewery Terrace       13.2       0.0       0       0       0       0       0         HVAC1       19.3       19.3       0       0       0       0       0       0         HVAC2       29.3       29.3       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0										
HVAC41       11.0       11.0       0       0         Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       0         Brewery Terrace       13.2       0.0       0       0       0         HVAC1       19.3       19.3       0       0       0         HVAC2       29.3       29.3       0       0         HVAC3       29.5       29.5       0       0         HVAC5       29.7       29.7       0       0										
Pool Deck       32.7       0.0       0       0         2       1.Fl       43.6       43.0       0.0       0.0       13.2       0.0       0       0         Brewery Terrace       13.2       0.0       0       0       0       0         HVAC1       19.3       19.3       0       0       0         HVAC2       29.3       29.3       0       0         HVAC3       29.5       29.5       0       0         HVAC5       29.7       29.7       0       0										
2       1.Fl       43.6       43.0       0.0       0.0         Brewery Terrace       13.2       0.0       0       0         HVAC1       19.3       19.3       0       0         HVAC2       29.3       29.3       0       0         HVAC3       29.5       29.5       0       0         HVAC5       29.7       29.7       0       0										
Brewery Terrace13.20.000HVAC119.319.300HVAC229.329.300HVAC329.329.300HVAC429.529.500HVAC529.729.700		40.0	40.0	0.0	0.0	32.1	0.0	U	Û	
HVAC119.319.300HVAC229.329.300HVAC329.329.300HVAC429.529.500HVAC529.729.700			43.0	0.0	0.0	40.0	0.0	0	~	
HVAC229.329.300HVAC329.329.300HVAC429.529.500HVAC529.729.700	•	;								
HVAC329.329.300HVAC429.529.500HVAC529.729.700										
HVAC429.529.500HVAC529.729.700										
HVAC5 29.7 0 0										
HVAC6 34.6 0 0										
	HVAC6					34.6	34.6	0	0	

HVAC7	34.2	34.2	0	0
HVAC8	33.8	33.8	0	0
HVAC9	33.3	33.3	0	0
HVAC10	23.0	23.0		
			0	0
HVAC11	24.7	24.7	0	0
HVAC12	23.8	23.8	0	0
HVAC13	23.6	23.6	0	0
HVAC14	10.4	10.4	0	0
HVAC15	10.7	10.7	0	0
HVAC16	11.0	11.0	Õ	0
HVAC17	11.2	11.2	0	0
HVAC18	7.2	7.2	0	0
HVAC19	7.3	7.3	0	0
HVAC20	7.5	7.5	0	0
HVAC21	7.7	7.7	0	0
HVAC22	5.1	5.1	0	0
HVAC23	5.3	5.3	0	0
HVAC24	5.4	5.4	0	0
HVAC25	5.5	5.5	0	0
HVAC26	3.9	3.9	0	0
HVAC27	4.0	4.0	0	0
HVAC28	4.1	4.1	0	0
HVAC29	4.2	4.2	0	0
HVAC30	18.9	18.9	0 0	0
HVAC31	18.7	18.7	0	0
HVAC32	18.5	18.5	0	0
HVAC33	18.3	18.3	0	0
HVAC34	33.2	33.2	0	0
HVAC35	29.3	29.3	0	0
HVAC36	28.6	28.6	0	0
HVAC37	28.8	28.8	0	0
HVAC38	20.0	20.0	0	0
HVAC39	20.2	20.2	0	0
HVAC40	20.4	20.4	0	0
HVAC41	20.5	20.5	0	0
Pool Deck	34.5	0.0	0	0
3 1.Fl 44.3 43.9 0.0 0.0				
Brewery Terrace	13.9	0.0	0	0
HVAC1	17.3	17.3	0	0
HVAC2	27.9	27.9	0 0	0
HVAC3	27.7	27.7	0	0
HVAC4	27.6	27.6	0	0
HVAC5	27.6	27.6	0	0
HVAC6	35.1	35.1	0	0
HVAC7	35.6	35.6	0	0
HVAC8	35.7	35.7	0	0
HVAC9	35.7	35.7	0	0
HVAC10	29.0	29.0	0	0
HVAC11	29.7	29.7	0	0
HVAC12	30.9	30.9	0	0
HVAC13	30.7	30.7	0	0
HVAC14	12.1	12.1	0	0
HVAC15	12.4	12.4	0	0
HVAC16	12.7	12.7	0	0
HVAC17	13.0	13.0	0	0
	13.0	13.0	U	U

HVAC18	8.4	8.4	0	0
HVAC19	8.6	8.6	0	0
HVAC20	8.8	8.8	0	0
HVAC21	9.0	9.0	0	0
HVAC22	6.1	6.1	0	0
HVAC23	6.3	6.3	0	0
HVAC24	6.4	6.4	0	0
HVAC25	6.6	6.6	0	0
HVAC26	4.9	4.9	0	0
HVAC27	4.9 5.0	5.0	0	0
HVAC28	5.0	5.1	0	0
HVAC29	5.2	5.2	0	0
HVAC30	17.9	17.9	0	0
HVAC31	17.6	17.6	0	0
HVAC32	17.4	17.4	0	0
HVAC33	17.3	17.3	0	0
HVAC34	29.9	29.9	0	0
HVAC35	28.6	28.6	0	0
HVAC36	26.9	26.9	0	0
HVAC37	26.5	26.5	0	0
HVAC38	21.9	21.9	0	0
HVAC39	21.8	21.8	0	0
HVAC40	21.8	21.8	0	0
HVAC41	21.8	21.8	0	0
Pool Deck	34.4	0.0	0	0
4 1.Fl 43.0 42.5 0.0 0.0				
Brewery Terrace	11.8	0.0	0	0
HVAC1	16.2	16.2	0	0
HVAC2	25.4	25.4	0	0
HVAC3	25.2	25.2	0	0
HVAC4	25.2	25.2	0	0
HVAC5	25.1	25.1	0	0
HVAC6	31.6	31.6	0	0 0
HVAC7	32.0	32.0	0	0
HVAC8	32.4	32.4	0	0
HVAC9	32.8	32.8	0 0	Ő
HVAC10	31.6	31.6	0	0
HVAC11	31.9	31.9	0	0
HVAC12	32.9	32.9	0	0
HVAC12 HVAC13	33.3	33.3	0	0
HVAC14	14.0	14.0	0	0
HVAC14 HVAC15	14.0	14.0	0	0
HVAC16				
	14.5	14.5	0	0
HVAC17	14.8	14.8	0	0
HVAC18	9.7	9.7	0	0
HVAC19	9.8	9.8	0	0
HVAC20	10.0	10.0	0	0
HVAC21	10.3	10.3	0	0
HVAC22	7.1	7.1	0	0
HVAC23	7.3	7.3	0	0
HVAC24	7.5	7.5	0	0
HVAC25	7.7	7.7	0	0
HVAC26	5.9	5.9	0	0
HVAC27	6.0	6.0	0	0
HVAC28	6.1	6.1	0	0

HVAC29	6.2	6.2	0	0
	16.6			
HVAC30		16.6	0	0
HVAC31	16.5	16.5	0	0
HVAC32	16.3	16.3	0	0
HVAC33	16.0	16.0	0	0
HVAC34	29.9	29.9	0	0
HVAC35	25.5	25.5	0	0
HVAC36	25.2	25.2	0	0
HVAC37	24.8	24.8	0	0
HVAC38	20.7	20.7	0	0
HVAC39	20.6	20.6	0	0
HVAC40	20.5	20.5	0	0
HVAC41	20.3	20.3	0	0
Pool Deck	33.3	0.0	0	0
5 1.Fl 41.4 41.0 0.0 0.0				
Brewery Terrace	11.0	0.0	0	0
HVAC1	15.6	15.6	0	0
HVAC2	22.4	22.4	0	0
HVAC3	22.2	22.2	0	0
HVAC4	22.2	22.2	0	0
HVAC5	22.3	22.3	0	0
HVAC6	28.6	28.6	0	0
HVAC7	28.9	28.9	0	0
HVAC8	29.3	29.3	0	0
HVAC9	29.7	29.7	0	0
HVAC10	31.7	31.7	0	0
HVAC11	32.0	32.0	0	0
HVAC12	32.0	32.0	0	0
HVAC13	31.9	31.9	0	0
HVAC14	19.3	19.3	0	0
HVAC15	18.7	18.7	0	0
HVAC16	18.6	18.6	0	0
HVAC17	18.7	18.7	0	0
HVAC18	17.1	17.1	0	0
HVAC19	17.2	17.2	0	0
HVAC20	17.3	17.3	0	0
HVAC21	17.7	17.7	0	0
HVAC22	15.2	15.2	0	0
HVAC23	15.3	15.3	0	0
HVAC24	15.2	15.2	0	0
HVAC25	15.2	15.2	0	0
HVAC26	13.8	13.8	0	0
HVAC27	13.8	13.8	0	0
HVAC28	13.8	13.8	0	0
HVAC29	13.9	13.9	0	0
HVAC30	14.5	14.5	0	0
HVAC31	14.4	14.4	0	0
HVAC32	14.3	14.3	0	0
HVAC33	14.2	14.2	0	0
HVAC34	28.5	28.5	0	0
HVAC35	24.1	24.1	0	0
HVAC36	23.3	23.3	0	0
HVAC37	23.3	23.3	0	0
HVAC38	19.2	19.2	0	0
HVAC39	18.6	18.6	0	0

HVAC40 HVAC41 Back Dack					18.0 17.6	18.0 17.6	0 0	0 0
Pool Deck	40 7	40.5	0.0		30.5	0.0	0	0
_6 1.Fl	40.7	40.5	0.0	0.0				
Brewery Terrace					13.0	0.0	0	0
HVAC1					14.7	14.7	0	0
HVAC2					19.9	19.9	0	0
HVAC3					19.8	19.8	0	0
HVAC4					19.8	19.8	0	0
HVAC5					19.8	19.8	0	0
HVAC6					25.9	25.9	0	0
HVAC7					26.2	26.2	0	0
HVAC8					26.4	26.4	0	Õ
HVAC9					26.8	26.8	0 0	0
HVAC10					31.7	31.7	0	0
HVAC11					28.8	28.8	0	0
HVAC12								
					28.4	28.4	0	0
HVAC13					29.2	29.2	0	0
HVAC14					26.5	26.5	0	0
HVAC15					26.6	26.6	0	0
HVAC16					26.8	26.8	0	0
HVAC17					27.0	27.0	0	0
HVAC18					23.4	23.4	0	0
HVAC19					23.6	23.6	0	0
HVAC20					23.8	23.8	0	0
HVAC21					24.0	24.0	0	0
HVAC22					21.1	21.1	0	0
HVAC23					21.3	21.3	0	0
HVAC24					21.4	21.4	0	0
HVAC25					21.5	21.5	0	0
HVAC26					19.9	19.9	0	0
HVAC27					20.0	20.0	0	0
HVAC28					20.1	20.1	0	0
HVAC29					20.2	20.2	0	0
HVAC30					13.0	13.0	0	0
HVAC31					12.9	12.9	0	0
HVAC32					12.4	12.4	0	Õ
HVAC33					12.3	12.3	0 0	0
HVAC34					28.5	28.5	0	0
HVAC35					25.5	25.5	0	0
HVAC36					21.8	21.8	0	0
HVAC37					21.8	21.8	0	0
HVAC38					18.0	18.0	0	0
HVAC38 HVAC39					17.9			
						17.9	0	0
HVAC40					17.8	17.8	0	0
HVAC41					17.7	17.7	0	0
Pool Deck	<u> </u>	<b>00</b> 4			27.0	0.0	0	0
7 1.Fl	38.5	38.4	0.0	0.0	40.0	0.0	0	~
Brewery Terrace					12.9	0.0	0	0
HVAC1					13.9	13.9	0	0
HVAC2					10.3	10.3	0	0
HVAC3					10.1	10.1	0	0
HVAC4					9.9	9.9	0	0
HVAC5					9.7	9.7	0	0
HVAC6					12.1	12.1	0	0

HVAC7	12.4	12.4	0	0
HVAC8	12.8	12.8	0	0
HVAC9	13.2	13.2	0	0
HVAC10	29.5	29.5	0	
				0
HVAC11	26.7	26.7	0	0
HVAC12	24.3	24.3	0	0
HVAC13	23.2	23.2	0	0
HVAC14	28.0	28.0	0	0
HVAC15	27.8	27.8	0	0
HVAC16	28.0	28.0	0	0
HVAC17	28.3	28.3	0	0
HVAC18	24.8	24.8	0	0
HVAC19	25.0	25.0	0	0
HVAC20	25.2	25.2	0	0
HVAC21	25.7	25.7	0	0
HVAC22	21.8	21.8	Õ	0
HVAC23	22.0	22.0	0	0
HVAC24	21.9	21.9	0	0
HVAC25	22.1	22.1	0	0
HVAC26	19.9	19.9	0	0
HVAC27	20.0	20.0	0	0
HVAC28	20.1	20.1	0	0
HVAC29	20.2			
		20.2	0	0
HVAC30	8.1	8.1	0	0
HVAC31	7.9	7.9	0	0
HVAC32	7.7	7.7	0	0
HVAC33	7.4	7.4	0	0
HVAC34	8.7	8.7	0	0
HVAC35	8.4	8.4	0	0
	8.2			
HVAC36		8.2	0	0
HVAC37	7.6	7.6	0	0
HVAC38	13.7	13.7	0	0
HVAC39	13.3	13.3	0	0
HVAC40	13.0	13.0	0	0
HVAC41	12.7	12.7	0	0
Pool Deck	9.8	0.0	0	0
8 1.FI 40.5 40.5 0.0 0.0	0.0	0.0	Ũ	Ũ
	45.0	0.0	0	0
Brewery Terrace	15.2	0.0	0	0
HVAC1	16.0	16.0	0	0
HVAC2	9.0	9.0	0	0
HVAC3	8.8	8.8	0	0
HVAC4	8.6	8.6	0	0
HVAC5	8.4	8.4	0	0
HVAC6	10.7	10.7	Õ	0
HVAC7	11.0	11.0	0	0
HVAC8	11.3	11.3	0	0
HVAC9	11.6	11.6	0	0
HVAC10	25.4	25.4	0	0
HVAC11	22.6	22.6	0	0
HVAC12	20.9	20.9	0	0
HVAC12	19.8	19.8	0	0
HVAC14	31.0	31.0	0	0
HVAC15	30.6	30.6	0	0
HVAC16	30.3	30.3	0	0
HVAC17	29.9	29.9	0	0

HVAC18	29.3	29.3	0	0
HVAC19	29.6	29.6	0	0
HVAC20	29.9	29.9	0	0
HVAC21	30.6	30.6	0	0
HVAC22	24.8	24.8	0	0
HVAC23	25.1	25.1	0	0
HVAC24	25.1	25.1	0	0
HVAC25	25.3	25.3	0	0
HVAC26	22.3	22.3	0	0
HVAC27	22.4	22.4	0	0
HVAC28	22.5	22.5	0	Õ
HVAC29	22.7	22.7	0	0
HVAC30	7.3	7.3	0	0
HVAC31	7.2	7.2	0	0
HVAC32	7.0	7.0		
			0	0
HVAC33	6.8	6.8	0	0
HVAC34	7.0	7.0	0	0
HVAC35	6.8	6.8	0	0
HVAC36	6.6	6.6	0	0
HVAC37	6.4	6.4	0	0
HVAC38	12.5	12.5	0	0
HVAC39	12.2	12.2	0	0
HVAC40	11.8	11.8	0	0
HVAC41	11.5	11.5	0	0
Pool Deck	8.6	0.0	0	0
9 1.Fl 41.3 41.3 0.0 0.0				
Brewery Terrace	16.7	0.0	0	0
HVAC1	14.9	14.9	0	0
HVAC2	7.6	7.6	0	0
HVAC3	7.4	7.4	0	0
HVAC4	7.2	7.2	0	0
HVAC5	7.1	7.1	0	Õ
HVAC6	9.0	9.0	ů 0	Ő
HVAC7	9.3	9.3	0	0
HVAC8	9.5	9.5	0	0
HVAC9	10.0	10.0	0	0
HVAC10	22.1	22.1	0	0
HVAC11	19.8	19.8	0	0
HVAC12	18.3	18.3	0	0
HVAC13	17.3	17.3	0	0
HVAC14	26.8	26.8	0	0
HVAC15	25.6	25.6	0	0
HVAC16	25.3	25.3	0	0
HVAC17	25.0	25.0	0	0
HVAC18	32.4	32.4	0	0
HVAC19	32.1	32.1	0	0
HVAC20	31.8	31.8	0	0
HVAC21	31.8	31.8	0	0
HVAC22	29.1	29.1	0	0
HVAC23	29.6	29.6	0	0
HVAC24	29.6	29.6	0	0
HVAC25	29.9	29.9	0	0
HVAC26	25.4	25.4	0	0
HVAC27	25.5	25.5	0	0
HVAC28	25.7	25.7	0	0

HVAC29 HVAC30 HVAC31 HVAC32 HVAC33 HVAC34 HVAC35 HVAC36 HVAC36 HVAC37 HVAC38 HVAC39 HVAC40 HVAC40 HVAC41 Pool Deck			25.9 6.0 5.9 5.8 5.6 5.6 5.4 5.3 5.1 10.6 10.3 10.1 9.8 7.5	$\begin{array}{c} 25.9\\ 6.0\\ 5.9\\ 5.8\\ 5.6\\ 5.6\\ 5.4\\ 5.3\\ 5.1\\ 10.6\\ 10.3\\ 10.1\\ 9.8\\ 0.0\end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10       1.Fl       40.3         Brewery Terrace       HVAC1         HVAC2       HVAC3         HVAC3       HVAC4         HVAC4       HVAC5         HVAC6       HVAC6         HVAC7       HVAC8         HVAC10       HVAC11         HVAC12       HVAC13         HVAC14       HVAC15         HVAC15       HVAC16         HVAC10       HVAC20         HVAC20       HVAC20         HVAC21       HVAC20         HVAC20       HVAC21         HVAC20       HVAC20         HVAC21       HVAC20         HVAC20       HVAC21         HVAC20       HVAC20         HVAC21       HVAC23         HVAC23       HVAC24         HVAC25       HVAC26         HVAC28       HVAC29         HVAC30       HVAC30	40.3 0.0	0 0.0	$\begin{array}{c} 15.6\\ 13.4\\ 6.2\\ 6.3\\ 6.1\\ 6.0\\ 7.7\\ 7.9\\ 8.1\\ 8.6\\ 19.6\\ 17.8\\ 16.4\\ 15.4\\ 22.7\\ 23.2\\ 23.8\\ 21.6\\ 26.2\\ 26.0\\ 25.8\\ 25.8\\ 29.6\\ 29.2\\ 28.5\\ 28.2\\ 30.9\\ 30.8\\ 31.1\\ 30.7\\ 5.0\\ \end{array}$	0.0 13.4 6.2 6.3 6.1 6.0 7.7 7.9 8.1 8.6 19.6 17.8 16.4 15.4 22.7 23.2 23.8 21.6 26.2 26.0 25.8 29.6 29.2 28.5 28.5 28.2 30.9 30.8 31.1 30.7 5.0		
HVAC31 HVAC32 HVAC33 HVAC34 HVAC35 HVAC36 HVAC37 HVAC38 HVAC39			4.9 4.8 4.6 4.5 4.3 4.2 8.9 8.8	4.9 4.8 4.6 4.5 4.3 4.2 8.9 8.8	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

11       1.Fl       36.7       36.1       0.0       0.0         Brewery Terrace       32.3       0.0       0         HVAC1       29.0       29.0       0         HVAC2       16.7       16.7       0         HVAC3       16.7       16.7       0         HVAC4       16.7       16.7       0         HVAC5       16.7       16.7       0         HVAC6       20.6       20.6       0         HVAC8       16.6       16.6       0         HVAC9       16.6       16.6       0         HVAC10       14.9       14.9       0         HVAC11       15.5       15.5       0	0 0 0
HVAC1215.915.90HVAC1316.316.30HVAC1416.116.10HVAC1516.016.00HVAC1615.915.90HVAC1715.915.90HVAC1817.817.80HVAC1917.517.50HVAC2017.317.30HVAC2117.000HVAC2220.320.30HVAC2320.220.20HVAC2420.120.10HVAC2519.819.80HVAC2624.024.00HVAC2822.722.00HVAC3019.019.00HVAC3119.019.00HVAC3318.918.90HVAC3416.316.30HVAC3516.416.40HVAC3616.416.40HVAC3716.416.40HVAC3822.322.30	
HVAC3922.322.30HVAC4022.222.20HVAC4119.219.20	0 0
Pool Deck 17.4 0.0 0	0 0
12       1.Fl       40.6       39.9       0.0       0.0         Brewery Terrace       37.2       0.0       0         HVAC1       35.5       35.5       0         HVAC2       21.2       21.2       0         HVAC3       22.4       22.4       0         HVAC4       22.3       22.3       0         HVAC5       20.6       20.6       0	0 0 0 0 0 0

HVAC7	20.6	20.6	0	0
HVAC8	20.5	20.5	0	0
HVAC9	20.4	20.4	0	0
HVAC10	15.3	15.3		
			0	0
HVAC11	17.4	17.4	0	0
HVAC12	17.4	17.4	0	0
HVAC13	17.4	17.4	0	0
HVAC14	19.9	19.9	0	0
HVAC15	19.8	19.8	0	0
HVAC16	19.7	19.7	0	
				0
HVAC17	19.8	19.8	0	0
HVAC18	21.6	21.6	0	0
HVAC19	21.6	21.6	0	0
HVAC20	21.5	21.5	0	0
HVAC21	21.4	21.4	0	0
HVAC22	22.3	22.3	0	Õ
HVAC23	22.3	22.3	0	0
HVAC24	22.3	22.3	0	0
HVAC25	22.2	22.2	0	0
HVAC26	23.4	23.4	0	0
HVAC27	23.3	23.3	0	0
HVAC28	23.4	23.4	0	0
HVAC29	23.5	23.5	0	0
HVAC30	25.4	25.4	0	0
HVAC31	25.4	25.4	0	0
HVAC32	25.3	25.3	0	0
HVAC33	25.3	25.3	0	0
HVAC34	21.8	21.8	0	0
HVAC35	21.8	21.8	0	0
HVAC36	19.6	19.6	0	0
HVAC37	19.7	19.7	0	0
HVAC38	21.3	21.3	0	0
HVAC39	21.4	21.4	0	0
HVAC40	21.4	21.4	0	0
HVAC41	21.4	21.4	0	0
Pool Deck	21.7	0.0	0	0
13 1.Fl 40.1 39.4 0.0 0.0		0.0	C C	Ū.
Brewery Terrace	36.3	0.0	0	0
•				0
HVAC1	33.3	33.3	0	0
HVAC2	21.6	21.6	0	0
HVAC3	21.6	21.6	0	0
HVAC4	21.6	21.6	0	0
HVAC5	21.6	21.6	0	0
HVAC6	20.9	20.9	0	0
HVAC7	20.8	20.8	0	Õ
HVAC8	18.8	18.8	0	0
HVAC9	18.7	18.7	0	0
HVAC10	16.4	16.4	0	0
HVAC11	16.5	16.5	0	0
HVAC12	16.7	16.7	0	0
HVAC13	16.9	16.9	0	0
HVAC14	21.1	21.1	0	0
HVAC15	20.1	20.1	0	0
HVAC16	20.0	20.0	0	0
HVAC17	19.9	19.9	0	0

HVAC18	22.8	22.8	0	0
HVAC19	21.2	21.2	0	0
HVAC20	21.3	21.3	0	0
HVAC21	21.3	21.3	0	0
HVAC22	22.5	22.5	0	0
HVAC23	22.6	22.6	0	0
HVAC24	22.6	22.6	0	0
HVAC25	22.6	22.6	0	0
HVAC26	22.3	22.3	0	0
HVAC27	22.3	22.3	0	0
HVAC28	22.4	22.4	0	0
HVAC29	22.4	22.4	0	0
HVAC30	26.9	26.9	0	0
HVAC31	26.5	26.5	0	0
HVAC32	26.6	26.6	Ő	0
HVAC33	26.6	26.6	0	0
HVAC34	21.1	21.1	0	0
HVAC35	23.7	23.7	0	0
HVAC36	21.6	21.6	0	0
HVAC37	22.6	22.6	0	0
HVAC38	21.0	21.0	0	0
HVAC39	21.0	21.0	Ő	0
HVAC40	21.2	21.2	0	0
HVAC41	21.3	21.3	0	0
Pool Deck	21.8	0.0	0	0
14 1.Fl 39.3 38.9 0.0 0.0				
Brewery Terrace	32.1	0.0	0	0
HVAC1	33.1	33.1	0	0
HVAC2	21.6	21.6	0	0
HVAC3	21.0	21.0	Ő	0
	21.0			
HVAC4		21.0	0	0
HVAC5	21.0	21.0	0	0
HVAC6	20.9	20.9	0	0
HVAC7	18.9	18.9	0	0
HVAC8	18.8	18.8	0	0
HVAC9	18.7	18.7	0	0
HVAC10	18.1	18.1	0	0
HVAC11	18.2	18.2	0	0
HVAC12	18.2	18.2	0	0
HVAC13	18.3	18.3	0	0
HVAC14	22.1	22.1	0	0
HVAC15	22.1	22.1	0	0
HVAC16	22.1	22.1	0	0
HVAC17	20.5	20.5	0	0
HVAC18	18.9	18.9	0	0
HVAC19	18.9	18.9	0	0
HVAC20	18.8	18.8	Õ	0
HVAC21	18.8	18.8	0	0
HVAC22	18.9	18.9	0	0
HVAC23	18.9	18.9	0	0
HVAC24	19.0	19.0	0	0
HVAC25	19.0	19.0	0	0
HVAC26	18.5	18.5	0	0
HVAC27	18.6	18.6	Õ	0
HVAC28	18.6	18.6		
Πναυζο	10.0	10.0	0	0

HVAC29					19.2	19.2	0	0
HVAC30					25.0	25.0	0	0
HVAC31					25.1	25.1	0	0
HVAC32					25.3	25.3	0	0
HVAC33					25.4	25.4	0	0
HVAC34					22.9	22.9	0	0
HVAC35					23.4	23.4	0	0
HVAC36					23.9	23.9	0	0
HVAC37					23.8	23.8	0	0
HVAC38					23.2	23.2	0	0
HVAC39					23.3	23.3	0	0
HVAC40					23.2	23.2	0	0
HVAC41					23.3	23.3	0	0
Pool Deck					24.7	0.0	0	0
15 1.Fl	38.2	37.8	0.0	0.0		0.0	C C	Ū.
	30.2	57.0	0.0	0.0	07.0		•	•
Brewery Terrace					27.3	0.0	0	0
HVAC1					33.1	33.1	0	0
HVAC2					17.9	17.9	0	0
HVAC3					18.2	18.2		
							0	0
HVAC4					18.5	18.5	0	0
HVAC5					18.8	18.8	0	0
HVAC6					15.7	15.7	0	0
HVAC7					15.5	15.5	0	0
HVAC8					15.2	15.2	0	0
HVAC9					15.0	15.0	0	0
HVAC10					12.1	12.1	0	0
HVAC11					12.3	12.3	0	0
HVAC12					12.4	12.4	0	0
HVAC13					13.1	13.1	0	0
HVAC14					17.9	17.9	0	0
HVAC15					18.0	18.0	0	0
HVAC16					18.1	18.1	0	0
HVAC17					18.1	18.1	0	0
HVAC18					17.4	17.4	0	0
HVAC19					17.4	17.4	0	0
HVAC20					17.4	17.4	0	0
HVAC21					17.4	17.4	0	0
HVAC22					17.3	17.3	0	0
HVAC23					17.3	17.3	0	0
HVAC24					17.3	17.3	0	0
HVAC25					17.3	17.3	0	0
HVAC26					16.8	16.8	0	0
HVAC27					16.9	16.9	0	0
HVAC28					17.2	17.2	0	0
HVAC29					18.5	18.5	0	0
HVAC30					24.5	24.5	0	0
HVAC31					24.9	24.9	0	0
HVAC32					25.0	25.0	0	0
HVAC33					26.4	26.4	0	0
HVAC34					23.4	23.4	0	0
HVAC35					23.9	23.9	0	0
HVAC36					24.1	24.1	0	0
HVAC37					24.7	24.7	0	0
HVAC38					15.0	15.0	0	0
HVAC39					18.9	18.9	0	0
					1010		5	v

HVAC40	19.0	19.0	0	0
HVAC41	19.0	19.0	0	0
Pool Deck	26.8	0.0	0	0