Appendix I Project Specific Water Quality Management Plan # Project Specific Water Quality Management Plan A Template for Projects located within the **Santa Ana Watershed** Region of Riverside County **Project Title:** KASSAB TRAVEL CENTER **Development No:** PA-2016-00112 Design Review/Case No: PWQMP-2018-00001 ☑ Preliminary☑ Final Original Date Prepared: JULY 15, 2017 Revision Date(s): October 4, 2018 December 27, 2018 Prepared for Compliance with Regional Board Order No. R8-2010-0033 #### **Contact Information:** #### Prepared for: MR. RON KASSAB 4887 E. LA PALMA AVE. STE 707 ANAHEIM CA 92807 #### Prepared by: RAHMAN ENGINEERING SERVICES 6939 SCHAEFFER RD, STE D-170 CHINO, CA., 91710 TEL; (213) 400-8078 #### A Brief Introduction This Project-Specific WQMP Template for the **Santa Ana Region** has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your "how-to" manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance. #### OWNER'S CERTIFICATION This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Ron Kassab by Moksud Rahman, PE for the Kassab Travel Center facility project. This WQMP is intended to comply with the requirements of CITY OF LAKE ELSINORE for ORD. # (Municipal Code Section 754.2), which includes the requirement for the preparation and implementation of a Project-Specific WQMP. The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under CITY OF LAKE ELSINORE Water Quality Ordinance (Municipal Code Section 754.2). "I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest." | | 12/21/2018 | | | |----------------------------|------------------------|--|--| | → Owner's Signature | Date | | | | Ron Kassab | Owner's Title/Position | | | #### PREPARER'S CERTIFICATION Th "The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. **R8-2010-0033** and any subsequent amendments thereto." | Hahan | <u>Date:</u> | |---------------------------------|--| | Preparer's Signature | | | Moksudur Rahman , PE | Professional Civil Engineer | | Preparer's Licensure: PE C69263 | C69263 Exp. 06/30/20 T. CIVILLE OR COP CALLED TO PROFESSIONAL CIRCUMSTANCE OF CALL | #### **Table of Contents** | Section A: Project and Site Information | 6 | |--|----| | A.1 Maps and Site PlansA.2 Identify Receiving WatersA.3 Additional Permits/Approvals required for the Project: | 7 | | Section B: Optimize Site Utilization (LID Principles) | | | Section C: Delineate Drainage Management Areas (DMAs) | 9 | | Section D: Implement LID BMPs | 11 | | D.1 Infiltration Applicability | 11 | | D.2 Harvest and Use Assessment | 12 | | D.3 Bioretention and Biotreatment Assessment | 15 | | D.4 Feasibility Assessment Summaries | 16 | | D.5 LID BMP Sizing | 17 | | Section E: Alternative Compliance (LID Waiver Program) | 20 | | E.1 Identify Pollutants of Concern | 21 | | E.2 Stormwater Credits | 22 | | E.3 Sizing Criteria | 22 | | E.4 Treatment Control BMP Selection | 23 | | Section F: Hydromodification | 24 | | F.1 Hydrologic Conditions of Concern (HCOC) Analysis | 24 | | F.2 HCOC Mitigation | | | Section G: Source Control BMPs | | | Section H: Construction Plan Checklist | 28 | | Section I: Operation, Maintenance and Funding | 29 | #### **List of Tables** | Table A.1 Identification of Receiving Waters | 7 | |--|-------| | Table A.2 Other Applicable Permits | 7 | | Table C.1 DMA Classifications | 9 | | Table C.2 Type 'A', Self-Treating Areas | | | Table C.3 Type 'B', Self-Retaining Areas | | | Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas | | | Table C.5 Type 'D', Areas Draining to BMPs | | | Table D.1 Infiltration Feasibility | | | Table D.2 LID Prioritization Summary Matrix | | | Table D.3 DCV Calculations for LID BMPs | | | Table E.1 Potential Pollutants by Land Use Type | | | Table E.2 Water Quality Credits | | | Table E.3 Treatment Control BMP Sizing | | | Table E.4 Treatment Control BMP Selection | | | Table F.1 Hydrologic Conditions of Concern Summary | | | Table G.1 Permanent and Operational Source Control Measures | | | Table 11.1 Construction Fran Cross-reference | 20 | | | | | List of Appendices | | | Appendix 1: Maps and Site Plans | 30 | | Appendix 2: Construction Plans | 33 | | Appendix 3: Soils Information | 34 | | Appendix 4: Historical Site Conditions | 35 | | Appendix 5: LID Infeasibility | 36 | | Appendix 6: BMP Design Details | 37 | | Appendix 7: Hydromodification | 39 | | Appendix 8: Source Control | 41 | | Appendix 9: O&M | 42 | | Annendix 10: Educational Materials | - 6 - | # **Section A: Project and Site Information** | PROJECT INFORMATION | | | | | | | |---|--|------------|--|--|--|--| | Type of Project: | COMMERCIAL | | | | | | | Planning Area: | I-15 CORRIDOR | | | | | | | Community Name: | LAKE ELSINORE | | | | | | | Development Name: | I-15 CORRIDOR/ NORTH ELSINORE | | | | | | | PROJECT LOCATION | | | | | | | | Latitude & Longitude (DMS): | LAT: 33º 41' 41.65" Long: 117º 20' 49.64" | | | | | | | Project Watershed and Sub-\ | Natershed: Santa Ana River , Temescal Reach | | | | | | | ADN/a\. 270 020 007 8 000 | | | | | | | | APN(s): 378-030-007 & 009 | | | | | | | | Map Book and Page No.: Pag | e 866 Grid C1 & C2 | | | | | | | PROJECT CHARACTERISTICS | | | | | | | | Proposed or Potential Land L | Jse(s) | Commercial | | | | | | Proposed or Potential SIC Code(s) | | | | | | | | Area of Impervious Project Footprint (SF) 92,011 SF | | | | | | | | Total Area of <u>proposed</u> Impervious Surfaces within the Project Limits (SF)/or Replacement 92,011 SF | | | | | | | | Does the project consist of offsite road improvements? | | | | | | | | Does the project propose to construct unpaved roads? | | | | | | | | Is the project part of a larger common plan of development (phased project)? | | | | | | | | EXISTING SITE CHARACTERISTICS | | | | | | | | Total area of existing Impervi | ious Surfaces within the project limits (SF) | 0 | | | | | | Is the project located within any MSHCP Criteria Cell? | | | | | | | | If so, identify the Cell number: | | | | | | | | Are there any natural hydrologic features on the project site? | | | | | | | | Is a Geotechnical
Report attached? | | | | | | | | If no Geotech. Report, list the NRCS soils type(s) present on the site (A, B, C and/or D) N/A | | | | | | | | What is the Water Quality Design Storm Depth for the project? 0.70 | | | | | | | ## A.1 Maps and Site Plans When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following: - Drainage Management Areas - Proposed Structural BMPs - Drainage Path - Drainage Infrastructure, Inlets, Overflows - Source Control BMPs - Buildings, Roof Lines, Downspouts - Impervious Surfaces - Standard Labeling Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps. #### **A.2 Identify Receiving Waters** Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1. **Table A.1** Identification of Receiving Waters | Receiving
Waters | EPA Approved 303(d) List Impairments | Designated
Beneficial Uses | Proximity to
RARE
Beneficial Use | |---------------------|---|---|--| | TEMESCAL
WASH | PH, INDICATOR BACTERIA | REC1, REC2, WARM, WILD | RARE (5.4
MILES) | | SANTA ANA
RIVER | COPPER, LEAD, PATHOGENS,
INDICATOR BACTERIA, PATHOGENS | AGR, GWR, REC1, REC2,
WARM, WILD, RARE | RARE | ### A.3 Additional Permits/Approvals required for the Project: **Table A.2** Other Applicable Permits | Agency | Permit Re | quired | |--|-----------|--------| | State Department of Fish and Game, 1602 Streambed Alteration Agreement | | ⊠N | | State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert. | | ⊠N | | US Army Corps of Engineers, CWA Section 404 Permit | | □N | | US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion | | ⊠N | | Statewide Construction General Permit Coverage | ⊠ Y | Пи | | Statewide Industrial General Permit Coverage | | N | | Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP) | | ⊠N | | Other (please list in the space below as required) | | | | City of Lake Elsinore Grading permit | ⊠ Y | □ N | | City of Lake Elsinore Building permit | | | If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP. # **Section B: Optimize Site Utilization (LID Principles)** Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. **Opportunities** might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others. The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1. #### Site Optimization The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance. Did you identify and preserve existing drainage patterns? If so, how? If not, why? NO. EXISTING DRAINAGE PATTERN WAS NOT PRESERVE BECAUSE ADJACENT PROPERTIES WOULD NOT ALLOW TO ACCEPT THE INCREASE RUNOFF SO PROJECT WAS DESIGN TO FLOW TOWARDS THE LANDSACPE AREAS THEN OUT TO THE STREETS. Did you identify and protect existing vegetation? If so, how? If not, why? NO. WHOLE SITE WILL BE DEVELOPED. Did you identify and preserve natural infiltration capacity? If so, how? If not, why? YES, BY CONCENTRATING THE DEVELOPMENT ON PORTIONS OF THE SITE WITH LESS PERMEABLE SOIL AND PRESERVE THE SITE THAT CAN PROMOTE INFILTRATION. SOME LANDSCAPE AREAS ARE CONSIDERED SELF TREATING AREAS WHICH PRESERVE NATURAL INFILTRATION AND SOME AREAS BIORETENTION BMP WILL BE CONSTRUCTED. Did you identify and minimize impervious area? If so, how? If not, why? YES, BY INCORPORATING LANDSCAPE AREAS TO MINIMIZE IMPERVIOUS AREAS Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why? YES, ALL DRAINAGE FLOWS WILL BE CAPTURED BY THE PROPOSED RIBBON GUTTERS TOWARDS TO THE PROPOSED BMPS. # Section C: Delineate Drainage Management Areas (DMAs) Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications. Table C.1 DMA Classifications | DMA Name or ID | Surface Type(s) ¹ | Area (Sq. Ft.) | DMA Type | |----------------|--|----------------|----------| | DMA "A" | Mixed type (A.C pavement, landscape | 27,456 | TYPE "D" | | DMA "B" | Mixed type (A.C pavement, landscape, Roof) | 26,397 | TYPE "D" | | DMA "C" | Landscape | 1,457 | TYPE "A" | | DMA "D" | Mixed type (A.C pavement, landscape | 5,536 | TYPE "D" | | DMA "E" | Mixed type (A.C pavement, landscape | 3,383 | TYPE "D" | | DMA "F" | Mixed type (A.C pavement, landscape, roof) | 4,697 | TYPE "D" | | DMA "G" | Mixed type (A.C pavement, landscape | 5,672 | TYPE "D" | | DMA "H" | Mixed type (A.C pavement, landscape | 29,939 | TYPE "D" | ¹Reference Table 2-1 in the WQMP Guidance Document to populate this column **Table C.2** Type 'A', Self-Treating Areas | DMA Name or ID | Area (Sq. Ft.) | Stabilization Type | Irrigation Type (if any) | |----------------|----------------|--------------------|--------------------------| | DMA "C" | 1,457 | GRASS VEGETATION | SPRINKLER SYSTEM | | | | | | | | | | | | | | | | Table C.3 Type 'B', Self-Retaining Areas | Self-Retai | ning Area | | | Type 'C' DM <i>A</i>
Area | As that are drain | ing to the Self-Retaining | |------------|-----------|-----------------|----------------------------|------------------------------|----------------------|--------------------------------------| | DMA | | Area
(square | Storm
Depth
(inches) | DMA Name / | [C] from Table C.4 = | Required Retention Depth
(inches) | | | | [A] | [B] | ID | [C] | [D] | **Table C.4** Type 'C', Areas that Drain to Self-Retaining Areas | Table C.4 Type | C, Aleas til | at Dialli to Se | II-Netallilli | g Ai eas | | | | |----------------|-----------------------|------------------------------|------------------------------|-----------------|--------------|-----------------------|---------| | DMA | | | Receiving Self-Retaining DMA | | | | | | DMA Name/ ID | Area
(square feet) | Post-project
surface type | Runoff
factor | Product | | Area (square
feet) | Ratio | | DW/ | [A] | Post | | [C] = [A] x [B] | DMA name /ID | [D] | [C]/[D] | **Table C.5** Type 'D', Areas Draining to BMPs | Table dis Type B , raicas Braining | | |------------------------------------|------------------------------| | DMA Name or ID | BMP Name or ID | | DMA A | LANDSCAPE AREAS/BIORETENTION | | DMA B | BIOFILTRATION (PROPRIETARY) | | DMA D | BIORETENTION | | DMA E | LANDSCAPE AREAS | | DMA F | LANDSCAPE AREAS | | DMA G | BIORETENTION | | DMA H | LANDSCAPE AREAS/BIORETENTION | <u>Note</u>: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP. # **Section D: Implement LID BMPs** #### **D.1 Infiltration Applicability** | Is there an approved downstream 'Highest and Best Use' for sto | ormwater | runoff (see discussion in Chapter | |--|-------------|-----------------------------------| | 2.4.4 of the WQMP Guidance Document for further details)? | \square Y | ⊠N | If yes
has been checked, Infiltration BMPs shall not be used for the site. If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature. #### **Geotechnical Report** A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4. Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? Y N #### **Infiltration Feasibility** Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer. Table D.1 Infiltration Feasibility | Does the project site | YES | NO | |--|-----|----| | have any DMAs with a seasonal high groundwater mark shallower than 10 feet? | | Χ | | If Yes, list affected DMAs: | | | | have any DMAs located within 100 feet of a water supply well? | | Χ | | If Yes, list affected DMAs: | | | | have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact? | | Х | | If Yes, list affected DMAs: | | | | have measured in-situ infiltration rates of less than 1.6 inches / hour? | Χ | | | If Yes, list affected DMAs: A, B, D, G & H | Χ | | | have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface? | | Х | | If Yes, list affected DMAs: | | | | geotechnical report identify other site-specific factors that would preclude effective and safe infiltration? | | Χ | | Describe here: | | | If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below. #### D.2 Harvest and Use Assessment - | Please c | heck what applies: | |-----------|--| | | \square Reclaimed water will be used for the non-potable water demands for the project. | | | \Box Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee). | | | \Box The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired. | | neither | the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet other non-potable uses (e.g., industrial use). | | Irrigatio | on Use Feasibility | | - | te the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Ps on your site: | | Step 1: | Identify the total area of irrigated landscape on the site, and the type of landscaping used. | | | Total Area of Irrigated Landscape:0.29 ac | | | Type of Landscaping (Conservation Design or Active Turf):CONSERVATION DESIGN | | Step 2: | Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above. | | | Total Area of Impervious Surfaces: 0.25ac | | Step 3: | Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA). | | | Enter your EIATIA factor: 1.32 | | Step 4: | Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required. | | | Minimum required irrigated area: <u>0.33</u> _AC | | Step 5: | Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4). | | | Minimum required irrigated area (Step 4) Available Irrigated Landscape (Step 1) | | | 0.33AC0.29AC | Note: The proposed project cannot meet or exceed the minimum ratio, therefore Harvest and use is not feasible. | flushing u | ises on your site: | | |------------|--|--| | Step 1: | Identify the projected total number of daily toilet any periodic shut downs or other lapses in occupa | • | | | Projected Number of Daily Toilet Users:35 | | | | Project Type: COMMERCIAL | | | Step 2: | Identify the planned total of all impervious areas might be feasibly captured and stored for toile buildings and other impervious areas on the site, y of the site, to evaluate reasonable scenarios for castored runoff to the potential use(s) identified in S | t use. Depending on the configuration of
ou may consider the site as a whole, or parts
apturing and storing runoff and directing the | | | Total Area of Impervious Surfaces: 0.25 AC | | | Step 3: | Enter the Design Storm depth for the project site (see 1 in Chapter 2 to determine the minimum number (TUTIA). | | | | Enter your TUTIA factor: 150 | | | Step 4: | Multiply the unit value obtained from Step 3 by t develop the minimum number of toilet users that | · | | | Minimum number of toilet users:37.5 | | | Step 5: | Determine if harvesting stormwater runoff for toi comparing the Number of Daily Toilet Users (Step users (Step 4). | | | | Minimum required Toilet Users (Step 4) | Projected number of toilet users (Step 1) | | | 37.5 | 35 | Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet Note: The proposed project cannot meet or exceed the minimum demand, therefore Harvest and use is not feasible. #### Other Non-Potable Use Feasibility Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A. N/A - Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation. - Average Daily Demand: N/A - Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above. Total Area of Impervious Surfaces: N/A - Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-3 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre. - Enter the factor from Table 2-3: N/A - Step 4: Multiply the unit value obtained from Step 4 by the total of impervious areas from Step 3 to develop the minimum number of gallons per day of non-potable use that would be required. - Minimum required useN/A - Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4). | Minimum required non-potable use (Step 4) | Projected average daily use (Step 1) | |---|--------------------------------------| | N/A | N/A | If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment, unless a site-specific analysis has been completed that demonstrates technical infeasibility as noted in D.3 below. #### **D.3 Bioretention and Biotreatment Assessment** Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance
Document are feasible on nearly all development sites with sufficient advance planning. Select one of the following: #### **D.4 Feasibility Assessment Summaries** From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy. **Table D.2** LID Prioritization Summary Matrix | | | LID BMP Hierarchy | | | | | | | | | | | | |---------|----------------------------------|--------------------|-----------------|-----------------|--------------|--|--|--|--|--|--|--|--| | DMA | | | | | (Alternative | | | | | | | | | | Name/ID | Infiltration | 2. Harvest and use | 3. Bioretention | 4. Biotreatment | Compliance) | | | | | | | | | | DMA A | | | \boxtimes | | | | | | | | | | | | DMA B | | | | \boxtimes | DMA D | | | \boxtimes | | | | | | | | | | | | DMA E | | | \boxtimes | | | | | | | | | | | | DMA F | | | \boxtimes | | | | | | | | | | | | DMA G | | _ | $oxed{oxed}$ | | | | | | | | | | | | DMA H | | _ | $oxed{\square}$ | | | | | | | | | | | For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered. Insert narrative description here. #### **D.5 LID BMP Sizing** Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed. Table D.3 DCV Calculations for LID BMPs | DMA
Type/ID | DMA Area (square feet) [A] | Post-
Project
Surface
Type | Effective
Impervious
Fraction, I _f | DMA
Runoff
Factor | DMA Areas x Runoff Factor [A] x [C] | Enter BMP Name / Identifier Here BIO-RETENTION NO.1 | | | |----------------|----------------------------|-------------------------------------|---|-------------------------|--------------------------------------|---|--|---| | DMA A | 27,456 | MIXED
TYPE | 0.86 | 0.67 | 18,396 | Design
Storm
Depth
(in) | Design Capture
Volume, V BMP
(cubic feet) | Proposed
Volume
on Plans
(cubic
feet) | | | 27,456 | | | | 18,396 | 0.70 | 1080.30 | 1,140 | [[]B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document NOTE: THE DMA RUMOFF FACTOR WAS AUTOMATICALLY CALCULATED FRPM THE WORKSHEET FOR CALCULATING THE VOLUME bmp, SEE APPENDIX 6. | | | | | | | Modular wetlands | | | |-------|--------|-------|------|------|--------|------------------|--------|------| | DMA B | 26,327 | MIXED | 0.96 | 0.82 | 21,588 | 0.70 | 1267.7 | 1500 | | | | TYPE | | | | | | | | | | | | | | BIORETENTION | | | |-------|-------|---------------|-----|------|-------|--------------|--------|-----| | DMA D | 5,536 | MIXED
TYPE | 1.0 | 0.89 | 4,927 | 0.70 | 288.10 | 312 | + | | | | | | | BIORETI | BIORETENTION | | | |-------|-------|-------------|------|------|--------|---------|--------------|-----|--| | DMA E | 3,383 | A.C
PVMT | 0.42 | 0.29 | 981.07 | 0.70 | 60.80 | 176 | | [[]E] is obtained from Exhibit A in the WQMP Guidance Document [[]G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6 | | | | | | | BIORETENTION | | | |-------|-------|-------------|------|------|---------|--------------|-------|-----| | DMA F | 4,697 | A.C
PVMT | 0.64 | 0.44 | 2066.60 | 0.70 | 120.8 | 121 | | | | | | | | BIORETENTION | | | |-------|-------|-------------|------|------|------|--------------|-------|-----| | DMA G | 5,612 | A.C
PVMT | 0.62 | 0.42 | 2357 | 0.70 | 139.0 | 176 | | | | | | | | В | ORETENTIO | N | |-------|--------|-------------|------|-----|--------|------|-----------|------| | DMA H | 29,939 | MIX
TYPE | 0.95 | .81 | 24,251 | 0.70 | 1409.30 | 1410 | #### **IMPERVIOUS FRACTION CALCULATION** #### A. DMA-A TOTAL AREA = 0.63 AC A.C PAVEMENT = 0.53 AC LANDSCAPING = 0.10 AC If = (0.63)(1.0) + (0.53)(1.0) + (0.10)(0.10) / 0.63 IMPERVIOUS FRACTION (If) = 0.86 #### B. DMA-B TOTAL AREA = 0.61AC A.C PAVEMENT and ROOF= 0.58 AC LANDSCAPING = 0.03 AC If = (0.58)(1.0) + (0.03)(0.10) /0.61 IMPERVIOUS FRACTION (If) = 0.96 #### C. DMA-D TOTAL AREA = 0.12 AC A.C PAVEMENT=0.12 AC If=(0.12)(1.0) / 0.12 IMPERVIOUS FRACTION (If) = 1.0 #### D. DMA-E TOTAL AREA = 0.11AC A.C PAVEMENT=0.04 LANDSCAPING = 0.07AC If = (0.04)(1.0) + (0.07)(0.10) / 0.11 IMPERVIOUS FRACTION (If) = 0.42 #### E. DMA-F TOTAL AREA = 0.11 AC A.C PAVEMENT AND ROOF=0.07 If = 0.07(1.0) / 0.11 IMPERVIOUS FRACTION (If) = 0.64 #### F. DMA-G TOTAL AREA = 0.13 AC A.C PAVEMENT =0.11 LANDSCAPING = 0.02AC If= 0.11)(1.0)+(0.02)(0.1) / 0.13 IMPERVIOUS FRACTION (If) = 0.62 #### G. DMA-H TOTAL AREA = 0.69 AC A.C PAVEMENT AND ROOF=0.65 LANDSCAPING=0.04 AC If= 0.65)(1.0)+(0.04)(0.10) / 0.69 IMPERVIOUS FRACTION (If) = 0.95 # **Section E: Alternative Compliance (LID Waiver Program)** LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes: X LID Principles and LID BMPs have been incorporated into the site design to fully address some of the Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed. - Or - ☐ The following Drainage Management Areas are unable to be addressed using LID BMPs. A site-specific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated. List DMAs here. #### **E.1 Identify Pollutants of Concern** Utilizing Table A.1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs. Table E.1 Potential Pollutants by Land Use Type | Prior | ity Development | General Pollutant Categories | | | | | | | | |-------------|---|------------------------------|--------|------------------|------------------|-------------------------------|------------------|----------------|------------------| | Proje | Project Categories and/or Project Features (check those that apply) | | Metals | Nutrients | Pesticides | Toxic
Organic
Compounds | Sediments | Trash & Debris | Oil &
Grease | | | Detached Residential
Development | Р | N | Р | Р | N | Р | Р | Р | | | Attached Residential Development | Р | N | Р | Р | N | Р | Р | P ⁽²⁾ | | \boxtimes | Commercial/Industrial
Development | P ⁽³⁾ | Р | P ⁽¹⁾ | P ⁽¹⁾ | P ⁽⁵⁾ | P ⁽¹⁾ | Р | Р | | | Automotive Repair
Shops | N | Р | N | N | P ^(4, 5) | N | Р | Р | | \boxtimes | Restaurants (>5,000 ft ²) | Р | N | N | N | N | N | Р | Р | | | Hillside Development (>5,000 ft²) | Р | N | Р | Р | N | Р | Р | Р | | \boxtimes | Parking Lots (>5,000 ft²) | P ⁽⁶⁾ | Р | P ⁽¹⁾ | P ⁽¹⁾ | P ⁽⁴⁾ | P ⁽¹⁾ | Р | Р | | | Retail Gasoline Outlets | N | Р | N | N | Р | N | Р | Р | | | ect Priority Pollutant(s) oncern | | | | | | | | | P = Potential N = Not Potential ⁽¹⁾ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected ⁽²⁾ A potential Pollutant if the project includes uncovered parking areas; otherwise not expected ⁽³⁾ A potential Pollutant is land use involving animal waste ⁽⁴⁾ Specifically petroleum hydrocarbons ⁽⁵⁾ Specifically solvents ⁽⁶⁾ Bacterial indicators are routinely detected in pavement runoff #### **E.2 Stormwater Credits** Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A. Table E.2 Water Quality Credits | able 212 Water Quality Greats | | |--------------------------------------|--------------------------------| | Qualifying Project Categories | Credit Percentage ² | | | | | | | | | | | Total Credit Percentage
¹ | | ¹Cannot Exceed 50% ### **E.3 Sizing Criteria** After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information. Table E.3 Treatment Control BMP Sizing | DMA
Type/ID | DMA Area (square feet) [A] | Post-
Project
Surface
Type | Effective
Impervious
Fraction, I _f | DMA
Runoff
Factor | DMA Area x Runoff Factor [A] x [C] | | Enter BMP Na | me / Identifie | r Here | |----------------|----------------------------|-------------------------------------|---|-------------------------|-------------------------------------|----------------------------------|---|---|--| | | | | | | | Design
Storm
Depth
(in) | Minimum Design Capture Volume or Design Flow Rate (cubic feet or cfs) | Total Storm
Water
Credit %
Reduction | Proposed Volume or Flow on Plans (cubic feet or cfs) | | | A _T = Σ[A] | | | | Σ= [D] | [E] | $[F] = \frac{[D]x[E]}{[G]}$ | [F] X (1-[H]) | [1] | [[]B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document ²Obtain corresponding data from Table 3-8 in the WQMP Guidance Document [[]E] is obtained from Exhibit A in the WQMP Guidance Document [[]G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12 [[]H] is from the Total Credit Percentage as Calculated from Table E.2 above [[]I] as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6 #### **E.4 Treatment Control BMP Selection** Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below: - **High**: equal to or greater than 80% removal efficiency - Medium: between 40% and 80% removal efficiency Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1. Table E.4 Treatment Control BMP Selection | Selected Treatment Control BMP | Priority Pollutant(s) of | Removal Efficiency | |--------------------------------|----------------------------------|-------------------------| | Name or ID ¹ | Concern to Mitigate ² | Percentage ³ | | Modular Wetlands | Bacterial Indicators, Metals, | 90% | | | Trash & Debris | | | | | | | | | | | | | | ¹ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency. ² Cross Reference Table E.1 above to populate this column. ³ As documented in a Co-Permittee Approved Study and provided in Appendix 6. # **Section F: Hydromodification** #### F.1 Hydrologic Conditions of Concern (HCOC) Analysis Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2. | HCOC EXEMPTION 1 : The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development. | |---| | Does the project qualify for this HCOC Exemption? | | HCOC EXEMPTION 2 : The volume and time of concentration ¹ of storm water runoff for the post-development condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate: | | Riverside County Hydrology Manual | | Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or
derivatives thereof, such as the Santa Barbara Urban Hydrograph Method | | Other methods acceptable to the Co-Permittee | Appendix 7. Does the project qualify for this HCOC Exemption? | | 2 year – 24 hour | | | | | | |-----------------------|------------------|----------------|--------------|--|--|--| | | Pre-condition | Post-condition | % Difference | | | | | Time of Concentration | N/A | N/A | N/A | | | | | Volume (Cubic Feet) | N/A | N/A | N/A | | | | ¹ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet. If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in **HCOC EXEMPTION 3**: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Sensitivity Maps. | Does the project qualify for this HCOC Exemption? | Y | \boxtimes N | | |--|------------|-------------------|--------------| | If Yes, HCOC criteria do not apply and note below qualifier: | which adeq | uate sump applies | to this HCOO | #### F.2 HCOC Mitigation If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions: - a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis. - b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters. - c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2-year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow. Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7. HCOC IS MITIGATED BY ACHIEVING CONDITION C. DISCHARGE FROM THE SITE WAS LIMITED TO A FLOW RATE NOT GREATER THAN 10% OF THE PRE-DEVELOPED 2 YEAR PEAK FLOW. SEE APPENDIX 7 FOR SUPPORTING CALCULATIONS. #### **Section G: Source Control BMPs** Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site: - 1. *Identify Pollutant Sources*: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site. - Note Locations on Project-Specific WQMP Exhibit: Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1. - 3. Prepare a Table and Narrative: Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. Add additional
narrative in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs. - 4. Identify Operational Source Control BMPs: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site. Table G.1 Permanent and Operational Source Control Measures | Potential Sources of Runoff pollutants | Permanent Structural Source
Control BMPs | Operational Source Control BMPs | |--|--|--| | On-site storm Drain Inlets | Mark all Inlets " Only Rain Down the storm drain | -Maintain and periodically repaint or replace inlet markings -Provide stormwater pollution prevention information to new site owners, lessees or operators -Include in Lease agreement: "Tenant shall not allow anyone to discharge anything to storm drains or store or deposit materials so as to create a potential discharge to storm drains". | | Landscape/Outdoor Pesticide Use | Design Landscaping to Minimize Irrigation and Runoff, to promote | Maintain Landscaping using minimum or no pesticides. | | | surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution | | |---------------------------------|---|---| | Parking lots, sidewalks, plazas | | Sweep parking lots regularly to prevent accumulation of liter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer and not to storm drain. | | | | Sweep plazas, sidewalks and parking lots regularly to prevent accumulation of liter and debris. Collect debris from presuure washing to prevent entry to storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to sanitary sewer not to storm drain. | | Roofings, Gutters & Trims | Avoid roofing. Gutters & trim made of copper and other unprotected metals that may leach into runoff. | | | | | | ## **Section H: Construction Plan Checklist** Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP. Table H.1 Construction Plan Cross-reference | BMP No. or ID | BMP Identifier and Description | Corresponding Plan Sheet(s) | |---------------|--------------------------------|-----------------------------| | BMP NO.1 | LANDSCAPE AREA/BIORETENTION | SHT 2 OF GRADING PLANS | | BMP NO. 2 | BIOCLEAN MODULAR WETLANDS | SHT 2 OF GRADING PLANS | | BMP NO.3 | LANDSCAPE | SHTC 2 OF GRADING PLAN | | BMP NO.4 | BIORETENTION | SHT 2 OF GRADING PLAN | | BMP NO.5 | LANDSCAPE AREA | SHT 2 OF GRADING PLAN | | BMP NO.6 | LANDSCAPE AREA | SHT 2 OF GRADING PLANS | | BMP NO.7 | BIORETENTION | SHT 2 OF GRADING PLAN | | BMP NO.8 | LANDSCAPE AREA/BIORETENTION | SHT 2 OF GRADING PLAN | Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP. # **Section I: Operation, Maintenance and Funding** The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP: - 1. A means to finance and implement facility maintenance in perpetuity, including replacement cost. - 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required. - 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected. - 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system. - 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas. Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required. Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document. | Maintenance M | echanism: | Insert text here. | | | | | | |------------------------------------|-----------|----------------------|---------|-------------|---------|-------------|--------| | Will the propose Association (POA) | | maintained by a Home | Owners' | Association | (HOA) o | or Property | Owners | | ∑ Y | N | | | | | | | Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10. THIS SECTION WILL BE ADDRESSED AND COMPLETED AT THE TIME OF FINAL WQMP SUBMITTAL. # Appendix 1: Maps and Site Plans Location Map, WQMP Site Plan and Receiving Waters Map NORTH # VICINITY MAP: NOT TO SCALE # Appendix 2: Construction Plans Grading and Drainage Plans CHINO, CA 91710 Exp. 6-30-20 CIVIL OF CALIFORN TEL: (213) 400 - 8078 R.C.E. NO. 36117 ACCEPTED BY: DATE: EXP. DATE : 6-30-20 1" = 40' Vertical THE KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE LAKE ELSINORE, CA 92530 ELEVATION: 1266.57 DESC: FOUND NAIL AND RCFC & WCD DRIVE 88 FEET ± EASTERLY OF K-RAILS ON LAKESHORE EASTERLY OF OUTLET TAG FLUSH IN PAVEMENT ON LAKESHORE 1-800 227-2600 TWO WORKING DAYS BEFORE YOU DIG 3__sheets ### Appendix 3: Soils Information Geotechnical Study and Other Infiltration Testing Data December 30, 2017 Lake Elsinore-1-01 Attention: Mr. Ron Kassab **Subject:** Infiltration/Percolation Testing for Stormwater Retention **Proposed Kassab Travel Center** 29301 Riverside Drive Lake Elsinore, California As requested, we have performed percolation/infiltration testing on the subject site in order to determine the infiltration potential of the surface soils. The percolation rates determined should be useful in assessing stormwater retention needs. It is our understanding that on-site stormwater retention will be required. It is proposed to collect the stormwater runoff within subsurface percolation chambers. This report presents the results of our study, discussion of our findings, and provides percolation rates for the subject system. #### PURPOSE AND SCOPE OF SERVICES The purpose of this study was to determine the general percolation rates and physical characteristics of the onsite soils in order to provide design parameters for the proposed onsite infiltration system. Services provided for this study are in accordance with our agreement and consisted of the following: - Site exploration consisting of the excavation and logging of three test holes; - Percolation testing in the test holes (P-1, P-2 and P-3); - Compilation of this report, which presents the results of our study and provides percolation rates for the design of an onsite infiltration system. #### SITE DESCRIPTION AND PROPOSED DEVELOPMENT The site is located at 29301 Riverside Drive in Lake Elsinore, California. The subject property is presently occupied by a vacant land. The project consists of construction of Gas Station, RV Fueling Station and associated improvements. Further information regarding proposed development and test hole locations is shown on Figure 1, Percolation Test Holes Location Map. #### FIELD INVESTIGATION Our field investigation consisted of excavating three shallow exploratory test holes, which were also used as percolation test holes. Hollow-stem drilled equipment was utilized to excavate the exploratory test holes. An engineer logged and observed the test holes
excavations. Soil classification was based on visual observation. The approximate locations of the exploratory and Proposed Kassab Travel Center December 30, 2017 Page 2 of 5 percolation test holes are shown on Figure 1 (Percolation Test Holes Location Map). Logs of the exploratory test holes are presented in Appendix A. #### SUBSURFACE SOILS CONDITIONS #### SOIL PROFILE The soils encountered within our test holes consisted of native soil materials. Native soils encountered within the exploratory test holes consisted primarily of sandy clay and clay. A more detailed description of these materials is provided in the exploratory test holes logs included in the enclosed Appendix A. Soils encountered were classified according to the Unified Soil Classification System (USCS). #### **GROUNDWATER** Groundwater was not encountered within the exploratory test holes to the maximum explored depth of 5 feet below ground surface (bgs). Fluctuations of the groundwater table, localized zones of perched water, and rise in soil moisture content should be anticipated during the rainy season. Irrigation of landscaped areas can also lead to an increase in soil moisture content and fluctuations of intermittent shallow perched groundwater levels. #### PERCOLATION TESTING AND PROCEDURE Percolation testing was performed to assess the general percolation rates of the onsite soils for the design of an onsite infiltration system. The continuous pre-soak (falling-head) test procedure was utilized for testing. Water was allowed to presoak in each test hole prior to obtaining test readings. Following the presoak period, the drop in water level in each hole was monitored every 10 to 30 minutes to determine the appropriate method for testing. Test holes were refilled following each reading or when the water depth was below 6 inches. Test times ranged from 120 to 150 minutes. The drop in water level was recorded to the nearest 1/10th inch to produce conservative water level readings. #### SUMMARY OF INFILTRATION TEST RESULTS Tests results are summarized below: | Test Hole No. | Rate | |---------------|-------------| | | (Inch/Hour) | | 1 | 1.3 | | 2 | 1.4 | | 3 | 1.2 | Proposed Kassab Travel Center December 30, 2017 Page 3 of 5 Based on the obtained field data, 1.2 inches per hour should be utilized in the design of the proposed onsite drain system. The base of the system should be founded into natural soils. It should be noted that the infiltration rates determined are ultimate rates based upon field test results. An appropriate safety factor should be applied to account for subsoil inconsistencies and potential silting of the percolating soils. The safety factor should be determined with consideration to other factors in the stormwater retention system design (particularly stormwater volume estimates) and the safety factors associated with those design components. The Storm water Manager's Resource Center (SMRC) web site (http://www.stormwatercenter.net/) includes guidelines for disposal of storm water with respect to setback of structures. It is included in the criteria that infiltration facilities should be setback 10 feet down-gradient from structures. In order to avoid potential adversely impacting any existing structures, we recommend that any infiltration system be kept a horizontal distance of at least 10 feet from the edge of new building and the property line. #### **LIMITATIONS** The findings and recommendations of this report were prepared in accordance with generally accepted professional engineering and engineering geologic principals and practice within our opinion at this time in Southern California. Our conclusions and recommendations are based on the results of the field investigations, combined with an interpolation of subsurface conditions between and beyond exploration locations. As the project evolves, our continued consultation and construction monitoring should be considered. GeoBoden should review plans and specifications to ensure the recommendations presented herein have been appropriately interpreted, and that the design assumptions used in this study are valid. Where significant design changes occur, GeoBoden may be required to augment or modify these recommendations. Subsurface conditions may differ in some locations from those encountered in the explorations, and may require additional analyses and/or modified recommendations. This report was written for Client, and the design team members, and only for the proposed development described herein. We are not responsible for technical interpretations made by others, or exploratory information that has not been described or documented in this report. Specific questions or interpretations concerning our findings and conclusions may require written clarification. Proposed Kassab Travel Center December 30, 2017 Page 4 of 5 We appreciate the opportunity to provide service to you on this project. If you have questions regarding this letter or the data included, please contact the undersigned. Sincerely, GEOBODEN, INC. Cyrus Radvar Principal Engineer, G.E. 2742 Copies: 3/Addressee Attachments: Figure 1 – Percolation Test Holes Location Map Appendix A – Test Holes Logs Geotechnical Consultants PERCOLATION BORING LOCATION PLAN Proposed Kassab Travel Center 29301 Riverside Drive Lake Elsinore, California Figure By S.R. Map No. XX Date 12-30-17 Figure No. 2 | G | EOB | ODEN, INC. | | | | | ВО | RIN | IG I | NUN | | ER F
= 1 0 | P-1
)F 1 | |---|----------------|--|-------------------------------------|-----------------------|------------------|-----------------------------|-------------------|-----------------------|-------------------------|---------|---------------|---------------|--------------------| | CLIE | E NT Mr | . Ron Kassab | PROJEC | T NAME | Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | PRO | JECT N | IUMBER_Lake Elsinore-1-01 | | | | | | | | Elsinor | e, CA | | | | | | | GROUND ELEVATION HOLE SIZE 8 inches | | | | | | | | | | | | | | CONTRACTOR GeoBoden Inc. | | | | | | | | | | | | | | | | | | | .LING <u></u> | 1 | | Y C.R. CHECKED BY | | | | LING | | | | | | | | | NOI | ES | | AF | TER DR | ILLING | | | | , | | | | | | 0.0 DEPTH | | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT.
(pcf) | MOISTURE
CONTENT (%) | LIQUID | PLASTIC LIMIT | 3 | FINES CONTENT (%) | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 12:06 - C:PASSPORT\GB\li29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMANIPERCOLATION\LOGS.GPJ | | Bottom of borehole at 5 feet below ground surface. Ground was not encountered. Boring was backfilled with cuttings Bottom of borehole at 5.0 feet. | nd water | | | | | | | | | | | | G | EO | BODEN, INC. | | | | | во | RIN | IG I | NUN | /IBE | ER F | | |---|-------|--|---|-----------------------|------------------|------------------------------|-------------------|--------------------|-------------------------|-----|-------------|------------------|-------------------| | | | | | | | | | | | | | | | | CLI | ENT_N | r. Ron Kassab | PROJEC | T NAME | Propo | osed Kassa | ab Trav | vel Ce | nter | | | | | | | | NUMBER Lake Elsinore-1-01 | PROJECT LOCATION 29301 Riverside Drive, Lake Elsinore, CA | | | | | | | | | | | | - 1 | | | GROUND ELEVATION HOLE SIZE 8 inches | | | | | | | | | | | | - 1 | | CONTRACTOR GeoBoden Inc. | | | | | | | | | | | | | | | METHOD HSA BY C.R. CHECKED BY | | | | LING <u></u>
LING <u></u> | | | | | | | | | | | | | | | : | | | | | | | | | - | | | | 1 | | - | _ | 1 | | AT | ΓERBE | RG | | | O DEPTH | | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | | PLASTIC WIT | PLASTICITY INDEX | FINES CONTENT (%) | | 0.0 | | SANDY CLAY (CL): brown, moist, fine sand | | | | | | | | | | | | | 91/29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMANIPERCOLATIONILOGS.GPJ | | Bottom of borehole at 5 feet below ground surface. Groun | nd water | | | | | | | | | | | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 12:06 - C:\PASSPORT\GBI29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMAN\PERCOLATION\LOGS.GPJ C | | was not encountered. Boring was backfilled with cuttings Bottom of borehole at 5.0 feet. | · | | | | | | | | | | | | GEO | BODEN, INC. | | | | | ВО | RIN | IG I | NUN | | R I | |
---|---|---|-----------------------|------------------|-----------------------------|----------------------|--------------------|-------------------------|-----------------|---------------|------------|-------------------| | CLIENT | Mr. Ron Kassab | PROJEC | T NAME | : Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | | | PROJECT LOCATION 29301 Riverside Drive, Lake Elsinore, CA | | | | | | | | | | | | | | GROUND ELEVATION HOLE SIZE 8 inches | | | | | | | | | | | | | G CONTRACTOR GeoBoden Inc. | G METHOD HSA | | | | .LING | | | | | | | | | | BY C.R. CHECKED BY | | | | LING | | | | | | | | | NOTES_ | | _ AF | TER DR | ILLING | j | | | | | | | | | O DEPTH (ft) | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN.
(tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | LIQUID
LIMIT | PLASTIC LIMIT | 3 | FINES CONTENT (%) | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 12:06 - C.PASSPORT/GBI\(\text{DB}\) (2000 - C.PASSPORT/GBI\(\text{DB}\) (3000 C.PASPORT/GBI\(\text{DB}\) | Bottom of borehole at 5 feet below ground surface. Grouwas not encountered. Boring was backfilled with cuttings Bottom of borehole at 5.0 feet. | | | | | | | | | | | | # GEOTECHNICAL INVESTIGATION REPORT PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE Lake Elsinore, California Prepared for: MR. RON KASSAB Prepared by: **GEOBODEN INC.** Irvine, CA 92620 December 30, 2017 Project No. Lake Elsinore-1-01 **GEOBODEN INC.** # GEOTECHNICAL INVESTIGATION REPORT PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE LAKE ELSINORE, CALIFORNIA #### **MR. RON KASSAB** Prepared by: #### **GEOBODEN INC.** 5 Hodgenville, Suite A. Irvine, California 92620 December 30, 2017 JOB NO. Lake Elsinore-1-01 December 30, 2017 Project No. Lake Elsinore-1-01 Attention: Mr. Ron Kassab **Subject: Geotechnical Investigation Report** **Proposed Kassab Travel Center** 29301 Riverside Drive Lake Elsinore, California GeoBoden, Inc. (GeoBoden) is pleased to submit herewith our geotechnical investigation report for the Proposed Kassab Travel Center to be constructed at 29301 Riverside Drive in the city of Lake Elsinore, California. This report presents the results of our field investigation, laboratory testing and our engineering judgment, opinions, conclusions and recommendations pertaining to geotechnical design aspects of the proposed development. It has been a pleasure to be of service to you on this project. Should you have any questions regarding the contents of this report, or should you require additional information, please do not hesitate to contact us. Respectfully submitted, GEOBODEN, INC. Cyrus Radvar, Principal Engineer, G.E. 2742 Copies: 4/Addressee #### **GEOTECHNICAL INVESTIGATION REPORT** #### PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE LAKE ELSINORE, CALIFORNIA #### **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | 1 | |----------------------------|---|------------------| | 2.0 | SITE LOCATION AND PROJECT DESCRIPTION | 1 | | 3.0 | GEOTECHNICAL INVESTIGATION | 2 | | 3. | .1 FIELD EXPLORATION PROGRAM | 2 | | 4.0 | DISCUSSION OF FINDINGS | 2 | | 4.
4.
4.
4.
4. | .1 SITE AND SUBSURFACE CONDITIONS | 3
3
3
3 | | 5.0 | STRONG GROUND MOTION POTENTIAL | 4 | | 5. | .1 CBC DESIGN PARAMETERS | 4 | | 6.0 | LIQUEFACTION POTENTIAL | 5 | | 7.0 | DESIGN RECOMMENDATIONS | 5 | | 7.
7.
8.0 | 2 SITE AND FOUNDATION PREPARATION .3 FILL PLACEMENT AND COMPACTION REQUIREMENTS .4 GEOTECHNICAL OBSERVATIONS .5 UTILITY TRENCH BACKFIL .6 SHALLOW FOUNDATIONS .7.6.1 Bearing Capacity and Settlement .7.6.2 Lateral Load Resistance .7.6.3 Footing Reinforcement .7 CONCRETE SLAB ON-GRADE .8 PRELIMINARY PAVEMENT DESIGN .9 SOLUBLE SULFATES AND SOIL CORROSIVITY CONSTRUCTION CONSIDERATIONS | | | 8.
8. | | | | - | POST INVESTIGATION SERVICES | | | 10.0 | CLOSURE | 14 | | 11.0 | REFERENCES | 15 | #### **FIGURES** Figure 1 Figure 2 Vicinity Map Boring Location Plan **APPENDIXES** Appendix A Appendix B Boring Logs Laboratory Testing #### GEOTECHNICAL INVESTIGATION REPORT PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE Lake Elsinore, California #### 1.0 INTRODUCTION This report presents the results of our geotechnical investigation performed by GeoBoden, Inc. (GeoBoden) for the Proposed Kassab Travel Center to be located at 29301 Riverside Drive in Lake Elsinore, California. The general location of the project is shown on Figure 1. The purposes of this investigation were to determine the geotechnical properties of subsurface soil conditions, to evaluate their in-place characteristics, evaluate site seismicity, and to provide geotechnical recommendations with respect to site grading and for design and construction of proposed foundations and other site improvements. The scope of the authorized investigation included performing a site reconnaissance, conducting field exploration and laboratory testing programs, performing engineering analyses, and preparing this Geotechnical Investigation Report. Evaluation of environmental issues or the potential presence of hazardous materials was not within the scope of services provided. This report has been prepared for RON KASSAB and their other project team members, to be used solely in the development of facilities described herein. This report may not contain sufficient information for other uses or the purposes of other parties. #### 2.0 SITE LOCATION AND PROJECT DESCRIPTION The site is located at 29301 Riverside Drive in Lake Elsinore, California. The site is bounded by Collier Avenue on the east, by an existing building on the north, by a vacant land on the west, and by Riverside Drive on the south. The subject property is presently occupied by a vacant land. The maximum column load for the new building will be about 75 kips, and the line load will be about 3 kips per lineal feet. Currently, it is our understanding that the proposed building will consist of masonry construction with slab on-grade. #### 3.0 GEOTECHNICAL INVESTIGATION Our geotechnical investigation included a field exploration program and a laboratory testing programs. These programs were performed in accordance with our scope of services. The field exploration and laboratory testing programs are briefly described below. A more detailed description of the field exploration and laboratory testing programs is provided in Appendix A and Appendix B, respectively. #### 3.1 FIELD EXPLORATION PROGRAM The field exploration program was initiated on December 18, 2017 under the supervision of an engineer. Eight (8) exploratory borings were drilled using a truck-mounted drilling rig equipped with 8-inch diameter hollow stem augers. The borings were advanced to depths of ranging from 11.5 to 31.5 feet (below ground surface). The approximate locations of exploratory borings are shown on Figure 2. Logs of subsurface conditions encountered in the borings were prepared in the field by a representative of our firm. Soil samples consisting of relatively undisturbed brass ring samples and Standard Penetration Tests (SPT) samples were collected at approximately 5-foot depth intervals and were returned to the laboratory for testing. The SPTs were performed in accordance with ASTM D 1586. Final boring logs were prepared from the field logs and are presented in Appendix A.
3.2 LABORATORY TESTING Selected samples collected during drilling activities were tested in the laboratory to assist in evaluating controlling engineering properties of subsurface materials at the site. Physical tests performed included moisture and density determination, consolidation, expansion index, No. 200 Sieve, Atterberg limits, and corrosion. The results of laboratory are presented in Appendix B. #### 4.0 DISCUSSION OF FINDINGS The following discussion of findings for the site is based on the results of the field exploration and laboratory testing programs. #### 4.1 SITE AND SUBSURFACE CONDITIONS Observed subsurface native soils consisted of sandy clay, clay with sand, sand and sand with silt to the maximum explored depth of 31.5 feet below ground surface (bgs). Based on blow counts recorded during sampling, the clayey soils encountered within borings were found to be firm to stiff. The sandy soil was found to be medium dense. For a more detailed description of the subsurface materials refer to the boring logs included in Appendix A of this report. #### 4.2 GROUNDWATER CONDITIONS Groundwater was encountered within our exploratory boring B-1 through B-5 at 15 feet bgs. Based on information from the nearby wells (http://www.water.ca.gov/waterdatalibrary/), the historic high ground water level in the site vicinity is at a depth of greater than 50 feet beneath the existing ground surface. Fluctuations of the groundwater table, localized zones of perched water, and rise in soil moisture content should be anticipated during the rainy season. Irrigation of landscaped areas can also lead to an increase in soil moisture content and fluctuations of intermittent shallow perched groundwater levels. #### 4.3 SOIL ENGINEERING PROPERTIES Physical tests were performed on the relatively undisturbed samples to characterize the engineering properties of the native soils. Moisture content determination was performed on the samples to evaluate the in-situ moisture content. Moisture content and dry unit weight results are included in Appendix B. #### 4.4 CONSOLIDATION CHARACTERISTICS Consolidation tests were performed on samples of the existing fill and native overburden soils recovered from the boring. Results of the consolidation tests indicate that the overburden material will have moderate compressibility under the anticipated loads. These characteristics are compatible with the allowable bearing capacity values and corresponding settlement estimates presented in Foundations Section of our report. GEOBODEN, INC. #### 4.5 COLLAPSE POTENTIALS Results of consolidation tests on samples of native soil indicate that the native soils will have low collapse potential. Removal and recompaction of the surficial soils is expected to reduce the anticipated amount of total differential settlement within the site. #### 4.6 EXPANSIVE SOILS Preliminary laboratory testing of representative sample of onsite soils indicate that these materials exhibit LOW expansion potential. We anticipate that the design and performance of the proposed new building will not be affected by expansion of onsite soils. #### 5.0 STRONG GROUND MOTION POTENTIAL The project site is located in a seismically active area typical of Southern California and likely to be subjected to a strong ground shaking due to earthquakes on nearby faults. The Elsinore (Glen Ivy) rev fault is the closest known active fault, located 1.91-km of the site with an anticipated maximum moment magnitude (M_w) of 7.7. #### 5.1 CBC DESIGN PARAMETERS To accommodate effects of ground shaking produced by regional seismic events, seismic design can, at the discretion of the designing Structural Engineer, be performed in accordance with the 2016 edition of the California Building Code (CBC). Table below, 2016 CBC Seismic Parameters, lists (next) seismic design parameters based on the 2016 CBC methodology, which is based on ASCE/SEI 7-10: | 2016 CBC Seismic Design Parameters | Value | |---|-----------| | Site Latitude (decimal degrees) | 33.6947 | | Site Longitude (decimal degrees) | -117.3471 | | Site Class Definition (ASCE 7 Table 20.3-1) | D | | Mapped Spectral Response Acceleration at 0.2s Period, S_s (Figure 1613.3.1(1)) | 2.293 | | Mapped Spectral Response Acceleration at 1s Period, S _I (Figure 1613.3.1(2)) | 0.915 | | Short Period Site Coefficient at 0.2s Period, F_a (Table 1613.3.3(1)) | 1.0 | | Long Period Site Coefficient at 1s Period, F_v (Table 1613.3.3(2)) | 1.5 | | Adjusted Spectral Response Acceleration at 0.2s Period, S_{MS} (Eq. 16-37) | 2.293 | | Adjusted Spectral Response Acceleration at 1s Period, S _{MI} (Eq. 16-38) | 1.372 | | Design Spectral Response Acceleration at 0.2s Period, S _{DS} (Eq. 16-39) | 1.528 | | Design Spectral Response Acceleration at 1s Period, S_{DI} (Eq. 16-40) | 0.915 | #### 6.0 LIQUEFACTION POTENTIAL For liquefaction to occur, all of three key ingredients are required: liquefaction-susceptible soils, groundwater within a depth of 50 feet or less, and strong earthquake shaking. Soils susceptible to liquefaction are generally saturated loose to medium dense sands and non-plastic silt deposits below the water table. Groundwater was encountered within our borings B-1 through B-5 at 15 feet. Historic high groundwater at the site is as deep as 50 feet. Soil materials encountered within our borings are clayey soil. It is our opinion that potential for liquefaction at the site is low. #### 7.0 DESIGN RECOMMENDATIONS Based upon the results of our investigation, the proposed development is considered geotechnically feasible provided the recommendations presented herein are incorporated into the design and construction. If changes in the design of the structure are made or variations or changed conditions are encountered during construction, GeoBoden should be contacted to evaluate their effects on these recommendations. The following geotechnical engineering recommendations for the proposed buildings are based on observations from the field investigation program and the physical test results. 5 #### 7.1 EARTHWORK All earthworks, including excavation, backfill and preparation of subgrade, should be performed in accordance with the geotechnical recommendations presented in this report and applicable portions of the grading code of local regulatory agencies. All earthwork should be performed under the observation and testing of a qualified geotechnical engineer. #### 7.2 SITE AND FOUNDATION PREPARATION All site preparation should be observed by experienced personnel reporting to the project Geotechnical Engineer. Our field monitoring services are an essential continuation of our prior studies to confirm and correlate the findings and our prior recommendations with the actual subsurface conditions exposed during construction, and to confirm that suitable fill soils are placed and properly compacted. Clearing operations should include the removal of all surface vegetation. Large shrubs, when removed, should be grubbed out to include their stumps and major root systems. In general, all fill soils within the proposed building footprints should be overexcavated and replaced with engineered fill. As a minimum, removals should extend to competent native soils. At least 3 feet of compacted fill should be provided underneath all spread footings and floor slabs. The compacted fill should extend laterally a minimum of 5 feet beyond the foundation footprints, where possible. All existing low-density, near-surface soils will require removal to competent material from areas to receive newly compacted fill. The basis for establishing a competent exposed surface on which to place fill should consist of competent materials exhibiting an in-place relative compaction of at least 85 percent. Prior to placing structural fill, exposed bottom surfaces in each removal area approved for fill should first be scarified to a depth of at least 6 inches, water or air dried as necessary to achieve 3 percent above optimum moisture conditions, and then recompacted in place to a minimum relative compaction of 90 percent. Based on the observations made in our borings and the results of pertinent laboratory tests, anticipated depths of removal of unsuitable soils will range from 4 to 5 feet. However, actual removal depths will have to be determined during grading on the basis of in-grading observations and testing performed by a representative of geotechnical consultants. 6 To provide support for foundations for minor structures and for at-grade concrete walks and slabs, all existing fill and disturbed natural soils should be excavated and replaced with properly compacted fill. Any required fill should be properly compacted as specified below. At least the upper six (6) inches of all excavated surfaces should be scarified and moisture conditioned to 3 percent above optimum moisture, if necessary, and compacted to at least 90 percent relative compaction as per ASTM Standard D1557 test method, prior to placing any fill and/or structures. #### 7.3 FILL PLACEMENT AND COMPACTION REQUIREMENTS Material for engineered fill should be select free of organic material, debris, and other deleterious substances, and should not contain fragments greater than 3 inches in maximum dimension. On-site excavated soils that meet these requirements may be used to backfill the excavated building pad area. All fill should be placed in 6-inch-thick maximum lifts, watered or air dried as necessary to 3 percent above optimum moisture content, and then compacted in place to a maximum relative compaction of 90 percent. The laboratory maximum dry density and optimum moisture content for each change in soil type should be determined in accordance with Test Method ASTM D 1557. A representative of the project consultant should be present on-site during grading operations to
verify proper placement and compaction of all fill, as well as to verify compliance with the other geotechnical recommendations presented herein. Imported soils, if any, should consist of clean materials exhibiting a VERY LOW expansion potential (Expansion Index less than 20). Soils to be imported should be approved by the project geotechnical consultant prior to importation. #### 7.4 GEOTECHNICAL OBSERVATIONS Exposed bottom surfaces in each removal area should be observed and approved by the project geotechnical consultant prior to placing fill. No fill should be placed without prior approval from the geotechnical consultant. 7 The project geotechnical consultant should be present on site during grading operations to verify proper placement and compaction of fill, as well as to verify compliance with the recommendations presented herein. #### 7.5 UTILITY TRENCH BACKFIL All utility trench backfill should be compacted to a minimum relative compaction of 90 percent. Trench backfill materials should be placed in lifts no greater than approximately 6 inches in thickness, watered or air-dried as necessary to 3 percent above optimum moisture content, and then mechanically compacted in place to a minimum relative compaction of 90 percent. A representative of the project geotechnical consultant should probe and test the backfills to verify adequate compaction. As an alternative for shallow trenches where pipe or utility lines may be damaged by mechanical compaction equipment, such as under floor slabs, imported clean sand exhibiting a sand equivalent (SE) value of 30 or greater may be utilized. The sand backfill materials should be watered to achieve 3 percent above optimum moisture conditions and then tamped into place. No specific relative compaction will be required; however, observation, probing, and if deemed necessary, testing should be performed by a representative of the project geotechnical consultant to verify an adequate degree of compaction and that the backfill will not be subject to settlement. Where utility trenches enter the footprint of the floor slabs, they should be backfilled through their entire depths with on-site fill materials, sand-cement slurry, or concrete rather than with any sand or gravel shading. This "Plug" of less- or non-permeable materials will mitigate the potential for water to migrate through the backfilled trenches from outside to the areas beneath the foundations and floor slabs. #### 7.6 SHALLOW FOUNDATIONS Following the site and foundation preparation recommended above, foundation for load bearing walls and interior columns may be designed as discussed below. 8 #### 7.6.1 Bearing Capacity and Settlement Load bearing walls and interior columns may be supported on continuous spread footings and isolated spread footings, respectively, and should bear entirely upon undisturbed native or properly engineered fill. Continuous and isolated footings should have a minimum width of 18 inches and 24 inches, respectively. All footings should be embedded a minimum depth of 24 inches measured from the lowest adjacent finish grade. Continuous and isolated footings placed on such materials may be designed using an allowable (net) bearing capacity of 1,800 pounds per square foot (psf) respectively. Allowable increases of 200 psf for each additional 1 foot in width and 200 psf for each additional 6 inches in depth may be utilized, if desired. The maximum allowable bearing pressure should be 2,500 psf. The maximum bearing value applies to combined dead and sustained live loads. The allowable bearing pressure may be increased by one-third when considering transient live loads, including seismic and wind forces. Based on the allowable bearing value recommended above, total settlement of the shallow footings are anticipated to be less than one inch, provided foundation preparations conform to the recommendations described in this report. Differential settlement is anticipated to be approximately half the total settlement for similarly loaded footings spaced up to approximately 30 feet apart. #### 7.6.2 Lateral Load Resistance Lateral load resistance for the spread footings will be developed by passive soil pressure against sides of footings below grade and by friction acting at the base of the concrete footings bearing on compacted fill. An allowable passive pressure of 200 psf per foot of depth may be used for design purposes. An allowable coefficient of friction 0.30 may be used for dead and sustained live load forces to compute the frictional resistance of the footings constructed directly on compacted fill. Safety factors of 2.0 and 1.5 have been incorporated in development of allowable passive and frictional resistance values, respectively. Under seismic and wind loading conditions, the passive pressure and frictional resistance may be increased by one-third. 9 #### 7.6.3 Footing Reinforcement Reinforcement for footings should be designed by the structural engineer based on the anticipated loading conditions. Footings for structures that are supported in low expansive soils should have No. 4 bars, two top and two bottom. #### 7.7 CONCRETE SLAB ON-GRADE Concrete slabs will be placed on undisturbed natural soils or properly compacted fill as outlined in Section 7.2. Moisture content of subgrade soils should be maintained 3 percent above the optimum moisture content. At the time of the concrete pour, subgrade soils should be firm and relatively unyielding. Any disturbed soils should be excavated and then replaced and compacted to a minimum of 90 percent relative compaction. Slabs should be designed to accommodate low expansive fill soils. The structural engineer should determine the minimum slab thickness and reinforcing depending upon the expansive soil condition intended use. Slabs placed on low expansive soils should be at least 4 inches thick and have minimum reinforcement of No. 3 bars placed at midheight of the slabs and spaced 18 inches on centers, in both directions. The structural engineer may require thicker slabs with more reinforcement depending on the anticipated slab loading conditions. If moisture-sensitive floor covering is planned, a layer of open-graded gravel, at least 4 inches thick, should be placed below the concrete slab to form a capillary break. Alternately, moisture-proof membrane (such as 10-mil) may be utilized. The vapor barrier should be placed between sand layers (2 inches above and below) to protect the membrane from damage during construction. Gravel for use under a concrete floor slab should be clean, crushed rock that meets the gradation requirements presented below. | Sieve Size | Percentage | |----------------------------------|------------| | 1 inch | 100 | | ³ / ₄ inch | 90-100 | 10 No. 4 0-10 #### 7.8 PRELIMINARY PAVEMENT DESIGN Pavement design should be confirmed at the completion of site grading when the subgrade soils are in-place. This should include sampling and R-Value testing of the actual subgrade soils and an analysis based upon the anticipated traffic loading. For a preliminary pavement design, recommendations for pavement design section of asphalt parking areas are provided below. These values are based on an assumed R-value of 25. For pavement design, Traffic indexes (TI) of 4.0 and 5.5 were used for the parking areas and auto driveways, respectively. The preliminary flexible pavement layer thickness is as follows: | DECOMMMENDED | ACDUALT DAVEMENT C | SECTION LAVER THICKNESS | |--------------|--------------------|-------------------------| | | Recommende | d Thickness | | | |---------------------------------|------------|-------------|--|--| | Pavement Material | TI = 4.0 | TI = 5.5 | | | | Asphalt Concrete Surface Course | 3 inches | 4 inches | | | | Class II Aggregate Base Course | 6 inches | 8 inches | | | | Compacted Subgrade Soils | 12 inches | 12 inches | | | Asphalt concrete should conform to Sections 203 and 302 of the latest edition of the Standard Specifications for Public Works Construction ("Greenbook"). Class II aggregate base should conform to Section 26 of the Caltrans Standard Specifications, latest edition. The aggregate base course should be compacted to at least 95 percent of the maximum dry density as determined by ASTM Method D 1557. Portland cement concrete paving sections were determined in accordance with procedures developed by the Portland Cement Association. Concrete paving sections for three Traffic Indices are presented below. We have assumed that the portland cement concrete will have a compressive strength of at least 3,000 pounds per square inch. GEOBODEN, INC. | Assumed Traffic Index | PCC Paving (Inches) | Base Course
(Inches) | |--|---------------------|-------------------------| | 4½ (Automobile Parking) | 7 | 4 | | 5½ (Driveways and Light Track Traffic) | $7\frac{1}{2}$ | 4 | | 6½ (Roadways and Heavy Truck Traffic) | 8 | 4 | #### 7.9 SOLUBLE SULFATES AND SOIL CORROSIVITY Concrete subject to exposure to sulfates shall comply with the requirements set forth in ACI 318, Section 4.3. Based on the available water soluble sulfate results the corrosion potential to buried concrete should be considered "low", i.e., exposure Class S₀, per ACI 318, Table 4.2.1. Consequently, injurious sulfate attack is not a concern with a minimum 28-day compressive strength of 2,500 psi. Per CBC 2016, Section 1904.4, concrete reinforcement should be protected from corrosion and exposure to chlorides in accordance with ACI 318, Section 4.4. The corrosion potential of the on-site materials to buried steel was evaluated in accordance with Caltrans corrosive environment evaluation criteria. Caltrans considers a site corrosive, if at least one of the following conditions exists: - Chloride content ≥ 500 ppm; - Soluble sulphate content $\geq 2,000$ ppm; - pH \leq 5.5. Observations and laboratory tests indicate that based on the Caltrans' criteria the soils at the site are considered
non-corrosive. If additional recommendations are desired, it is recommended that a corrosion specialist be consulted regarding suitable types of piping and necessary protection for underground metal conduits. #### 8.0 CONSTRUCTION CONSIDERATIONS Based on our field exploration program, earthwork can be performed with conventional construction equipment. 12 #### 8.1 TEMPORARY DEWATERING Groundwater was encountered within our borings at 15 feet below ground surface. Based on the anticipated excavation depths, the need for temporary dewatering is considered low. #### 8.2 CONSTRUCTION SLOPES Excavations during construction should be conducted so that slope failure and excessive ground movement will not occur. The short-term stability of excavation depends on many factors, including slope angle, engineering characteristics of the subsoils, height of the excavation and length of time the excavation remains unsupported and exposed to equipment vibrations, rainfall and desiccation. Where space permits, and providing that adjacent facilities are adequately supported, open excavations may be considered. In general, unsupported slopes for temporary construction excavations should not be expected to stand at an inclination steeper than 1:1 (horizontal:vertical). The temporary excavation side walls may be cut vertically to a height of 3 feet and then laid back at a 1:1 slope ratio above a height of 3 feet. Surcharge loads should be kept away from the top of temporary excavations a horizontal distance equal to at least one-half the depth of excavation. Surface drainage should be controlled along the top of temporary excavations to preclude wetting of the soils and erosion of the excavation faces. Even with the implementation of the above recommendations, sloughing of the surface of the temporary excavations may still occur, and workmen should be adequately protected from such sloughing. If site conditions do not provide sufficient space for sloped excavations at the project site, slot cutting techniques in a repeating "ABC" sequence may be required. First, all the slots designated as "A" should be excavated, backfilled and recompacted. The procedure should continue with the "B" slots and end with the "C" slots. The width of each slot should not exceed 6 feet. If any evidence of potential instability is observed, revised recommendations such as narrower slot cuts may be necessary. All slot excavation and backfilling procedures should be performed under the observation and testing of a qualified geotechnical engineer. #### 9.0 POST INVESTIGATION SERVICES Final project plans and specifications should be reviewed prior to construction to confirm that the full intent of the recommendations presented herein have been applied to design and construction. Following review of plans and specifications, observation should be performed by the geotechnical engineer during construction to document that foundation elements are founded on/or penetrate onto the recommended soils, and that suitable backfill soils are placed upon competent materials and properly compacted at the recommended moisture content. #### 10.0 CLOSURE The conclusions, recommendations, and opinions presented herein are: (1) based upon our evaluation and interpretation of the limited data obtained from our field and laboratory programs; (2) based upon an interpolation of soil conditions between and beyond the borings; (3) are subject to confirmation of the actual conditions encountered during construction; and, (4) are based upon the assumption that sufficient observation and testing will be provided during construction. If parties other than GeoBoden are engaged to provide construction geotechnical services, they must be notified that they will be required to assume complete responsibility for the geotechnical phase of the project by concurring with the findings and recommendations in this report or providing alternate recommendations. If pertinent changes are made in the project plans or conditions are encountered during construction that appear to be different than indicated by this report, please contact this office. Significant variations may necessitate a re-evaluation of the recommendations presented in this report. #### 11.0 REFERENCES California Building Code, 2016 Volume 2. ## **FIGURES** SITE VICINITY MAP Proposed Kassab Travel Center 29301 Riverside Drive Lake Elsinore, California | Figure By | Project No. | |------------------|---------------| | S.R. | Lake Elsinore | | Map No.
XX | Figure No. | | Date
12-30-17 | 1 | GEOBODEN INC. BORING LOCATION PLAN Proposed Kassab Travel Center 29301 Riverside Drive Lake Elsinore, California Figure By S.R. Map No. XX Date 12-30-17 Project No. Lake Elsinore Figure No. 2 # APPENDIX A BORING LOGS ## APPENDIX A SUBSURFACE EXPLORATION PROGRAM # PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE LAKE ELSINORE, CALIFORNIA Prior to drilling, the proposed borings were located in the field by measuring from existing site features. A total of 8 exploratory borings (B-1 through B-8) were drilled using a hollow-stem auger drill rig equipped with 8-inch outside diameter (O.D.) augers and hand-auger equipment. GeoBoden, Inc. of Irvine, California performed the drilling on December 18, 2017. The borings locations are shown on Figure 2. Depth-discrete soil samples were collected at selected intervals from the exploratory borings using a 2 ½ -inch inside diameter (I.D.) modified California Split-barrel sampler fitted with 12 brass ring of 2 ½ inches in O.D. and 1-inch in height and one brass liner (2 ½ -inch O.D. by 6 inches long) above the brass rings. The sampler was lowered to the bottom of the boreholes and driven 18 inches into the soil with a 140-pound hammer falling 30 inches. The number of blows required to drive the sampler the lower 12 inches is shown on the blow count column of the boring logs. After removing the sampler from the boreholes, the sampler was opened and the brass rings and liner containing the soil were removed and observed for soil classification. Brass rings containing the soil were sealed in plastic canisters to preserve the natural moisture content of the soil. Soil samples collected from exploratory borings were labeled, and were transported for physical testing. Standard Penetration Tests (SPTs) were also performed. The SPT consists of driving a standard sampler, as described in the ASTM 1586 Standard Method, using a 140-pound hammer falling 30 inches. The number of blows required to drive the SPT sampler the lower 12 inches of the sampling interval is recorded on the blow count column of the boring logs. The soil classifications and descriptions on field logs were performed using the Unified Soil Classification System as described by the American Society for Testing and Materials (ASTM) D 2488, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)." The final boring logs were prepared from the field logs and are presented in this Appendix. At the completion of the sampling and logging, the exploratory borings were backfilled with the drilled cuttings. | | GE | EOB | ODEN, INC. | | | | | во | RIN | IG N | NUN | | ER E | | |---|------------------------|----------------|---|-------------------------------------|-----------------------|------------------|-----------------------------|----------------------|--------------------|-------------------------|---------|--------|-------|-------------------| | | CLIE | NT Mr | r. Ron Kassab | PROJE(| CT NAME | Propo | osed Kassa | ab Trav | /el Ce | nter | | | | | | | l | | NUMBER Lake Elsinore-1-01 | | | | | | | | Elsinor | e. CA | | | | | l | | | GROUND ELEVATION HOLE SIZE 8 inches | | | | | | | | | | | | | l | | CONTRACTOR GeoBoden Inc. | | | | | | | | | | | | | | | | METHOD HSA | | | | LING 15.0 | nn ft | | | | | | | | | | | Y C.R. CHECKED BY | | | | LING | | | | | | | | | | l | | Total | | TER DR | | | | | | | | | | | | NOT | | | | 1 | ILLING | , | | I | | | ΓERBE | - PC | | | | DEPTH
(ft) | GRAPHIC
LOG | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN.
(tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | | LIMITS | S
 | FINES CONTENT (%) | | RAHMAN/LOGS.GPJ | _ 0

_ 5
 | | SANDY CLAY (CL): yellowish brown, moist, ~30% sand, ~ fines SANDY CLAY (CL): strong brown, moist, ~30% fine sand, fines | | MC
R-1 | | 12 | - | 97 | 24 | 49 | 18 | 31 | 69 | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 11:38 - C;PASSPORT/GBI/29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMANI,LOGS.GPJ | | | | | SS
S-2 | | 14 | _ | | 28 | | | | 70 | | ORT/GBI\29301 RIVERSID | | | ☑ light brown, wet | | MC
R-3 | | 12 | _ | | | | | | | | 12/30/17 11:38 - C:\PASSF | | | | | SS
S-4 | | 14 | - | | | | | | | | D US LAB.GDT - 1 | _ 25 | | brown, wet | | SS
S-5 | - | 12 | | | | | | | | | UMNS - GINT ST | 30 | | SAND (SP): yellowish brown, wet, coarse sand | | SS
S-6 | | 16 | | | | | | | | | GEOTECH BH COL | | <u> </u> | Bottom of borehole at 31.5 feet below ground surface. Gro water was encountered at 15 feet. Boring was backfilled w cuttings. Bottom of borehole at 31.5 feet. | | . , | | | • | | | | | | | | | GE | EOB | ODEN, INC. | | | | | во | RIN | IG N | NUN | | R I | | |---|--|----------------|---
--------------------------|------------------------|----------------|-----------------------------|-------------------|--------------------|------------------------|---------|---------------|------------------|-------------------| | | CLIE | NT <u>M</u> r | . Ron Kassab | PROJEC | T NAME | Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | | PRO. | JECT N | NUMBER_Lake Elsinore-1-01 | | | | | | | | Elsinor | e, CA | | | | | DATE | STAF | RTED 12/18/17 COMPLETED 12/18/17 | GROUNI | D ELEVA | TION | | | HOLE | SIZE | 8 inc | hes | | | | | DRIL | LING (| CONTRACTOR GeoBoden Inc. | GROUNI |) WATE | R LEV | ELS: | | | | | | | | | | DRIL | LING N | METHOD HSA | $ar{oxtsymbol{oxed}}$ at | TIME O | F DRIL | LING 15.0 | 00 ft | | | | | | | | | LOG | GED B | Y C.R. CHECKED BY | АТ | END OF | DRIL | LING | | | | | | | | | | NOTI | ES | | AF | TER DR | ILLING | i | | | | | | | | | İ | | | | | Ш | % | | _; | Ŀ | <u></u> | AT | ERBE | RG | F | | | O DEPTH (ft) | GRAPHIC
LOG | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (% | LIQUID | PLASTIC LIMIT | PLASTICITY INDEX | FINES CONTENT (%) | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 11:38 - C:\PASSPORT\GB\\29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMAN\LOGS.GPJ | 5
- 5
- 10
- 15
- 20
- 25
- 25 | | SANDY CLAY (CL): yellowish brown, moist, ~30% fine sa ~70% fines SAND (SP): light yellowish brown, wet, coarse sand SANDY CLAY (CL): brown, moist, ~30% fine sand, ~70% | | MC R-1 SS S-2 MC R-3 | | 16
11
12
15 | | 99 | 25 | | | | | | OTECH BH COLUMN | | | Bottom of borehole at 31.5 feet below ground surface. Growater was encountered at 15 feet. Boring was backfilled wocuttings. Bottom of borehole at 31.5 feet. | ound
vith | SS
S-6 | | 26 | | | | | | | | | GE | ЕОВ | ODEN, INC. | | | | | во | RIN | IG N | NUN | | ER I | | |--|---------------------|---|-------|------------------------|----------------|-----------------------------|------------------|--------------------|-------------------------|---------|------------------|---------------------|---------------| | CLIE | NT <u>Mr</u> | . Ron Kassab | PROJE | CT NAME | Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | 1 | | IUMBER Lake Elsinore-1-01 | | | | | | | | Elsinor | e, CA | | | | | | RTED 12/18/17 | | | | | | | | | | | | | DRIL | LING C | CONTRACTOR GeoBoden Inc. | GROUN | D WATE | R LEVI | ELS: | | | | | | | | | | | METHOD_HSA | | | | . LING 15.0 | 00 ft | | | | | | | | 1 | | Y_C.R. CHECKED BY_ | | | | LING | | | | | | | | | | | | | TER DR | | | | | | | | | | | | | | | H X | % , | | ż | VT. | е
(%) | AT | TERBE | Ş | ENT | | O DEPTH (ft) | GRAPHIC
LOG | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | LIQUID | PLASTIC
LIMIT | PLASTICITY
INDEX | FINES CONTENT | | 5 5 10 10 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17 | | SANDY CLAY (CL): brown, moist, ~30% sand, ~70% fine SANDY CLAY (CL): brown, moist, ~30% fine sand, ~70% | | MC R-1 SS S-2 SS S-4 | | 13 16 19 | | 100 | 26 | | | | | | 25
109.98P1
20.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.012
10.0 | | wet SAND w. SILT (SP-SM): yellowish brown, wet | | SS
S-5 | - , | 12 | | | | | | | | | N | | | | SS
S-6 | | 16 | | | | | | | | | GEOTECH BH COL | | Bottom of borehole at 31.5 feet below ground surface. G water was encountered at 15 feet. Boring was backfilled cuttings. Bottom of borehole at 31.5 feet. | | v N | | | | | | | | | | | LING CONTRACTO | e Elsinore-1-01 17 COM DRGeoBoden Inc. A CHE | MPLETED 12/18/17 | PROJECT LOCA GROUND ELEVA GROUND WATE AT TIME O AT END OI AFTER DR | ATION 2
ATION
R LEVI
F DRIL
F DRIL | 29301 Rive
ELS:
.LING 15.0
LING | erside [| Orive,
HOLE | Lake E | 8 inc | hes | | | |--|---
---|---|---|---|---|---|---|---|---|---|---| | LING CONTRACTO LING METHOD HS GED BY C.R. ES | OR GeoBoden Inc. A CHE | | GROUND WATE ✓ AT TIME O AT END OF | R LEVI
F DRIL
F DRIL | EL S :
.LING <u> 15.0</u>
LING <u></u> | 00 ft | | | | | | | | LING METHOD HS
GED BY C.R.
ES | А СНЕ | | ☐ ☐ AT TIME O ☐ AT END OI ☐ AFTER DR | F DRIL | .LING <u>15.0</u>
LING | | | | | | | | | LING METHOD HS
GED BY C.R.
ES | А СНЕ | | ☐ ☐ AT TIME O ☐ AT END OI ☐ AFTER DR | F DRIL | LING | | | | | | | | | ES | | CKED BY | AT END OI | F DRIL | LING | | | | | | | | | ES | | | AFTER DR | | | | | | | | | | | GRAPHIC
LOG | MATERIA | | | | <u></u> | | | | | | | | | GRAPHIC | MATERIA | | # 1 | % . | | z. | VT. | ы
(%) | AT | TERBE
LIMITS | 3 | ENT | | | | AL DESCRIPTION | SAMPLE TYPE
NUMBER | RECOVERY (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTUR
CONTENT (| LIQUID | PLASTIC LIMIT | PLASTICITY
INDEX | FINES CONTENT (%) | | ~80% fin | f borehole at 21.5 s encountered at 1 | feet below ground surface
5 feet. Boring was backfil | SS S-2 MC R-3 SS S-4 S. Ground | | 19
26
36
29 | | 103 | 27 | | | | | | | ~80% find | NATIVE] □ NATIVE □ NATIVE □ NATIVE | NATIVE] □ Representation Provided HTML Repr | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 MC R-3 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 MC R-3 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 A MC R-3 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 26 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | CLAY w. SAND (CL): yellowish brown, moist, ~20% fine sand, ~80% fines [NATIVE] SS S-2 26 Bottom of borehole at 21.5 feet below ground surface. Ground water was encountered at 15 feet. Boring was backfilled with | | G | EOE | BODEN, INC. | | | | | во | RIN | IG N | NUN | /IBE | | | |--|----------------------|---|--------------|-----------------------|-------------------|-----------------------------|-------------------|--------------------|-------------------------|------------|--------|----------------------------|-------------------| | | | | | | | | | | | | ,,,,,, | | | | 1 | | r. Ron Kassab | | | | sed Kassa | | | | | | | | | | | NUMBER Lake Elsinore-1-01 | | | | 29301 Rive | | | | | | | | | | | RTED_12/18/17 | | | | | | HOLE | SIZE | 8 inc | hes | | | | 1 | | CONTRACTOR GeoBoden Inc. METHOD HSA | \leftarrow | | | LING <u> 15.0</u> | 00 ft | | | | | | | | 1 | | SY_C.R. CHECKED BY | | | | LING | | | | | | | | | | | | | TER DR | | | | | | | | | | | | | | | ш | % | | _; | Ŀ | <u> </u> | ATT | ERBE | | Ę | | = | \

 | | | SAMPLE TYPE
NUMBER | RY (| N
TS
UE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | | | | NTE | | DEPTH | GRAPHIC
LOG | MATERIAL DESCRIPTION | | PLE
JMB | OVE | BLOW
COUNTS
(N VALUE) | (tsf) | D G | ITEN | ⊒≒ | STIC | -
-
-
-
-
- | 88 | | | 9 | | | SAM | RECOVERY
(RQD) | _os | Poc | DRY | MOS | LIQUID | PLA | PLASTICITY
INDEX | FINES CONTENT (%) | | 0 | XXX | SANDY CLAY (CL): brown, moist, ~30% sand, ~70% fine | es | | | | | | | | | <u>α</u> | Щ | | - | - | 5, 11, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | | | | | | | | | | | | | + | - | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | [45]
[45] | | | | MC
R-1 | | 14 | | 104 | 27 | | | | | | 35
 - | - | | | 113-1 | 1 | | 1 | | | | | | | | MAN
- | | CLAY (CL): brown, moist, ~10% fine sand, ~90% fines | | | | | | | | | | | | | XA
F | -//// | CLAY (CL). brown, moist, ~10% line sand, ~90% lines | | | | | | | | | | | | | SINORE-RAHMANILOGS.GPJ | -//// | | | √ ss | | | 1 | | | | | | | | - ELSI | -//// | | | X S-2 | | 11 | | | | | | | | | Z Z | | | | | | | | | | | | | | | Ж
П,- | | | | | | | | | | | | | | | - 15
- 15 | | ∇ | | | | | | | | | | | | | r | | _ | | MC
R-3 | | 14 | | | | | | | | | - 801
- R | -4/// | | | 113 | | | | | | | | | | | BI/293 | -//// | | | | | | | | | | | | | |)
 -
 - | - | | | | | | | | | | | | | | 20 | | | | √ ss | 1 | 4.0 | 1 | | | | | | | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 11:38 - C.PASSPORTIGBIV2331 RIVE | <u> </u> | Dottom of horobolo at 21.5 feet helevy ground surface. Or | eaund | ∑ S-4 | | 18 | | | | | | | | | 11:38 | | Bottom of borehole at 21.5 feet below
ground surface. Gr
water was encountered at 15 feet. Boring was backfilled v | with | | | | | | | | | | | | 30/17 | | cuttings. Bottom of borehole at 21.5 feet. | | | | | | | | | | | | | - 12/ | | | | | | | | | | | | | | | 3.GDI | | | | | | | | | | | | | | | JS LA | | | | | | | | | | | | | | | STD | | | | | | | | | | | | | | | D C C | | | | | | | | | | | | | | | S S S S S S S S S S S S S S S S S S S | | | | | | | | | | | | | | | SOLU | | | | | | | | | | | | | | | H | | | | | | | | | | | | | | | DIEC
DIEC | | | | | | | | | | | | | | | EE CE | F 1 | |-----------------------|---|--|---|--|--|--|--
---|--| HOLE | SIZE | 8 incl | hes | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | LIQUID
LIMIT | IMITS | ; | FINES CONTENT (%) | | MC
R-1 | α | 11 | | 103 | 26 | | | N N N N N N N N N N N N N N N N N N N | FIN | | , | DUND ELEVATION WATER AT TIME OF AFTER DR SAWDRE LAND OF AFTER DR WATER AT END DR WATER AT END OF AFTER DR WATER | DUND ELEVATION OF DRILL AT TIME OF DRILL AT END OF DRILL AFTER DRILLING WC R-1 WC R-2 WC R-2 | JECT LOCATION 29301 River (JUND ELEVATION (JUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING (SUDD) MC R-1 MC R-1 11 | SAMPLE TYPE TO SAMPLE TO SAMPLE TO SAMPLE TYPE TO SAMPLE TO SAMPLE TYPE TO SAMPLE S | PUND ELEVATION HOLE SUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING (RQD) WC (R2D) (RQD) MC (R2D) | AT END OF DRILLING AFTER DRILLING AFTER DRILLING (ROD) WC R-1 (MC R-1) MC R-2 R-3 MC R-2 R-3 MC R-2 R-3 MC R-2 R-3 MC R-3 MC R-4 R- | SUND ELEVATION HOLE SIZE 8 included by the state of s | SUND ELEVATION HOLE SIZE 8 inches FUND WATER LEVELS: AT TIME OF DRILLING AFTER ATTERBES LIMIT M. (0c2) (1c2) | DUND ELEVATION WORLE DUNG WATER LEVELS: AT TIME OF DRILLING AFTER | | | GE | ОВ | ODEN, INC. | | | | | во | RIN | IG N | 1UN | /IBE | | | |--|----------------------------|-------|--|---------|-----------------------|------------------|-----------------------------|-------------------|--------------------|-------------------------|-----------------|---------------|--------------------------|-------------------| | | | | | | | | | | | | | | | | | | CLIE | M_ TI | . Ron Kassab | PROJEC | T NAME | Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | | | | NUMBER Lake Elsinore-1-01 | | | | 29301 Rive | | | | | | | | | | | | RTED_12/18/17 | | | | | | HOLE | SIZE | 8 inc | hes | | | | | | | CONTRACTOR GeoBoden Inc. METHOD HSA | | | | ELS:
.LING <u></u> | | | | | | | | | | | | Y C.R. CHECKED BY | | | | LING | | | | | | | | | | | | | | TER DRI | | | | | | | | | | | , | O DEPTH (ft) | | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | LIQUID
LIMIT | PLASTIC LIMIT | PLASTICITY SHIPPEX INDEX | FINES CONTENT (%) | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 11:38 - C.PASSPORT/GBI/29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMAN/LOGS.GPJ | 0

5

- 10
 | | SANDY CLAY (CL): brown, moist, ~30% sand, ~70% fine SANDY CLAY (CL): brown, moist, ~30% fine sand, ~70% Bottom of borehole at 11.5 feet below ground surface. Grader was not encountered. Boring was backfilled with current Bottom of borehole at 11.5 feet. | 6 fines | MC R-1 | | 12 | | | | | | | | | GEOTECH BH COLUMNS - GINT ST | | | | | | | | | | | | | | | | GEOE | BODEN, INC. | | | | | во | RIN | G N | 1UN | | R E | | |--|--|------|-----------------------|------------------|-----------------------------|-------------------|--------------------|-------------------------|--------|---------------------|--------------------------|-------------------| | | | | | | | | | | | | | | | | r. Ron Kassab | | T NAME | Propo | sed Kassa | ab Trav | vel Ce | nter | | | | | | • | NUMBER Lake Elsinore-1-01 | _ | | | 29301 Rive | | | | | | | | | | RTED_12/18/17 | | | | | | HOLE | SIZE | 8 inc | hes | | | | | CONTRACTOR GeoBoden Inc. METHOD HSA | | | | =L5:
.LING <u></u> | | | | | | | | | | SY_C.R. CHECKED BY | | | | LING | | | | | | | | | | | | | | j | | | | | | | | | O DEPTH (ft) GRAPHIC LOG | MATERIAL DESCRIPTION | | SAMPLE TYPE
NUMBER | RECOVERY % (RQD) | BLOW
COUNTS
(N VALUE) | POCKET PEN. (tsf) | DRY UNIT WT. (pcf) | MOISTURE
CONTENT (%) | LIQUID | PLASTIC LIMIT STAND | PLASTICITY SHIPPEX INDEX | FINES CONTENT (%) | | GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 12/30/17 11:38 - C.PASSPORTIGBI\(2930\)1 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMANLOGS.GPJ | SANDY CLAY (CL): light brown, moist, ~30% fine sand, fines Bottom of borehole at 11.5 feet below ground surface. G water was not encountered. Boring was backfilled with compared to borehole at 11.5 feet. | ~70% | MC R-1 | | 18 | | | | | | | | ## APPENDIX B LABORATORY TESTING #### APPENDIX B LABORATORY TESTING ### PROPOSED KASSAB TRAVEL CENTER 29301 RIVERSIDE DRIVE LAKE ELSINORE, CALIFORNIA Laboratory tests were performed on selected samples to assess the engineering properties and physical characteristics of soils at the site. The following tests were performed: - moisture content and dry density - No. 200 Wash sieve - Atterberg limits - consolidation - expansion potential - corrosion Test results are summarized on laboratory data sheets or presented in tabular form in this appendix. #### **Moisture Density Tests** The field moisture contents, as a percentage of the dry weight of the soils, were determined by weighing samples before and after oven drying. The dry density, in pounds per cubic foot, was also determined fir all relatively undisturbed ring samples collected. These analyses were performed in accordance with ASTM D 2937. The results of these determinations are shown on the boring logs in Appendix A. #### No. 200 Wash Sieve A quantitative determination of the percentage of soil finer than 0.075 mm was performed on a selected soil sample by washing the soil through the No. 200 sieve. Test procedures were performed in accordance with ASTM Method D1140. The results of the tests are shown on the
boring logs. #### **Atterberg Limits** Liquid limit, plastic limit, and plasticity index were determined for selected soil sample in accordance with ASTM D 4318. The soil sample was air-dried and passed through a No. 40 sieve and moisturized. The liquid and plastic limit tests were performed on the fraction passing the No. 40 sieve. Results of the Atterberg limits tests are shown graphically and presented in this Appendix. #### Consolidation The test was performed in accordance with ASTM Test method D 2345. The compression curve from the consolidation test is presented in this Appendix. #### **Expansion Potential** Expansion index test was performed on a representative sample of the on-site soils in accordance with ASTM D4829. The result of the expansion test is summarized in Table B-1. **TABLE B-1 (Expansion Index Test Data)** | Boring Designation | Depth (ft) | Expansion Index (EI) | |--------------------|------------|----------------------| | B-1 | 0-5 | 22 | #### **Corrosion Potential** A selected soil sample was tested to determine the corrosivity of the site soil to steel and concrete. The soil sample was tested for soluble sulfate (Caltrans 417), soluble chloride (Caltrans 422), and pH and minimum resistivity (Caltrans 643). The results of corrosion tests are summarized in Table B-2. **TABLE B-2 (Corrosion Test Results)** | Boring
No. | Depth
(ft) | Chloride
Content
(Calif. 422)
ppm | Sulfate Content
(Calif. 417)
% by Weight | pH
(Calif. 643) | Resistivity
(Calif. 643)
Ohm*cm | |---------------|---------------|--|--|--------------------|---------------------------------------| | B-1 | 0-5 | 89 | 0.0178 | 7.6 | 1,058 | # **CONSOLIDATION TEST** GEOBODEN, INC. CLIENT Mr. Ron Kassab PROJECT NAME Proposed Kassab Travel Center PROJECT NUMBER Lake Elsinore-1-01 PROJECT LOCATION 29301 Riverside Drive, Lake Elsinore, CA -2 -1 1 2 STRAIN, % 3 CONSOL STRAIN - GINT STD US LAB GDT - 12/30/17 11:41 - C./PASSPORTIGBI/29301 RIVERSIDE DRIVE_LAKE ELSINORE-RAHMANILOGS. GPJ 4 5 6 7 8 0.1 10 100 STRESS, psf | 5 | Specimen Ide | entification | Classification | $\gamma_{\rm d}$ | MC% | |---|--------------|--------------|---------------------|------------------|-----| | • | B-1 | 5.0 | SANDY LEAN CLAY(CL) | 97 | 24 | ### Appendix 4: Historical Site Conditions Phase I Environmental Site Assessment or Other Information on Past Site Use ### Appendix 5: LID Infeasibility LID Technical Infeasibility Analysis ### Appendix 6: BMP Design Details BMP Sizing, Design Details and other Supporting Documentation | San | ta Ana Wat | ershed - BMP I | Design Vo | lume, $\mathbf{V}_{\mathbf{B}}$ | MP | Legend: | | Required En | |--------------|------------------------|---|--------------------------|---------------------------------|------------------|--------------|--------------------------|--------------| | | | (Rev. 10-2011) | | | | | | Calculated C | | mpany Nam | | heet shall <mark>only</mark> be used
ENGINEERING | in conjunction | n with BMP (| designs from the | LID BMP I | | 4/25/2018 | | signed by | FR | INGINEERING | | | | | Case No | | | | ct Number/Nam | e. | | | | | Case IVO | | | inpuny 110je | et i (dilibel) i (dili | | | | | | | | | | | | BMP I | dentificati | on | | | | | IP NAME / | D BIORETEN | ΓΙΟΝ | | | | | | | | II IVIIVIL / | DIORETEIV | | st match Nan | ne/ID used (| on BMP Design | Calculation | Sheet | | | | | 77700 | | | | | | | | | | | Design I | Rainfall De | epth | | | | | | 24-hour Rainfa | | | | | $D_{85} =$ | 0.70 | inches | | m the Isohye | tal Map in Hand | book Appendix E | | | | | | | | | | Drair | nage Manag | ement Are | a Tabulation | | | | | | 11 | nsert additional rows | | | | ainina to th | e BMP | | | | | | | | | | | Proposed | | | | | Effective | DMA | | Design | Design Capture | Volume on | | DMA | | Post-Project Surface | Imperivous | Runoff | DMA Areas x | Storm | Volume, V _{BMP} | Plans (cubic | | Type/ | D (square feet) | Туре | Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | feet) | | DMA . | 2 <i>7,456</i> | Mixed Surface Types | 0.86 | 0.67 | 18518.7 | 1 | 27456 | - | | | 40540.7 | 0.70 | 4000.0 | 4.440 | | | 27456 | 1 7 | otal | | 18518.7 | 0.70 | 1080.3 | 1,140 | <u>Santa</u> | Ana Wat | ershed - BMP I | Design Vo | lume, $\mathbf{V}_{\mathtt{B}}$ | BMP | Legend: | | Required Entr | |-------|--------------|-------------------------------|---|--------------------------|---------------------------------|------------------|-------------------|---|---------------------------------| | | | | (Rev. 10-2011) | | | | | | Calculated Co | | | y Name | RAHMAN E | heet shall <mark>only</mark> be used
ENGINEERING | in conjunction | ı with BMP (| designs from the | <u>LID BMP I</u> | Date | 11/30/2018 | | signe | • | FR | | | | | | Case No | | | праг | ly Project | Number/Nam | e | | | | | | | | | | | | BMP I | dentificati | on | | | | | /P N | AME / ID | RMP_2/ RIO | FILTRATION | | | | | | | | 11 11 | INIL / ID | DIVIT 2/ DIO | | t match Nan | ne/ID used o | on BMP Design | Calculation | Sheet | | | | | | | | | | | | | | | | | | Design I | Rainfall De | epth | | | | | | | l-hour Rainfal
Map in Hand | ll Depth,
book Appendix E | | | | D ₈₅ = | 0.70 | inches | | | | | Drair | nage Manage | ement Are | a Tabulation | | | | | i | | lı. | nsert additional rows | if needed to | accommodo | ate all DMAs dr | aining to th | е ВМР | | | | DMA | DMA Area | Post-Project Surface | Effective
Imperivous | DMA
Runoff | DMA Areas x | Design
Storm | Design Capture
Volume, V _{BMP} | Proposed Volume on Plans (cubic | | | Type/ID | (square feet) | Туре | Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | feet) | | | DMA B | 26,397 | Mixed Surface Types | 0.96 | 0.82 | 21732.5 | 26397 | l 7 | otal | | 21732.5 | 0.70 | 1267.7 | 1,500 | | | <u>Santa</u> | Ana Wat | ershed - BMP I | Design Vo | lume, $\mathbf{V}_{\mathbf{B}}$ | BMP | Legend: | | Required Ent | |--------|--------------|----------------|---|--------------------------|---------------------------------|------------------|-------------------|--------------------------|---------------| | | | | (Rev. 10-2011) | | | | | | Calculated Co | | | | | heet shall <mark>only</mark> be used
ENGINEERING | l in conjunction | n with BMP | designs from the | LID BMP L | | 11/26/2018 | | esigne | y Name | FR | INGINEERING | | | | | Case No | | | _ | • | Number/Name | <u> </u> | | | | | Case No | | | прап | ly 110ject | rvuinoen/rvain | C | | | | | | | | | | | | BMP I | dentificati | on | | | | | ΛΡ Ν. | AME / ID | BMP-4/ BIO | RETENTION | | | | | | | | | | | | st match Nan | ne/ID used (| on BMP Design | Calculation | Sheet | | | | | | | Design 1 | Rainfall De | epth | | | | | th Per | centile 24 | l-hour Rainfal | ll Denth | | | - F | D ₈₅ = | 0.70 | Sanata a | | | | | book Appendix E | | | | D ₈₅ = | 0.70 | inches | | | | | Drois | naga Manag | omant Ara | a Tabulation | | | | | | | Ir | nsert additional rows | | | | ainina to thi | ∘ BMP | | | | | | | , needed to | | | anning to the | | Proposed | | | | | | Effective | DMA | | Design | Design Capture | Volume on | | | DMA | DMA Area | Post-Project Surface | Imperivous | Runoff | DMA Areas x | Storm | Volume, V _{BMP} | Plans (cubic | | | Type/ID | (square feet) | Туре | Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | feet) | | | DMA-D | 5,536 | Concrete or Asphalt | 1 | 0.89 | 4938.1 | 5536 | 7 | otal | | 4029.1 | 0.70 | 288.1 | 312 | | | | 3330 | , | otui | | 4938.1 | 0.70 | 200.1 | 312 | | MP NA | y Name d by y Project I AME / ID | RAHMAN E FR Number/Name BMP-5/ LANhour Rainfal Map in Hand | NDSCAPE AREAS
Mus | BMP I | dentificatio | | | Date
Case No | 4/25/2018 | |---------|---|--|---|--|---|-----------------|-------------------|--------------------------|-----------------------| | MP NA | y Name d by y Project I AME / ID | RAHMAN E FR Number/Name BMP-5/ LANhour Rainfal Map in Hand | ENGINEERING ENDSCAPE AREAS Mus Il Depth, | BMP I | <mark>dentificatio</mark>
ne/ID used o | on | | Date
Case No | 4/25/2018 |
 MP NA | d by y Project I AME / ID centile, 24 | FR Number/Name BMP-5/ LAN -hour Rainfal Map in Hand | NDSCAPE AREAS Mus | t match Nam | ne/ID used o | | Calculation | Case No | | | MP NA | AME / ID | BMP-5/ LAN | NDSCAPE AREAS Mus Il Depth, | t match Nam | ne/ID used o | | Calculation | | | | ИР NA | AME / ID | BMP-5/ LAN
hour Rainfal
Map in Hand | NDSCAPE AREAS Mus Il Depth, | t match Nam | ne/ID used o | | Calculation | | | | th Perc | centile, 24 | -hour Rainfal
Map in Hand | Mus | t match Nam | ne/ID used o | | Calculation | | | | th Perc | centile, 24 | -hour Rainfal
Map in Hand | Mus | | | on BMP Design | Calculation | | | | | | Map in Hand | ll Depth, | | | on BMP Design | Calculation | | | | | | Map in Hand | | Design I | Rainfall De | | | Sheet | | | | | Map in Hand | | | | epth | | | | | | | Map in Hand | | | | | D ₈₅ = | 0.70 | | | | isonyctar | | book Appendix L | | | | D ₈₅ – | 0.70 | inches | | | | | | | | | | | | | | | | Drain | age Manage | ement Area | a Tabulation | | | | | | | Ir | nsert additional rows | if needed to d | accommodo | ate all DMAs dr | aining to the | е ВМР | | | | | | | ECC. AL. | DMA | | Dosian | Design Capture | Proposed
Volume on | | | DMA | DMA Area | Post-Project Surface | Effective | DMA
Runoff | DMA Areas x | Design
Storm | Volume, V _{BMP} | Plans (cubic | | | Type/ID | (square feet) | Type | Imperivous
Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | feet) | | | | | | | | | -1 () | (| 3 | | | DM-E | 3,583 | Mixed Surface Types | 0.42 | 0.29 | 1042.9 | | | | | | | | | | | | | | | | L | | | | | | | | | | | L | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | H | | | | | | | | | | | - | | | | | | | | | · | i ' | | | | | | | | | | | i ' | | | | | | | | | | | | | _ | | | | | | | | | | | | | 2502 | - | otal | | 1043.0 | 0.70 | 60.0 | 100 | | | | 3583 | I T | otal | | 1042.9 | 0.70 | 60.8 | 186 | tes: | | | | | | | | | | | Sant | a Ana Wat | ershed - BMP I | Design Vo | lume, \mathbf{V}_{B} | MP | Legend: | | Required En | |----------------------|-----------------------------------|---|--|---------------------------------|------------------|-----------------|---|-----------------------| | | | (Rev. 10-2011) | | | | | | Calculated C | | mnony Nomo | | heet shall <mark>only</mark> be used
ENGINEERING | in conjunction | n with BMP (| designs from the | LID BMP I | | 4/25/2018 | | mpany Name signed by | FR | ENGINEERING | | | | | Case No | | | | t Number/Nam | e. | | | | | Case IVO | | | inpuny rrojec | t i vaiiioci/i vaiii | | | | | | | | | | | | BMP I | dentificati | on | | | | | //P NAME / II | D BMP-6/ LAN | NDSCAPE AREAS | | | | | | | | | | | st match Nan | ne/ID used (| on BMP Design | Calculation | Sheet | | | | | | Design 1 | Rainfall De | enth | | | | | th Danaantila | 24 hour Dainfal | II Donth | Design | Camman D | pui | D | 0.70 | | | | 24-hour Rainfal
al Man in Hand | book Appendix E | | | | $D_{85} =$ | 0.70 | inches | | in the isomyet | ai wap ili Hand | book Appendix L | | | | | | | | | | Drair | nage Manag | ement Are | a Tabulation | | | | | | li . | nsert additional rows | if needed to | accommodo | ate all DMAs dr | aining to th | е ВМР | | | | | | | | | | Danima Cambum | Proposed | | DNAA | DNAA Aroo | Doct Drainet Curfons | Effective | DMA
Runoff | DMA Areas x | Design
Storm | Design Capture
Volume, V _{BMP} | Volume on | | DMA
Type/ID | DMA Area (square feet) | Post-Project Surface
Type | Imperivous
Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | Plans (cubic
feet) | | | | | | | | (, | (00.000) | 7557 | | DM-F | 4,697 | Mixed Surface Types | 0.64 | 0.44 | 2070.4 | - | | | | | | | | | | - | 1 | 4697 | 7 | otal | | 2070.4 | 0.70 | 120.8 | 121 | tes: | | | | | | | | | | Santa | Ana Wat | ershed - BMP I | Design Vo | lume, $\mathbf{V}_{\mathbf{B}}$ | ВМР | Legend: | | Required Ent | |----------------|---------------------------|--|--------------------------|---------------------------------|------------------------------|---------------------|--|-----------------------| | | (Note diament | (Rev. 10-2011)
heet shall <u>only</u> be used | | | 1 | I ID BMB I |): II II I | Calculated C | | mpany Name | | neet snau <u>onty</u> be usea
ENGINEERING | іп сопјипспої | n with BMP (| aesigns from ine | LID BMP L | | 4/25/2018 | | signed by | FR | Z (OII (EZITII (O | | | | | Case No | | | | Number/Name | e | | | | | 0400110 | | | 1 7 3 | | | | | | | | | | | | | BMP I | dentification | on | | | | | P NAME / ID | BMP-7/BIOI | RETENTION | | | | | | | | | | | t match Nan | ne/ID used o | on BMP Design | Calculation | Sheet | | | | | | | Rainfall De | | | | | | L D | 4.1 D : C : | U.D. d | Design | Xaiiiiaii DC | pui | | | | | | 4-hour Rainfal | | | | | $D_{85} =$ | 0.70 | inches | | n the Isonyeta | і мар іп напо | book Appendix E | | | | | | | | | | Drair | nage Manage | ement Are | a Tabulation | | | | | | lı. | nsert additional rows | if needed to (| accommodo | ate all DMAs dr | aining to the | e BMP | | | | | | | | | | | Proposed | | | | | Effective | DMA | | Design | Design Capture | Volume on | | DMA
Type/ID | DMA Area
(square feet) | Post-Project Surface Type | Imperivous | Runoff
Factor | DMA Areas x
Runoff Factor | Storm
Depth (in) | Volume, V _{BMP} (cubic feet) | Plans (cubic
feet) | | | | | Fraction, I _f | | | Deptil (III) | (cubic feet) | jeetj | | DM-G | 5,612 | Mixed Surface Types | 0.62 | 0.42 | 2382.5 | - | 5612 | 7 | otal | | 2382.5 | 0.70 | 139 | 176 | | | | - | es: | | | | | | | | | | | <u>Santa</u> | Ana Wat | ershed - BMP I
(Rev. 10-2011) | Design Vo | lume, V_B | MP | Legend: | | Required Ent
Calculated Co | |--------|--------------|-------------------------------|----------------------------------|--------------------------|---------------|------------------|-------------------|---------------------------------|---------------------------------------| | | | (Note this works) | heet shall <u>only</u> be used | in coniunction | n with BMP o | designs from the | LID BMP L | esign Handbook |) | | ompan | | | NGINEERING | | | | | | 4/25/2018 | | esigne | • | FR | | | | | | Case No | | | | | Number/Name | | | | | | Case 140 | | | шрап | ly Floject i | Nullioei/Inallio | - | | | | | | | | | | | | BMP I | dentification | on | | | | | MP N | AME / ID | BMP-8/LAN | DSCAPE AREA/B | IORETENT | TION | | | | | | | | | Mus | t match Nan | ne/ID used o | on BMP Design | Calculation | Sheet | | | | | | | Design I | Rainfall De | epth | | | | | | | l-hour Rainfal
Map in Hand | l Depth,
book Appendix E | | | | D ₈₅ = | 0.70 | inches | | | | | Drain | age Manage | ement Are | a Tabulation | | | | | | | Ir | nsert additional rows | if needed to (| accommodo | ite all DMAs dr | aining to the | e BMP | | | | | | | | | | | | Proposed | | | | | | Effective | DMA | | Design | Design Capture | Volume on | | | DMA | DMA Area | Post-Project Surface | Imperivous | Runoff | DMA Areas x | Storm | Volume, V _{BMP} | Plans (cubic | | | Type/ID | (square feet) | Туре | Fraction, I _f | Factor | Runoff Factor | Depth (in) | (cubic feet) | feet) | | | DM-H | 29,939 | Mixed Surface Types | 0.95 | 0.81 | 24160.1 | 29939 | Т | otal | | 24160.1 | 0.70 | 1409.3 | 1,410 | | | | | · | | ļ | | | | , , , , , , , , , , , , , , , , , , , | otes: | | | | | | | | | | | D:: | г. | 1'. D ' D 1 | BMP ID | T 1 | Require | d Entries | | | | | |--------------|---|--------------------------------------|-----------------------|---------------|-----------------------------|-----------------|------------------|--|--|--| | Bioretentio | n Faci | lity - Design Procedure | 1 | Legend: | Calcula | ted Cells | | | | | | Company Nam | e: | RAHMAN ENGI | NEERING | | Date: | 4/25/2018 | | | | | | Designed by: | | FR | | County/City (| Case No.: | | | | | | | | | | Design Volume | | | | | | | | | Enter t | the are | a tributary
to this feature | | | $A_T =$ | 0.63 | acres | | | | | Enter ' | V _{BMP} c | letermined from Section 2. | | $V_{BMP} =$ | 1,080 | ft ³ | | | | | | | | Type of B | Design | | | | | | | | | Side | Side slopes required (parallel to parking spaces or adjacent to walkways) | | | | | | | | | | | | | s required (perpendicular to parking | | | | | | | | | | | Bioretention Facility Surface Area | | | | | | | | | | | Denth | of Soi | l Filter Media Layer | | | $d_S =$ | 1.5 | ft | | | | | Берш | 01 301 | i i ilici wicdia Layer | | | us – | 1.3 | 11 | | | | | Top W | idth o | f Bioretention Facility, exc | eluding curb | | $\mathbf{w}_{\mathrm{T}} =$ | 30.0 | ft | | | | | Total 1 | Effecti | ve Depth, d _E | | | | | | | | | | | | $x d_S + (0.4) x 1 - (0.7/w_T)$ | + 0.5 | | $d_E = $ | 1.33 | ft | | | | | L | ` , | 5 () (1) | | | L | | | | | | | Minim | ıum Sı | urface Area, A _m | | | | | | | | | | A_{M} | $(ft^2) =$ | V_{BMP} (ft ³) | _ | | $A_{M} =$ | 815 | [ft ⁻ | | | | | Propos | sed Su | d _E (ft)
rface Area | | | A= | 857 | ft^2 | | | | | Тторох | sea su | Trace Area | | | 71- | 037 | 11 | | | | | | | D: 4 | .: E ::: D | ·· | | | | | | | | | | Biorete | ntion Facility Proper | rties | | | | | | | | Side S | lopes i | in Bioretention Facility | | | z = | 4 | :1 | | | | | Diame | eter of | Underdrain | | | | 6 | inches | | | | | Longit | tudinal | Slope of Site (3% maximu | um) | | | 2 | % | | | | | 6" Che | eck Da | m Spacing | | | | 25 | feet | | | | | Descri | be Ve | getation: | Γrees | | | | | | | | | Notes: | D : | - | · - | 5 1 | BMP ID | | Required | Entries | | | | |----------------------------|---|--------------------------|---|-----------------------|---------------|--|-----------|-----------------|--|--| | Bioretention | Fac | ılıty - Desig | gn Procedure | 4 | Legend: | Calculate | ed Cells | | | | | Company Name | | R | AHMAN ENGI | NEERING | | Date: 1 | 1/26/2018 | 3 | | | | Designed by: | | | FR | | County/City (| Case No.: | | | | | | | | | | Design Volume | | | | | | | | Enter th | e ar | ea tributary | to this feature | | | $A_T = $ | 0.13 | acres | | | | Enter V | ВМР | determined | from Section 2. | 1 of this Handbook | | $V_{BMP} = $ | 288 | ft ³ | | | | | | | Type of B | ioretention Facility | Design | | | | | | | Side sl | opes r | equired (paralle | to parking spaces or | adjacent to walkways) | | | | | | | | _ | No side slopes required (perpendicular to parking space or Planter Boxes) | | | | | | | | | | | | | | Bioretent | tion Facility Surface | Area | | | | | | | Depth o | f So | il Filter Med | dia Layer | | | $d_S = $ | 1.5 | ft | | | | Top Wi | dth (| of Bioretent | on Facility, exc | eluding curb | | $\mathbf{w}_{\mathrm{T}} = \underline{}$ | 6.0 | ft | | | | 1 | | ive Depth, $d_S + (0.4)$ | | $d_E =$ | 1.23 | ft | | | | | | Minimu
A _M (| | | , $A_{\rm m}$ $BMP (ft^3)$ $d_{\rm F} (ft)$ | _ | | $A_{M} = $ | 234 | ft ⁻ | | | | Propose | d Sı | ırface Area | u _E (It) | | | A= | 254 | $\int ft^2$ | | | | | | | Biorete | ntion Facility Prope | rties | | | | | | | Side Slo | pes | in Bioreten | ion Facility | | | z = | 4 | :1 | | | | Diamet | er of | Underdrain | | | | | 6 | inches | | | | Longitu | dina | l Slope of S | ite (3% maximu | ım) | | | 2 | _ % | | | | | | am Spacing | | | | | 25 | feet | | | | | e Ve | egetation: | S | hrubs | | | | | | | | Notes: | Riore | etention Facil | lity - Design | n Procedure | BMl | P ID | Legend: | Require | d Entries | | |---------------------------------------|----------------------------------|------------------|----------------------------------|------------------|------------|---------------|------------------------------|-----------|-----------------| | Dioic | | iity - Desig | II I TOCCUUIC | 5 | | Legena. | Calculat | ted Cells | | | Company | | RA | AHMAN ENC | INEERING | Ī | | _ | 4/25/2018 | | | Designed | l by: | | FR | Dagian Va | 1,,,,,, | County/City (| Case No.: | | | | | | | | Design Vo | nume | | | | | |] | Enter the are | a tributary t | o this feature | | | | $A_T = $ | 0.08 | acres | |] | Enter V _{BMP} d | letermined f | From Section 2 | 2.1 of this H | andbook | | $V_{BMP} = $ | 61 | _ft³ | | | | | Type of l | Bioretention | Facility 1 | Design | | | | | (| Side slopes re | quired (parallel | to parking spaces | or adjacent to w | alkways) | | | | | | (| No side slopes | s required (perp | endicular to parkin | g space or Plant | er Boxes) | | | | | | | | | Biorete | ntion Facilit | y Surface | Area | | | | | 1 | Depth of Soi | l Filter Med | | | • | | $d_S =$ | 1.5 | ft | | - | opin or sor | 1 1 11001 1,100 | ia Bayor | | | | -5 | | | | , | Гор Width o | f Bioretenti | on Facility, ex | cluding cur | b | | $\mathbf{w}_{\mathrm{T}} = $ | 30.0 | ft | | Total Effective Depth, d _E | | | | | | | | | | | | | - | e
) x 1 - (0.7/w _t | (-) + 0.5 | | | $d_E =$ | 1.33 | ft | | | E , | | | | | | | | | |] | Minimum Su | | | | | | | | | | | $A_{\rm M}$ (ft ²) = | V | $d_{\rm EMP} (ft^3)$ | | | | $A_{M} = $ | 46 | ft ⁻ | | י | Proposed Sur | | l _E (ft) | | | | A= | 140 | ft^2 | | | Toposed Su | irace Area | | | | | 71 - | 140 | 10 | | | | | Bioret | ention Facil | ity Prope | rties | | | | | ; | Side Slopes i | n Bioretent | ion Facility | | | | z = | 4 | :1 | |] | Diameter of ' | Underdrain | | | | | | 6 | inche | | | | | | | | | | | | |] | Longitudinal | Slope of Si | te (3% maxim | num) | | | | 2 | _ % | | (| 6" Check Da | m Spacing | | | | | 1 | 25 | feet | | J | Describe Veg | getation: | | Trees | | | | | | | lotes: | | | | | | | | | | | Bioretention Fac | cility - Design Procedure | BMP ID | Legend: | Required Entries | | |------------------------------|---|------------------------|---------------|---------------------------|-----------------| | | | 7 | Legena. | Calculated Cells | | | Company Name: | RAHMAN ENGI | NEERING | G (G) | Date: 11/26/2018 | 3 | | Designed by: | FR | Design Volume | County/City C | Case No.: | | | | | Design volume | | | | | Enter the ar | rea tributary to this feature | | | $A_{T} = 0.13$ | acres | | Enter V _{BMP} | determined from Section 2. | 1 of this Handbook | | $V_{BMP} = 139$ | ft ³ | | | Type of B | ioretention Facility l | Design | | | | _ | required (parallel to parking spaces or
bes required (perpendicular to parking | | | | | | | Bioretent | tion Facility Surface | Area | | | | Depth of So | oil Filter Media Layer | | | $d_{S} = 1.5$ | ft | | Top Width | of Bioretention Facility, exc | luding curb | | $w_T = 6.0$ | ft | | | tive Depth, d_E
B) x d_S + (0.4) x 1 - (0.7/ w_T) | + 0.5 | | $d_{E} = 1.23$ | ft | | Minimum S $A_{M} (ft^{2}) =$ | Surface Area, A_{m} $= \frac{V_{BMP} (ft^{3})}{d_{E} (ft)}$ | _ | | $A_{M} = \underline{113}$ | ft ⁻ | | Proposed S | | | | A= 143 | $\int ft^2$ | | | Biorete | ntion Facility Prope | rties | | | | Side Slopes | in Bioretention Facility | | | z =4 | :1 | | Diameter of | f Underdrain | | | 6 | inche | | Longitudina | al Slope of Site (3% maximu | ım) | | 2 | % | | 6" Check D | am Spacing | | | 25 | feet | | Describe Volume | egetation: S | hrubs | | | | | ioles. | | | | | | | Bioretention Faci | ility - Design Procedure | BMP ID | Legend: | Required Entries | | | | | |---------------------------------------|---|------------------------|---------------|--------------------------------|-----------------|--|--|--| | | | 8 | Legend. | Calculated Cells | | | | | | Company Name: | RAHMAN ENGI | NEERING | G (G) | Date: 4/25/2018 | | | | | | Designed by: | FR | Dagina Valuma | County/City (| Case No.: | | | | | | | | Design Volume | | | | | | | | Enter the are | ea tributary to this feature | | | $A_{T} = 0.69$ | acres | | | | | Enter V _{BMP} | determined from Section 2. | 1 of this Handbook | | $V_{BMP} = 1,409$ | ft ³ | | | | | | Type of Bi | ioretention Facility l | Design | | | | | | | Side slopes r | equired (parallel to parking spaces or | adjacent to walkways) | | | | | | | | | es required (perpendicular to parking | | | | | | | | | <u>-</u> . | D' | E 11', G C | A | | | | | | | | Bioretent | tion Facility Surface | Area | | | | | | | Depth of So | il Filter Media Layer | | | $d_S = \underline{\qquad 1.5}$ | ft | | | | | Top Width | of Bioretention Facility, exc | eluding curb | | $W_{T} = 30.0$ | ft | | | | | Total Effective Depth, d _E | | | | | | | | | | $d_{\rm E} = (0.3)$ | $(0.4) \times d_S + (0.4) \times 1 - (0.7/w_T)$ | + 0.5 | | $d_{E} = 1.33$ | ft | | | | | Minimum S | urface Area, A _m | | | | | | | | | $A_{\rm M}$ (ft ²) = | $\frac{V_{BMP}(ft^3)}{d_E(ft)}$ | _ | | $A_{\rm M} = 1,063$ | ft | | | | | Proposed Su | | | | A= 1,172 | $\int ft^2$ | | | | | | Diameter | ntion Facility Proper | rtios | | | | | | | | | ntion racinty Proper | lics | | | | | | | Side Slopes | in Bioretention Facility | | | z =4 | _:1 | | | | | Diameter of | Underdrain | | | 6 | inches | | | | | Longitudina | l Slope of Site (3% maximu | ım) | | 2 | _ % | | | | | 6" Check Da | am Spacing | | | 25 | feet | | | | | Describe Ve | getation: | Γrees | | | | | | | | lotes: | | | | | | | | | ### Appendix 7:Hydromodification Supporting Detail Relating to Hydrologic Conditions of Concern #### **HCOC MITIGATION** Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2-year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site
must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow. THIS CONDITION WAS MET BY SIZING THE OUTLET PIPE COMING OUT OF THE SITE TO CARRY A RUNOFF DISCHARGE OF NOT MORE THAN 10% OF THE 2 YR PRE DEVELOPESD HYDROGRAPH. THE RUNOFF DISCHARGE WAS CALCULATED USING THE MANNING'S FORMULA: $Q = (1.49/n)(A)(R^2/3)(S^1/2)$ USING A 4" DIAMETER PIPE @ THE OUTLET; A= (3.14)(0.33)^2/4 = 0.085 SF R^2/3=[(0.085/1.0362)]^2/3 = 0.187 S = .01 Q = (1.146)(0.085)(0.187)(0.1) = 0.18 CFS < EXIST. PRE DISCHARGE @ 2 YR PEAK | DMA | PRE DISCHARGE | POST DISCHARGE | REMARKS | |-----|------------------|------------------|----------| | | 2 YR-24 HR (CFS) | 2 YR-24 HR (CFS) | | | Α | 0.30 CFS | 0.18 CFS | @ OUTLET | | В | 0.29 CFS | 0.18 CFS | @ OUTLET | | Н | 0.26 CFS | 0.18 CFS | @ OUTLET | | | | | | IN CVASE OF HIGH WATER FLOWS, RUNOFF WILL FLOW INTO AN OVERFLOW GRATE INLET STRUTURE TOWARDS TO UNDERGROUND RETENTION CHAMBERS. IN AN OVERFLOW 4" PIPE WILL BE INSTALLED TO SERVE AS AN OVERFLOW DEVICE IN THE EVENT WATER RISES UP INSIDE THE CHAMBERS. THE OVERFLOW PIPE WAS SIZED TO CARRY A DISCHARGE LESS THAN THE DISCHARGE RATE ON THE PRE-DEVELOPED CONDITION. WinTR-20 Printed Page File Beginning of Input Data List TR20.inp 0 0 0.05 WinTR-20: Version 1.10 Kassab Travel Center Pre-Developed SUB-AREA: DMA A Outlet .00098 69. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN WinTR-20 Printed Page File End of Input Data List > Kassab Travel Center Pre-Developed Name of printed page file: TR20.out STORM 2-Yr | Reach | Area | ID or | Runoff
Amount
(in) | Elevation | Time | Rate | Rate | |------------|-----------|-----------|--------------------------|--------------|--------|--------|--------| | DMA A | 0.980E-03 | | 0.128 | | 12.02 | 0.30 | 304.11 | | Line | | | | | | | | | Start Time | | Flow | Values @ tim | me increment | of 0.0 | 106 hr | | | (hr) | (cfs) | 11.842 | 0.05 | 0.06 | 0.07 | 0.09 | 0.10 | 0.11 | 0.13 | | 11.886 | 0.14 | 0.16 | 0.17 | 0.19 | 0.20 | 0.22 | 0.23 | | 11.930 | 0.24 | 0.25 | 0.26 | 0.26 | 0.27 | 0.27 | 0.28 | | 11.975 | 0.28 | 0.28 | 0.28 | 0.29 | 0.29 | 0.29 | 0.30 | | 12.019 | 0.30 | 0.30 | 0.29 | 0.28 | 0.27 | 0.25 | 0.24 | | 12.063 | 0.22 | 0.20 | 0.18 | 0.17 | 0.15 | 0.14 | 0.13 | | 12.107 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | | 12.151 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | | 12.196 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 12.240 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | | 12.284 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 12.328 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 12.372 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | | 12.417 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | Area or | Drainage | Rain Gage | Runoff | | Peak | Flow | | | WinTR-20 Pr
TR20.inp | inted Page | File | Beginning o | of Input Dat | a List | | | | |--|--|-------------------|--|--|--|--|--|--| | WinTR-20: Version 1.10
b Travel Center
Pre-Developed | | 0 | | | 05 | (continued) | | | | OUD ADDA | | | | STORM 2-Yr | | | | | | SUB-AREA: | MA A O | utlet | 0.0 | 098 69. | .1 | | | | | D | ma a o | uciec | .00 | 090 | • ± | | | | | STREAM REAC
Reach
Identifier | Area | ID or
Location | Amount
(in) | Elevation (ft) | | Rate
(cfs) | Rate
(csm) | | | OUTLET 0 | .980E-03 | | 0.128 | | 12.02 | 0.30 | 304.11 | | | Line
Start Time | | | | ne increment | | | | | | (hr) | (CIS) | (CIS) | (CIS) | (cfs) | (CIS) | (CIS) | (CIS) | | | 11.842
11.886
11.930
11.975
12.019
12.063
12.107
12.151
12.196
12.240
12.284
12.328
12.372
12.417 | 0.28
0.30
0.22
0.12
0.09
0.07
0.07
0.06
0.06 | 0.08 | 0.26
0.28
0.29
0.18
0.11
0.08
0.07
0.07
0.06
0.06 | 0.09
0.19
0.26
0.29
0.28
0.17
0.10
0.08
0.07
0.07
0.06
0.06
0.05
0.05 | 0.27
0.15
0.10
0.08
0.07
0.06
0.06
0.06 | 0.22
0.27
0.29
0.25
0.14
0.09
0.08
0.07
0.06
0.06
0.06 | 0.30
0.24
0.13
0.09
0.07
0.07
0.06
0.06
0.06 | | | WinTR-20 Ve | rsion 1.10 | | Page | 1 | | 11/01/2018 | 9:37 | | | | | Ka | assab Travel
Pre-Devel | | | | | | | Area or | _ | Alternate | 2-Vr | Peak Flo | w by Sto | | | | | Area or | Area or Drainage | | - Peak F | low by Stor | m | | |---------------------|------------------------|--------------------|----------|-------------|-------|-------| | Reach
Identifier | Area Alterr
(sq mi) | aate 2-Yr
(cfs) | (cfs) | (cfs) | (cfs) | (cfs) | | DMA A
OUTLET | 0.980E-03
0.980E-03 | 0.30
0.30 | | | | | WinTR-20 Printed Page File Beginning of Input Data List TR20.inp WinTR-20: Version 1.10 0 0 0.05 b Travel Center (continued) Pre-Developed STORM 2-Yr SUB-AREA: DMA A Outlet .00098 69. .1 STREAM REACH: WinTR-20 Printed Page File Beginning of Input Data List TR20.inp WinTR-20: Version 1.10 0 0.05 b Travel Center (continued) Pre-Developed STORM 2-Yr SUB-AREA: DMA A Outlet .00098 69. .1 STREAM REACH: 11/01/2018 9:37 WinTR-20 Version 1.10 Page 2 WinTR-20 Printed Page File Beginning of Input Data List TR20.inp WinTR-20: Version 1.10 0 0.05 Kassab Travel Center 2yr Post-Developed SUB-AREA: DMA A Outlet .00098 92. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN > Kassab Travel Center 2yr Post-Developed Name of printed page file: TR20.out STORM 2-Yr | | | | ` | 710141 1 11 | | | | |------------|-----------|-----------|---------------|-------------|--------|--------|---------| | Area or | Drainage | Rain Gage | Runoff | | Dosk | Flow | | | Reach | Area | ID or | Amount | Elevation | Time | Rate | Rate | | Identifier | | Location | (in) | (ft) | (hr) | (cfs) | (csm) | | Identifici | (64 1111) | Locacion | (±11) | (10) | (111) | (010) | (CDIII) | | DMA A | 0.980E-03 | | 1.096 | | 11.93 | 1.52 | 1550.32 | | | | | | | | | | | Line | | | | | | | | | Start Time | | Flow | Values @ time | e increment | of 0.0 | 006 hr | | | (hr) | (cfs) | | | | | | | | | | 10.932 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 10.976 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.020 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.065 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.109 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.153 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.197 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.241 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | | 11.286 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 11.330 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | | 11.374 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 11.418 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 11.462 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 11.507 | | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 | | 11.551 | | | 0.15 | 0.16 | 0.17 | 0.18 | 0.18 | | 11.595 | | 0.19 | 0.20 | 0.20 | 0.21 | 0.22 | 0.23 | | 11.639 | | | 0.28 | 0.30 | 0.32 | 0.34 | 0.36 | | 11.683 | | | 0.40 | 0.41 | 0.42 | 0.44 | 0.45 | | 11.728 | | 0.48 | 0.50 | 0.53 | 0.56 | 0.58 | 0.61 | | 11.772 | | 0.66 | 0.69 | 0.71 | 0.73 | 0.74 | 0.76 | | 11.816 | | 0.81 | 0.84 | 0.88 | 0.93 | 0.98 | 1.04 | | 11.860 | | 1.16 | 1.22 | 1.28 | 1.33 | 1.37 | 1.42 | | 11.905 | | | 1.50 | 1.51 | 1.52 | 1.52 | 1.50 | | 11.949 | | 1.46 | 1.43 | 1.41 | 1.38 | 1.36 | 1.33 | | 11.993 | | | 1.28 | 1.27 | 1.24 | 1.22 | 1.18 | | 12.037 | | 1.06 | 0.99 | 0.92 | 0.84 | 0.77 | 0.70 | | 12.081 | | | 0.52 | 0.48 | 0.44 | 0.41 | 0.39 | | 12.126 | | | 0.33 | 0.31 | 0.30 | 0.29 | 0.28 | | 12.170 | | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | 0.24 | | 12.214 | 0.23 | | 0.23 | 0.22 | 0.22 | 0.22 | 0.21 | | 12.258 | | 0.21 | 0.21 | 0.20 | 0.20 | 0.20 | 0.20 | | 12.302 | | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | 12.347 | | | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | | 12.391 | | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 | 0.16 | | 12.435 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.14 | | 12.100 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | #### 12.479 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.12 0.13 12.523 0.13 0.13 0.13 0.13 12.568 0.12 0.12 0.12 0.12 0.12 0.12 12.612 0.12 0.11 0.11 0.11 0.11 0.11 0.11 12.656 0.11 0.11 0.11 0.11 0.11 0.11 0.11 WinTR-20 Version 1.10 Page 1 11/01/2018 23:30 Kassab Travel Center 2yr Post-Developed | | | | 2yr Post-Deve | Tobea | | | | |---|---|--|--|---|--|--|--| | Line | | | | | | | | | Start Time | | Flow | Values @ time | increment | of 0.006 | 5 hr | | | (hr) | (cfs) | 10 700 | 0 11 | 0 11 | 0 11 | 0 11 | 0 11 | 0 11 | 0 10 | | 12.700 | | 0.11 | 0.11 | 0.11 | 0.11 |
0.11
0.10 | 0.10 | | 12.745
12.789 | 0.10 | 0.10
0.10 | | 0.10 | 0.10 | 0.10
0.10 | 0.10
0.10 | | 12.833 | | 0.10 | | 0.10 | 0.10 | 0.10 | 0.10 | | 12.877 | | 0.09 | | | 0.09 | 0.09 | 0.09 | | 12 921 | 0.09 | 0 09 | 0 09 | 0 09 | 0.09 | 0.09 | 0.09 | | 12.966 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 13.010 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | | 13.054 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.098 | 0.08 | 0.08 | 0.08
0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.142 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | | 13.187 | 0.08
0.08 | 0.08 | 0.08
0.08 | 0.08 | 0.08
0.07 | 0.08 | 0.08 | | 13.231 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | | 13.275 | 0.07 | 0.07 | 0.07
0.07
0.07
0.07 | 0.07 | 0.07
0.07
0.07
0.07 | 0.07 | 0.07 | | 13.319 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07
0.07 | 0.07
0.07 | | 13.303 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.452 | 0.07 | 0.07 | 0.07 | 0 07 | | 0.07 | 0.07 | | 13.496 | 0.07 | 0.07 | 0.07
0.07 | 0.07
0.07 | 0.07 | 0.07 | 0.07 | | 13.540 | 0.07
0.07
0.06
0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 0.06 | | 13.585 | 0.06 | 0.06 | 0.06
0.06 | 0.06
0.06 | | | 0.06 | | 13.629 | 0.06 | 0.06 | 0.06
0.06
0.06
0.06 | 0.06 | 0.06
0.06 | 0.06 | 0.06 | | 13.673 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
0.06 | 0.06 | 0.06 | | 13.717 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.761 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
0.06
0.06
0.05 | 0.06 | 0.06 | | 13.806 | 0.06 | 0.06 | 0.06
0.06 | 0.06 | 0.06
0.06
0.05 | 0.06 | 0.06 | | 13.850 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | | 13.894 | 0.05 | 0.05 | 0.05
0.05
0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.938 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05
0.05 | | 14.027 | 0.05 | 0.03 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 14.027 | 0.05 | 0.03 | 0.05 | 0.05 | 0.05 | 0.03 | 0.03 | | 14.071 | 0.05 | 0.03 | 0.05 | 0.03 | 0.05 | | | | Area or | Drainage | Rain Gage | Runoff | | Peak Fl | | | | Reach | Area | ID or | Amount | Elevation | Time | Rate | Rate | | Identifier | (sq mi) | Location | Amount (in) | (ft) | (hr) | (cfs) | (csm) | | | | | | | | | | | OUTLET | 0.980E-03 | | 1.096 | | 11.93 | 1.52 | 1550.32 | | Tino | | | | | | | | | Line
Start Time | | Flow | Values @ time | ingroment | of 0.006 | 5 hr | | | | (cfs) | | (cfs) | | | | | | (111) | (CIS) | (CI3) | (CI3) | (CI3) | (CIS) | (CI3) | (CIS) | | 10.932 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 10.976 | | | | | | | | | | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.020 | | | | 0.05 | 0.05
0.06 | 0.05
0.06 | 0.05 | | 11.020 | 0.05 | 0.05 | | | | | | | 11.065
11.109 | 0.05
0.06
0.06 | 0.05
0.06
0.06 | 0.05
0.06
0.06 | 0.06
0.06
0.06 | 0.06
0.06
0.06 | 0.06
0.06
0.06 | 0.06
0.06
0.06 | | 11.065
11.109
11.153 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | | 11.065
11.109
11.153
11.197 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.06 | 0.05
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07 | | 11.065
11.109
11.153
11.197
11.241 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197
11.241 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197
11.241 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197
11.241 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197
11.241 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.06
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Ve | 0.05
0.06
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.08 | 0.06
0.06
0.06
0.07
0.07
0.08 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Ve | 0.05
0.06
0.06
0.07
0.07
ersion 1.10 | 0.05
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.08 | 0.06
0.06
0.06
0.07
0.07
0.08 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Vo | 0.05
0.06
0.06
0.07
0.07
ersion 1.10 | 0.05
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2
(assab Travel of 2yr Post-Development) | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.08
11/01/201 | 0.06
0.06
0.06
0.07
0.07
0.08
8 23:30 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Vo | 0.05
0.06
0.06
0.07
0.07
ersion 1.1(| 0.05
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2
(assab Travel 2yr Post-Deve | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.08
11/01/201 | 0.06
0.06
0.06
0.07
0.07
0.08
8 23:30 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Vo
Line
Start Time
(hr)
11.286
11.330 | 0.05
0.06
0.06
0.07
0.07
ersion 1.10 | 0.05
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2
(assab Travel 2
2yr Post-Deve.)
Values @ time
(cfs)
0.08
0.08 | 0.06
0.06
0.06
0.07
0.07
0.07
Center
loped
increment
(cfs)
0.08
0.08 | 0.06
0.06
0.06
0.07
0.07
0.07
1
of 0.006
(cfs)
0.08 | 0.06
0.06
0.06
0.07
0.07
0.08
11/01/201
5 hr
(cfs)
0.08
0.08 | 0.06
0.06
0.07
0.07
0.08
8 23:30

(cfs)
0.08
0.09 | | 11.065
11.109
11.153
11.197
11.241
WinTR-20 Vo | 0.05
0.06
0.06
0.07
0.07
ersion 1.10 | 0.05
0.06
0.06
0.07
0.07 | 0.05
0.06
0.06
0.07
0.07
0.07
Page 2
(assab Travel 2yr Post-Deve | 0.06
0.06
0.06
0.07
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.07 | 0.06
0.06
0.06
0.07
0.07
0.08
11/01/201 | 0.06
0.06
0.06
0.07
0.07
0.08
8 23:30 | TR20.inp 0 0 0.05 WinTR-20: Version 1.10 (continued) b Travel Center 2yr Post-Developed STORM 2-Yr | - | - | | | STORM 2-Yr | | | | |--|-------|----------------|----------------|----------------|--------------|--|--------------| | SUB-AREA: | | | | | | | | | DMA | A Out | let | .00 | 098 92. | .1 | | | | | | | | | | | | | STREAM REACH: | 0 00 | 0 00 | 0 00 | 0 00 | 0 00 | 0 00 | 0 00 | | 11.418
11.462
11.507 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09
0.10 | 0.09 | 0.09
0.10 | | 11.402 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 11.507 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 | | 11.551 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.18
0.23 | | 11.393 | 0.19 | 0.19 | 0.20 | 0.20 | 0.21 | 0.18
0.22
0.34 | 0.23 | | 11.039 | 0.23 | 0.20 | 0.20 | 0.30 | 0.32 | 0.44 | 0.45 | | 11.003 | 0.37 | 0.39 | 0.40 | 0.41 | 0.42 | 0.44 | 0.43 | | 11.720 | 0.40 | 0.40
 0.50 | 0.33 | 0.30 | 0.30 | 0.76 | | 11 016 | 0.04 | 0.00 | 0.05 | 0.71 | 0.73 | 0.74 | 1.04 | | 11.010 | 1 10 | 1 16 | 1 22 | 1 28 | 1 33 | 1 37 | 1.42 | | 11 905 | 1 45 | 1 48 | 1 50 | 1 51 | 1 52 | 1 52 | 1.50 | | 11 949 | 1 48 | 1 46 | 1.30
1.43 | 1 41 | 1 38 | 1 36 | 1.33 | | 11 993 | 1 31 | 1 30 | 1 28 | 1 27 | 1 24 | 1 22 | 1.18 | | 12.037 | 1.13 | 1.06 | 0.99 | 0.92 | 0.84 | 0.77 | 0.70 | | 12.081 | 0.63 | 0.57 | 0.52 | 0.48 | 0.44 | 0.41 | 0.39 | | 12.126 | 0.37 | 0.35 | 0.33 | 0.31 | 0.30 | 0.29 | 0.28 | | 12.170 | 0.27 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | 0.24 | | 12.214 | 0.23 | 0.23 | 0.23 | 0.22 | 0.22 | 0.22 | 0.21 | | 12.258 | 0.21 | 0.21 | 0.21 | 0.20 | 0.20 | 0.20 | 0.20 | | 12.302 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | 12.347 | 0.18 | 0.18 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | | 12.391 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 | 0.34
0.44
0.58
0.74
0.98
1.37
1.52
1.36
1.22
0.77
0.41
0.29
0.24
0.22
0.20
0.19
0.17
0.16
0.15
0.14
0.15
0.11 | 0.16 | | 12.435 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.14 | | 12.479 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | | 12.523 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | | 12.568 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | 12.612 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 12.656 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 12.700 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | | 12.745 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.789 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11
0.11
0.11
0.10
0.10 | 0.10 | | 12.833 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10
0.10
0.09
0.09
0.09
0.08
0.08 | 0.10 | | 12.8// | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.921 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.966 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 13.010 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | | 13.054 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.090 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 | | 13.142 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | | 13.107 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | | 13 275 | 0.03 | 0.03 | 0.03 | 0.00 | 0.07 | 0.07 | 0.07 | | 13 319 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.363 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13,408 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.452 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.496 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08
0.08
0.07
0.07
0.07
0.07
0.07 | 0.07 | | STREAM REACH: 11.418 11.462 11.507 11.551 11.595 11.639 11.683 11.728 11.772 11.816 11.905 11.949 11.993 12.037 12.081 12.126 12.170 12.214 12.258 12.302 12.347 12.391 12.435 12.479 12.523 12.568 12.612 12.6566 12.700 12.745 12.789 12.833 12.877 12.921 12.966 13.010 13.054 13.098 13.142 13.187 13.231 13.275 13.319 13.363 13.408 13.452 13.496 | | - - | - - | - - | | | | | | | | | | | | | WinTR-20 Version 1.10 Page 3 11/01/2018 23:30 ### Kassab Travel Center 2yr Post-Developed | Line | | | | | | | | |--------------|--------------|--------|--------------|-----------|---------|-----------|-------------| | Start Time | | Flow V | alues @ time | increment | of 0.00 | 6 hr | | | (hr) | (cfs) | | | | | | | | | | 13.540 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.585 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | WinTR-55, V∈ | ersion 1.00. | 10 | Page 2 | | | 11/1/2018 | 11:33:08 PM | WinTR-20 Printed Page File $$\operatorname{\mathtt{Beginning}}$ of Input Data List TR20.inp WinTR-20: Version 1.10 0 0 0.05 b Travel Center (continued) 2yr Post-Developed STORM 2-Yr SUB-AREA: DMA A Outlet .00098 92. .1 | | Dilli ii Ou | CICC | .00 | 000 02. | • - | | | |-----------|-------------|------|------|---------|------|------|------| | STREAM RE | ACH: | | | | | | | | 13.62 | 9 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.67 | 3 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.71 | 7 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.76 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.80 | 6 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.85 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | | 13.89 | 4 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.93 | 8 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.98 | 2 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 14.02 | 7 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 14.07 | 1 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | WinTR-20 Version 1.10 Page 4 11/01/2018 23:30 ## Kassab Travel Center 2yr Post-Developed | Area or | Drainage | | Peak | Flow by Stor | cm | | |---------------------|----------------------------|---------------|-------|--------------|-----------|-------------| | Reach
Identifier | Area Alternate
(sq mi) | 2-Yr
(cfs) | (cfs) | (cfs) | (cfs) | (cfs) | | | .980E-03
ersion 1.00.10 | 1.52
Page | 3 | | 11/1/2018 | 11:33:08 PM | TR20.inp WinTR-20: Version 1.10 0 0.05 b Travel Center (continued) 2yr Post-Developed STORM 2-Yr SUB-AREA: DMA A Outlet .00098 92. .1 STREAM REACH: OUTLET 0.980E-03 1.52 WinTR-20 Version 1.10 Page 5 11/01/2018 23:30 TR20.inp 0 0 0.05 WinTR-20: Version 1.10 KASSAB TRAVEL CENTER PRE DEVELOPED SUB-AREA: DMA B Outlet .00095 69. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN WinTR-20 Printed Page File End of Input Data List > KASSAB TRAVEL CENTER PRE DEVELOPED Name of printed page file: TR20.out STORM 2-Yr | | Area | ID or | | Elevation | Time | | Rate | |--|--|--|--|--|--|------|--| | DMA B | 0.950E-03 | | 0.126 | | 12.02 | 0.29 | 304.11 | | Line
Start Time
(hr) | | | Values @ tir | | | | | | 11.848
11.892
11.937
11.981
12.025
12.069
12.114
12.158
12.202
12.246
12.290
12.335
12.379 | 0.15
0.24
0.27
0.29
0.19
0.11
0.08
0.07
0.07
0.06
0.06 | 0.17
0.25
0.28
0.28
0.18
0.10
0.08
0.07
0.06
0.06 | 0.08
0.18
0.26
0.28
0.27
0.16
0.10
0.08
0.07
0.06
0.06
0.06 | 0.10
0.20
0.26
0.28
0.26
0.15
0.09
0.08
0.07
0.06
0.06
0.06 | 0.11
0.21
0.26
0.29
0.25
0.14
0.09
0.07
0.07
0.06
0.06
0.06 | | 0.14
0.23
0.27
0.29
0.21
0.12
0.08
0.07
0.07
0.06
0.06 | | 12.423
Area or | | | 0.05
Runoff | | Peak | Flow | | | WinTR-20 Printed Page TR20.inp | File Begi | inning of | Input Data | a List | | | |--|--|--|---|---------------------|---|--| | WinTR-20: Version 1.10
B TRAVEL CENTER
PRE DEVELOPED |) | 0 | 0 | 0.05 | | (continued) | | SUB-AREA: | | SI | ORM 2-Yr | | | | | DMA B OU | itlet | .0009 | 69. | .1 | | | | STREAM REACH: Reach Area Identifier (sq mi) | | | | Time
(hr) | Rate
(cfs) | Rate
(csm) | | OUTLET 0.950E-03 | (| 0.126 | | 12.02 | 0.29 | 304.11 | | | 0.17
0.25
0.28
0.28
0.18
0.10
0.08
0.07
0.06
0.06
0.06 | 0.08
0.18
0.26
0.28
0.27
0.16
0.10
0.08
0.07
0.06 | (cfs) 0.10 0.20 0.26 0.28 0.26 0.15 0.09 | (cfs) | (cfs) 0.12 0.22 0.27 0.29 0.23 0.13 0.09 | (cfs) 0.14 0.23 0.27 0.29 0.21 0.12 0.08 0.07 0.07 0.06 0.06 0.05 | | WinTR-20 Version 1.10 | KASSAI
PI | Page 1
3 TRAVEL C
RE DEVELOR | ENTER | 11 | /06/2018 | 10:42 | | Area or Drainage
Reach Area A
Identifier (sq mi) | Alternate | 2-Yr
(cfs) | | v by Storm
(cfs) | (cfs) | (cfs) | DMA B 0.950E-03 OUTLET 0.950E-03 0.29 0.29 TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CENTER PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA B Outlet .00095 69. .1 STREAM REACH: TR20.inp WinTR-20: Version 1.10 0 0.05 B TRAVEL CENTER PRE DEVELOPED (continued) STORM 2-Yr SUB-AREA: DMA B Outlet .00095 69. .1 STREAM REACH: 11/06/2018 10:42 WinTR-20 Version 1.10 Page 2 WinTR-20: Version 1.10 0 0 0.05 KASSAB TRAVEL CENTER POST DEVELOPED SUB-AREA: DMA B Outlet .00095 92. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN # KASSAB TRAVEL CENTER POST DEVELOPED # Name of printed page file: TR20.out #### STORM 2-Yr | | | | | STORM 2-Yr | | | | |------------------|-----------|--------------------|------------------|------------|-------|-------|---------| | 7 2000 020 | Drainage | Doin Como | Dunoff | | Doole | Flore | | | Area or
Reach | Area | Rain Gage
ID or | Runoff
Amount | Elevation | Time | Rate | Rate | | Identifier | | Location | (in) | (ft) | (hr) | (cfs) | (csm) | | idencifier | (39 111) | HOCACION | (111) | (10) | (111) | (CI3) | (C3III) | | DMA B | 0.950E-03 | | 1.088 | | 11.93 | 1.47 | 1550.32 | | | | | | | | | | | Line | | | | | | | | | Start Time | | | Values @ tim | | | | | | (hr) | (cfs) | 10.963 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.008 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.052 | 0.05 | 0.05 |
0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.096 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.140 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.185 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.229 | | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.273 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | | 11.317 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 11.361 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | | 11.406 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 11.450 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.10 | | 11.494 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | | 11.538 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.15 | 0.16 | | 11.582 | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 | 0.20 | 0.21 | | 11.627 | 0.21 | 0.23 | 0.24 | 0.26 | 0.27 | 0.29 | 0.31 | | 11.671 | 0.33 | 0.35 | 0.36 | 0.38 | 0.39 | 0.40 | 0.41 | | 11.715 | 0.42 | 0.44 | 0.45 | 0.47 | 0.49 | 0.51 | 0.54 | | 11.759 | | 0.59 | 0.62 | 0.64 | 0.67 | 0.69 | 0.71 | | 11.803 | 0.72 | 0.74 | 0.76 | 0.78 | 0.81 | 0.85 | 0.90 | | 11.848 | 0.95 | 1.01 | 1.07 | 1.13 | 1.18 | 1.24 | 1.29 | | 11.892 | 1.33 | 1.37 | 1.41 | 1.43 | 1.45 | 1.47 | 1.47 | | 11.936 | 1.47 | 1.46 | 1.44 | 1.42 | 1.39 | 1.36 | 1.34 | | 11.980 | 1.31 | 1.29 | 1.27 | 1.26 | 1.24 | 1.23 | 1.21 | | 12.025 | 1.18 | 1.14 | 1.09 | 1.03 | 0.96 | 0.89 | 0.82 | | 12.069 | 0.74 | 0.68 | 0.61 | 0.56 | 0.51 | 0.46 | 0.43 | | 12.113 | 0.40 | 0.38 | 0.35 | 0.34 | 0.32 | 0.30 | 0.29 | | 12.113 | 0.28 | 0.27 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | | 12.201 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.22 | 0.21 | | 12.246 | 0.23 | 0.23 | 0.23 | 0.20 | 0.20 | 0.20 | 0.19 | | 12.290 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | | 12.334 | 0.19 | 0.19 | 0.19 | 0.19 | 0.13 | 0.17 | 0.17 | | 12.378 | 0.17 | 0.13 | 0.16 | 0.16 | 0.17 | 0.16 | 0.16 | | 12.422 | 0.16 | 0.17 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 12.422 | 0.10 | 0.16 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 12.40/ | 0.14 | 0.14 | 0.14 | 0.14 | 0.10 | 0.13 | 0.13 | #### 12.511 0.13 0.13 0.13 0.13 0.13 0.13 0.12 12.555 0.12 0.12 0.12 0.12 0.12 0.11 0.11 12.599 0.11 0.11 0.11 0.11 0.11 0.11 0.11 12.643 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 12.688 0.10 0.10 0.10 0.10 0.10 WinTR-20 Version 1.10 Page 1 11/06/2018 10:50 # KASSAB TRAVEL CENTER POST DEVELOPED | T : | | | | | | | | |--------------------|-------------|-----------|---------------|--------------|--------------|--------------|--------------| | Line
Start Time | | Flow | Values @ time | ingroment | of 0.006 | hr | | | (hr) | (cfs) | (1117) | (010) | (010) | (010) | (010) | (010) | (010) | (010) | | 12.732 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.776 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.820 | 0.10 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.865 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.909 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.953 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | | 12.997 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.041 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.086 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.130 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.174 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.218 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.262 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.307 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.351 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.395 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.439 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | | 13.483 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.528 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.572 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.616 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.660 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.705 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.749
13.793 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
0.06 | 0.06 | | 13.793 | 0.06 | 0.06 | 0.06 | 0.06
0.05 | 0.06 | | 0.05
0.05 | | 13.881 | 0.05 | 0.05 | 0.05
0.05 | 0.05 | 0.05
0.05 | 0.05
0.05 | 0.05 | | 13.926 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.970 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 14.014 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.011 | 0.05 | 0.05 | | | | | | | Area or | Drainage | Rain Gage | Runoff | | Peak Fl | ow | | | Reach | Area | ID or | Amount | Elevation | Time | Rate | Rate | | Identifier | (sq mi) | Location | (in) | (ft) | (hr) | (cfs) | (csm) | | OTTEL DE | 0.505.00 | | 1 000 | | 11 00 | 1 47 | 1550 20 | | OUTLET (| 0.950E-03 | | 1.088 | | 11.93 | 1.47 | 1550.32 | | Line | | | | | | | | | Start Time | | Flow | Values @ time | increment | of 0.006 | hr | | | (hr) | (cfs) | (cfs) | (cfs) | | | (cfs) | (cfs) | | ` , | (/ | (/ | (, | (/ | , / | (, | (/ | | 10.963 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.008 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 11.052 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.096 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.140 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 11.185 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.229 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 11.273 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | | 11.317 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 11.361 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | | WinTR-20 Ve | orgion 1 1 | 1 | D | | -1 | 1 /06 /201 | 0 10.50 | | MINIK-70 A | sision 1.10 | J | Page 2 | | 1 | 1/06/201 | .0 10:50 | | | | I | KASSAB TRAVEL | CENTER | | | | # KASSAB TRAVEL CENTER POST DEVELOPED | Line | | | | | | | | | |--------------|--------------|--------|--------------|-------------|---------|-----------|------------|----| | Start Time | | Flow V | alues @ time | e increment | of 0.00 | 6 hr | | | | (hr) | (cfs) | | 11.406 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | | 11.450 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.10 | | | 11.494 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | | | WinTR-55, Ve | ersion 1.00. | 10 | Page 1 | = | | 11/6/2018 | 10:52:47 7 | MΑ | TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CENTER B TRAVEL CENTER POST DEVELOPED (continued) STORM 2-Yr | SUB-AREA: | | | | 010141 1 11 | | | | |---------------|-------|------|------|-------------|------|-------------|-------| | | 3 Out | let | .00 | 095 92. | .1 | | | | STREAM REACH: | | | | | | | | | 11.538 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.15 | 0.16 | | 11.582 | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 | 0.20 | 0.21 | | 11.627 | 0.21 | 0.23 | 0.24 | 0.26 | 0.27 | 0.29 | 0.31 | | 11.671 | 0.33 | 0.35 | 0.36 | 0.38 | 0.39 | 0.40 | 0.41 | | 11.715 | 0.42 | 0.44 | 0.45 | 0.47 | 0.49 | 0.51 | 0.54 | | 11.759 | 0.57 | 0.59 | 0.62 | 0.64 | 0.67 | 0.69 | 0.71 | | 11.803 | 0.72 | 0.74 | 0.76 | 0.78 | 0.81 | 0.85 | 0.90 | | 11.848 | 0.95 | 1.01 | 1.07 | 1.13 | 1.18 | 1.24 | 1.29 | | 11.892 | 1.33 | 1.37 | 1.41 | 1.43 | 1.45 | 1.47 | 1.47 | | 11.936 | 1.47 | 1.46 | 1.44 | 1.42 | 1.39 | 1.36 | 1.34 | | 11.980 | 1.31 | 1.29 | 1.27 | 1.26 | 1.24 | 1.23 | 1.21 | | 12.025 | 1.18 | 1.14 | 1.09 | 1.03 | 0.96 | 0.89 | 0.82 | | 12 069 | 0 74 | 0.68 | 0 61 | 0.56 | 0.51 | 0.46 | 0.43 | | 12.113 | 0.40 | 0.38 | 0.35 | 0.34 | 0.32 | 0.30 | 0.29 | | 12.157 | 0.28 | 0.27 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | | 12 201 | 0.23 | 0.23 | 0.23 | 0.22 | 0.22 | 0.22 | 0.21 | | 12 246 | 0.23 | 0.23 | 0.23 | 0.22 | 0.20 | 0.22 | 0.21 | | 12.290 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | | 12.334 | 0.18 | 0.18 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | | 12.378 | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | | 12.422 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 12.467 | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | | 12.511 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | | 12.555 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | | 12.599 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 12.643 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | | 12.688 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.732 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.776 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.820 | 0.10 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.865 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.909 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.953 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | | 12.997 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.041 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.086 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.130 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 13.174 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.218 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.262 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.307 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.351 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.395 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 13.439 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | | 13.483 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.528 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.572 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.616 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 1 10 | | _ | 2 | | 1 /06 /0016 | 10 50 | WinTR-20 Version 1.10 Page 3 11/06/2018 10:50 ## KASSAB TRAVEL CENTER POST DEVELOPED | Line | | | | | | | | |--------------|--------------|--------|---------------|-----------|----------|-----------|-------------| | Start Time | | - Flow | Values @ time | increment | of 0.006 | hr | | | (hr) | (cfs) | 13.660 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.705 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | WinTR-55, Ve | rsion 1.00.1 | 0 | Page 2 | | | 11/6/2018 |
10:52:47 AM | WinTR-20: Version 1.10 0 0.05 B TRAVEL CENTER POST DEVELOPED (continued) STORM 2-Yr SUB-AREA: DMA B Outlet .00095 92. .1 STREAM REACH: 13.749 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 WinTR-20 Version 1.10 Page 4 11/06/2018 10:50 ## KASSAB TRAVEL CENTER POST DEVELOPED | Area or | Drainage | | Peak F | low by Sto | rm | | |---------------------|------------------------|---------------|--------|------------|-----------|-------------| | Reach
Identifier | Area Alternate (sg mi) | 2-Yr
(cfs) | (cfs) | (cfs) | (cfs) | (cfs) | | identifier | (59 MI) | (CIS) | (CIS) | (CIS) | (CIS) | (CIS) | | DMA B 0 | .950E-03 | 1.47 | | | | | | WinTR-55, V | ersion 1.00.10 | Page | 3 | | 11/6/2018 | 10:52:47 AM | TR20.inp WinTR-20: Version 1.10 0 0.05 B TRAVEL CENTER POST DEVELOPED STORM 2-Yr SUB-AREA: DMA B Outlet .00095 92. .1 STREAM REACH: OUTLET 0.950E-03 1.47 WinTR-20 Version 1.10 Page 5 11/06/2018 10:50 WinTR-20 Printed Page File $$\operatorname{\mathtt{Beginning}}$ of Input Data List TR20.inp WinTR-20: Version 1.10 0 0.05 KASSAB TRAVEL CTR PRE DEVELOPED SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN WinTR-20 Printed Page File End of Input Data List KASSAB TRAVEL CTR PRE DEVELOPED Name of printed page file: TR20.out STORM 2-Yr | Area or | Drainage | Rain Gage | Runoff | | Peak | Flow | | |-------------------------------|-------------------|--------------|--------------|--------------|--------------|---------------|-------------------------------------| | Reach | Area | ID or | Amount | Elevation | Time | Rate
(cfs) | Rate | | Identifier | (sq mi) | Location | (in) | (ft) | (hr) | (cfs) | (csm) | | DMA G | 0.002 | | 0.173 | | 12.02 | 0.55 | 304.11 | | Line | | | | | | | | | | | Flow | Walues 0 ti | me increment | of 0 (| 006 hr | | | | | | | | | (cfs) | | | (1117) | (010) | (010) | (010) | (010) | (010) | (010) | (010) | | 11.829 | 0.06 | 0.08 | 0.09 | 0.11 | 0.13 | 0.16 | 0.18 | | 11.874 | 0.21 | 0.24 | 0.26 | 0.29 | 0.32 | 0.35 | 0.38 | | 11.918 | 0.40 | 0.43 | 0.45 | 0.46 | 0.48 | 0.49 | 0.50 | | 11.962 | 0.50 | 0.51 | 0.51 | 0.52 | 0.52 | 0.53 | 0.54 | | | 0.54 | 0.55 | 0.55 | 0.55 | 0.54 | 0.52 | 0.50 | | 12.050 | 0.47 | 0.44 | 0.55
0.40 | 0.55
0.37 | 0.34 | 0.52
0.31 | 0.28 | | 12.095 | 0.26 | 0.24 | 0.22 | 0.21 | 0.20 | 0.19 | 0.18 | | 12.139 | 0.26
0.17 | 0.17 | 0.16 | 0.16 | 0.20
0.15 | 0.15 | 0.14 | | 12.183 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | | 12.227 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | | 12.271 | 0.12 | 0.12 | 0.13
0.12 | 0.12
0.12 | 0.12
0.11 | 0.12
0.11 | 0.11 | | 12.316 | 0.11 | 0.11 | 0.11 | 0.11 | | | | | 12.360 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.404 | 0.10 | 0.10 | 0.10
0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 12.448 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 12.492 | 0.09 | 0.08 | 0.09
0.08 | 0.09
0.08 | 0.09 | 0.09
0.08 | 0.08 | | 12.537 | 0.08 | 0.08 | 0.08 | 0.08 | | 0.08 | 0.08 | | 12.581 | 0.07 | 0.07
0.07 | 0.07 | 0.07 | 0 07 | 0.07 | 0.07 | | 12.625 | 0.07 | 0.07 | 0.07 | 0.07 | | 0.07 | 0.07 | | 12.669 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 12.714 | 0.07 | 0.07 | 0.07
0.07 | 0.07
0.07 | 0.07 | 0.07
0.07 | 0.07 | | 12.758 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | | 12.802 | | | | 0.06 | 0.06 | 0.06 | 0.06 | | 12.846 | 0.06 | 0.06
0.06 | 0.06
0.06 | 0.06
0.06 | 0.06
0.06 | 0.06
0.06 | 0.06 | | 12.890 | 0.06 | 0.06
0.06 | 0.06 | 0.06 | 0.06 | | 0.06 | | 12.935 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 12.979 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 13.023 | 0.06 | 0.06 | 0.06 | | | 0.06 | 0.06 | | 13.023
WinT R350 67 | Versioa.05 | 00.10 0.05 | Ðaĝē | 1 0.05 | 0.05 | 110702018 | 0.06
01 05 15:20 <i>I</i> | | 13.111 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.156 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 13.200 | 0.05 | 0.05 | 0.05
0.05 | 0.05
0.05 | 0.05 | 0.05
0.05 | 0.05 | | | | | 0.05 | | 0.05 | 0.05 | | | Area or | Drainage | Rain Gage | Runoff | | Peak | Flow | | | 11100 01 | 2 - u - i i u g c | marin dage | RUITOTT | | 1 Can | ** | | TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR (continued) PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: Reach Area ID or Amount Elevation Time Rate Rate Identifier (sq mi) Location (in) (ft) (hr) (cfs) (csm) OUTLET 0.002 0.173 12.02 0.55 304.11 WinTR-20 Version 1.10 Page 1 11/07/2018 10:14 > KASSAB TRAVEL CTR PRE DEVELOPED TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR (continued) PRE DEVELOPED STORM 2-Yr SUB-AREA: .00181 69. .1 DMA G Outlet STREAM REACH: | Line | | | | | | | | |------------|-------|-------|-------|-------------|-------|-------|-------| | Start Time | | | - | ne incremen | | | | | (hr) | (cfs) | 44 000 | | | | | | | | | 11.829 | 0.06 | 0.08 | 0.09 | 0.11 | 0.13 | 0.16 | 0.18 | | 11.874 | 0.21 | 0.24 | 0.26 | 0.29 | 0.32 | 0.35 | 0.38 | | 11.918 | 0.40 | 0.43 | 0.45 | 0.46 | 0.48 | 0.49 | 0.50 | | 11.962 | 0.50 | 0.51 | 0.51 | 0.52 | 0.52 | 0.53 | 0.54 | | 12.006 | 0.54 | 0.55 | 0.55 | 0.55 | 0.54 | 0.52 | 0.50 | | 12.050 | 0.47 | 0.44 | 0.40 | 0.37 | 0.34 | 0.31 | 0.28 | | 12.095 | 0.26 | 0.24 | 0.22 | 0.21 | 0.20 | 0.19 | 0.18 | WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR PRE DEVELOPED (continued) | PRE DEVELOPED | | | | | | | | | |---------------|-------|------|------|------------|-------|------|------|--| | | | | | STORM 2-Yr | | | | | | SUB-AREA: | | | | | | | | | | DMA | G Out | let | .00 | 181 69. | .1 | | | | | STREAM REACH: | | | | | | | | | | | 0 17 | 0 17 | 0 16 | 0 16 | 0 1 5 | 0 15 | 0 14 | | | 12.139 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 | | | 12.183 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | | | 12.227 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | | | 12.271 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | | | 12.316 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | | 12.360 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | | 12.404 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | | 12.448 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | | 12.492 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | | 12.537 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | | 12.581 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | | | | | | | | | | | WinTR-20 Printed Pa
TR20.inp | age File | Beginning | of Input | Data Lis | t | |---------------------------------|----------|-----------|----------|----------|------| | WinTR-20: Version 1 | 1.10 | 0 | | 0 | 0.05 | B TRAVEL CTR | PRE DEVELOPED | | | | | | | , | , | |---------------|-------|------|------------|------------|------|------|------|---| | | | | | STORM 2-Yr | | | | | | SUB-AREA: | | | | | | | | | | DMA | G Out | let | .00181 69. | | .1 | . 1 | | | | | | | | | | | | | | STREAM REACH: | | | | | | | | | | 12.625 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 12.669 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 12.714 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 12.758 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | | | 12.802 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 12.846 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 12.890 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 12.935 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 12.979 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 13.023 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 13.067 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | | | | | | | | | | | WinTR-20 Printed Page File TR20.inp | | | Beginning o | f Input Dat | a List | | | | |---|---------|------|-------------|-------------|--------|------|----------|------| | WinTR-20: Version 1.10
B TRAVEL CTR
PRE DEVELOPED | | | 0 | 0 | 0.0 | 5 | (continu | ıed) | | THE DEVELOTED | | | | | | | | | | SUB-AREA: | | | | | | | | | | DMA | . G Out | let | .00 | L81 69. | .1 | | | | | STREAM REACH: | | | | | | | | | | 13.111 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 13.156 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 13.200 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 13.244 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR (continued) PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: WinTR-20 Version 1.10 Page 2 11/07/2018 10:14 > KASSAB TRAVEL CTR PRE DEVELOPED Area or Drainage ------- Peak Flow by Storm -----Reach Area Alternate 2-Yr Identifier (sq mi) (cfs) (cfs) (cfs) (cfs) DMA G 0.002 0.55 TR20.inp WinTR-20: Version 1.10
0 0.05 B TRAVEL CTR PRE DEVELOPED STORM 2-Yr (continued) SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: OUTLET 0.002 0.55 TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: TR20.inp WinTR-20: Version 1.10 0 0 0.05 B TRAVEL CTR PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: TR20.inp WinTR-20: Version 1.10 0 0.05 B TRAVEL CTR (continued) PRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 69. .1 STREAM REACH: WinTR-20 Version 1.10 Page 3 11/07/2018 10:14 TR20.inp WinTR-20: Version 1.10 0 0 0.05 KASSAB TRAVEL CTR POSTRE DEVELOPED SUB-AREA: DMA G Outlet .00181 92. .1 STREAM REACH: STORM ANALYSIS: 2-Yr 2.39 Type II 2 STRUCTURE RATING: GLOBAL OUTPUT: 2 0.05 YYYYN YYYYNN > KASSAB TRAVEL CTR POSTRE DEVELOPED Name of printed page file: TR20.out STORM 2-Yr | | | | | STORM 2-Yr | | | | |------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Area or | Drainago | Rain Gage | Runoff | | Poak | Flow | | | Reach | Area | ID or | Amount | Elevation | Time | Rate | Rate | | Identifier | | Location | (in) | (ft) | (hr) | (cfs) | (csm) | | 10011011101 | (09) | 200001011 | (211) | (20) | (1117) | (010) | (00111) | | DMA G | 0.002 | | 1.326 | | 11.93 | 2.81 | 1550.32 | | | | | | | | | | | Line | | | | | | | | | Start Time | | | Values @ tir | | | | | | (hr) | (cfs) | 10 102 | 0.05 | 0 05 | 0 0 5 | 0 0 5 | 0 05 | 0.05 | 0.05 | | 10.193
10.237 | 0.05 | 0.05 | 0.05
0.05 | 0.05
0.05 | 0.05
0.05 | 0.05
0.05 | 0.05
0.05 | | 10.237 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 10.326 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 | | 10.370 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 10.414 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 10.458 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 10.502 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 10.547 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 10.591 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 10.635 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 10.679 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 10.723 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 10.768 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 10.812 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | 0.09 | | 10.856 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 10.900 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 10.945 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.10 | 0.10 | | 10.989 | | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 11.033 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | | 11.077 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 11.121 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | | 11.166
11.210 | 0.12
0.13 | 0.12
0.13 | 0.12
0.13 | 0.12
0.13 | 0.13
0.13 | 0.13
0.13 | 0.13
0.13 | | 11.210 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 11.298 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | | 11.342 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | | 11.387 | 0.16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | | 11.431 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | | 11.475 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 | | 11.519 | 0.19 | 0.20 | 0.21 | 0.22 | 0.23 | 0.25 | 0.26 | | 11.563 | 0.28 | 0.29 | 0.31 | 0.32 | 0.34 | 0.35 | 0.36 | | 11.608 | 0.37 | 0.38 | 0.39 | 0.41 | 0.43 | 0.46 | 0.49 | | 11.652 | 0.52 | 0.56 | 0.59 | 0.63 | 0.66 | 0.69 | 0.72 | | 11.696 | 0.74 | 0.76 | 0.78 | 0.80 | 0.83 | 0.86 | 0.89 | | | | | | | | | | | 11.740 | 0.93 | 0.98 | 1.03 | 1.08 | 1.13 | 1.18 | 1.23 | |--------|------|------|------|------|------|------|------| | 11.785 | 1.27 | 1.31 | 1.34 | 1.38 | 1.41 | 1.45 | 1.49 | | 11.829 | 1.55 | 1.62 | 1.71 | 1.81 | 1.92 | 2.03 | 2.15 | | 11.873 | 2.25 | 2.36 | 2.45 | 2.54 | 2.61 | 2.68 | 2.73 | | 11.917 | 2.77 | 2.80 | 2.81 | 2.80 | 2.78 | 2.74 | 2.70 | Page 1 11/07/2018 10:17 WinTR-20 Version 1.10 ### KASSAB TRAVEL CTR POSTRE DEVELOPED | Line | | | | | | | | |------------|-------|-------|---------------|-------|-------|-------|-------| | Start Time | | | Values @ time | | | | | | (hr) | (cfs) | 11.961 | 2.65 | 2.60 | 2.55 | 2.50 | 2.46 | 2.43 | 2.40 | | 12.006 | 2.37 | 2.34 | 2.30 | 2.24 | 2.17 | 2.08 | 1.96 | | 12.050 | 1.83 | 1.70 | 1.56 | 1.42 | 1.29 | 1.17 | 1.06 | | 12.094 | 0.96 | 0.89 | 0.82 | 0.76 | 0.72 | 0.68 | 0.64 | | 12.138 | 0.61 | 0.58 | 0.56 | 0.53 | 0.51 | 0.50 | 0.48 | | 12.182 | 0.47 | 0.46 | 0.45 | 0.44 | 0.44 | 0.43 | 0.42 | | 12.227 | 0.42 | 0.41 | 0.41 | 0.40 | 0.40 | 0.39 | 0.39 | | 12.271 | 0.38 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | | 12.315 | 0.36 | 0.35 | 0.35 | 0.35 | 0.34 | 0.34 | 0.34 | | 12.359 | 0.33 | 0.33 | 0.32 | 0.32 | 0.32 | 0.31 | 0.31 | | 12.403 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 | | 12.448 | 0.29 | 0.28 | 0.28 | 0.27 | 0.27 | 0.26 | 0.26 | | 12.492 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.24 | | 12.536 | 0.24 | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 | | 12.580 | 0.22 | 0.22 | 0.22 | 0.22 | 0.21 | 0.21 | 0.21 | | 12.625 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.20 | 0.20 | | 12.669 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | | 12.713 | 0.20 | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | | 12.757 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | 12.801 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | | 12.846 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.17 | 0.17 | | 12.890 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | | 12.934 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 | | 12.978 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | | 13.022 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.15 | 0.15 | | 13.067 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 13.111 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 13.155 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | 13.199 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | 13.243 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | 13.288 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | | 13.332 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 13.376 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 13.420 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | | 13.465 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | 13.509 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | 13.553 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | 13.597 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | | 13.641 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 13.686 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 13.730 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 13.774 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 13.818 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 13.862 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 13.907 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 13.951 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 13.995 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.09 | | 14.039 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 14.083 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 14.128 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 14.172 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | | | | | | | | | WinTR-20 Version 1.10 Page 2 11/07/2018 10:17 TR20.inp WinTR-20: Version 1.10 0 0.05 B TRAVEL CTR POSTRE DEVELOPED (continued) STORM 2-Yr SUB-AREA: DMA G Outlet .00181 92. .1 STREAM REACH: ### KASSAB TRAVEL CTR POSTRE DEVELOPED | Line | | | | | | | | |------------|-------|--------|---------------|-----------|----------|-------|-------| | Start Time | | - Flow | Values @ time | increment | of 0.006 | hr | | | (hr) | (cfs) | | | | | | | | | | 14.216 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 14.260 | 0.09 | 0.09 | | 0.09 | 0.09 | 0.09 | 0.09 | | 14.305 | 0.09 | 0.09 | | 0.09 | 0.09 | 0.09 | 0.09 | | 14.349 | 0.09 | 0.09 | | 0.09 | 0.09 | | 0.09 | | 14.393 | 0.09 | 0.09 | | 0.09 | 0.09 | | 0.09 | | 14.437 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | 14.481 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | | 14.526 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.570 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.614 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.658 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.702 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.747 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.791 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.835 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.879 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.923 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 14.968 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 15.012 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 15.056 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | | 15.100 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.145 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.189 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.233 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.277 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.321 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.366 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.410 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.454 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | 15.498 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | | | | | | | | 0 0.05 WinTR-20: Version 1.10 B TRAVEL CTR (continued) POSTRE DEVELOPED STORM 2-Yr | SUB-AREA: | | | | 010101 2 11 | | | | | |---------------|-------|------|------|-------------|------|------|------|--| | DMA | C 0+ | 1 | 0.0 | 101 02 | .1 | | | | | DMA | G Out | let | .00 | 181 92. | • 1 | | | | | STREAM REACH: | | | | | | | | | |
15.542 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 15.587 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 15.631 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 15.675 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.719 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.763 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.808 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.852 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.896 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.940 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 15.985 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.029 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.073 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.117 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.161 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.206 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.250 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.294 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.338 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.382 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 16.427 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | | | | | | | | | | Page 3 11/07/2018 10:17 WinTR-20 Version 1.10 > KASSAB TRAVEL CTR POSTRE DEVELOPED Line Start Time ------ Flow Values @ time increment of 0.006 hr -----(hr) (cfs) (cfs) (cfs) (cfs) (cfs) 16.471 0.06 0.05 TR20.inp | B TRAVEL C' | TR | 10 | 0 | 0 | 0.0 | 05 | (continue | ed) | |-------------|----------|-----------|-------------|--|-----------|-------|-----------|-----| | POSTRE DEV | ELOPED | | | STORM 2-Yr | | | | | | SUB-AREA: | | | | | | | | | | 1 | DMA G | Outlet | .0 | 00181 92. | .1 | | | | | STREAM REA | CH: | | | | | | | | | 16.780 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 16.825 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | | | 16.869 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 16.913 | 0.05 | 0.05 | 0.05 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 0.05 | 0.05 | 0.05 | | | 16.957 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.001 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.046 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.090 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.134 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.170 | 0.03 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.222 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.207 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 17.311 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | | | | | | | | | | | Area or | Drainage | Rain Gage | Runoff | | Peak l | Flow | | | | Reach | Area | ID or | Amount | Elevation | Time | Rate | Rate | | | Identifier | (sq mi) | Location | (in) | Elevation
(ft) | (hr) | (cfs) | (csm) | | | OUTLET | 0.002 | | 1.326 | | 11.93 | 2.81 | 1550.32 | | | Line | | | | | | | | | | Start Time | | Flow | Values @ ti | me incremen | t of 0.00 | 06 hr | | | | (hr) | (cfs) | | 10 103 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | 10.193 | 0.05 | 0.05 | 0.05 | 0.05
0.05 | 0.05 | 0.05 | 0.05 | | | 10 001 | 0.05 | 0 0 5 | 0 0 5 | 0 0 5 | 0 0 5 | 0 0 5 | 0 0 0 | | | 10.201 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.00 | | | 10.320 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 10.414 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 10.458 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 10.502 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 10.547 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 10.591 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 10.635 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | 10.679 | 0.07 | 0.07 | 0.08 | 0.05
0.06
0.06
0.06
0.06
0.07
0.07
0.07 | 0.08 | 0.08 | 0.08 | | | 10.723 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 0 0 0.05 WinTR-20: Version 1.10 B TRAVEL CTR (continued) POSTRE DEVELOPED STORM 2-Yr SUB-AREA: .00181 92. .1 DMA G Outlet STREAM REACH: REAM REACH: 10.768 0.08 0.08 0.08 0.08 10.812 0.08 0.08 0.08 0.08 10.856 0.09 0.09 0.09 10.900 0.09 0.09 0.09 10.945 0.09 0.09 0.09 10.989 0.10 0.10 0.10 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10 WinTR-20 Version 1.10 Page 4 11/07/2018 10:17 > KASSAB TRAVEL CTR POSTRE DEVELOPED | Line
Start Time | | Flow V | alues @ tim | ne incremen | t of 0.00 | 06 hr | | |--------------------|-------|--------|-------------|-------------|-----------|-------|-------| | (hr) | (cfs) | 11.033 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | | 11.077 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 11.121 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | | 11.166 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.13 | 0.13 | | 11.210 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 11.254 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | 11.298 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 11.342 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | | 11.387 | 0.16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | | 11.431 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | | 11.475 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 | | 11.519 | 0.19 | 0.20 | 0.21 | 0.22 | 0.23 | 0.25 | 0.26 | | 11.563 | 0.28 | 0.29 | 0.31 | 0.32 | 0.34 | 0.35 | 0.36 | | 11.608 | 0.37 | 0.38 | 0.39 | 0.41 | 0.43 | 0.46 | 0.49 | | 11.652 | 0.52 | 0.56 | 0.59 | 0.63 | 0.66 | 0.69 | 0.72 | | 11.696 | 0.74 | 0.76 | 0.78 | 0.80 | 0.83 | 0.86 | 0.89 | | 11.740 | 0.93 | 0.98 | 1.03 | 1.08 | 1.13 | 1.18 | 1.23 | | 11.785 | 1.27 | 1.31 | 1.34 | 1.38 | 1.41 | 1.45 | 1.49 | | 11.829 | 1.55 | 1.62 | 1.71 | 1.81 | 1.92 | 2.03 | 2.15 | | 11.873 | 2.25 | 2.36 | 2.45 | 2.54 | 2.61 | 2.68 | 2.73 | | 11.917 | 2.77 | 2.80 | 2.81 | 2.80 | 2.78 | 2.74 | 2.70 | | 11.961 | 2.65 | 2.60 | 2.55 | 2.50 | 2.46 | 2.43 | 2.40 | WinTR-20 Printed Page File Beginning of Input Data List TR20.inp 0 WinTR-20: Version 1.10 0 0.05 B TRAVEL CTR (continued) POSTRE DEVELOPED STORM 2-Yr SUB-AREA: DMA G Outlet .00181 92. .1 STREAM REACH: WinTR-20 Version 1.10 Page 5 11/07/2018 10:17 > KASSAB TRAVEL CTR POSTRE DEVELOPED Start Time ------ Flow Values @ time increment of 0.006 hr ------(hr) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) WinTR-20: Version 1.10 0 0.05 | B TRAVEL CTR POSTRE DEVELOPED | | | U | U | 0.05 | | (continued) | |---
--	--	--
--		TOOTING DEVELOTED
0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08	0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08	0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08
0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08	0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08	
FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30" (750 mm). © ADS Stormtech 2016 # KASSAB - DMA A RIVERSIDE DR, RIVERSIDE # STORMTECH CHAMBER SPECIFICATIONS - 1. CHAMBERS SHALL BE STORMTECH MC-3500 OR APPROVED EQUAL. - 2. CHAMBERS SHALL BE MADE FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. - CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. - 4. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. - 5. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". - 6. CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". - 7. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE: - a. A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE. - b. A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE. - c. STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. - 8. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. # IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM - 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. - 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: - STONESHOOTER LOCATED OFF THE CHAMBER BED. - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. - 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. - 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. - 6. MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS. - 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. - 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. - STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. - 10. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. ### NOTES FOR CONSTRUCTION EQUIPMENT - STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - 2. THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - WEIGHT LIMITS FOR CONSRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY. CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. # ACCEPTABLE FILL MATERIALS: STORMTECH MC 500 CHAMBER SYSTEMS		MATERIAL LOCATION
--	-----------------------	---
THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE. - c. STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. - 8. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. # IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM - 1. STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTITIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. - 2. STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS STORMTECH RECOMMENDS 3 BACKFILL METHODS: - STONESHOOTER LOCATED OFF THE CHAMBER BED. - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. - 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. - 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. - 6. MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS. - 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. - 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. - 9. STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER BY MORE THAN 12" (300 mm) BETWEEN ADJACENT CHAMBER ROWS. - 10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. - 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. ### NOTES FOR CONSTRUCTION EQUIPMENT - I. STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - 2. THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED: - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - WEIGHT LIMITS FOR CONSRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". - 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. # ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS		MATERIAL LOCATION
UNTIL BACKFLUSH WATER IS CLEAN - C. VACUUM STRUCTURE SUMP AS REQUIRED - REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. - STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. # **NOTES** - INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. - 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. KASSAB -DMA DTO H RIVERSIDE DR, RIVERSIDE 11/07/2018 Storm JEMAN BLVD D, OH 43026 3-7473 SHEET OF RF DRAWN: # **INSERTA TEE DETAIL** PROTECTION AT SIDE INLET CONNECTIONS. GEOTEXTILE MUST EXTEND 6" (150 mm) CONTACT STORMTECH FOR MORE INFORMATION.	GEOTEXTILE MUST EXTEND 6" (150 mm)	
Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
Response and Inventory California Accidental Release (CalARP) Aboveground Storage Tank Uniform Fire Code Article 80 Section 103(b) & (c) 1991 Underground Storage Tank	See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com	
--	---	--
measure with significant collateral water quality benefits. # **Targeted Constituents**	\checkmark	Sediment
provided. The depth of flow should not exceed 2/3rds the height of the grass at the peak of the water quality design storm intensity. The channel slope should not exceed 2.5%. - A design grass height of 6 inches is recommended. - 3) Regardless of the recommended detention time, the swale should be not less than 100 feet in length. - 4) The width of the swale should be determined using Manning's Equation, at the peak of the design storm, using a Manning's n of 0.25. - 5) The swale can be sized as both a treatment facility for the design storm and as a conveyance system to pass the peak hydraulic flows of the 100-year storm if it is located "on-line." The side slopes should be no steeper than 3:1 (H:V). - 6) Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. If flow is to be introduced through curb cuts, place pavement slightly above the elevation of the vegetated areas. Curb cuts should be at least 12 inches wide to prevent clogging. - 7) Swales must be vegetated in order to provide adequate treatment of runoff. It is important to maximize water contact with vegetation and the soil surface. For general purposes, select fine, close-growing, water-resistant grasses. If possible, divert runoff (other than necessary irrigation) during the period of vegetation establishment. Where runoff diversion is not possible, cover graded and seeded areas with suitable erosion control materials. # Maintenance The useful life of a vegetated swale system is directly proportional to its maintenance frequency. If properly designed and regularly maintained, vegetated swales can last indefinitely. The maintenance objectives for vegetated swale systems include keeping up the hydraulic and removal efficiency of the channel and maintaining a dense, healthy grass cover. Maintenance activities should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed from the channel and disposed in a local composting facility. Accumulated sediment should also be removed manually to avoid concentrated flows in the swale. The application of fertilizers and pesticides should be minimal. Another aspect of a good maintenance plan is repairing damaged areas within a channel. For example, if the channel develops ruts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be thick; if it is not, reseed as necessary. Any standing water removed during the maintenance operation must be disposed to a sanitary sewer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed in accordance with local or State requirements. Maintenance of grassed swales mostly involves maintenance of the grass or wetland plant cover. Typical maintenance activities are summarized below: - Inspect swales at least twice annually for erosion, damage to vegetation, and sediment and debris accumulation preferably at the end of the wet season to schedule summer maintenance and before major fall runoff to be sure the swale is ready for winter. However, additional inspection after periods of heavy runoff is desirable. The swale should be checked for debris and litter, and areas of sediment accumulation. - Grass height and mowing frequency may not have a large impact on pollutant removal. Consequently, mowing may only be necessary once or twice a year for safety or aesthetics or to suppress weeds and woody vegetation. - Trash tends to accumulate in swale areas, particularly along highways. The need for litter removal is determined through periodic inspection, but litter should always be removed prior to mowing. - Sediment accumulating near culverts and in channels should be removed when it builds up to 75 mm (3 in.) at any spot, or covers vegetation. - Regularly inspect swales for pools of standing water. Swales can become a nuisance due to mosquito breeding in standing water if obstructions develop (e.g. debris accumulation, invasive vegetation) and/or if proper drainage slopes are not implemented and maintained. # Cost # **Construction Cost** Little data is available to estimate the difference in cost between various swale designs. One study (SWRPC, 1991) estimated the construction cost of grassed channels at approximately \$0.25 per ft². This price does not include design costs or contingencies. Brown and Schueler (1997) estimate these costs at approximately 32 percent of construction costs for most stormwater management practices. For swales, however, these costs would probably be significantly higher since the construction costs are so low compared with other practices. A more realistic estimate would be a total cost of approximately \$0.50 per ft², which compares favorably with other stormwater management practices. Swale Cost Estimate (SEWRPC, 1991) Table 2		
and Environmental Engineering, University of Washington, Seattle, WA Dorman, M.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989. *Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1.* FHWA/RD 89/202. Federal Highway Administration, Washington, DC. Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattle Engineering Department, Seattle, WA. Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Prepared for Florida Department of Environmental Regulation, Tallahassee, FL, by Environmental Research and Design, Inc., Orlando, FL. Kercher, W.C., J.C. Landon, and R. Massarelli. 1983. Grassy swales prove cost-effective for water pollution control. *Public Works*, 16: 53–55. Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management, Seattle, WA, and Washington Department of Ecology, Olympia, WA. Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39.Oakland, P.H. 1983. An evaluation of stormwater pollutant removal through grassed swale treatment. In *Proceedings of the International Symposium of Urban Hydrology*, *Hydraulics and Sediment Control*, *Lexington*, *KY*. pp. 173–182. Occoquan Watershed Monitoring Laboratory. 1983. Final Report: *Metropolitan Washington Urban Runoff Project*. Prepared for the Metropolitan Washington Council of Governments, Washington, DC, by the Occoquan Watershed Monitoring Laboratory, Manassas, VA. Pitt, R., and J. McLean. 1986. Toronto Area Watershed Management Strategy Study: Humber River Pilot Watershed Project. Ontario Ministry of Environment, Toronto, ON. Schueler, T. 1997. Comparative Pollutant Removal Capability of Urban BMPs: A reanalysis. *Watershed Protection Techniques* 2(2):379–383. Seattle Metro and Washington Department of Ecology. 1992. *Biofiltration Swale Performance: Recommendations and Design Considerations*. Publication No. 657. Water Pollution Control Department, Seattle, WA. Southeastern Wisconsin Regional Planning Commission (SWRPC). 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical report no. 31. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. U.S. EPA, 1999, Stormwater Fact Sheet: Vegetated Swales, Report # 832-F-99-006 http://www.epa.gov/owm/mtb/vegswale.pdf, Office of Water, Washington DC. Wang, T., D. Spyridakis, B. Mar, and R. Horner. 1981. *Transport, Deposition and Control of Heavy Metals in Highway Runoff*. FHWA-WA-RD-39-10. University of Washington, Department of Civil Engineering, Seattle, WA. Washington State Department of Transportation, 1995, *Highway Runoff Manual*, Washington State Department of Transportation, Olympia, Washington. Welborn, C., and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report No. 87-4004. U.S. Geological Survey, Reston, VA. Yousef, Y., M. Wanielista, H. Harper, D. Pearce, and R. Tolbert. 1985. *Best Management Practices: Removal of Highway Contaminants By Roadside Swales*. University of Central Florida and Florida Department of Transportation, Orlando, FL. Yu, S., S. Barnes, and V. Gerde. 1993. *Testing of Best Management Practices for Controlling Highway Runoff*. FHWA/VA-93-R16. Virginia Transportation Research Council, Charlottesville, VA. # Information Resources Maryland Department of the Environment (MDE). 2000. *Maryland Stormwater Design Manual*. <u>www.mde.state.md.us/environment/wma/stormwatermanual</u>. Accessed May 22, 2001. Reeves, E. 1994. Performance and Condition of Biofilters in the Pacific Northwest. *Watershed Protection Techniques* 1(3):117–119. Seattle Metro and Washington Department of Ecology. 1992. *Biofiltration Swale Performance*. Recommendations and Design Considerations. Publication No. 657. Seattle Metro and Washington Department of Ecology, Olympia, WA. USEPA 1993. Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water. Washington, DC. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washington, DC, by the Watershed Management Institute, Ingleside, MD. # **Design Considerations** - Soil for Infiltration - Tributary Area - Slope - Aesthetics - Environmental Side-effects # Description The bioretention best management practice (BMP) functions as a soil and plant-based filtration device that removes pollutants through a variety of physical, biological, and chemical treatment processes. These facilities normally consist of a grass buffer strip, sand bed, ponding area, organic layer or mulch layer, planting soil, and plants. The runoff's velocity is reduced by passing over or through buffer strip and subsequently distributed evenly along a ponding area. Exfiltration of the stored water in the bioretention area planting soil into the underlying soils occurs over a period of days. # California Experience None documented. Bioretention has been used as a stormwater BMP since 1992. In addition to Prince George's County, MD and Alexandria, VA, bioretention has been used successfully at urban and suburban areas in Montgomery County, MD; Baltimore County, MD; Chesterfield County, VA; Prince William County, VA; Smith Mountain Lake State Park, VA; and Cary, NC. # Advantages - Bioretention provides stormwater treatment that enhances the quality of downstream water bodies by temporarily storing runoff in the BMP and releasing it over a period of four days to the receiving water (EPA, 1999). - The vegetation provides shade and wind breaks, absorbs noise, and improves an area's landscape. ### Limitations The bioretention BMP is not recommended for areas with slopes greater than 20% or where mature tree removal would # **Targeted Constituents**	$\overline{\mathbf{V}}$	Sediment
Pollutant	Removal Rate	
unattractive. Specifically, the entire area may require mulch replacement every two to three years, although spot mulching may be sufficient when there are random void areas. Mulch replacement should be done prior to the start of the wet season. New Jersey's Department of Environmental Protection states in their bioretention systems standards that accumulated sediment and debris removal (especially at the inflow point) will normally be the primary maintenance function. Other potential tasks include replacement of dead vegetation, soil pH regulation, erosion repair at inflow points, mulch replenishment, unclogging the underdrain, and repairing overflow structures. There is also the possibility that the cation exchange capacity of the soils in the cell will be significantly reduced over time. Depending on pollutant loads, soils may need to be replaced within 5-10 years of construction (LID, 2000). ### Cost # **Construction Cost** Construction cost estimates for a bioretention area are slightly greater than those for the required landscaping for a new development (EPA, 1999). A general rule of thumb (Coffman, 1999) is that residential bioretention areas average about \$3 to \$4 per square foot, depending on soil conditions and the density and types of plants used. Commercial, industrial and institutional site costs can range between \$10 to \$40 per square foot, based on the need for control structures, curbing, storm drains and underdrains. Retrofitting a site typically costs more, averaging \$6,500 per bioretention area. The higher costs are attributed to the demolition of existing concrete, asphalt, and existing structures and the replacement of fill material with planting soil. The costs of retrofitting a commercial site in Maryland, Kettering Development, with 15 bioretention areas were estimated at \$111,600. In any bioretention area design, the cost of plants varies substantially and can account for a significant portion of the expenditures. While these cost estimates are slightly greater than those of typical landscaping treatment (due to the increased number of plantings, additional soil excavation, backfill material, use of underdrains etc.), those landscaping expenses that would be required regardless of the bioretention installation should be subtracted when determining the net cost. Bioretention TC-32 Perhaps of most importance, however, the cost savings compared to the use of traditional structural stormwater conveyance systems makes bioretention areas quite attractive financially. For example, the use of bioretention can decrease the cost required for constructing stormwater conveyance systems at a site. A medical office building in Maryland was able to reduce the amount of storm drain pipe that was needed from 800 to 230 feet - a cost savings of \$24,000 (PGDER, 1993). And a new residential development spent a total of approximately \$100,000 using bioretention cells on each lot instead of nearly \$400,000 for the traditional stormwater ponds that were originally planned (Rappahanock,). Also, in residential areas, stormwater management controls become a part of each property owner's landscape, reducing the public burden to maintain large centralized facilities. # **Maintenance Cost** The operation and maintenance costs for a bioretention facility will be comparable to those of typical landscaping required for a site. Costs beyond the normal landscaping fees will include the cost for testing the soils and may include costs for a sand bed and planting soil. # References and Sources of Additional Information Coffman, L.S., R. Goo and R. Frederick, 1999: Low impact development: an innovative alternative approach to stormwater management. Proceedings of the 26th Annual Water Resources Planning and Management Conference ASCE, June 6-9, Tempe, Arizona. Davis, A.P., Shokouhian, M., Sharma, H. and Minami, C., "Laboratory Study of Biological Retention (Bioretention) for Urban Stormwater Management," *Water Environ. Res.*, 73(1), 5-14 (2001). Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., and Winogradoff, D. "Water Quality Improvement through Bioretention: Lead, Copper, and Zinc," *Water Environ. Res.*, accepted for publication, August 2002. Kim, H., Seagren, E.A., and Davis, A.P., "Engineered Bioretention for Removal of Nitrate from Stormwater Runoff," *WEFTEC 2000 Conference Proceedings on CDROM Research Symposium*, *Nitrogen Removal*, Session 19, Anaheim CA, October 2000. Hsieh, C.-h. and Davis, A.P. "Engineering Bioretention for Treatment of Urban Stormwater Runoff," *Watersheds* 2002, *Proceedings on CDROM Research Symposium*, Session 15, Ft. Lauderdale, FL, Feb. 2002. Prince George's County Department of Environmental Resources (PGDER), 1993. Design Manual for Use of *Bioretention in Stormwater Management*. Division of Environmental Management, Watershed Protection Branch. Landover, MD. U.S. EPA Office of Water, 1999. Stormwater Technology Fact Sheet: Bioretention. EPA 832-F-99-012. Weinstein, N. Davis, A.P. and Veeramachaneni, R. "Low Impact Development (LID) Stormwater Management Approach for the Control of Diffuse Pollution from Urban Roadways," 5th International Conference Diffuse/Nonpoint Pollution and Watershed Management Proceedings, C.S. Melching and Emre Alp, Eds. 2001 International Water Association Schematic of a Bioretention Facility (MDE, 2000) ### 3.3 Permeable Pavement | Type of BMP | LID - Infiltration | |-----------------------|--| | Treatment Mechanisms | Infiltration, Evaporation | | Maximum Drainage Area | 10 acres | | Other Names | porous pavement, pervious concrete, pervious asphalt, pervious gravel pavement, cobblestone block, modular block, modular pavement | ### Description Permeable pavements can be either pervious asphalt and concrete surfaces, or permeable modular block. Unlike traditional pavements that are impermeable, permeable pavements reduce the volume and peak of stormwater runoff as well as mitigate pollutants from stormwater runoff, provided that the underlying soils can accept infiltration. Permeable pavement surfaces work best when they are designed to be flat or with gentle slopes. This factsheet discusses criteria that apply to infiltration designs. The permeable surface is placed on top of a reservoir layer that holds the water quality stormwater volume, V_{BMP} . The water infiltrates from the reservoir layer into the native subsoil. Tests must be performed according to the Infiltration Testing Section in Appendix A to be able to use this design procedure. In some circumstances, permeable pavement may be implemented on a project as a source control feature. Where implemented as a source control feature (sometimes referred to as a 'self-retaining' area), the pavement is not considered a 'BMP' that would be required to be designed and sized per this manual. Where permeable pavement receives runoff from adjacent tributary areas, the permeable pavement *may* be considered a BMP that must be sized according to this manual. Consult the Engineering Authority and the WQMP for any applicable requirements for designing and sizing permeable pavement installations. ### **Siting Considerations** The WQMP applicable to the project location should be consulted, as it may include criteria for determining the applicability of this and other Infiltration-based BMPs to the project. Permeable pavements can be used in the same manner as concrete or asphalt in low traffic parking lots, playgrounds, walkways, bike trails, and sports courts. Most types of permeable pavement can be designed to meet Americans with Disabilities Act (ADA) requirements. Permeable pavements **should not** be used in the following conditions: - O Downstream of erodible areas - O Downstream of areas with a high likelihood of pollutant spills - Industrial or high vehicular traffic areas (25,000 or greater average daily traffic) - Areas where geotechnical concerns, such as soils with low infiltration rates, would preclude the use of this BMP. ### **Sites with Impermeable Fire Lanes** Oftentimes, Fire Departments do not allow alternative pavement types including permeable pavement. They require traditional impermeable surfaces for fire lanes. In this situation, it is acceptable to use an impermeable surface for the fire lane drive aisles and permeable pavement for the remainder of the parking lot. Where impermeable fire lanes are used in the design, the impermeable surface must slope towards the permeable pavement, and the base layers shall remain continuous underneath the two pavement types, as shown in Figure 1. This continuous reservoir layer helps to maintain infiltration throughout the pervious pavement site, and can still be considered as part of the total required storage area. Figure 1: Impermeable Fire Lanes Also, while a seal coat treatment may be used on the impermeable fire land, traditional seal coat treatments **shall not** be used on permeable pavement. Low Impact Development Best Management Practice Design Handbook # PERMEABLE PAVEMENT BMP FACT SHEET ### Setbacks Always consult your geotechnical engineer for site specific recommendations regarding setbacks for permeable pavement. Recommended setbacks are needed to protect buildings, walls, onsite wells, streams and tanks. Figure 2: Permeable Pavement Setback Requirements A minimum vertical separation of 10 feet is required from the bottom of the reservoir layer to the historic high groundwater mark, see Figure 2. A minimum vertical separation of 5 feet is required from the bottom of the reservoir layer to any impermeable layer in the soil. If the historic high groundwater mark is less than 10 feet below the reservoir layer section, or less than 5 feet from an impermeable layer, the infiltration design is not feasible. ### **Design and Sizing Criteria** To ensure that the pavement structural section
is not compromised, a 24-hour drawdown time is utilized for this BMP instead of the longer drawdown time used for most volume based BMPs. # PERMEABLE PAVEMENT BMP FACT SHEET ### **Reservoir Layer Considerations** Even with proper maintenance, sediment will begin to clog the soil below the permeable pavement. Since the soil cannot be scarified or replaced, this will result in slower infiltration rates over the life of the permeable pavement. Therefore, the reservoir layer is limited to a maximum of 12 inches in depth to ensure that over the life of the BMP, the reservoir layer will drain in an adequate time. **Note**: All permeable pavement BMP installations (not including Permeable Pavement as a source control BMP i.e. a self-retaining area) must be tested by the geotechnical engineer to ensure that the soils drain at a minimum allowable rate to ensure drainage.. See the Infiltration Testing Section of this manual for specific details for the required testing and applied factors of safety. ### **Sloping Permeable Pavement** Ideally permeable pavement would be level, however most sites will have a mild slope. If the tributary drainage area is too steep, the water may be flowing too fast when it approaches the permeable pavement, which may cause water to pass over the pavement instead of percolating and entering the reservoir layer. If the maximum slopes shown in Table 1 are complied with, it should address these concerns. Table 1: Design Parameters for Permeable Pavement | Design Parameter | Permeable Pavement | |-------------------------------------|--------------------| | Maximum slope of permeable pavement | 3% | | Maximum contributing area slope | 5% | Regardless of the slope of the pavement surface design, the bottom of the reservoir layers **shall be flat and level** as shown in Figure 3. The design shown ensures that the water quality volume will be contained in the reservoir layer. A terraced design utilizing non-permeable check dams may be a useful option when the depth of gravel becomes too great as shown in Figure 3. Figure 3: Sloped Cross Sections for Permeable Pavement Figure 4: Permeable Pavement with Non-permeable Check Dams In Figure 4, the bottom of the gravel reservoir layer is incorrectly sloped parallel to the pavement surface. Water would only be allowed to pond up to the lowest point of the BMP. Additional flows would simply discharge from the pavement. Since only a portion of the gravel layer can store water, this design would result in insufficient capacity. This is not acceptable. Figure 5: Incorrect Sloping of Permeable Pavement To assure that the subgrade will empty within the 24 hour drawdown time, it is important that the maximum depth of 12 inches for the reservoir layer discussed in the design procedure is not exceeded. The value should be measured from the lowest elevation of the slope (Figure 4). ### **Minimum Surface Area** The minimum surface area required, A_S , is calculated by dividing the water quality volume, V_{BMP} , by the depth of water stored in the reservoir layer. The depth of water is found by multiplying the void ratio of the reservoir aggregate by the depth of the layer, b_{TH} . The void ratio of the reservoir aggregate is typically 40%; the maximum reservoir layer depth is 12". ### **Sediment Control** A pretreatment BMP should be used for sediment control. This pretreatment BMP will reduce the amount of sediment that enters the system and reduce clogging. The pretreatment BMP will also help to spread runoff flows, which allows the system to infiltrate more evenly. The pretreatment BMP must discharge to the surface of the pavement and not the subgrade. Grass swales may also be used as part of a treatment train with permeable pavements. ### **Liners and Filter Fabric** Always consult your geotechnical engineer for site specific recommendations regarding liners and filter fabrics. Filter fabric may be used around the edges of the permeable pavement; this will help keep fine sediments from entering the system. Unless recommended for the site, impermeable liners are not to be used below the subdrain gravel layer. ### Overflow An overflow route is needed in the permeable pavement design to bypass storm flows larger than the V_{BMP} or in the event of clogging. Overflow systems must connect to an acceptable discharge point such as a downstream conveyance system. ### **Roof Runoff** Permeable pavement can be used to treat roof runoff. However, the runoff cannot be discharged beneath the surface of the pavement directly into the subgrade, as shown in Figure 6. Instead the pipe should empty on the surface of the permeable pavement as shown in Figure 7. A filter on the drainpipe should be used to help reduce the amount of sediment that enters the permeable pavement. Figure 6: Incorrect Roof Drainage Figure 7: Correct Roof Runoff Drainage # PERMEABLE PAVEMENT BMP FACT SHEET ### Infiltration Refer to the Infiltration Testing Section (Appendix A) in this manual for recommendations on testing for this BMP. ### **Pavement Section** The cross section necessary for infiltration design of permeable pavement includes: The thickness of the layers of permeable pavement, sand and bedding layers depends on whether it is permeable modular block or pervious pavement. A licensed geotechnical or civil engineer is required to determine the thickness of these Figure 8: Infiltration Cross Section upper layers appropriate for the pavement type and expected traffic loads. • A 12" maximum reservoir layer consisting of AASHTO #57 gravel vibrated in place or equivalent with a minimum of 40% void ratio. ### Inspection and Maintenance Schedule – Modular Block | Schedule | Activity | |--|---| | Ongoing | Keep adjacent landscape areas maintained. Remove clippings from landscape maintenance activities. Remove trash and debris | | Utility Trenching and other pavement repairs | Remove and reset modular blocks, structural section and reservoir layer as needed. Replace damaged blocks in-kind. Do not pave repaired areas with impermeable surfaces. | | After storm events | Inspect areas for ponding | | 2-3 times per year | Sweep to reduce the chance of clogging | | As needed | Sand between pavers may need to be replaced if infiltration capacity is lost | ### Inspection and Maintenance Schedule –Pervious Concrete/Asphalt | Schedule | Activity | |--|---| | Ongoing | Keep adjacent landscape areas maintained. Remove clippings
from landscape maintenance activities. Remove trash and debris | | Utility Trenching other pavement repairs | Replace structural section and reservoir layer in kind. Re-pave using pervious concrete/asphalt. Do not pave repaired areas with impermeable surfaces. | | After storm events | Inspect areas for ponding | | 2-3 times per year | Vacuum the permeable pavement to reduce the chance of clogging | | As needed | Remove and replace damaged or destroyed permeable
pavement | ### **Design Procedure Permeable Pavement** - 1. Enter the Tributary Area, A_T . - 2. Enter the Design Volume, V_{BMP}, determined from Section 2.1 of this Handbook. - 3. Enter the reservoir layer depth, b_{TH} for the proposed permeable pavement. The reservoir layer maximum depth is 12 inches. - 4. Calculate the Minimum Surface Area, A_S, required. $$A_{S}(ft) = \frac{V_{BMP} (ft^{3})}{(0.4 \times b_{TH} (in))/12(in/ft)}$$ Where, the porosity of the gravel in the reservoir layer is assumed to be 40%. - 5. Enter the proposed surface area and ensure that this is equal to or greater than the minimum surface area required. - 6. Enter the dimensions, per the geotechnical engineer's recommendations, for the pavement cross section. The cross section includes a pavement layer, usually a sand layer and a permeable bedding layer. Then add this to the maximum thickness of the reservoir layer to find the total thickness of the BMP. - 7. Enter the slope of the top of the permeable pavement. The maximum slope is 3%. - 8. Enter whether sediment control was provided. - 9. Enter whether the geotechnical approach is attached. - 10. Describe the surfaces surrounding the permeable pavement. It is preferred that a vegetation buffer is used around the permeable pavement. - 11. Check to ensure that vertical setbacks are met. There should be a minimum of 10 feet between the bottom of the BMP and the top of the high groundwater table, and a minimum of 5 feet between the reservoir layer the top of the impermeable layer. ### **Reference Materials Used to Develop this Fact Sheet:** Adams, Michelle C. "Porous Asphalt Pavement with Recharge Beds: 20 Years and Still Working." <u>Stormwater Magazine</u> May-June 2003. Atlanta Regional Commission, et. al. <u>Georgia Stormwater Management Manual.</u> 1st Edition. Vol. 2. Atlanta, 2001. 3 vols. Bean, E. Z., et al. "Study on the Surface Infiltration Rate of Permeable Pavements." <u>Water and Environment Specialty Conference of the Canadian Society for Civil Engineering.</u> Saskatoon, 2004. 1-10. California Department of Transportation. <u>CalTrans Standard Plans</u>. 15 September 2005. May 2010 http://www.dot.ca.gov/hq/esc/oe/project_plans/HTM/stdplns-met-new99.htm. Camp Dresser and McKee Inc.; Larry Walker Associates. <u>California Stormwater Best Management Practice
Handbook for New Development and Redevelopment.</u> California Stormwater Quality Association (CASQA), 2004. Colorado Ready Mixed Concrete Association (CRMCA). "Specifier's Guide for Pervious Concrete Pavement Design, Version 1.2." 2010. County of Los Angeles Public Works. <u>Stormwater Best Management Practice Design and Maintenance Manual.</u> Los Angeles, 2009. Program, Ventura Countywide Stormwater Quality Management. <u>Technical Guidance Manual for Stormwater Quality Control Measures.</u> Ventura, 2002. Sacramento Stormwater Quality Partnership and the City of Roseville. <u>Stormwater Quality Design Manual for the Sacramento and South Placer Regions.</u> County of Sacramento, 2007. Taylor, Chuck. "Advanced Pavement Technology." Riverside, 2008. Tennis, Paul D., Michael L. Leming and David J. Akers. <u>Pervious Concrete Pavements</u>. Silver Spring: Portland Cement Association and National Ready Mixed Concrete Association, 2004. Urban Drainage and Flood Control District. <u>Urban Storm Drainage Criteria Manual Volume</u> 3 - Best Management Practices. Vol. 3. Denver, 2008. 3 vols. Urbonas, Ben R. <u>Stormwater Sand Filter Sizing and Design: A Unit Operations Approach.</u> Denver: Urban Drainage and Flood Control District, 2002.