# **Appendices**

# Appendix G Solana Torrance Preliminary Drainage Study

# **Appendices**

This page intentionally left blank.

# Solana Torrance Preliminary Drainage Study

S/W Corner of Hawthorne Boulevard & Via Valmonte Torrance, California 90505



October 09, 2018

**Prepared for** 



Prepared by



Expiration: 03/31/20

# **ATTESTATION**

This report has been prepared by, and under the direction of, the undersigned, a duly Registered Civil Engineer in the State of California. Except as noted, the undersigned attests to the technical information contained herein, and has judged to be acceptable the qualifications of any technical specialists providing engineering data for this report, upon which findings, conclusions, and recommendations are based.

James H. Kawamura, P.E.

Registered Civil Engineer No. C30560

Exp. 3/31/20

## **TABLE OF CONTENTS**

| Section 1 | 1 - Purpose and Scope                                                | 1  |
|-----------|----------------------------------------------------------------------|----|
| Section 2 | 2 - Project Information                                              | 2  |
|           | Project Description                                                  |    |
| 2.2       | Hydrologic Setting                                                   | 4  |
| 2.2.      | 1 Watershed                                                          | 4  |
| 2.2.      | 2 Existing Topography, Drainage Patterns, and Facilities (Narrative) | 4  |
| 2.2.      | 3 Adjacent Land Use                                                  | 5  |
| 2.2.      | 4 Soil Conditions                                                    | 5  |
| 2.2.      | 5 Downstream Conditions                                              | 6  |
| 2.2.      | r                                                                    |    |
| 2.3       | Proposed Runoff Management Facilities                                | 6  |
| Section 3 | 3 - Design Criteria and Methodology                                  | 8  |
| 3.1       | Design Criteria                                                      | 8  |
| 3.1.      | 1 Drainage Design Criteria                                           | 8  |
| 3.1.      | 2 Flood Peak Attenuation                                             | 8  |
|           | Methodology                                                          |    |
| 3.2.      | 1 Runoff Calculation Method: Peak Flow                               | 8  |
| Section 4 | 4 - Hydrology and Drainage Analysis                                  | 10 |
| 4.1       | Summary of Drainage Delineation                                      | 10 |
| 4.2       | Summary of Results                                                   | 11 |
| 4.3       | Conclusion                                                           | 14 |

# **APPENDIX**

City Master Drainage Plan

50-year 24-Hour Isohyet Map

Zoning Classification Map

Percolation Test Portion of Soils Report

50-Year Proposed Hydrographs & CSV Text Files for Q Allowable Analysis (3 subareas)

Q Allowable Detention CMP Size & Infiltration Calculations

50-year Existing & Proposed Hydrographs (Multiple Subareas)

85<sup>th</sup> Percentile 24-hr Rainfall Isohyetal Map

LID Hydrographs & CMP Size & Infiltration Calculations

Existing Conditions Hydrology Map

Proposed Conditions Hydrology Map

# Section 1 - Purpose and Scope

This Drainage Study presents an analysis of the hydrologic effects that may be associated with the development of the *Solana* mixed-use project. The study details the general project characteristics, the design, criteria, and methodology applied to the analysis of the project. It evaluates the hydrologic effect of the project on local water resources in terms of both water quantity and water quality. The report provides a design analysis for the drainage facilities proposed as part of the project.

The plans and specifications in the Drainage Study are not for construction purposes; the contractor shall refer to final approved construction documents for plans and specifications. This Hydrology Study fulfills the requirements of the Los Angeles County Hydrology Manual (January 2006).

# Section 2 - Project Information

# 2.1 Project Description

Solana Torrance is a proposed multi-family residential development (hereinafter referred to as *Project*) that will be situated within a 24.68-acre parcel of vacant hillside land, of which only 5.76 acres of previously disturbed land (from a former diatomaceous earth quarry operation) will be utilized. The balance of the site (18.92 acres) will be preserved as natural open space. Figure 1 illustrates the location of the *Project* site relative to other districts that comprise the City of Torrance. Figure 2 provides an aerial view of the *Project* site and surrounding environs.

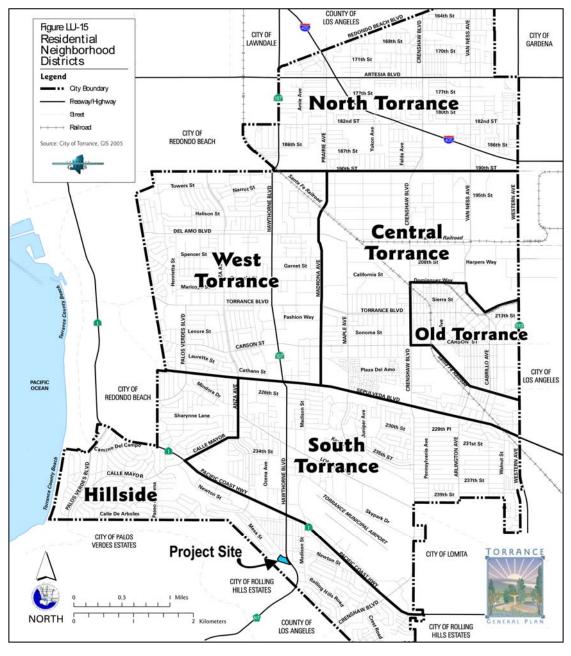



Figure 1 - Project Location Map



Figure 2 – Aerial View of Project Site

The *Project* will consist of 248 multi-family dwelling units; 546 parking spaces including surface parking and subterranean parking structures; a 5,000 square-foot community room/fitness center; and 96,385 square feet of landscaped areas. Site access will be via a right-in/right-out only driveway on Hawthorne Boulevard and a right turn "exit-only" driveway on Via Valmonte (right-out only). Figure 3 illustrates the *Project* Architect's conceptual site plan.



Figure 3 – Solana Torrance Site Plan

## 2.2 Hydrologic Setting

This section summarizes the project's size and location in the context of the larger watershed perspective, topography, soil and vegetation conditions, percent impervious area, natural and infrastructure drainage features, and other relevant hydrologic and environmental factors to be protected specific to the project area's watershed.

#### 2.2.1 Watershed

The proposed project is located within the area tributary to the Walteria Sump and is located in the southern portion of the Los Angeles Basin. The Walteria Sump is maintained by Los Angeles county Department of Public Works and is part of 2,282 acre watershed. Over 90% of this watershed is developed, with approximately 61% of the surfaces impervious. The stormwater in the Walteria Sump either evaporates, percolates into the ground, or is pumped to Machado/Harbor Lakes.

## 2.2.2 Existing Topography, Drainage Patterns, and Facilities (Narrative)

The existing site is a vacant lot and is zoned Light Agricultural (A1) per the City of Torrance Zoning Information Map (See Appendix). The existing site has also been altered by previous diatomite and diatomaceous soil mining activities. Although the total project site area is 24.68 acres, only the 12.13 acres that have drainage conditions that are altered by the proposed project (inclusive of the 5.76 acre multi-family development area and the 6.37 acre upstream tributary drainage area) were analyzed for this report. The existing site's topography within the area influenced by the proposed project (12.13 acres out of 24.68 acres) generally slopes toward the center of the site which is a topographic low. The area of the topographic low was previously mined to approximately elevation 110 feet and later backfilled to create two level pads, the lower pad at approximately elevation 190 to elevation 220 feet and the upper pad at approximately elevation 235 feet to elevation 245 feet. Due to the fact that the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps are not updated regularly, the area which was filled in is shown as a special flood hazard area - Zone A, which is subject to inundation by the 1% annual chance of flood. An application for a Letter of Map Revision (LOMR) is being submitted to FEMA to remove the area from Zone A so the entire site is within Zone X, which is outside the 0.2% annual chance floodplain.

Existing slopes bounding the proposed development on the northwest and east to northeast are considered graded slopes (from past mining operations).

The existing site condition has a low point near the center which the majority of runoff drains towards. Due to this depressed condition and no site connections to an existing storm drain system, the runoff ponds on the existing surface until evaporation and infiltration occurs. The easterly section of the site that runs along Hawthorne Boulevard, and a portion of the northern section of the site flows towards the curb face of Via Valmonte where the runoff directly flows to an existing catch basin located on the corner curb of Via Valmonte. The flow discharges into the 18-inch storm drain which then routes the water through the public storm drain system. The southern portion of the site drains towards the curb face on Hawthorne Boulevard. The runoff then flows in Hawthorne Boulevard until it is collected in an existing catch basins approximately 440 feet north of the proposed southeast property line. From the catch basin the runoff is routed

through the existing public storm drain system. Both storm water networks ultimately discharge into the Walteria Sump.

The City of Torrance Department of Public Works provided the Master Drainage Plan that describes the drainage area and shows the existing storm drain system for the project area. According to the Master Drainage Plan, the 50 acres designated as 070201 (which includes the Solana site) was intended to be served by the drain at node 070201, which is shown to enter a county storm drain (SD-1047). This County drain flows to the north along Hawthorne, east on Newton, and north on Park Street. A short time after the Master Plan was written, the County designed and constructed a new drain to serve this site (SD-1065) and take the flows north on Hawthorne and then northwest on Newton. See appendix for Master Drainage Plan.

#### 2.2.3 Adjacent Land Use

The proposed project is bounded by numerous residential buildings and Via Valmonte on the north and west, Hawthorne Boulevard on the east, and excavated hillside areas towards the south and west side.

#### 2.2.4 Soil Conditions

According to the Geotechnical Report by Geocon West, Inc. dated June 2017 the site is underlain by artificial fill, overburden soil, Pleistocene age marine sand, San Pedro Sand and Lomita Marl, and Miocene age sedimentary bedrock of the Monterey Formation. The artificial fill was encountered to the depths between 2 and 74 feet below the existing ground surface. The fill consists of light to dark brown and yellowish brown sand, silty sand, and clayey sand, with lesser amounts of gravelly sand, sandy silt and clay. The overburden soil was encountered within the upper five feet in boring B1. The overburden soil was derived from in-situ weathering of the underlying sedimentary bedrock and consists of light gray sandy silt with varied amounts of gravel and roots. They are underlain by the sedimentary bedrock of the Monterey Formation. Late Pleistocene age marine sand was encountered below the fill soils to a maximum depth of 15 feet. The marine sand consists of light brown to brown and reddish brown, fine to mediumgrained sand, silty sand and sandy silt with lenses of coarse-grained sand and rounded gravel. Based on the percolation test borings, the maximum infiltration rate at the depth of the proposed infiltration systems were found to be 93.7 in/hr. To ensure long term operation of the infiltration systems, a conservative approach to the drawdown time used for the infiltration systems was established by applying a reduction factor of 5.2 and a safety factor of 3 to the tested infiltration rate, resulting in an engineering design infiltration rate of 6.01 in/hr. Test results can be found on the Appendix section of the report.

The site is not located within an area of known ground subsidence. There is no large-scale extraction of groundwater, gas, oil, or geothermal energy is occurring or planned at the site or in the general site vicinity. There is no reported data for the historically highest groundwater level in the immediate area and groundwater is not anticipated to adversely impact the proposed development. Groundwater was not encountered in the borings drilled to the maximum depth of 120.5 feet beneath the existing ground surface within the proposed building area. The soils are considered corrosive with respect to corrosion of buried ferrous metals on site.

#### 2.2.5 Downstream Conditions

This section summarizes the existing downstream conditions and any conditions of concern with respect to erosion and/or sedimentation due to the proposed project.

The stormwater will be collected by an existing City catch basin and lateral and an existing County of Los Angeles maintained storm drain system. The proposed condition will be connecting to the County line on Via Valmonte at an allowable flow rate implemented by the County. The County storm drain network discharges into the Walteria Sump.

# 2.2.6 Impervious Cover

The proposed project will have a net increase in total impervious area compared to the existing condition of the site. Currently, the project site consists of a vacant lot with a total imperviousness percentage of 1% and perviousness of 99%. The proposed mixed-use project increases the site's overall total imperviousness percentage to 45% and decreases perviousness to 55%.

# 2.3 Proposed Runoff Management Facilities

The proposed facilities managing runoff from the site include:

Roof drains, area drains, and catch basins directed to underground retention tanks for infiltration. Overflow is directed by the private storm drain to the public storm drain system in Hawthorne Boulevard. Detention is needed to cap maximum flows to 1.01 cfs/acre and meet the County's Q allowable restriction. On-site runoff is collected throughout the site by a private storm drain network and discharged to the catch basin off of Via Valmonte and Hawthorne Boulevard. Stormwater treatment controls will pre-treat the first flush from the project site before the runoff reaches the CMP infiltration tanks. CDS Units will be used for pre-treatment prior to infiltration. Proposed CMP infiltration tanks will be placed in three different areas (Tank 1 in subarea 1, Tank 2 in subarea 2, and tank 3 in subarea 3) on the site to meet Low-impact Development (LID) requirements. Infiltration is the preferred method for stormwater management per the County of Los Angeles LID Standards Manual. The use of infiltration helps to minimize the project's stormwater impact on the existing municipal storm drain system by reducing the quantity and increasing the quality of runoff. Using the design infiltration rate of 6.01 inches per hour, the times for the tanks at capacity to completely drawdown was calculated to be from 11.5 to 11.6 hours. The LID CMP infiltration calculations can be found in the Appendix section of this report. The site's storm drain system that discharges to the catch basin located in Via Valmonte will be limited to 1.01 cfs/acre to meet the Q allowable requirements of the County. This

will be accomplished by sizing the project's connection pipe to the catch basin to only allow flows up to a maximum flow rate of 12.25 cfs, which is the Q allowable. The difference in volume from flow rates between the Q allowable and the project's 50-year storm event will be collected and infiltrated by three CMPs (Tank A in subarea 1, Tank B

in subarea 2, and tank C in subarea 3) used for storm events in excess of the Q allowable. Weir structures or other type of diverters will be used to direct detention flows to these CMPs.

# Section 3 - Design Criteria and Methodology

This section summarizes the design criteria and methodology applied during the drainage analysis of the project site. The design criteria and methodology follows the County of Los Angeles Drainage Design Manual (January 2006) and County of Los Angeles Low-impact Development (LID) Standards Manual (LID January 2009).

# 3.1 Design Criteria

# 3.1.1 Drainage Design Criteria

Local storm drain facilities (street gutters, curb inlets) have been designed to conform to standards found in the County of Los Angeles Drainage Design Manual.

#### 3.1.2 Flood Peak Attenuation

Land development projects with a new connection to county maintained facilities need to be analyzed to assure that the existing facility has the ability to accept any additional stormwater. For the proposed project a connection to a County maintained facility will be utilized to drain the site. The Los Angeles County Department of Public Works – Design Division – Hydraulic Analysis Unit provided the proposed project with an allowable discharge of 1.01 cfs per acre for the 50-year 24-hour storm event (see Appendix section).

### 3.2 Methodology

#### 3.2.1 Runoff Calculation Method: Peak Flow

Runoff calculations for this study were accomplished using the LACDPW Modified Rational Method. The LACDPW Modified Rational Method is a physically-based numerical method where runoff is assumed to be directly proportional to rainfall and area, less losses for infiltration and depression storage. Flows were computed based on the rational formula:

Q=CiA

Where... Q = Peak discharge (cfs);

C = runoff coefficient, based on land use and soil type;

i = Rainfall intensity (in/hr);A = watershed area (acre)

The runoff coefficient represents the ratio of rainfall that runs off the watershed versus the portion that infiltrates to the soil or is held in depression storage. The runoff coefficient is dependent on the land use coverage and soil type. The County of Los Angeles Drainage Design Manual methodology assumes hydrologic Soil Type 4 for all soils near the project site (see Isohyet Map in the Appendix section).

For a typical drainage study, rainfall intensity varies with the watershed time of concentration. The watershed time of concentration at any given point is defined as the time it would

theoretically take runoff to travel from the most upstream point in the watershed to a concentration point, as calculated by Hydrocalc software, provided by the County. Hydrocalc also generates a comma-separated values (csv) text file that contains inputs, outputs, and a detailed hydrograph table in an iterative process of every 0.2 minutes for the entire duration of the specified storm event.

Modified Rational Method calculations were accomplished using the Hydrocalc software provided by the County. A storm event of 50-years is used to perform the calculations as required by the City of Torrance. Peak discharges were computed for 50-year hypothetical storm return frequencies and can be seen in the Hydrology and Drainage Analysis section of this report. A set of peak discharges were computed for the existing and proposed conditions using 6 and 13 subareas, respectively, to better compare the two conditions. A set of peak discharges for the proposed condition utilizing 3 subareas was performed to better analyze flows exceeding the Q allowable restriction imposed by the county, and to determine how much storage would be needed to detain the volume from those flows higher than the restricted Q. As part of this process, the csv text file was generated for each of the 3 subareas to determine the time, duration, and flow rate that exceeds the Q allowable in order to determine the volume higher than the Q that would need to be detained. Data outputs from the csv text file are provided in 0.2 minute increments. Detention volumes were determined by subtracting the subarea's Q allowable from each time interval's peak flow rate in exceedance of the subarea's Q allowable, multiplying the result by 12 seconds to determine the volume of the exceedance, and then totaling the sum of each volume exceedance. The detention tanks are required to detain the difference in volume between the 50-year peak storm and the Q allowable. The portion of the csv text file showing the Q allowable exceedance data outputs is found in the Appendix section

# Section 4 - Hydrology and Drainage Analysis

This section summarizes the quantitative hydrologic analysis of the existing and proposed conditions of the site.

# 4.1 Summary of Drainage Delineation

The property is currently a vacant lot. Although the total project site area is 24.68 acres, only the 12.13 acres that have drainage conditions that are altered by the proposed project (inclusive of the 5.76 acre multi-family development area and the 6.37 acre upstream tributary drainage area) were analyzed for this report. To further analyze the existing conditions, the area that will be effected by the proposed project was broken into five subareas, E1, E2, E3, E4, E5, and E6. Area E1 drains towards a catch basin on Via Valmonte (Catch Basin #1). Areas E2, E3, and E4 sheet flow towards a low point on the site where the runoff is retained until evaporation and infiltration occur. Area E5 drains to the easterly towards Hawthorne Boulevard and then flows in the street towards catch basins #1 and #2 at Hawthorne Boulevard and Via Valmonte. From catch basins #1 and #2, the runoff travels through the storm drain line in the county's storm drain system. Area E6 and the southern portion of the site sheet flow toward Hawthorne Boulevard where the runoff is collected in catch basin #2. An Existing Condition Hydrology Map was created and can be found in the Appendix section of this report. The map shows the existing subareas that will be disturbed due to the proposed project and quantifies the peak discharge during a 50-Year 24-Hour storm event.

Although the total project site area is 24.68 acres, only the 12.13 acres that have drainage conditions that are altered by the proposed project (inclusive of the 5.76 acre multi-family development area and the 6.37 acre upstream tributary drainage area) were analyzed for this report. The drainage conditions influenced by the proposed project have a total area of 12.13 acres and generally drains north towards Via Valmonte. The project proposes to upsize the existing City storm drain within Via Valmonte from an 18-inch RCP to a 24-inch RCP storm drain, which then connects to the existing County's 30-inch storm drain. The existing 18 inch RCP is to be increased to a 24 inch RCP in order to handle 11.46 cfs (12.25 cfs minus the 0.79 cfs of existing site flows into Via Valmonte) of new flow from the proposed project that will be added to the existing 6 to 8 cfs currently flowing in Via Valmonte. To further analyze the proposed conditions, the site is broken into 12 subareas, 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C, 3D, 3E, and 4A. Area 1A will sheet flow untreated to Via Valmonte and then gutter flow towards catch basin #1 which is located on the southwest corner of Via Valmonte and Hawthorne Boulevard. Subareas 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C, 3D, and 3E are collected on-site by roof drains, area drains, and catch basins that tie into the onsite storm drain system which will direct the runoff to three CMP tanks (Tanks 1, 2, and 3) for infiltration of the first flush. During larger storm events, runoff exceeding the LID infiltration tank's capacity will bypass the treatment system and discharge through an outlet pipe, which has been restricted to the allowable flow rate pre-established by LACFCD to be 1.01 cfs/acre, into the proposed municipal catch basin in Via Valmonte. The difference in volume of flow rates between the Q allowable and the project's 50year storm event will be collected and infiltrated by three CMPs (Tanks A, B, and C) used for storm events in excess of the Q allowable. Weir structures or other type of diverters will be used to direct detention flows to these CMPs. The hydraulic grade line (HGL) will be determined in final design. To better analyze the size of the CMPs needed for both LID and to detain flows

over the Q allowable, the project area was divided into three subareas. Subarea 1 consists of subareas 1A through 1D. Subarea 2 consists of subareas 2A through 2C. Subarea 3 consists of subareas 3A through 3E. An area weighted average was used to determine the length and slope for each flow path in order to have more accurate data inputted into the HydroCalc software. The new municipal catch basin discharges to a proposed 24-inch storm drain that connects to an existing 30-inch County storm drain within Via Valmonte. The existing 30-inch County storm drain system travels east towards the intersection where it travels north on Hawthorne Boulevard and eventually discharges to the Walteria Sump. Subarea 4A sheet flows toward Hawthorne Boulevard into catch basins #1 and #2, mimicking the existing drainage patterns.

The proposed runoff from the site will be restricted to satisfy the allowable flow rate of 1.01 cfs per acre which was set by the County. Three underground infiltration tanks along with their associated aggregate filled trenches will be used for infiltration of the LID design storm (Tanks 1, 2, and 3) and three underground infiltration tanks along with their associated aggregate filled trenches will be used to hold the difference in volume over the Q allowable (Tanks A, B, and C). Flows over the LID design storm and under the Q allowable will bypass the tanks and discharge by a restricted 15-inch pipe (sized to the maximum allowable flow rate) to the existing County storm drain system. The outlet pipes at each subarea (subarea 1, 2 and 3) that connect to the onsite main are also sized to only allow flows under the Q allowable, as determined by that specific subarea's area. Each subarea has a weir/diverter that directs flows over the Q allowable to an infiltration tank (Tanks A, B, or C) sized to handle the volume difference between the Q allowable and the 50-year storm event. Similar to the existing conditions, a Proposed Condition Hydrology Map was created for each subarea and can be found in the Appendix section of this report. The map shows the proposed subareas that will be disturbed due to the proposed project and the peak discharge during a 50-Year 24-Hour storm event.

# 4.2 Summary of Results

The following table summarizes the results of the total peak runoff for existing conditions. The majority of the existing site flows to an on-site depression and ponds/percolates/evaporates.

|         | EXISTING CONDITIONS |                          |                          |                     |  |  |  |  |  |  |  |
|---------|---------------------|--------------------------|--------------------------|---------------------|--|--|--|--|--|--|--|
| Subarea | Area<br>(Acres)     | Proportion<br>Impervious | Rainfall Isohyet<br>(in) | 50 Year Storm (cfs) |  |  |  |  |  |  |  |
| E1      | 0.54                | 0.01                     | 5.40                     | 0.79                |  |  |  |  |  |  |  |
| E2      | 6.18                | 0.01                     | 5.40                     | 12.98               |  |  |  |  |  |  |  |
| E3      | 3.78                | 0.01                     | 5.40                     | 5.52                |  |  |  |  |  |  |  |
| E4      | 0.58                | 0.01                     | 5.40                     | 1.22                |  |  |  |  |  |  |  |
| E5      | 1.05                | 0.01                     | 5.40                     | 1.95                |  |  |  |  |  |  |  |
| E6      | 0.12                | 0.01                     | 5.40                     | 0.22                |  |  |  |  |  |  |  |

 $Q_{site}=18.5cfs$ 

Qvia valmonte=0.79cfs

 $Q_{Hawthorne} = 3.39cfs$ 

The following table summarizes the results of the total peak runoff for proposed conditions for comparison to the existing conditions.

|         |           | PROPOSED CONDITION       | ONS – BROKEN UP SU       | JBAREAS             |
|---------|-----------|--------------------------|--------------------------|---------------------|
| Subarea | Area (ac) | Proportion<br>Impervious | Rainfall Isohyet<br>(in) | 50 Year Storm (CFS) |
| 1A      | 0.54      | 0.01                     | 5.40                     | 1.32                |
| 1B      | 0.40      | 1.00                     | 5.40                     | 1.16                |
| 1C      | 0.77      | 1.00                     | 5.40                     | 2.23                |
| 1D      | 0.29      | 1.00                     | 5.40                     | 0.84                |
| 2A      | 6.18      | 0.01                     | 5.40                     | 15.15               |
| 2B      | 0.36      | 1.00                     | 5.40                     | 1.04                |
| 2C      | 0.60      | 1.00                     | 5.40                     | 1.74                |
| 3A      | 0.58      | 0.01                     | 5.40                     | 1.42                |
| 3B      | 0.49      | 1.00                     | 5.40                     | 1.42                |
| 3C      | 0.97      | 0.95                     | 5.40                     | 2.81                |
| 3D      | 0.51      | 1.00                     | 5.40                     | 1.48                |
| 3E      | 0.43      | 1.00                     | 5.40                     | 1.25                |
| 4A      | 0.12      | 0.01                     | 5.40                     | 0.26                |

Q<sub>site</sub>=12.25cfs (1.32cfs to sheet flow on Via Valmonte)

Q<sub>Hawthorne</sub>=1.51cfs

The following table summarizes the results of the total peak runoff for proposed conditions for the purpose of analyzing the volume needed to be detained in order to meet the Q allowable restriction. The time when the Q allowable starts to be exceeded and the duration of that exceedance are taken from the comma-separated values (csv) text file generated by HydroCalc. Data outputs from the csv text file are provided in 0.2 minute increments. Using the csv text files, detention volumes were determined by subtracting the subarea's Q allowable from each time interval's peak flow rate in exceedance of the subarea's Q allowable, multiplying the result by 12 seconds to determine the volume of the exceedance, and then totaling the sum of each volume exceedance. The portion of the csv text file showing the Q allowable exceedance data outputs is found in the Appendix section.

|         | PROPOSED CONDITIONS – Q ALLOWABLE DETENTION |                          |                             |                              |                           |                                                                  |                                                              |                                                                   |  |  |  |  |
|---------|---------------------------------------------|--------------------------|-----------------------------|------------------------------|---------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Subarea | Area<br>(ac)                                | Proportion<br>Impervious | Rainfall<br>Isohyet<br>(in) | 50<br>Year<br>Storm<br>(cfs) | "Q"<br>Allowable<br>(cfs) | Start of<br>when Q<br>Allowable<br>is being<br>exceeded<br>(min) | Duration<br>that "Q"<br>Allowable<br>is<br>exceeded<br>(min) | Detention<br>volume<br>needed to<br>meet "Q"<br>allowable<br>(cf) |  |  |  |  |
| 1       | 2                                           | 0.01                     | 5.40                        | 5.56                         | 2.02                      | 1146.6                                                           | 10.6                                                         | 1,119                                                             |  |  |  |  |
|         |                                             |                          |                             |                              |                           |                                                                  |                                                              | , -                                                               |  |  |  |  |
| 2       | 7.14                                        | 0.01                     | 5.40                        | 17.93                        | 7.211                     | 1149.0                                                           | 8.0                                                          | 2,983                                                             |  |  |  |  |
| 3       | 7.14<br>2.98                                | 0.01<br>0.01             | 5.40<br>5.40                | 17.93<br>8.35                | 7.211<br>3.01             | 1149.0<br>1146.2                                                 | 8.0<br>11.0                                                  |                                                                   |  |  |  |  |
| _       |                                             |                          |                             |                              |                           |                                                                  |                                                              | 2,983                                                             |  |  |  |  |

The following table summarizes the results of the required volume to be detained over Q, the volume over Q that can be detained by the infiltration systems (tank and trench), the tank dimensions, tank volume, trench dimensions, trench volume (void space is 40% of aggregate area), and drawdown analysis for the Q exceedance volume.

| Q EXC                               | Q EXCEEDANCE INFILTRATION SYSTEM (TANK & TRENCH) DRAWDOWN & STORAGE<br>CAPACITY |                                                            |                                     |                       |                                                 |                          |                                              |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------|--------------------------|----------------------------------------------|--|--|--|
| "Q" <u>Detention</u> Subarea (Tank) | Detention<br>volume<br>needed to<br>meet "Q"<br>allowable<br>(cf)               | Infiltration<br>system to<br>meet "Q"<br>Allowable<br>(cf) | CMP<br>Diameter &<br>Length<br>(ft) | CMP<br>Volume<br>(cf) | Trench<br>Width,<br>Length, &<br>Height<br>(ft) | Trench<br>Volume<br>(cf) | Full<br>Capacity<br>Drawdown<br>Time<br>(hr) |  |  |  |
| 1 (A)                               | 1,119                                                                           | 1,135                                                      | 6x24                                | 679                   | 10x28 x6.5                                      | 457                      | 8.10                                         |  |  |  |
| 2 (B)                               | 2,983                                                                           | 3,002                                                      | 8x40                                | 2,011                 | 12x44x8.5                                       | 991                      | 11.36                                        |  |  |  |
| 3 (C)                               | 1,716                                                                           | 1,724                                                      | 8x22                                | 1,106                 | 12x26x8.5                                       | 618                      | 11.04                                        |  |  |  |

The proposed conditions has a higher flow rate of 12.25 cfs (rate based on Q allowable restriction) and 1.51 cfs compared to the existing flow rate of 0.79 cfs and 3.39 cfs due to an increase of imperviousness, the proposed removal of the on-site ponding area, and the design of the private storm drain system. The proposed project will be connecting into the County's storm drain system at a flow rate that does not exceed the Q allowable flow rate established for the project by the County. The calculations indicate that each subarea's flow rate surpasses the Q allowable, and therefore detention of the volume during the Q allowable exceedance will be required. To meet the Q allowable, each subarea will restrict the outlet pipe to the private main and direct flows higher than the Q allowable into infiltration tanks sized to receive the detention volume, and prevent negative hydrological impacts to the site.

CMP tank #A, located at the Via Valmonte driveway on-site, is 6 feet in diameter and 24 feet long and sits within in an aggregate filled 10-foot wide by 28-foot long by 6.5 foot deep trench, and holds a volume of 1,135 cubic feet that draws down in 8.0 hours, which detains more than the required detention volume of 1,119 cubic feet. CMP tank #B, located westerly from the center of the site, is 8 feet in diameter and 40 feet long and sits within in an aggregate filled 12-foot wide by 44-foot long by 8.5 foot deep trench, and holds a volume of 3,002 cubic feet that draws down in 11.36 hours, which detains more than the required detention volume of 2,983 cubic feet. CMP tank #C, located on-site west of the driveway from Hawthorne Boulevard, is 8 feet in diameter and 22 feet long and sits within in an aggregate filled 12-foot wide by 26-foot long by 8.5 foot deep trench, and holds a volume of 1,716 cubic feet that draws down in 11.04 hours, which is above the detention volume of 1,724 cubic feet. All the tanks are sufficient to hold the required detention volume of stormwater in order to reach the allowable flow rate to be discharged.

The following table summarizes the results of the required first flush volume to be infiltrated, the volume detained by the infiltration systems (tank and trench), the tank dimensions, tank volume, trench dimensions, trench volume, and drawdown analysis for the LID first flush volume.

|   | LID INFILTRATION SYSTEMS (TANK & TRENCH) DRAWDOWN & STORAGE CAPACITY |                                     |                                       |                                     |                       |                                                 |                          |                                              |  |  |  |
|---|----------------------------------------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------|--------------------------|----------------------------------------------|--|--|--|
|   | LID<br>Subarea<br>(Tank)                                             | LID<br>Mitigation<br>Volume<br>(cf) | LID Infiltration System Capacity (cf) | CMP<br>Diameter &<br>Length<br>(ft) | CMP<br>Volume<br>(cf) | Trench<br>Width,<br>Length, &<br>Height<br>(ft) | Trench<br>Volume<br>(cf) | Full<br>Capacity<br>Drawdown<br>Time<br>(hr) |  |  |  |
| Ī | 1 (1)                                                                | 4,333                               | 4,350                                 | 8x59                                | 2,966                 | 12x63x8.5                                       | 1,384                    | 11.5                                         |  |  |  |
| ĺ | 2 (2)                                                                | 6,030                               | 6,550                                 | 8x90                                | 4,524                 | 12x94x8.5                                       | 2,026                    | 11.6                                         |  |  |  |
| ſ | 3 (3)                                                                | 6,821                               | 6,833                                 | 8x94                                | 4,725                 | 12x98x8.5                                       | 2,108                    | 11.61                                        |  |  |  |

LID CMP tank #1, located near the Via Valmonte driveway on-site, is 8 feet in diameter and 59 feet long and sits within in an aggregate filled 12-foot wide by 63-foot long by 8.5 foot deep trench, and holds a volume of 4,350 cf that draws down in 11.5 hours, which detains more than the required detention volume of 4,333 cubic feet.

LID CMP tank #2, located at the southwest portion of the site, is 8 feet in diameter and 90 feet long and sits within in an aggregate filled 12-foot wide by 94-foot long by 8.5 foot deep trench, and holds a volume of 6,550 cubic feet that draws down in 11.6 hours, which detains more than the required detention volume of 6,030 cubic feet.

LID CMP tank #3, located at the southeast portion of the site, is 8 feet in diameter and 94 feet long and sits within in an aggregate filled 12-foot wide by 98-foot long by 8.5 foot deep trench, and holds a volume of 6,833 cubic feet that draws down in 11.6 hours, which detains more than the required detention volume of 6,821 cubic feet. All the tanks are sufficient to hold the required mitigation volume of stormwater to meet LID requirements.

#### 4.3 Conclusion

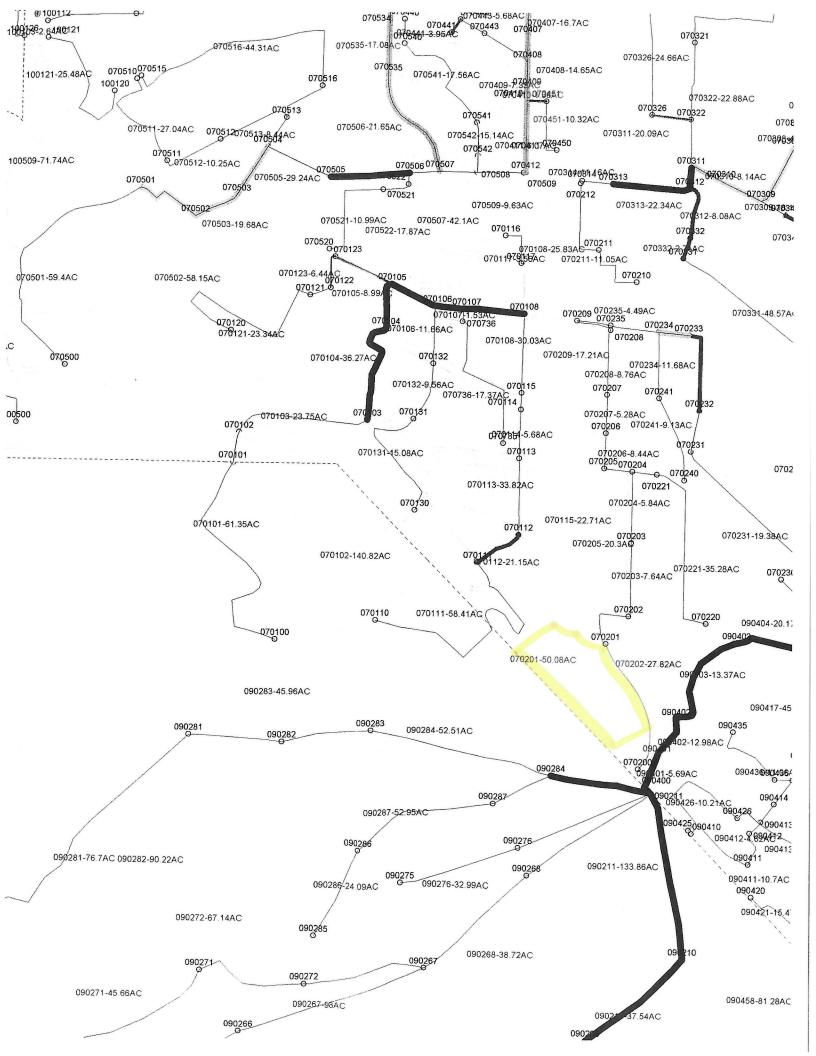
As shown in the Summary of Results section, the proposed development will have a net increase in stormwater runoff. A proposed 24-inch RCP pipe will replace the existing 18-inch RCP storm drain line and connect to the County's storm drain system to allow for an additional 11.46 cfs from the proposed project. An allowable flow rate of 12.25 cfs is required from the County for the proposed Project to connect to the County storm drain system. Due to the allowable Q implemented by the County, the pipe connection from the site will be restricted to a certain flow rate and the volume in excess of that flow was calculated for detention on-site via CMP tanks and associated trench. These systems will collect stormwater runoff that exceeds the Q allowable and are sufficient to hold the required volume of stormwater before the runoff is allowed to bypass the system and to be discharged into the County storm drain system. At around the 19<sup>th</sup> hour of a 4 day storm, which is at the peak of the storm, the infiltration systems need to hold 5,818 cubic feet. According to the calculations, it shows that these systems will hold 5,861 cubic feet of volume meeting the required storage that needs to be held at the peak of a 50-year (4 day) storm event. This is a preliminary report and final designs establishing compliance with this preliminary report will be provided during final engineering design of the project for review and approval by the City of Torrance.

# **APPENDIX**

# 1.3.5 Region 5 West Torrance

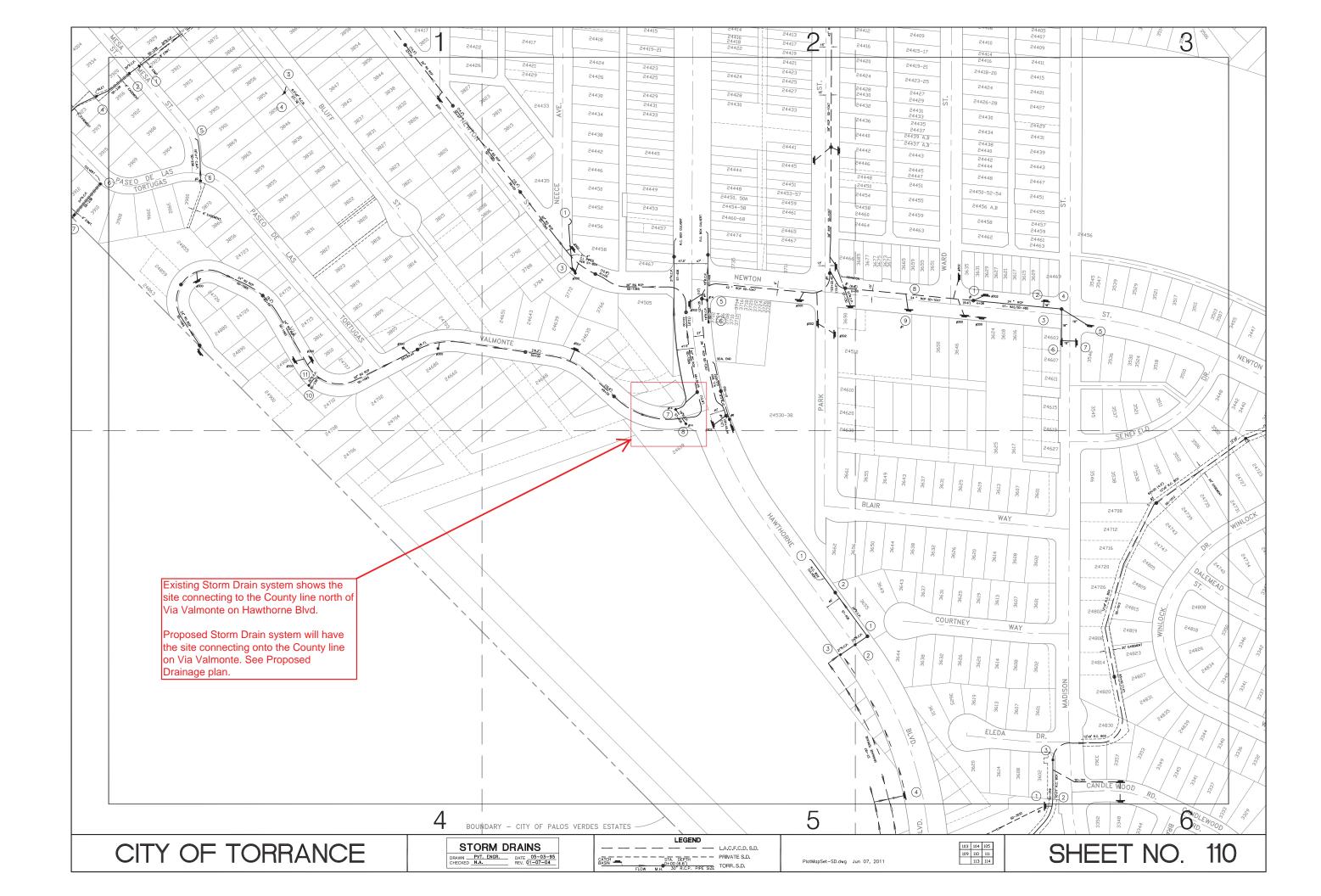
Region 5, on the west side of Torrance, has the highest concentration of drainage sumps in the City, which correlates with the rolling terrain that varies from 60 to 120 feet in elevation. Much of the runoff from this region joins with an even larger basin, primarily in the City of Redondo Beach, but including parts of Hermosa and Manhattan Beach, to form the Herondo Drainage basin which flows west under 190th and Anita Streets and into the Santa Monica Bay. The area is mostly residential and commercial with several regional shopping centers along Hawthorne Boulevard. The Entradero Park and Henrietta Detention Basins, drain northward to the Herondo drainage system. The Susana/Doris Way Detention Basins and pump station discharges through Redondo Beach and into the Santa Monica Bay. The Bishop-Montgomery, Ocean and Del Amo Retention Basins drain primarily by percolation. The El Dorado Detention basin discharge into the Madrona Vernal Marsh Nature Preserve, which includes a pump station that discharges southward into Basin 7. The Amie detention basin discharges by force main and gravity drain into region 4 and leaves the City at Torrance and Western Boulevards.

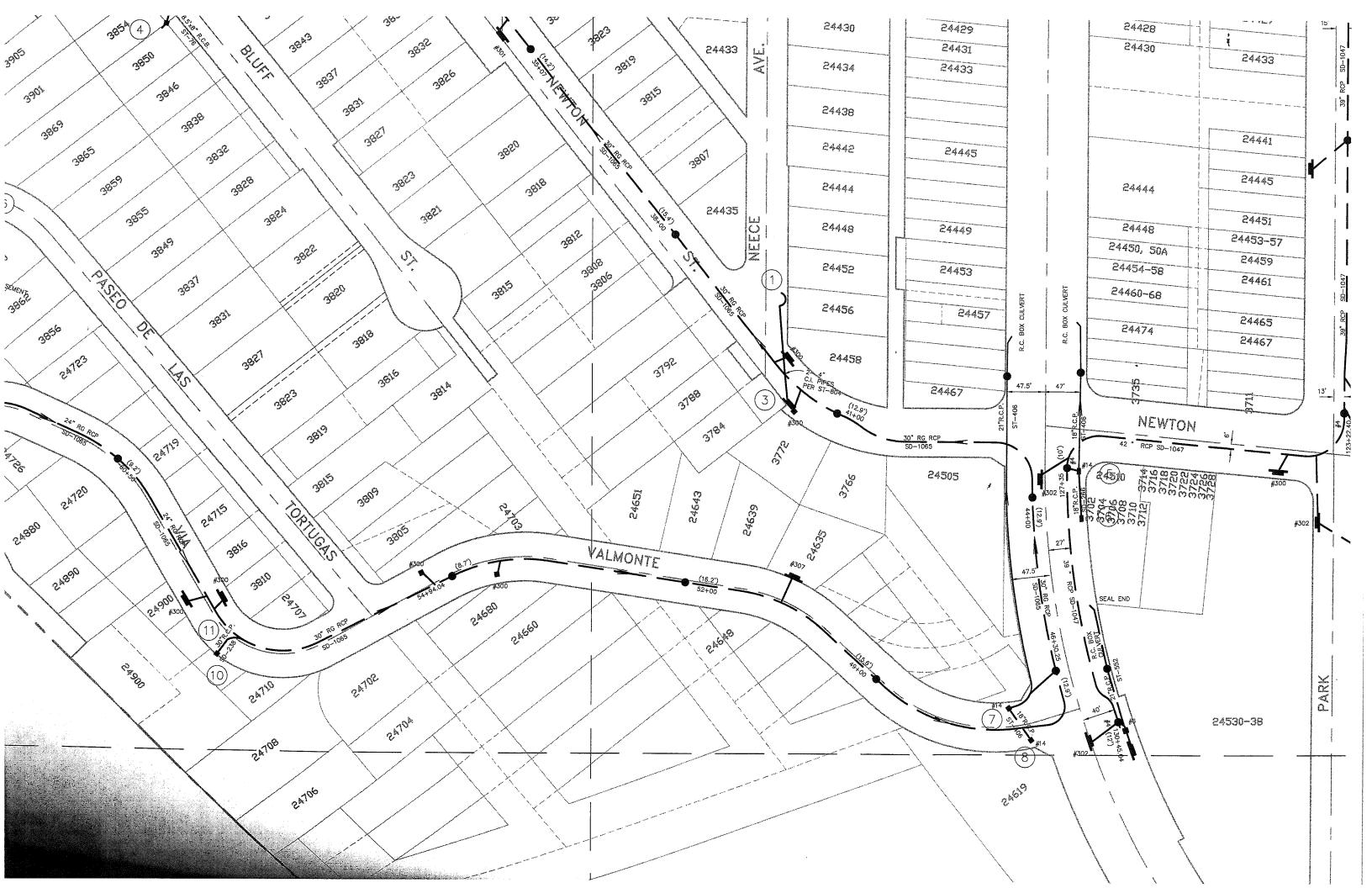
# 1.3.6 Region 6 East Torrance

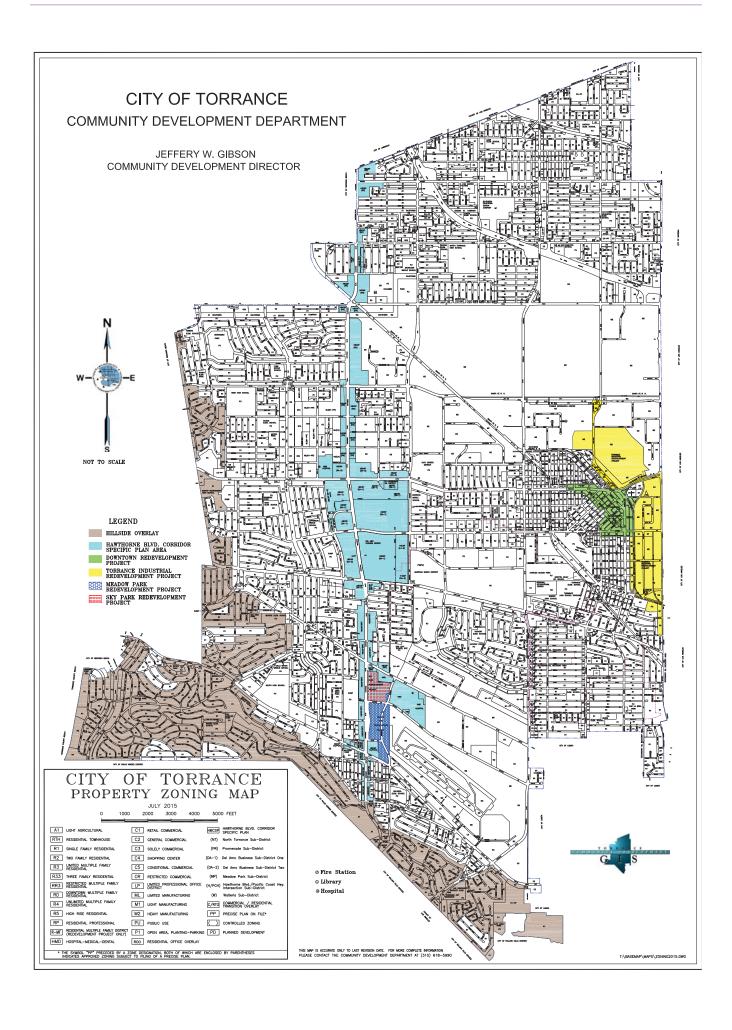

Region 6 drains the small residential and light industrial area around Sepulveda Boulevard and Western Avenue and slopes to the east where it eventually enters the Harbor Lakes area.

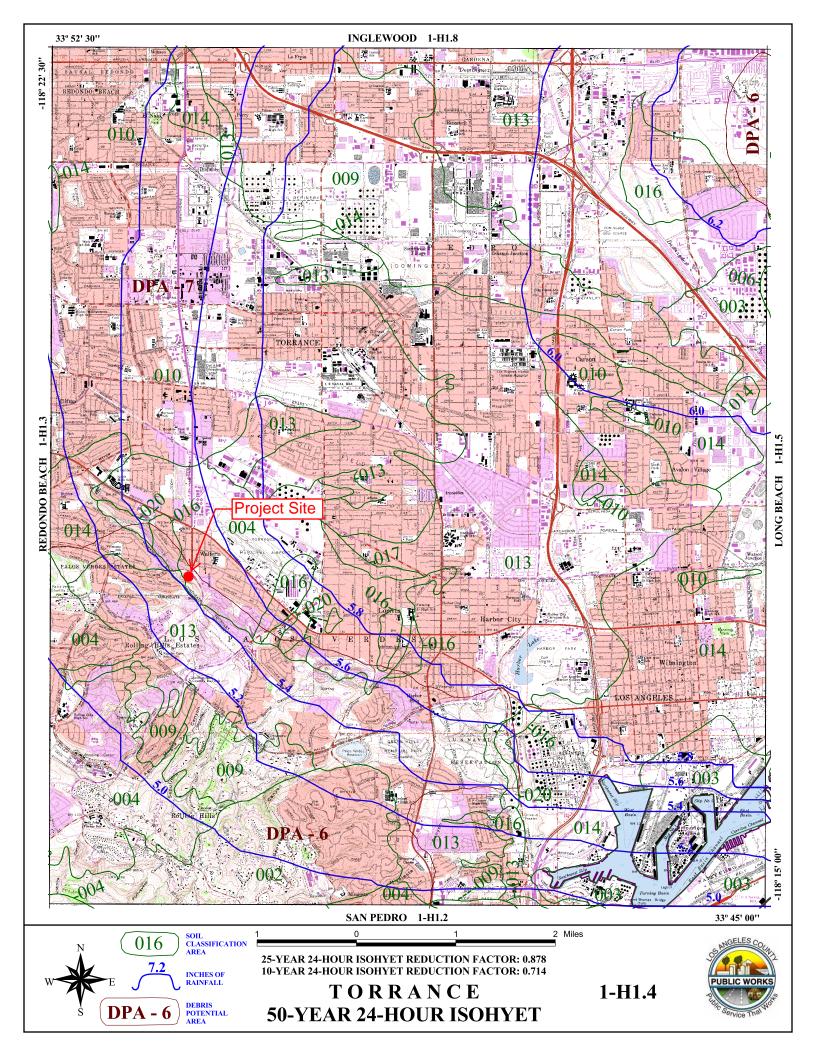

# 1.3.7 Region 7 Walteria Basin

The Walteria Basin drainage region is irregular in shape, but lies mostly south of Torrance Boulevard. The eastern side of the tributary area follows Juniper Avenue, Telo Avenue and Garnier Street, while the western and southern border follows the coastal bluffs and Palos Verdes ridge line. This area is mostly residential, with some commercial contribution, and is gently sloped; however, it does include drainage from a steep hillside that includes the south-middle section of Torrance and the eastern side of Palos Verdes Estates. The runoff from region 7 discharges into the Walteria Detention Basin and is pumped through a force main system into a 54 inch drain line that lies under Skypark Drive. The discharge eventually leaves the City near the intersection of Crenshaw Boulevard and Amsler Street.


# 1.3.8 Region 8 Southeast Torrance


Region 8 consists primarily of the residential area north of Lomita, south of Plaza del Amo, west of Western Avenue and east of Garnier Street and Juniper and Telo Avenues. The area includes the Vine and Walnut street basins which have been by-passed by Los Angeles County drainage facilities and their continued dedication to drainage will be further investigated in Chapter 7 of this report. Like region 5 the terrain is irregular with many small hills and basins, however the flows are eventually collected in the County storm drain system and discharge to the Harbor Lakes Basin and Los Angeles Harbor.




| NODE_ID USNODE DSNODE AREA Expr1                                               | Expr2 U        | ISELEVTOPO D   | SELEVIORO                                  | LENGTHTON TORON OR DIANTE OUR                  | 10 111 01050 |                | 0.1 1/2/2/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               |                                              |                                                  |                            |               |                                 |                     |
|--------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------|------------------------------------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|---------------|----------------------------------------------|--------------------------------------------------|----------------------------|---------------|---------------------------------|---------------------|
| 051110-051111 51110 51111 05                                                   | 11             | 106.76         | 109.49                                     | LENGTHTOP TOPOSLOPE DIAHTE PIPE 252 -0.0108 10 | O_W SIDESLO  | OPE MANNIN Q10 | LAF Q25LAF Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOLAF BALHGL U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BALHGL_D                                         | STWD QST25  | QST50 PIPECAP | Q10TOT Q25TOT Q50TOT Q10                     | DDEF Q25DEF Q50DE                                | F MAXDEE MAXDEEY PARA      | I ELO DABALLE | I D BEDLO BEDLOW AD             | WOOD! DECK!         |
| 051156-051157 51156 51157 212750.8 05                                          | 11             | 113.91         | 114.66                                     | 164 -0.0046 1.5                                | 1            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               |                                              |                                                  | 0                          | LLELQ PARALLE | LU REPLU REPLUIA AL             | DVOCDI RECDIA RECMI |
| 051161-051162 51161 51162 1136937 05                                           | 11             | 100            | 97.43                                      | 127 0.0202 2                                   |              |                | 15 18<br>71 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 86.8<br>97 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 301000                                           | 0 0         |               | 23.3 23.3 23.3                               |                                                  | 0                          |               |                                 |                     |
| 051162-051163 51162 51163 500792.5 05                                          | 11             | 97.43          | 91.79                                      | 416 0.0136 2.5                                 |              | 0 0 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97 92.1<br>142 91.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                |             |               |                                              | 68 76                                            | 76:50-Yr 76                | 3.50          | 97 3.75 0                       | 3.75 .0             |
| 051163-051164 51163 51164 427462.9 05                                          | 11             | 91.79          | 89.18                                      | 283 0.0092 3                                   | 1.           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179 87.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 0 0         |               | 37.3 37.3 37.3.70                            | 92 105                                           | 105;50-Yr 105              | 3.75          | 142 4.25 0                      | 4.25 0              |
| 051164-051165 51164 51165 857407.1 05<br>051165-051166 51165 51166 317309.2 05 | 11             | 89.18          | 90.21                                      | 212 -0.0049 4                                  | 1            |                | 95 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0 0         | 0 60.7        |                                              | 99 118                                           | 118;50-Yr 118              | 4.00          | 179 4.75 0                      | 4.75 0              |
| 051165-051166 51165 51166 317309.2 05<br>051166-051167 51166 51167 660964.3 05 |                | 90.21          | 93.79                                      | 353 -0.0101 4.5                                | 1            |                | 12 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0 0         |               | 130.7 130.7 130.7 64<br>178.9 178.9 178.9 33 | 94 126                                           | 126 50-Yr 126              | 4.00          | 257 :5.25 :0                    | 5.25 0              |
| 051171-051172 51171 51172 118393.6:05                                          |                | 93.79          | 96.51                                      | 177 -0.0153 4.5                                | 1.           | 0 0 2          | 35 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 0 0         | 0 178.9       | 178.9 178.9 178.9 56                         | 60 99<br>87 128                                  | 99 50-Yr 99                | 3.75          | 278 5.50 0                      | 5.50 0              |
| 051172-051173 51172 51173 517959.9 05                                          | 11             | 92.16          | 92.16                                      | 410 0.0048 2.25<br>121 -0.0075 3.5             |              |                | 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 93.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 32, 48.3    | 95 49.4       |                                              | 07 120                                           | 128 50-Yr 128              | 4.00          | 307 5.75 0                      | 5.75 0              |
| 051181-051182 51181 51182 997226.9 05                                          | 11             | 93.51          | 91.03                                      | 121 -0.0075 3.5<br>396 0.0063 2.5              |              |                | 38 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 81.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 0 0         | 0 160.5       | 160.5 160.5 160.5                            | 10000 00000                                      | 0                          |               |                                 |                     |
| 051182-051183 51182 51183 1028791 05                                           | 11             | 91.03          | 97.94                                      | 139 -0.0499 3.75                               |              |                | 62 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 32 55       | 108.1 37.1    | 37.1 92.1 145.3 25                           | 0 0                                              | 25 10-Yr 25                | 2.25          | 62 3.25 0                       |                     |
| 20212757.93                                                                    | 11 Total       |                |                                            | 100 0,0400 0,70                                |              | 0 0 1          | 13 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 163 78.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.5                                             | 0 0         | 0 109.5       | 109.5 109.5 109.5 4                          | 23 54                                            | 54 50-Yr 54                | 3.00          | 163 4.50 0                      | 3.25 .0<br>4.50 0   |
| 91290886.94 05 Total                                                           |                |                |                                            |                                                |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |             |               |                                              |                                                  |                            |               |                                 |                     |
| 060101-060102 60101 60102 2627404 06                                           | 01             | 65.93          | 64                                         | 703 0.0027 2.75                                | 1.           | 0 0            | 67 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88 59.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                                               | 22 52.0     | 64.0          |                                              |                                                  |                            | 1             |                                 |                     |
| 060111-060112 60111 60112 306564.1106                                          | 01             | 60             | 59                                         | 394 0.0025 2                                   | 1            |                | 25 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 58.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57 16                                            | 33 53.8     | 94.8 40.2     | 40.2 94 135 27<br>11.7 63.4 102.9 13         | 0 0                                              | 27 10-Yr 27                | 2.50          | 67 3.50 0                       | 3.50 0              |
| 060112-060102 60112 60102 594594.1 06<br>060121-060122 60121 60122 937288.6 06 | 01             | 59             | 64                                         | 698 -0.0072 2.75                               | . 1          | 0 0            | 56 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73 57.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                                               | 0 0         | 0 27.3        |                                              | 0 0                                              | 13 10-Yr 13                | .2.25         | 25 2.75 0                       | 2.75 0              |
| 4465850.8106 Total                                                             | 01             | 65.44          | 64                                         | 201 0.0072 4                                   | 1            | 0 0 4          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58 62.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61                                               | 0 0         |               |                                              | 40 46<br>29 39                                   | 46 50-Yr 46                | 3.50          | 73 4.00 0                       | 4.00 0              |
| 070101-070102 70101 70102 2672451 07                                           | 01             | 350            | 310 33                                     | 274 0 4000 4.5                                 |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               | 10.5 10.5 10.5 24                            | 29 39                                            | 39 50-Yr 39                | 2.75          | 58 3.25 0                       | 3.25 0              |
| 070102-070103 70102 70103 6134025 07                                           | 01             | 310.33         | 310.33 <sub>1</sub><br>146.76 <sub>1</sub> | 371 0.1069 1.5<br>1675 0.0977 1.5              |              |                | The second secon | 89 314.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 0 0         | 0 11.6        | 11.6 11.6 11.6 54                            | 64 77                                            | 77 50-Yr 77                | 3 25          | 90 205                          | 1005                |
| 070103-070104 70103 70104 1034452 07                                           | 101            | 146.76         | 73.73                                      | 1675 0.0977 1.5<br>1346 0.0543 2               | -1           | 0 0 23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 338 309.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 23 187.4 3  | 348.4 30.5    |                                              | 52 0                                             | 207 10-Yr 207              | 3.25          | 89 3.25 0<br>237 3.25 0         | 3.25 0              |
| 070104-070105 70104 70105 1579743 07                                           | 01             | 73.73          | 71.94                                      | 579 0.0031 4.25                                | 1 (          | 0 0 29         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72.73                                            | 0 0         | 0 49          | 49 49 49 242                                 | 272 363                                          | 363 50-Yr 363              | 4.25          | 412 4.50 0                      | 3.25 0<br>4.50 0    |
| 070121-070122 70121 70122 1016769 07                                           | 01             | 78.16          | 75.38                                      | 261 0.0107 3                                   |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 476 72.73<br>57 77.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.94                                            | 0 0         | 0 87.3        |                                              | 294 389                                          | 389 50-Yr 389              | 7.50          | 476 8.50 0                      | 8.50 0              |
| 070122-070123 70122 70123 07                                                   | 01             | 75.38          | 73.77                                      | 418 0.0039 3.25                                |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 74.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.38                                            | 0 0         | 0 64.1        |                                              |                                                  | 0                          |               |                                 |                     |
| 070123-070105 70123 70105 280322:07<br>070105-070106 70105 70106 391421.6:07   | .01            | 73.77          | 71.94                                      | 775 0.0024 3.75                                | 1 0          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 72.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70.94                                            | 0 0         | 0 47.9        | 47.9 47.9 47.9 0                             | 1 9                                              | 9 50-Yr .9                 | 1.75          | 57 3.50 0                       | 3.50 0              |
| 070105-070106 70105 70106 391421.6107<br>070131-070132 70131 70132 656984.3107 | .01            | 71.94          | 71.37                                      | 613 0.0009 4.75                                | 1, 0         | 0 0 38         | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69.12                                            | 0 0         |               | 55 55 55 0<br>115.5 115.5 115.5 272          | 5 15                                             | 15 50-Yr 15                | 2.50          | 70 4.25 0                       | 4.25 0              |
| 070132-070106 70132 70106 416281.9 07                                          | 01             | 77.19          | 77.19                                      | 733 0.0484 3.25                                | 1 0          | 0 0 3          | 7 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46 111.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |             | 70.2 168.7    | 168.7 240.5 338.9                            | 320 426                                          | 426 50-Yr 426              | 8.00          | 542 8.50 0                      | 8.50 0              |
| 070106-070107 70106 70107 507801.2 07                                          | 01             | 71.37          | 71.37                                      | 709 0.0082 4.25                                | 1 0          |                | CONTRACTOR OF THE PARTY NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64 76.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.12                                            | 60 29.6     | 73.9 156.8    | 156.8 186.3 230.7                            |                                                  | 0                          |               | 1                               |                     |
| 070736-070107 70736 70107 756551.9 07                                          | 01             | 72.42          | 72.5                                       | 318 -0.0036 6<br>154 -0.0005 2.5               |              | 0 44           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 69.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.18                                            | 0; 0        | 0 215.4       | 215.4 215.4 215.4.232                        | 292 406                                          |                            | 7.75          | 1004 10.00                      |                     |
| 070107-070108 70107 70108 66602.89 07                                          | 01             | 72:5           | 68.63                                      | 733 0.0053 6.25                                | 1 0          | 0 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 70.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.18                                            | 0 0         | 0 42.9        | 42.9 42.9 42.9                               | -202 - 100                                       | 406 50-Yr 406              | 7.75          | 621 9.00 0                      | 9.00 0              |
| 070111-070112 70111 70112 2544125 07                                           | 101            | 231.7          | 141.54                                     | 610 0.1479 2                                   | 1 0          |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48 . 68.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66                                               | 36 52 1     | 05.4 240.2    | 240.2 292.2 345.5 230                        | 240 302                                          | 302 50-Yr 302              | 7.00          | 543 8.50 0                      | 0.00                |
|                                                                                | 01             | 141.54         | 96.95                                      | 915 0.0487 3                                   | 1 0          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136.12                                           |             | 0 44          | 44 44 44 23                                  | 32  45                                           | 45 50-Yr 45                | 2.25          | 89 2.75 0                       | 9.00 0              |
|                                                                                | 01             | 96.95          | 83.59                                      | 593 0.0225 3                                   | 1 0          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.95                                            | 32 153.3 30 | 01.6 129.8    | 129.8 283 431.4                              |                                                  | . 0                        |               |                                 |                     |
| 070445 070400 70445 70465                                                      | 101            | 83.59          | 81.62                                      | 198 0.0099 3.5                                 | 1 0          |                | 197 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.75                                            | 32 60.2 1   | 205 92.9      | 92.9 197.1 297.9 68<br>111.7 180.9 247.9 57  | 0 0                                              | 68 10-Yr 68                | 2.75          | 161 3.75 0                      | 3.75 0              |
| 070447 070400 70447 70447                                                      | 01             | 81.62          | 68.63                                      | 960 0.0135 4.5                                 | 1 0          |                | 2 248 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66                                               | 36 83 3 16  | 68.7 218.4    | 218.4 301.6 387                              | 16  0                                            | 57 10-Yr 57                | 2.75          | 169 4.25 0                      | 4.25 0              |
|                                                                                | 01 Total       | 72.1           | 68.63                                      | 630 0.0055 3                                   | 1 0          | 0 10           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 67.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66                                               | 36 53.1 10  | 07.6 31.6     | 31.6 84.7 139.2                              |                                                  | 0                          |               |                                 |                     |
| 070004 070000 70004 70000                                                      | 02             | 172.49         | 150.11                                     | 728 0.0308 2                                   |              | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               |                                              |                                                  | - 0                        | -             |                                 |                     |
| 070000 070000 70000 70000                                                      | 02             | 150.11         | 122.53                                     | 728 0.0308 2<br>893 0.0309 3.25                | 1 0          | 0 62           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142.4                                            | 48 125.2 28 | 31.5 32.1     | 32.1 157.3 313.7 30                          | 0 0                                              | 30 10-Yr 30                | 2.00          | 62 2.75 0                       | 0.75                |
|                                                                                | 02             | 122.53         | 103.56                                     | 854 0.0222 3.75                                | 1 0          | 0 111          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon | 121.53                                           | 32 122 24   | 10.1 117.3    | 117.3 239.3 357.4                            |                                                  | 0                          | 2.00          | 02 2.75 0                       | 2.75 0              |
| 070221-070204 70221 70204 1536723 07 -                                         | 02             | 104.84         | 103.56                                     | 298 0.0043 3.75                                | 1 0          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 121.53<br>74 103.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.56                                           | 32 103.5 20 | 03.7 167.3    | 167.3 270.8 371                              |                                                  | 0                          |               |                                 |                     |
| 070005 070000 70005 70000                                                      | 02             | 103.56         | 102.83                                     | 344 0.0021 - 5                                 | 1 0          | 0 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07.2                                             | 40 47.5 9   | 9.4 73.6      | 73.6 121.2 173                               |                                                  | 0                          |               |                                 |                     |
| 070000 070007   70000   70000                                                  | 102            | 102.83         | 94.17                                      | 421 0.0206 4.75                                | 1 0          | 0 207          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.63                                            | 72 468      | 111 262 4     | 302.1 335.4 371.3<br>263.4 310.3 374.4       |                                                  | 0                          |               |                                 |                     |
| 070007 070000 70007 70007                                                      | 02             | 94.17          | 84.37                                      | 465 0.0211 4.5                                 | 1 0          | 0 213          | 254 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.37                                            | 84 47 4 10  | 6.5 228.1     | 228.1 275.4 334.5                            |                                                  | 0                          |               |                                 |                     |
| 270000 270000 70000                                                            | 02             | 72.13          | 72.13                                      | 788 0.0155 4.75                                | 1 0          | 0 218          | 258 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 83.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71.13                                            | 84 40.7 9   | 1.4 262.6     | 262.6 303.3 354                              |                                                  | 0                          |               |                                 |                     |
| 270004 070000 70004                                                            | 02             | 96.98          | 72.19<br>87.71                             | 433 -0.0001 6                                  | 1 0          | 0 232          | 268 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0 0         | 0 427.2       | 427.2 427.2 427.2                            |                                                  | 0                          |               |                                 |                     |
| 070232-070233 70232 70233 07                                                   | 02             | 87.71          | 77.54                                      | 501 0.0185 2<br>1038 0.0098 0                  | 1 0          | 0 47           | 55 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0 0         | 0 21.6        | 04.0                                         | 33 40                                            | 40 50-Yr 40                | 2.75          | 62   2.00   10                  | 200                 |
| 070233-070234 70233 70234 5259417 07                                           | 02             | 77.54          | 74.53                                      | 1038 0.0098 0<br>368 0.0082 2.5                | 0 0          | 277.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0 0         | 0 0           | 0 0 0,47                                     | 55 62                                            | 62 50-Yr   62              |               | 62  3.00  0<br>62  3.25  0      | 3.00   0            |
| 070241-070234 70241 70234 397508.7 07                                          | 02             | 78.44          | 74.53                                      | 802 0.0049 2.5                                 | 1 0          | 0 195          | 220 25<br>34 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 76.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 0 0         | 0 34.5        | 34.5 34.5 34.5 161                           | 186 218                                          | 218 50-Yr 218              |               | 252 5.50 0                      | 5.50 0              |
| 770234-070235 70234 70235 508577.7 07                                          | 02             | 74.53          | 71.51                                      | 587 0.0051 6.5                                 | 1 0          | 0 242          | 269 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 77.44<br>0 73.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.53                                            | 22.8        | 57 26.7       | 26.7 49.5 83.613                             | 0 0                                              | 3 10-Yr   3                |               | 30 2.75 0                       | 2.75 0              |
|                                                                                | 02             | 71.51          | 72.19                                      | 414 -0.0016 6.5                                | 1 0          | 0 243          | 272 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 69.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                               | 0 0         | 0 421.6       | 421.6 473 525.6                              |                                                  | 0                          |               |                                 |                     |
|                                                                                | 02<br>02 Tatal | 74.59          | 76                                         | 1023 -0.0014 2.5                               | 1 0          |                | 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             | 0 421.6       | 421.6 421.6 421.6<br>25 25 25                |                                                  | 0                          |               |                                 |                     |
| 770004 070000                                                                  | 02 Total       | 94.50          | 90.50                                      | 707                                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             | 25            | 25 25 25                                     |                                                  | 0                          |               |                                 |                     |
| 70000 070000 70000 70000                                                       | 03             | 84.69<br>82.52 | 82.52                                      | 767 0.0028 2                                   | 1 0          | 0 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 82.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.89                                            | 75 17.4 40  | 0.2 10.7      | 10.7 28.1 50.9                               | <del>                                     </del> | 0                          | -             |                                 |                     |
| 70000 070001 70000 70000                                                       | 03             | 81.47          | 81.47<br>88.88                             | 931 -0.008 4                                   | 1 0          | 0 43           | 45 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 80.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.26                                            | 55 27.4 66  | 31.6          |                                              | 10 0                                             | 7 22 72 72                 | 2.25          | 12 250                          | 10.50               |
| 70304-070305 70304 70305 1154801 07                                            | 03             | 88.88          | 74.22                                      | 931 -0.008 4<br>1419 0.0103 4                  | 1 0          | 0 104          | 112 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76.87                                            | 0 0         | 0 68          |                                              | 44 57                                            | 11 10-Yr 11<br>57 50-Yr 57 |               | 43   3.50   0<br>125   5.25   0 | 3.50 0              |
| 70305-070306 70305 70306 2997395 07                                            | 03             | 74.22          | 75.44                                      | 431 -0.0028 5.75                               | 1 0          | 0 175          | 201 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The same of the sa |                                                  | 68.4 166    |               | 68 136.4 234.2 107                           |                                                  | 107 10-Yr 107              |               | 175   5.75   0                  | 5.25 0<br>5.75 0    |
| 70306-070307 70306 70307 1543786 07                                            | 03             |                | 75.09                                      | 681 0.0005 5.75                                | 1 0          |                | 285 32<br>342 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               | 157 157 157 98                               | 128 165                                          | 165 50-Yr 165              |               | 322 7.75 0                      | 7.75 0              |
| 70000 070007 70000 7000                                                        | 03             | 75.09          | 73.5                                       | 657 0.0024 6.5                                 | 1 0          |                | 375 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.60                                            | 0 0         | 0 157         | 157 157 157 148                              | 185 236                                          | 236 50-Yr 236              | 1 1/2/2013    | 393 8.50 0                      | 8.50 0              |
| 70007 070000 70007 70007                                                       | 03             | 75.8           | 74.05                                      | 346 0.0051 2                                   | 1 0          | 0 30           | 34 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71 72.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70.72                                            | 0 35 70     | 0.4 217.7 2   | 217.7 252.7 288 1 116                        | 122 141                                          | 141 50-Yr 141              |               | 359 8.00 0                      | 8.50 0              |
|                                                                                | 03             | 74.05          | 73.5                                       | 250 0.0022 2.5                                 | 1 0          | 0 55           | 62 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69.68                                            | 5 224 67    | 1 13.6        |                                              | 20 22                                            | 22 50-Yr 22                |               | 36 3.00 0                       | 3.00 0              |
| 70244 070240 70244 70244                                                       | 03             | 73.5           | 72.22                                      | 778 0.0016 6.75                                | 1 0          | 0 345          | 388 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68 13                                            | 5 28 0      | 7.1 24.7      | 24.7 58 91.8 30                              | 4 0                                              | 30 10-Yr   30              | 2.75          | 55 3.50 0                       | 3.50 0              |
| 70010 070010 70010 50010                                                       | 03             |                | 75.92                                      | 114 -0.001 3.25                                | 1 0          | 0 54           | 61 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.52                                            | 0 0         | 0 383         | 240.8 269.6 298.8 104<br>38.3 38.3 38.3 16   |                                                  | 143 50-Yr 143              |               | 884 8.50 0                      | 8.50 0              |
| 70040 070044 70040 70040                                                       | 03             |                | 74.96                                      | 443 0.0022 3.5                                 | 1 0          | 0 70           | 78 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.4 7                                           | 2 15.2      | 36 46 7       | 107                                          | 23   36                                          | 36 50-Yr 36                |               | 4 4.25 0                        | 4.25 0              |
| 70011 000010 0000                                                              | 03             |                | 74.26<br>73.74                             | 455 0.0015 4.25                                | 1 0          | 0 97           | 110 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.25                                            | 2 12.8 30   | .4 78.4       | 78.4 91.2 108.7 19                           | 16   11<br>19   21                               | 23 10-Yr 23                |               | 0 4.25 0                        | 4.25 0              |
| TOUGHT IN                                                                      |                | 74.20          | 13.14                                      | 431 0.0012 4.75                                | 1 0          | 0 146          | 166 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.16 7                                          | 2 11.3 26   | .9 105.5 1    | 000                                          | 49 64                                            | 21 50-Yr 21<br>64 50-Yr 64 |               | 00 4.75 0                       | 4.75 0              |
|                                                                                |                |                |                                            |                                                |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |             |               |                                              | 141                                              | 31/00-11 /04               | 4.00          | 69  5.75  0                     | 5.75 0              |









# PRELIMINARY GEOTECHNICAL INVESTIGATION



GEOTECHNICAL ENVIRONMENTAL MATERIALS PROPOSED MULTI-FAMILY
RESIDENTIAL DEVELOPMENT
HAWTHORNE BOULEVARD AND
VIA VALMONTE
TORRANCE, CALIFORNIA

PREPARED FOR

REYLENN PROPERTIES, LLC SOLANA BEACH, CALIFORNIA

PROJECT NO. A9201-06-01E

JUNE 2017

embankment. Where offsite structures are within the shoring surcharge area it is recommended that the beam deflection be limited to less than ½ inch at the elevation of the adjacent offsite foundation, and no deflection at all if deflections will damage existing structures. The allowable deflection will be assessed and designed by the project shoring engineer.

- 8.21.19 Because of the depth of the excavation, some means of monitoring the performance of the shoring system is suggested. The monitoring should consist of periodic surveying of the lateral and vertical locations of the tops of all soldier piles and the lateral movement along the entire lengths of selected soldier piles.
- 8.21.20 Due to the depth of the depth of the excavation and proximity to adjacent structures, it is suggested that prior to excavation the existing improvements be inspected to document the present condition. For documentation purposes, photographs should be taken of preconstruction distress conditions and level surveys of adjacent grade and pavement should be considered. During excavation activities, the adjacent structures and pavement should be periodically inspected for signs of distress. In the even that distress or settlement is noted, an investigation should be performed and corrective measures taken so that continued or worsened distress or settlement is mitigated. Documentation and monitoring of the offsite structures and improvements is not the responsibility of the geotechnical engineer.

#### 8.22 Stormwater Infiltration

8.22.1 During the 2017 site exploration, borings P1, P2, and P3 were utilized to perform percolation testing. The borings were advanced to the depths listed in the table below. Boring logs were not prepared for the percolation test borings; however, the soil conditions were observed to be similar to those from adjacent borings. Slotted casing was placed in the borings, and the annular space between the casing and excavation was filled with gravel. The borings were then filled with water to pre-saturate the soils. On May 5, 2017, the casings were refilled with water and percolation test readings were performed after repeated flooding of the cased excavations. Based on the test results, the average infiltration rates (adjusted percolation rate), for the earth materials encountered, are provided in the following table. The Reduction Factor (Rf), to convert the field-measured percolation rate to an infiltration rate, is also shown in the table below. This value has been calculated in accordance with the Boring Percolation Test Procedure in the County of Los Angeles Department of Public Works GMED Guidelines for Design, Investigation, and Reporting Low Impact Development Stormwater Infiltration (December 2014). Calculation of the percolation rate, reduction factor, and infiltration rate are provided as Figures 11 through 13.

| Boring | Infiltration Depth (ft) | Measured<br>Percolation Rate<br>(in / hour) | Reduction<br>Factor (Rf) | Design<br>Infiltration Rate<br>(in / hour) |
|--------|-------------------------|---------------------------------------------|--------------------------|--------------------------------------------|
| P1     | 12-15                   | 487.34                                      | 5.2                      | 93.7                                       |
| P2     | 20-25                   | 26.2                                        | 15.32                    | 1.7                                        |
| Р3     | 21-25                   | 160.1                                       | 6.8                      | 23.5                                       |

- 8.22.2 Based on the number of tests performed and consistency of the results and soils throughout the site, it is suggested that a CFv correction factor of 3.0 be used in the infiltration system design. Additional testing may be considered to lower the suggested CFv factor. In addition, provided proper maintenance is performed to minimize long-term siltation and plugging, a CFs correction factor of 1.0 may be used. Additional correction factors may be required and should be applied by the engineer in responsible charge of the design of the stormwater infiltration system and based on applicable guidelines.
- 8.22.3 The results of the percolation testing indicate that the soils at depths in the above table are conductive to infiltration. It is our opinion that the soil zone encountered at the depth and location as listed in the table above are suitable for infiltration of stormwater. It should be noted that the water absorbed into the ground very quickly and it is likely that that a volume-controlled infiltration system may be required to prevent percolation from occurring too quickly. It is recommended that the project civil engineer design the infiltration system in such a way as to limit the speed at which water is released into the ground from the retention chamber.
- 8.22.4 It is our further opinion that infiltration of stormwater and will not induce excessive hydro-consolidation, will not create a perched groundwater condition, will not affect soil structure interaction of existing or proposed foundations due to expansive soils, will not saturate soils supported by existing or proposed retaining walls, and will not increase the potential for liquefaction. Resulting settlements are anticipated to be less than ¼ inch, if any.
- 8.22.5 The infiltration system must be located such that the closest distance between an adjacent foundation is at least 10 feet in all directions from the zone of saturation. The zone of saturation may be assumed to project downward from the discharge of the infiltration facility at a gradient of 1:1. Additional property line or foundation setbacks may be required by the governing jurisdiction and should be incorporated into the stormwater infiltration system design as necessary.
- 8.22.6 Where the 10-foot horizontal setback cannot be maintained between the infiltration system and an adjacent footing, and the infiltration system penetrates below the foundation influence line, the proposed stormwater infiltration system must be designed to resist the surcharge from the adjacent foundation. The foundation surcharge line may be assumed to project

#### PERCOLATION TEST RESULTS

# **Boring P1 (Tank A)**

Project No: A9201-06-01E Boring Diameter, DIA: 8 inches
Project Name: Torrance Boring Depth: 15 feet
Testing Date: 5/5/2017 Boring Depth: 180 inches

Tested By: JO

| Reading<br>Number | Adjusted Initial<br>Water Depth<br>(ft) | Adjusted Final<br>Water Depth<br>(ft) | Water<br>Drop (ft) | Water Drop<br>(in)     | ΔT (min) | Percolation<br>Rate (in/hour) |
|-------------------|-----------------------------------------|---------------------------------------|--------------------|------------------------|----------|-------------------------------|
| 1                 | 13.00                                   | 14.70                                 | 1.70               | 20.4                   | 2        | 597.07                        |
| 2                 | 12.00                                   | 14.70                                 | 2.70               | 32.4                   | 5        | 377.60                        |
| 3                 |                                         |                                       |                    |                        |          |                               |
| Average:          | 12.50                                   | 14.70                                 |                    | Preadjusted Perc Rate* |          | 487.34                        |

\* Based only on Stabilized Readings

Initial Water Depth,  $d_1 = 30$  inches Final Water Depth,  $d_2 = 3.6$  inches Water Level Drop,  $\Delta d = 26.4$  inches Boring Diameter, DIA = 8 inches  $R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ 

Reduction Factor,  $R_f = 5.2$ 

Infiltration Rate = 93.7 inches/hour

#### PERCOLATION TEST RESULTS

# **Boring P2 (Tank B)**

Project No: A9201-06-01E Boring Diameter, DIA: 8 inches Project Name: Torrance Boring Depth: 25 feet Boring Depth: Testing Date: 5/5/2017 300 inches

Tested By: RA

| Reading<br>Number | Adjusted Initial<br>Water Depth<br>(ft) | Adjusted Final<br>Water Depth<br>(ft) | Water<br>Drop (ft) | Water Drop<br>(in) | ΔT (min)        | Percolation<br>Rate (in/hour) |
|-------------------|-----------------------------------------|---------------------------------------|--------------------|--------------------|-----------------|-------------------------------|
| 1                 | 20.00                                   | 20.94                                 | 0.94               | 11.3               | 30              | 22.56                         |
| 2                 | 19.05                                   | 20.28                                 | 1.23               | 14.8               | 30              | 29.52                         |
| 3                 | 20.00                                   | 21.10                                 | 1.10               | 13.2               | 30              | 26.40                         |
| Average:          | 19.68                                   | 20.77                                 |                    | Preadju            | sted Perc Rate* | 26.16                         |

Initial Water Depth, d<sub>1</sub> = 63.8 inches Final Water Depth, d<sub>2</sub> = 50.72 inches Water Level Drop, ∆d = 13.08 inches Boring Diameter, DIA = 8 inches

$$R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$$

Reduction Factor,  $R_f =$ 

15.315

Infiltration Rate = 1.7 inches/hour

<sup>\*</sup> Based only on Stabilized Readings

#### PERCOLATION TEST RESULTS

# **Boring P3 (Tank C)**

Project No: A9201-06-01E Boring Diameter, DIA: 8 inches Project Name: Torrance Boring Depth: 25 feet Boring Depth: Testing Date: 5/5/2017 300 inches

Tested By: RA

| Reading<br>Number | Adjusted Initial<br>Water Depth<br>(ft) | Adjusted Final<br>Water Depth<br>(ft) | Water<br>Drop (ft) | Water Drop<br>(in) | ΔT (min)        | Percolation<br>Rate (in/hour) |
|-------------------|-----------------------------------------|---------------------------------------|--------------------|--------------------|-----------------|-------------------------------|
| 1                 | 21.20                                   | 23.95                                 | 2.75               | 33.0               | 10              | 198.00                        |
| 2                 | 21.90                                   | 24.20                                 | 2.30               | 27.6               | 10              | 165.60                        |
| 3                 | 22.75                                   | 24.37                                 | 1.62               | 19.4               | 10              | 116.64                        |
| Average:          | 21.95                                   | 24.17                                 |                    | Preadju            | sted Perc Rate* | 160.08                        |

\* Based only on Stabilized Readings

Initial Water Depth, d<sub>1</sub> = 36.6 inches Final Water Depth, d<sub>2</sub> = 9.92 inches Water Level Drop, ∆d = 26.68 inches Boring Diameter, DIA = 8 inches  $R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ 

Reduction Factor,  $R_f =$ 

6.815

Infiltration Rate = 23.5 inches/hour



|                            | ☐ Fax ☐<br>Date: |
|----------------------------|------------------|
| LOS ANGELES COUNTY         |                  |
| DEPARTMENT OF PUBLIC WORKS |                  |

| Office Use Only                             |  |  |  |
|---------------------------------------------|--|--|--|
| Sent Initials: Fax Email Other: Date: Time: |  |  |  |
| Date:Time:                                  |  |  |  |

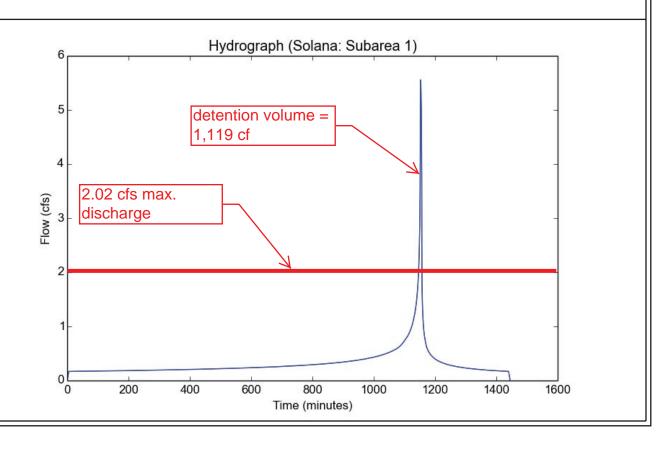
# **INFORMATION REQUEST SUMMARY**

**DESIGN DIVISION – HYDRAULIC ANALYSIS UNIT** 

| INFORMATION REQUESTED                                                                                                      | ВҮ                                 |                                                                                                                                    |                |                                            |                                                   |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|---------------------------------------------------|
| *Requester's Name: Je                                                                                                      | nnifer Pierce                      |                                                                                                                                    |                |                                            |                                                   |
| Company: KHR Assoc                                                                                                         | iates                              |                                                                                                                                    |                |                                            |                                                   |
| *Phone Number: <u>(</u> 949)                                                                                               | 756-6440                           | Fax                                                                                                                                | Number:        | Ε.                                         |                                                   |
| *Email: jpierce@khrde                                                                                                      | sign.com                           |                                                                                                                                    |                | 4                                          |                                                   |
| Method of Contact: Walk-in                                                                                                 | ☐ Phone                            | ☐ Fax                                                                                                                              | <b>▼</b> Email | ☐ Prelim. Mtg.                             | Date: 08/02/2016                                  |
| Intended Use: Storm drain connection to 30" RCP in Via Valmonte                                                            |                                    |                                                                                                                                    |                |                                            |                                                   |
| Proposed Project Type: Multi-F                                                                                             | amily Reside                       | ntial                                                                                                                              |                | Acreage                                    | Involved: 24.68                                   |
| *Will information be used in any Case Info. Name:                                                                          | -                                  |                                                                                                                                    |                | <i>t</i> *L                                | _ocation:                                         |
| INFORMATION REQUESTED (Attach Assessor Map)  LACFCD Facility: Name: Palos Verdes - Walteria Drain; Project ID No. FC000052 |                                    |                                                                                                                                    |                |                                            |                                                   |
| •                                                                                                                          | Unit:                              |                                                                                                                                    |                |                                            | Station: <u>47+14</u>                             |
| City:                                                                                                                      | Torrance                           |                                                                                                                                    |                |                                            | _                                                 |
| *Street/Cross-street:                                                                                                      | Via Valmonte / Hawthorne Boulevard |                                                                                                                                    |                |                                            |                                                   |
| *Thomas Guide:                                                                                                             | Page: <u>793</u>                   |                                                                                                                                    | Grid: <u>D</u> | 4 Sit                                      | e Map/Plans Submitted                             |
| Info. Requested:                                                                                                           |                                    | owable Q (and storm drain event) to connect to existing 30" RCP //ia Valmonte at approximately station 47+14; HGL and line drology |                |                                            |                                                   |
| *Required Information. See P                                                                                               | age 2 of 2 fo                      | r Instruc                                                                                                                          | tions.         | to endow he has a conference about manager | statistical recordings (the remaining many (the ) |

| *Required Information. See Page 2 of 2 for Instructions.                                                                                                                                                                                                | e silegen de las un'imparter misoritares participas parties participas qualitativas participas participas de la company de la co |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BELOW SECTION TO BE COMPLETED BY THE                                                                                                                                                                                                                    | HYDRAULIC ANALYSIS UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| INFORMATION PROVIDED: Allowable q per acre. Hydr<br>Walteria Lake special study. Unable to find HGL<br>Walteria Drain after a diligent search on our da<br>REFERENCES SEARCHED: Walteria Lake hydrology s<br>COMMENTS, ETC: Allowable q per acre = 1.01 | DEPARTMENT OF PUBLIC WORKS DEPARTMENT OF PUBLIC WORKS DESIGN DIVISION Hydraulic Analysis Unit Hydraulic Analysis Unit RECORD DOCUMENT Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| INFORMATION PROVIDED BY: Ambrose C. Ajaelo F                                                                                                                                                                                                            | PE Public 08/18/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INFORMATION REVIEWED BY:                                                                                                                                                                                                                                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Print                                                                                                                                                                                                                                                   | Save a Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# **Peak Flow Hydrologic Analysis**


File location: C:/Users/Mike/Desktop/CSV\_Results/Solana - Subarea 1.pdf Version: HydroCalc 0.3.1

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana    |
|---------------------------|-----------|
| Subarea ID                | Subarea 1 |
| Area (ac)                 | 2.0       |
| Flow Path Length (ft)     | 183.0     |
| Flow Path Slope (vft/hft) | 0.0995    |
| 50-yr Rainfall Depth (in) | 5.4       |
| Percent Impervious        | 0.7557    |
| Soil Type                 | 4         |
| Design Storm Frequency    | 50-yr     |
| Fire Factor               | 0         |
| LID                       | False     |

# **Output Results**

| Carpar Nocario                      |            |
|-------------------------------------|------------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.8623     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 5.556      |
| Burned Peak Flow Rate (cfs)         | 5.556      |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.6459     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 28135.9711 |
| ,                                   |            |



| Subarea ID<br>Subarea 1 | Area (ac)         | Flow Path<br>Length (ft) |                                | 50-yr Rainfall<br>Depth (in)<br>5.4 | Percent<br>Impervious<br>0.7557 | Soil Type      | Design Storm<br>Frequency<br>50-yr | Fire Factor        | V <sub>actual/min</sub> (cf/0.1 min) 0 6.31 | Tank V <sub>actual</sub><br>4,350 |                            |
|-------------------------|-------------------|--------------------------|--------------------------------|-------------------------------------|---------------------------------|----------------|------------------------------------|--------------------|---------------------------------------------|-----------------------------------|----------------------------|
| Outputs: Solan          | a                 |                          |                                |                                     |                                 |                |                                    |                    |                                             |                                   |                            |
|                         |                   |                          |                                |                                     |                                 |                | Undeveloped                        | Developed          |                                             |                                   |                            |
|                         | Modeled (50-      | Time of                  | Clara David                    | 24-Hr Clear                         | D I D I                         | Book Later and | Runoff                             | Runoff             |                                             |                                   |                            |
| Aroa (as)               | yr) Rainfall      | Concentration (min)      |                                | Runoff Volume                       |                                 | Peak Intensity | Coefficient                        | Coefficient        |                                             |                                   |                            |
| Area (ac)<br>Subarea 1  | Depth (in)<br>5.4 | •                        | Flow Rate (cfs)<br>5.555979788 | 0.64591302                          | Flow Rate (cfs) 5.555979788     |                | (Cu)<br>0.745480701                | (Cd)<br>0.86225093 | 5                                           |                                   |                            |
| II day a k              | de la Colonia d   |                          |                                |                                     |                                 |                |                                    |                    |                                             |                                   |                            |
| Hydrograph: So          | olana - Subarea 1 | L                        |                                | Undeveloped                         | Developed                       |                |                                    |                    |                                             |                                   |                            |
|                         |                   | Incremental              |                                | Runoff                              | Runoff                          |                |                                    |                    |                                             |                                   |                            |
|                         | Incremental       | Design Storm             | Intensity                      | Coefficient                         | Coefficient                     | Clear Peak     | Incremental                        | Cumulative         |                                             |                                   |                            |
| Time (min)              | Masscurve         | Depth (in)               | (in/hr)                        | (Cu)                                | (Cd)                            |                | Volume (cu-ft)                     | Volume (cu-ft)     | )                                           | Over Q (cfs)                      | Over Q Vol. (cf)           |
| 1146                    | 0.750689394       |                          |                                | 0.540557234                         | 0.812188132                     | 1.96640368     |                                    | 20559.7558         | 2                                           | ,                                 | , ,                        |
| 1146.2                  | 0.751567486       | 4.058464426              | 1.224819819                    | 0.54366738                          | 0.812947941                     | 1.9914295      | 23.74699908                        | 20583.50282        | 2                                           |                                   |                            |
| 1146.4                  | 0.752459929       | 4.063283616              | 1.239637559                    | 0.546899038                         | 0.813737435                     | 2.017478976    | 24.05345086                        | 20607.5562         | 7                                           | Over Q (cfs)                      | Over Q Vol. (cf)           |
| 1146.6                  | 0.753367482       | 4.068184403              | 1.255051318                    | 0.550260684                         | 0.814558685                     | 2.044625902    | 24.37262926                        | 20631.928          | 9                                           | 0.024625902                       | 0.295510821                |
| 1146.8                  | 0.754290976       | 4.073171272              | 1.271104014                    | 0.553761678                         | 0.815413978                     | 2.072951961    | 24.70546717                        | 20656.6343         | 7                                           | 0.052951961                       | 0.635423528                |
| 1147                    | 0.755231321       | 4.078249136              | 1.2878432                      | 0.557412391                         | 0.816305847                     | 2.102547868    | 25.05299897                        | 20681.6873         | 7                                           | 0.082547868                       | 0.990574419                |
| 1147.2                  | 0.756189518       | 4.083423399              | 1.305321745                    | 0.561224354                         | 0.81723711                      | 2.133514739    | 25.41637564                        | 20707.1037         | 4                                           | 0.113514739                       | 1.362176871                |
| 1147.4                  | 0.757166672       | 4.088700026              | 1.323598656                    | 0.565210435                         | 0.818210909                     | 2.16596572     | 25.79688276                        | 20732.90063        | 3                                           | 0.14596572                        | 1.751588642                |
| 1147.6                  | 0.758164006       | 4.094085633              | 1.342740065                    | 0.569385059                         | 0.81923077                      | 2.200027955    | 26.19596205                        | 20759.09659        | 9                                           | 0.180027955                       | 2.16033546                 |
| 1147.8                  |                   |                          |                                | 0.57376446                          | 0.820300658                     | 2.235844972    |                                    |                    |                                             | 0.215844972                       | 2.590139663                |
| 1148                    |                   |                          |                                | 0.578367006                         | 0.82142506                      |                |                                    | 20812.7683         |                                             | 0.253579602                       | 3.04295522                 |
| 1148.2                  |                   |                          |                                | 0.583213587                         | 0.822609079                     |                |                                    | 20840.2903         |                                             | 0.29341758                        | 3.521010955                |
| 1148.4                  |                   |                          |                                | 0.588328099                         | 0.823858555                     |                | 28.01393769                        | 20868.30429        |                                             | 0.335572035                       | 4.026864418                |
| 1148.6                  |                   |                          |                                | 0.593738056                         |                                 |                |                                    | 20896.8394         |                                             | 0.380289144                       | 4.563469729                |
| 1148.8                  |                   |                          |                                | 0.599475367                         | 0.826581832                     |                |                                    |                    |                                             | 0.427855337                       | 5.134264048                |
| 1149                    |                   |                          |                                | 0.604775038                         | 0.827876542                     |                |                                    |                    |                                             | 0.478015198                       |                            |
| 1149.2                  |                   |                          |                                | 0.608529016                         |                                 |                |                                    |                    |                                             | 0.530265331                       |                            |
| 1149.4                  |                   |                          |                                | 0.612548854                         | 0.829775685                     |                |                                    |                    |                                             | 0.586337294                       | 7.036047527                |
| 1149.6                  |                   |                          |                                | 0.616871008                         | 0.830831587                     |                |                                    |                    |                                             | 0.64676628                        |                            |
| 1149.8                  |                   |                          |                                | 0.621540028                         | 0.831972229                     |                |                                    |                    |                                             | 0.712207997                       | 8.546495969                |
| 1150<br>1150.2          |                   |                          |                                | 0.626611231                         | 0.833211124<br>0.834565368      |                |                                    |                    |                                             | 0.783478693                       | 9.401744316                |
| 1150.2                  |                   |                          |                                | 0.632154598<br>0.638260688          | 0.836057086                     |                |                                    |                    |                                             | 0.861613801<br>0.947957007        | 10.33936562<br>11.37548409 |
| 1150.4                  |                   |                          |                                | 0.645049997                         | 0.837715714                     |                |                                    |                    |                                             | 1.044301455                       | 12.53161746                |
| 1150.8                  |                   |                          |                                | 0.652688592                         | 0.839581823                     |                |                                    |                    |                                             | 1.153126                          |                            |
| 1150.6                  |                   |                          |                                | 0.661416078                         |                                 |                |                                    | 21230.9033         |                                             | 1.278018588                       |                            |
| 1151.2                  |                   |                          |                                | 0.669886916                         |                                 |                |                                    |                    |                                             | 1.422799555                       |                            |
| 1131.2                  | 0.705050402       | . 7.2204/2433            | 2.0-000002                     | 0.003000310                         | 0.045765574                     | 2.77273333     | 40.77470000                        | 21330.1773         | _                                           | 1.72273333                        | 17.07333400                |

1.59577665 19.1493198

1151.4 0.785447409 4.241416006 2.137588688 0.677980417 0.845760616 3.61577665 42.35145723 21378.52877

| iliputs. Solalia        |                                                   |                                   |                                              |                                     |                                 |             |                                                             |                                                           |                                      |                                      |                                 |
|-------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------|-------------------------------------|---------------------------------|-------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|
| Subarea ID<br>Subarea 1 | Area (ac)                                         | Flow Path<br>Length (ft)          | • • • • •                                    | 50-yr Rainfall<br>Depth (in)<br>5.4 | Percent<br>Impervious<br>0.7557 | Soil Type   | Design Storm<br>Frequency<br>50-yr                          | Fire Factor                                               | V <sub>actual/min</sub> (cf/0.1 min) | Tank V <sub>actual</sub><br>31 4,350 |                                 |
| Outputs: Solana         | a                                                 |                                   |                                              |                                     |                                 |             |                                                             |                                                           |                                      |                                      |                                 |
| Area (ac)<br>Subarea 1  | Modeled (50-<br>yr) Rainfall<br>Depth (in)<br>5.4 | Time of<br>Concentration<br>(min) | Clear Peak<br>Flow Rate (cfs)<br>5.555979788 | •                                   | Flow Rate (cfs)                 |             | Undeveloped<br>Runoff<br>Coefficient<br>(Cu)<br>0.745480701 | Developed<br>Runoff<br>Coefficient<br>(Cd)<br>0.862250935 | 5                                    |                                      |                                 |
| Hydrograph: So          | olana - Subarea 1                                 |                                   |                                              |                                     |                                 |             |                                                             |                                                           |                                      |                                      |                                 |
|                         |                                                   |                                   |                                              | Undeveloped                         | Developed                       |             |                                                             |                                                           |                                      |                                      |                                 |
|                         | Incremental                                       | Incremental                       | Intonsity                                    | Runoff                              | Runoff<br>Coefficient           | Claar Dook  | Incremental                                                 | Cumulativa                                                |                                      |                                      |                                 |
| Time (min)              | Incremental                                       | _                                 | Intensity                                    | Coefficient                         |                                 | Clear Peak  | Incremental                                                 | Cumulative                                                |                                      | Over O (efs)                         | Over O Vel (cf)                 |
| Time (min)<br>1151.6    | Masscurve 0.788261517                             | Depth (in)<br>4.256612193         | (in/hr)<br>2.261133475                       | (Cu)<br>0.688236758                 | (Cd)<br>0.84826624              |             |                                                             |                                                           |                                      | Over Q (cfs)<br>1.816086382          | Over Q Vol. (cf)<br>21.79303658 |
| 1151.8                  |                                                   |                                   |                                              |                                     |                                 |             |                                                             |                                                           |                                      | 2.128500322                          | 25.54200386                     |
| 1151.8                  |                                                   |                                   |                                              | 0.702083130                         | 0.85818883                      |             |                                                             |                                                           |                                      | 2.95922939                           | 35.51075268                     |
| 1152.2                  |                                                   | 4.342881876                       |                                              | 0.728853172                         | 0.860879671                     |             |                                                             |                                                           |                                      | 3.3407007                            | 40.0884084                      |
| 1152.4                  |                                                   | 4.353039809                       |                                              | 0.74290394                          |                                 |             |                                                             |                                                           |                                      | 3.446259744                          | 41.35511693                     |
| 1152.6                  |                                                   | 4.360960561                       | 3.202499145                                  | 0.744480852                         | 0.862006672                     |             |                                                             |                                                           |                                      | 3.501151261                          | 42.01381513                     |
| 1152.8                  |                                                   | 4.367707145                       |                                              | 0.74525504                          | 0.862195806                     |             |                                                             |                                                           |                                      | 3.528117491                          | 42.33740989                     |
| 1153                    |                                                   | 4.37369647                        | 3.221788206                                  | 0.745480701                         | 0.862250935                     |             |                                                             |                                                           |                                      | 3.535979788                          | 42.43175746                     |
| 1153.2                  |                                                   | 4.37914415                        |                                              |                                     |                                 |             |                                                             |                                                           |                                      | 3.529202605                          | 42.35043126                     |
| 1153.4                  |                                                   | 4.384179096                       |                                              | 0.74474515                          | 0.86207124                      |             |                                                             |                                                           |                                      | 3.510355914                          | 42.12427097                     |
| 1153.6                  |                                                   | 4.38888574                        | 3.191344962                                  | 0.743902675                         | 0.861865423                     | 5.501019753 | 66.188254                                                   | 22051.17655                                               | 5                                    | 3.481019753                          | 41.77223704                     |
| 1153.8                  | 0.813578331                                       | 4.39332299                        | 3.169818851                                  | 0.742786868                         | 0.861592832                     | 5.462186401 | 65.77923693                                                 | 22116.95578                                               | 3                                    | 3.442186401                          | 41.30623681                     |
| 1154                    | 0.81435813                                        | 4.397533901                       | 3.143345817                                  | 0.741414638                         | 0.861257596                     | 5.414460923 | 65.25988394                                                 | 22182.21567                                               | 7                                    | 3.394460923                          | 40.73353108                     |
| 1154.2                  | 0.815102053                                       | 4.401551088                       | 3.112094819                                  | 0.739794741                         | 0.860861855                     | 5.358167439 | 64.63577017                                                 | 22246.85144                                               | 1                                    | 3.338167439                          | 40.05800926                     |
| 1154.4                  | 0.815814808                                       | 4.405399965                       | 3.076108434                                  | 0.737929386                         | 0.860406149                     | 5.293405223 | 63.90943597                                                 | 22310.76087                                               | 7                                    | 3.273405223                          | 39.28086267                     |
| 1154.6                  | 0.816500148                                       | 4.409100802                       | 3.035316564                                  | 0.735814938                         | 0.859889589                     | 5.220074227 | 63.0808767                                                  | 22373.84175                                               | 5                                    | 3.200074227                          | 38.40089072                     |
| 1154.8                  | 0.817161124                                       | 4.412670071                       | 2.989537622                                  | 0.733441985                         | 0.859309877                     | 5.137878412 | 62.14771583                                                 | 22435.98947                                               | 7                                    | 3.117878412                          | 37.41454094                     |
| 1155                    | 0.817800256                                       | 4.416121381                       | 2.938468312                                  | 0.730794805                         | 0.858663171                     | 5.046309037 | <mark>'</mark> 61.10512469                                  | 22497.09459                                               | 9                                    | 3.026309037                          | 36.31570844                     |
| 1155.2                  | 0.818419654                                       | 4.419466131                       | 2.881660288                                  | 0.72785016                          | 0.857943794                     | 4.944605121 | 59.94548495                                                 | 22557.04008                                               | 3                                    | 2.924605121                          | 35.09526145                     |
| 1155.4                  | 0.819021108                                       | 4.422713981                       | 2.818478623                                  | 0.724575136                         | 0.857143706                     | 4.831682422 | 58.65772526                                                 | 22615.6978                                                | 3                                    | 2.811682422                          | 33.74018907                     |
| 1155.6                  | 0.819606149                                       | 4.425873206                       | 2.748031364                                  | 0.7209235                           | 0.856251611                     | 4.706012564 | 57.22616992                                                 | 22672.92397                                               | 7                                    | 2.686012564                          | 32.23215077                     |
| 1155.8                  | 0.820176103                                       | 4.428950955                       | 2.669048137                                  | 0.716829402                         | 0.855251423                     | 4.565414434 | 55.62856199                                                 | 22728.55253                                               | 3                                    | 2.545414434                          | 30.54497321                     |
| 1156                    | 0.820732123                                       | 4.431953463                       | 2.579659888                                  | 0.712195959                         | 0.854119473                     | 4.406675487 | 53.83253952                                                 | 22782.38507                                               | 7                                    | 2.386675487                          | 28.64010584                     |
| 1156.2                  | 0.821275222                                       | 4.434886199                       | 2.476964453                                  | 0.70615444                          | 0.85264353                      | 4.223935428 | 51.78366548                                                 | 22834.16874                                               | 1                                    | 2.203935428                          | 26.44722513                     |
| 1156.4                  | 0.821806296                                       | 4.437753996                       | 2.35605588                                   | 0.69611695                          | 0.850191371                     | 4.006196757 | 49.38079311                                                 | 22883.54953                                               | 3                                    | 1.986196757                          | 23.83436109                     |
| 1156.6                  | 0.822326139                                       | 4.440561152                       | 2.207387506                                  | 0.683774919                         | 0.847176213                     | 3.740092374 | 46.47773479                                                 | 22930.02727                                               | 7                                    | 1.720092374                          | 20.64110849                     |
| 1156.8                  | 0.822835464                                       | 4.443311503                       | 2.006532353                                  | 0.667100489                         | 0.843102649                     | 3.383425485 | 42.74110716                                                 | 22972.76837                                               | 7                                    | 1.363425485                          | 16.36110582                     |
| 1157                    | 0.022224007                                       | 4 446000400                       | 1 [12101001                                  | 0.000004333                         | 0.027001416                     | 2 502004606 | 25 22446400                                                 | 22000 0020                                                | 1                                    | 0.402004606                          | F 0070163F                      |

0.483984696 5.80781635

1157 0.823334907 4.446008499 1.512101991 0.605204323 0.827981416 2.503984696 35.32446109 23008.09284

| Inputs: S | olana |
|-----------|-------|
|-----------|-------|

|            |           | Flow Path   | Flow Path       | 50-yr Rainfall | Percent | t      |           | Design Storm |             | $V_{actual/min}$ |      |                         |
|------------|-----------|-------------|-----------------|----------------|---------|--------|-----------|--------------|-------------|------------------|------|-------------------------|
| Subarea ID | Area (ac) | Length (ft) | Slope (vft/hft) | Depth (in)     | Imperv  | ious S | Soil Type | Frequency    | Fire Factor | (cf/0.1 mi       | n) T | ank V <sub>actual</sub> |
| Subarea 1  |           | 2 1         | 83 0.0995       | 5 5.           | 5.4     | 0.7557 |           | 4 50-yr      |             | 0                | 6.31 | 4,350                   |

Outputs: Solana

|           |              |               |                 |               |                 |                | Undeveloped | Developed   |
|-----------|--------------|---------------|-----------------|---------------|-----------------|----------------|-------------|-------------|
|           | Modeled (50- | Time of       |                 | 24-Hr Clear   |                 |                | Runoff      | Runoff      |
|           | yr) Rainfall | Concentration | Clear Peak      | Runoff Volume | Burned Peak     | Peak Intensity | Coefficient | Coefficient |
| Area (ac) | Depth (in)   | (min)         | Flow Rate (cfs) | (ac-ft)       | Flow Rate (cfs) | (in/hr)        | (Cu)        | (Cd)        |
| Subarea 1 | 5.4          | - 5           | 5.555979788     | 0.64591302    | 5.555979788     | 3.221788206    | 0.745480701 | 0.862250935 |

Hydrograph: Solana - Subarea 1

|            |             |              |             | Undeveloped | Developed   |                 |                |                      |      |                |                 |
|------------|-------------|--------------|-------------|-------------|-------------|-----------------|----------------|----------------------|------|----------------|-----------------|
|            |             | Incremental  |             | Runoff      | Runoff      |                 |                |                      |      |                |                 |
|            | Incremental | Design Storm | Intensity   | Coefficient | Coefficient | Clear Peak      | Incremental    | Cumulative           |      |                |                 |
| Time (min) | Masscurve   | Depth (in)   | (in/hr)     | (Cu)        | (Cd)        | Flow Rate (cfs) | Volume (cu-ft) | Volume (cu-ft)       |      | Over Q (cfs) O | ver Q Vol. (cf) |
| 1157.2     | 0.823825046 | 4.448655249  | 1.26928047  | 0.553363974 | 0.815316819 | 2.069731429     | 27.44229675    | 23035.53513          |      | 0.049731429    | 0.596777153     |
| 1157.4     | 0.824306402 | 4.451254569  | 1.178577114 | 0.533582132 | 0.810484115 | 1.910436058     | 23.88100492    | 23059.41614 Duration |      | Q Drawdown To  | otal            |
| 1157.6     | 0.824779448 | 4.45380902   | 1.114181509 | 0.519537848 | 0.807053096 | 1.798407273     | 22.25305998    | 23081.6692           | 10.6 | 67             | 1119            |
| 1157.8     | 0.825244619 | 4.45632094   | 1.063365542 | 0.508455199 | 0.804345605 | 1.7106268       | 21.05420444    | 23102.7234           |      |                | 1052            |

#### **Q ALLOWABLE CMP INFILTRATION:**

#### Subarea 1-Infiltration Tank A

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 6.00 feet

CMP<sub>Length</sub>: 24 linear feet

 $G_{depth}$  (Porous Stone): 6.50 feet  $G_{width}$  (Porous Stone): 10.00 feet  $G_{length}$  (Porous Stone): 28 feet T (Max. Drawdown Time): 1440 min

Allowable Q V<sub>design</sub> (CF): From HydroCalc csv file

Allowable Q  $V_{design}$  (CF): 1,119 C.F. Reduction Factor (RF): 5.20 unitless Safety Factor (SF): 3.00 unitless

#### Determine K<sub>sat,design</sub>

$$\begin{split} K_{sat,design} &= K_{sat,measured} / (RFxSF) \\ K_{sat,design} &= 6.01 \text{ in/hr} \\ \end{split}$$

Determine  $A_{\text{min}}$ 

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 93 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{CMP} = (\Pi r^2)xCMP_{Length}$$
  
 $V_{CMP} = 679 \text{ C.F.}$ 

Determine  $V_{\text{Stone}}$ 

$$V_{\text{stone}} = ((G_{\text{depth}} \times G_{\text{width}} \times G_{\text{length}}) - V_{\text{CMP}}) \times 0.40$$
  
 $V_{\text{stone}} = 457 \text{ C.F.}$ 

Determine  $V_{Actual}$ 

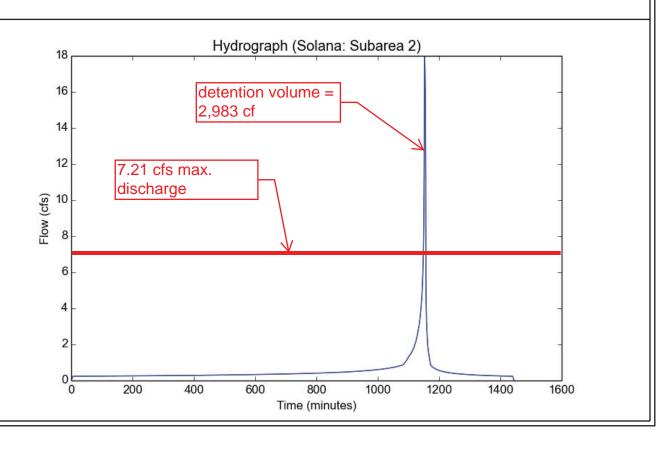
$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= 1,135 \text{ C.F.} \\ V_{actuals} &> = V_{design} \end{aligned}$$

Determine A<sub>actual</sub>

$$A_{actual} = G_{width} x G_{length}$$
 $A_{actual} = 280 S.F.$ 

Determine Tactual

$$\begin{split} T_{actual} &= (V_{actual} \ x \ 12 \ in/ft) \div (A_{actual} \ x \ K_{sat,design}) \\ T_{actual} &= 486.0 \ min \\ T_{actuals} &< T_{max} \end{split}$$


Determine T<sub>actual/min</sub>

$$T_{\text{actual/min}} = A_{\text{actual}} \times (K_{\text{sat , design}} \div 12)$$
  
 $T_{\text{actual/min}} = 2.34 \text{ cf/min}$ 

File location: C:/Users/Mike/Desktop/CSV\_Results/Solana - Subarea 2.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana    |
|---------------------------|-----------|
| Subarea ID                | Subarea 2 |
| Area (ac)                 | 7.14      |
| Flow Path Length (ft)     | 332.0     |
| Flow Path Slope (vft/hft) | 1.2163    |
| 50-yr Rainfall Depth (in) | 5.4       |
| Percent Impervious        | 0.2212    |
| Soil Type                 | 4         |
| Design Storm Frequency    | 50-yr     |
| Fire Factor               | 0         |
| LID                       | False     |

| Output Modulio                      |            |
|-------------------------------------|------------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.7797     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 17.935     |
| Burned Peak Flow Rate (cfs)         | 17.935     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 1.0766     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 46894.6384 |
| · ,                                 |            |



| Subarea ID<br>Subarea 2 | Area (ac)<br>7.14                                 | Flow Path<br>Length (ft)<br>332   | Flow Path<br>Slope (vft/hft)<br>1.2163       |                       | Percent<br>Impervious<br>0.2212 | Soil Type       | Design Storm<br>Frequency<br>50-yr                          | Fire Factor 0                                            |                        |                            |                          |
|-------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------|-----------------------|---------------------------------|-----------------|-------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------------|--------------------------|
| Outputs: Solan          | a                                                 |                                   |                                              |                       |                                 |                 |                                                             |                                                          |                        |                            |                          |
| Area (ac)<br>Subarea 2  | Modeled (50-<br>yr) Rainfall<br>Depth (in)<br>5.4 | Time of<br>Concentration<br>(min) | Clear Peak<br>Flow Rate (cfs)<br>17.93497018 | •                     | Flow Rate (cfs)                 |                 | Undeveloped<br>Runoff<br>Coefficient<br>(Cu)<br>0.745480701 | Developed<br>Runoff<br>Coefficient<br>(Cd)<br>0.77966037 |                        |                            |                          |
| Hydrograph: So          | olana - Subarea 2                                 | !                                 |                                              |                       |                                 |                 |                                                             |                                                          |                        |                            |                          |
|                         |                                                   | Incremental                       |                                              | Undeveloped<br>Runoff | Developed<br>Runoff             |                 |                                                             |                                                          |                        |                            |                          |
|                         | Incremental                                       | Design Storm                      | Intensity                                    | Coefficient           | Coefficient                     | Clear Peak      | Incremental                                                 | Cumulative                                               |                        |                            |                          |
| Time (min)              | Masscurve                                         | Depth (in)                        | (in/hr)                                      | (Cu)                  | (Cd)                            | Flow Rate (cfs) |                                                             |                                                          |                        | Over Q (cfs)               | Over Q Vol. (cf)         |
| 1148.4                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             | •                                                        | 10806.444              | ,                          | , ,                      |
| 1148.6                  | 0.763507468                                       | 4.122940326                       | 1.454403004                                  | 0.593738056           | 0.661483198                     | 6.869130896     | 81.46859241                                                 | 32424.97219                                              | 10808.326              |                            |                          |
| 1148.8                  | 3 0.764661374                                     | 4.129171419                       | 1.480709618                                  | 0.599475367           | 0.665951416                     | 7.040615955     | 83.45848111                                                 | 32508.43068                                              | 10810.208              | Over Q (cfs)               | Over Q Vol. (cf)         |
| 1149                    | 0.765849707                                       | 4.135588416                       | 1.508688236                                  | 0.604775038           | 0.6700788                       | 7.218111613     | 85.55236541                                                 | 32593.98304                                              | 10812.09               | 0.007111613                | 0.085339357              |
| 1149.2                  |                                                   |                                   |                                              | 0.608529016           | 0.673002398                     |                 |                                                             |                                                          | 10813.972              | 0.182052421                | 2.184629049              |
| 1149.4                  |                                                   |                                   |                                              |                       | 0.676133048                     |                 |                                                             |                                                          | 10815.854              | 0.370764555                | 4.449174663              |
| 1149.6                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10817.736              | 0.575263262                | 6.903159148              |
| 1149.8                  |                                                   |                                   |                                              |                       | 0.683135374                     |                 |                                                             |                                                          | 10819.618              | 0.798029972                | 9.57635967               |
| 1150                    |                                                   |                                   |                                              |                       | 0.687084827                     |                 |                                                             |                                                          | 10821.5                | 1.042169689                | 12.50603626              |
| 1150.2                  |                                                   |                                   |                                              | 0.632154598           |                                 | 8.52264237      |                                                             |                                                          | 10823.382              | 1.31164237                 | 15.73970845              |
| 1150.4                  |                                                   |                                   |                                              | 0.638260688           | 0.696157424<br>0.701444938      |                 |                                                             |                                                          | 10825.264              | 1.611615417                | 19.339385<br>23.38829182 |
| 1150.6<br>1150.8        |                                                   |                                   |                                              |                       | 0.701444938                     |                 |                                                             |                                                          | 10827.146<br>10829.028 | 1.949024319<br>2.333513615 | 28.00216338              |
|                         | 0.778987088<br>L 0.780922557                      |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10829.028              | 2.779128353                | 33.34954023              |
| 1151.2                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10830.71               | 3.288206956                | 39.45848348              |
| 1151.4                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10834.674              | 3.886143758                | 46.63372509              |
| 1151.6                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10836.556              | 4.656474344                | 55.87769213              |
| 1151.8                  |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10838.438              | 5.765414103                | 69.18496924              |
| 1152                    |                                                   |                                   |                                              |                       |                                 |                 |                                                             |                                                          | 10840.32               | 8.670045948                | 104.0405514              |
| 1152.2                  |                                                   |                                   |                                              | 0.739867669           | 0.77528894                      | 17.23498511     | 198.6961863                                                 | 34509.31549                                              | 10842.202              | 10.02398511                | 120.2878213              |
| 1152.4                  | 0.806118483                                       | 4.353039809                       | 3.172077398                                  | 0.74290394            | 0.777653589                     | 17.61279044     | 209.0866533                                                 | 34718.40214                                              | 10844.084              | 10.40179044                | 124.8214852              |
| 1152.6                  |                                                   | 4.360960561                       |                                              |                       |                                 |                 | <mark>3 212.5354651</mark>                                  | 34930.93761                                              | 10845.966              | 10.59878708                | 127.185445               |
| 1152.8                  | 3 0.808834657                                     | 4.367707145                       | 3.217434747                                  | 0.74525504            | 0.779484625                     | 17.90669815     | <mark>5</mark> 214.2989114                                  | 35145.23652                                              | 10847.848              | 10.69569815                | 128.3483778              |
| 1153                    | 3 0.809943791                                     | 4.37369647                        | 3.221788206                                  | 0.745480701           | 0.77966037                      | 17.93497018     | 215.05001                                                   | 35360.28653                                              | 10849.73               | 10.72397018                | 128.6876422              |
| 1153.2                  | 0.81095262                                        | 4.37914415                        | 3.21803562                                   | 0.745286186           | 0.779508882                     | 17.91059966     | <mark>5</mark> 215.0734191                                  | 35575.35995                                              | 10851.612              | 10.69959966                | 128.395196               |
| 1153.4                  | 0.811885018                                       | 4.384179096                       | 3.207597967                                  | 0.74474515            | 0.779087523                     | 17.84285681     | . 214.5207389                                               | 35789.88069                                              | 10853.494              | 10.63185681                | 127.5822818              |
| 1153.6                  | 0.812756619                                       | 4.38888574                        | 3.191344962                                  | 0.743902675           | 0.778431403                     | 17.73749599     | 213.4821169                                                 | 36003.3628                                               | 10855.376              | 10.52649599                | 126.3179519              |

| Subarea<br>Subarea  |           | Area (ac)<br>7.14                                 | Flow Path<br>Length (ft)<br>332   | Flow Path<br>Slope (vft/hft)<br>1.2163 | 50-yr Rainfall<br>Depth (in)<br>5.4 | Percent<br>Impervious<br>0.2212 | Soil Type       | Design Storm<br>Frequency<br>50-yr                          | Fire Factor                                              |           |     |              |                  |
|---------------------|-----------|---------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|---------------------------------|-----------------|-------------------------------------------------------------|----------------------------------------------------------|-----------|-----|--------------|------------------|
| Outputs             | s: Solana |                                                   |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     |              |                  |
| Area (ad<br>Subarea | c)        | Modeled (50-<br>yr) Rainfall<br>Depth (in)<br>5.4 | Time of<br>Concentration<br>(min) |                                        | •                                   | Flow Rate (cfs)                 |                 | Undeveloped<br>Runoff<br>Coefficient<br>(Cu)<br>0.745480701 | Developed<br>Runoff<br>Coefficient<br>(Cd)<br>0.77966037 |           |     |              |                  |
| Hydrog              | raph: Sol | lana - Subarea 2                                  |                                   |                                        | Undovolonod                         | Davidanad                       |                 |                                                             |                                                          |           |     |              |                  |
|                     |           |                                                   | Incremental                       |                                        | Undeveloped<br>Runoff               | Developed<br>Runoff             |                 |                                                             |                                                          |           |     |              |                  |
|                     |           | Incremental                                       | Design Storm                      | Intensity                              | Coefficient                         | Coefficient                     | Clear Peak      | Incremental                                                 | Cumulative                                               |           |     |              |                  |
| Time (m             | nin)      | Masscurve                                         | Depth (in)                        | (in/hr)                                | (Cu)                                | (Cd)                            | Flow Rate (cfs) | Volume (cu-ft)                                              | Volume (cu-ft)                                           |           | (   | Over Q (cfs) | Over Q Vol. (cf) |
|                     | 1153.8    | 0.813578331                                       | 4.39332299                        | 3.169818851                            | 0.742786868                         | 0.777562413                     | 3 17.59818644   | 212.0140946                                                 | 36215.3769                                               | 10857.258 |     | 10.38718644  | 124.6462373      |
|                     | 1154      | 0.81435813                                        | 4.397533901                       | 3.143345817                            | 0.741414638                         | 0.77649372                      | 17.42722836     | 210.1524888                                                 | 36425.52939                                              | 10859.14  |     | 10.21622836  | 122.5947403      |
|                     | 1154.2    | 0.815102053                                       | 4.401551088                       | 3.112094819                            |                                     |                                 |                 |                                                             | 36633.44837                                              |           |     | 10.01493501  | 120.1792201      |
|                     | 1154.4    | 0.815814808                                       |                                   | 3.076108434                            |                                     |                                 |                 |                                                             | 36838.773                                                | 10862.904 |     | 9.783837599  | 117.4060512      |
|                     | 1154.6    | 0.816500148                                       |                                   |                                        |                                     |                                 |                 |                                                             | 37041.14473                                              | 10864.786 |     | 9.522783046  | 114.2733965      |
|                     | 1154.8    | 0.817161124                                       |                                   |                                        |                                     |                                 |                 |                                                             | 37240.19916                                              |           |     | 9.230955188  | 110.7714623      |
|                     | 1155      | 0.817800256                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 8.906828329  | 106.8819399      |
|                     | 1155.2    | 0.818419654                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 8.548045375  | 102.5765445      |
|                     | 1155.4    | 0.819021108                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 8.151193514  | 97.81432217      |
|                     | 1155.6    | 0.819606149                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 7.711418947  | 92.53702736      |
|                     | 1155.8    | 0.820176103                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 7.22175959   | 86.66111508      |
|                     | 1156      | 0.820732123                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 6.671931987  | 80.06318384      |
|                     | 1156.2    | 0.821275222                                       |                                   |                                        | 0.70615444                          |                                 |                 |                                                             |                                                          |           |     | 6.036044113  | 72.43252935      |
|                     | 1156.4    |                                                   |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 5.25791068   | 63.09492816      |
|                     | 1156.6    |                                                   |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 4.319623928  | 51.83548714      |
|                     | 1156.8    | 0.822835464                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 3.084380102  | 37.01256123      |
|                     | 1157      | 0.823334907                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           |     | 0.027053788  |                  |
|                     | 1157.2    | 0.823825046                                       |                                   |                                        |                                     |                                 |                 |                                                             |                                                          |           | 0.0 |              | Total            |
|                     | 1157.4    | 0.824306402                                       | 4.451254569                       | 1.178577114                            | 0.533582132                         | 0.614633764                     | 5.172168077     | 65.29204049                                                 | 39181.48825                                              | 10891.134 | 8.0 | 75           | 2983             |

2908

10893.016

#### **Q ALLOWABLE CMP INFILTRATION:**

#### Subarea 2-Infiltration Tank B

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 8.00 feet

CMP<sub>Length</sub>: 40 linear feet

 $G_{depth}$  (Porous Stone): 8.50 feet  $G_{width}$  (Porous Stone): 12.00 feet  $G_{length}$  (Porous Stone): 44 feet T (Max. Drawdown Time): 1440 min

Allowable Q V<sub>design</sub> (CF): From HydroCalc csv file

Allowable Q  $V_{design}$  (CF): 2,983 C.F. Reduction Factor (RF): 5.20 unitless Safety Factor (SF): 3.00 unitless

#### Determine K<sub>sat,design</sub>

$$\begin{split} K_{sat,design} &= K_{sat,measured} \; / \; (RFxSF) \\ K_{sat,design} &= 6.01 \; in/hr & 0.1001 \; in/min \end{split}$$

Determine  $A_{\text{min}}$ 

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 248 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{CMP} = (\pi r^2)xCMP_{Length}$$
  
 $V_{CMP} = 2,011$  C.F.

Determine V<sub>Stone</sub>

$$V_{\text{stone}} = ((G_{\text{depth}} \times G_{\text{width}} \times G_{\text{length}}) - V_{\text{CMP}}) \times 0.40$$
  
 $V_{\text{stone}} = 991 \text{ C.F.}$ 

Determine V<sub>Actual</sub>

$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= 3,002 \text{ C.F.} \\ V_{actuals} &> = V_{design} \end{aligned}$$

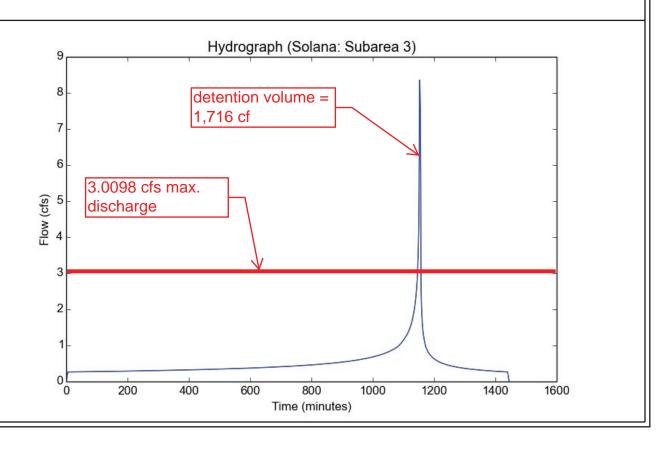
Determine A<sub>actual</sub>

$$A_{actual} = G_{width} \times G_{length}$$
 $A_{actual} = 528 \text{ S.F.}$ 

Determine Tactual

$$\begin{split} T_{actual} &= (V_{actual} \ x \ 12 \ in/ft) \div (A_{actual} \ x \ K_{sat,design}) \\ T_{actual} &= 681.4 \ min \\ T_{actuals} &< T_{max} \end{split}$$

Determine T<sub>actual/min</sub>


$$T_{\text{actual/min}} = A_{\text{actual}} \times (K_{\text{sat , design}} \div 12)$$
 $T_{\text{actual/min}} = 4.40 \text{ cf/min}$ 

File location: C:/Users/Mike/Desktop/CSV\_Results/Solana - Subarea 3.pdf Version: HydroCalc 0.3.1

| Input | Param | eters |
|-------|-------|-------|
|-------|-------|-------|

| Project Name              | Solana    |
|---------------------------|-----------|
| Subarea ID                | Subarea 3 |
| Area (ac)                 | 2.98      |
| Flow Path Length (ft)     | 162.0     |
| Flow Path Slope (vft/hft) | 0.1366    |
| 50-yr Rainfall Depth (in) | 5.4       |
| Percent Impervious        | 0.8074    |
| Soil Type                 | 4         |
| Design Storm Frequency    | 50-yr     |
| Fire Factor               | 0         |
| LID                       | False     |

| Carpar resource                     |            |
|-------------------------------------|------------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.8702     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 8.3551     |
| Burned Peak Flow Rate (cfs)         | 8.3551     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 1.012      |
| 24-Hr Clear Runoff Volume (cu-ft)   | 44084.4526 |
|                                     |            |



| Subarea ID<br>Subarea 3 | Area (ac)<br>2.98                          | Flow Path<br>Length (ft)<br>162   | Flow Path<br>Slope (vft/hft)<br>0.1366       |                       | Percent<br>Impervious<br>0.8074 | Soil Type      | Design Storm<br>Frequency<br>4 50-yr | Fire Factor 0                                             |           |              |                  |
|-------------------------|--------------------------------------------|-----------------------------------|----------------------------------------------|-----------------------|---------------------------------|----------------|--------------------------------------|-----------------------------------------------------------|-----------|--------------|------------------|
| Outputs: Solan          | a                                          |                                   |                                              |                       |                                 |                |                                      |                                                           |           |              |                  |
| Area (ac)<br>Subarea 3  | Modeled (50-<br>yr) Rainfall<br>Depth (in) | Time of<br>Concentration<br>(min) | Clear Peak<br>Flow Rate (cfs)<br>8.355108323 | •                     | Flow Rate (cfs)                 |                | (Cu)                                 | Developed<br>Runoff<br>Coefficient<br>(Cd)<br>0.870239583 |           |              |                  |
| Hydrograph: So          | olana - Subarea 3                          | 3                                 |                                              | tion of some          | De alecad                       |                |                                      |                                                           |           |              |                  |
|                         |                                            | Incremental                       |                                              | Undeveloped<br>Runoff | Developed<br>Runoff             |                |                                      |                                                           |           |              |                  |
|                         | Incremental                                | Design Storm                      | Intensity                                    | Coefficient           | Coefficient                     | Clear Peak     | Incremental                          | Cumulative                                                |           |              |                  |
| Time (min)              | Masscurve                                  | Depth (in)                        | (in/hr)                                      | (Cu)                  | (Cd)                            | Flow Rate (cfs |                                      | •                                                         |           | Over Q (cfs) | Over Q Vol. (cf) |
| 1145.6                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11238.336 |              |                  |
| 1145.8                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11240.298 |              |                  |
| 1146                    |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11242.26  |              | Over Q Vol. (cf) |
| 1146.2                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11244.222 | 0.024471022  | 0.293652264      |
| 1146.4                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11246.184 | 0.063481014  | 0.761772167      |
| 1146.6                  |                                            |                                   |                                              |                       | 0.832640208                     |                |                                      |                                                           | 11248.146 | 0.104118445  | 1.249421343      |
| 1146.8                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11250.108 | 0.146503626  | 1.758043514      |
| 1147                    |                                            |                                   |                                              |                       | 0.834017626                     |                |                                      |                                                           | 11252.07  | 0.190770108  | 2.289241292      |
| 1147.2                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11254.032 | 0.237066675  | 2.8448001        |
| 1147.4                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11255.994 | 0.28555973   | 3.426716762      |
| 1147.6                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11257.956 | 0.336436161  | 4.037233935      |
| 1147.8                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11259.918 | 0.389906822  | 4.678881864      |
| 1148                    |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11261.88  | 0.446210786  | 5.354529434      |
| 1148.2                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11263.842 | 0.505620596  | 6.067447153      |
| 1148.4                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11265.804 | 0.5684488    | 6.821385596      |
| 1148.6                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11267.766 | 0.63505618   | 7.620674156      |
| 1148.8                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11269.728 | 0.705862238  | 8.470346857      |
| 1149                    |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11271.69  | 0.780664016  | 9.367968187      |
| 1149.2                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11273.652 | 0.858984692  | 10.30781631      |
| 1149.4                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11275.614 | 0.942994752  |                  |
| 1149.6                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11277.576 | 1.03348741   | 12.40184892      |
| 1149.8                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11279.538 | 1.131433998  | 13.57720798      |
| 1150                    |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11281.5   | 1.238043013  | 14.85651616      |
| 1150.2                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11283.462 | 1.354846617  | 16.2581594       |
| 1150.4                  |                                            |                                   |                                              |                       |                                 |                |                                      |                                                           | 11285.424 | 1.483831944  | 17.80598333      |
| 1150.6                  | 0.777198258                                | 4.196870592                       | 1.82896262                                   | 0.645049997           | 0.850896629                     | 4.63764922     | <mark>3</mark> 54.788887             | 33328.11237                                               | 11287.386 | 1.627649223  | 19.53179068      |

1.789959855 21.47951826

1150.8 0.778987088 4.206530277 1.889706228 0.652688592 0.852367823 4.799959855 56.62565447 33384.73803 11289.348

| Subarea ID<br>Subarea 3 | Area (ac)<br>2.98        | Flow Path<br>Length (ft)<br>3 162 | Flow Path<br>Slope (vft/hft)<br>0.1366 | Depth (in)          | Percent<br>Impervious<br>0.8074 | Soil Type                  | Design Storm<br>Frequency<br>I 50-yr | Fire Factor 0       |                        |                            |                            |
|-------------------------|--------------------------|-----------------------------------|----------------------------------------|---------------------|---------------------------------|----------------------------|--------------------------------------|---------------------|------------------------|----------------------------|----------------------------|
| Outputs: Solar          | na                       |                                   |                                        |                     |                                 |                            |                                      |                     |                        |                            |                            |
|                         |                          |                                   |                                        |                     |                                 |                            | Undeveloped                          | Developed           |                        |                            |                            |
|                         | Modeled (50-             | Time of                           |                                        | 24-Hr Clear         |                                 |                            | Runoff                               | Runoff              |                        |                            |                            |
| Aron (20)               | yr) Rainfall             | Concentration                     |                                        | Runoff Volume       |                                 | Peak Intensity             |                                      | Coefficient         |                        |                            |                            |
| Area (ac)<br>Subarea 3  | Depth (in)<br>5.4        | (min)<br>! 5                      | Flow Rate (cfs)<br>8.355108323         | 1.012039774         | Flow Rate (cfs)<br>8.355108323  |                            | (Cu)<br>5 0.745480701                | (Cd)<br>0.870239583 |                        |                            |                            |
|                         |                          |                                   | 0.000 1000 10                          |                     | 0.000 2000 20                   | 0.2227 0020                |                                      | 0.07 0.20000        |                        |                            |                            |
| Hydrograph: S           | olana - Subarea 3        | 3                                 |                                        |                     |                                 |                            |                                      |                     |                        |                            |                            |
|                         |                          |                                   |                                        | Undeveloped         | Developed                       |                            |                                      |                     |                        |                            |                            |
|                         | In one me antal          | Incremental                       | lata a situ                            | Runoff              | Runoff                          | Class Pools                | la sus as santal                     | Committee           |                        |                            |                            |
| Time (min)              | Incremental<br>Masscurve | Design Storm Depth (in)           | Intensity<br>(in/hr)                   | Coefficient<br>(Cu) | Coefficient<br>(Cd)             | Clear Peak Flow Rate (cfs) | Incremental Volume (cu-ft)           | Cumulative          |                        | Over Q (cfs)               | Over Q Vol. (cf)           |
| 1115                    |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11291.31               | 1.976059976                | 23.71271971                |
| 1151.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11293.272              | 2.192098078                | 26.30517693                |
| 1151.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11295.234              | 2.45062486                 | 29.40749832                |
| 1151.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11297.196              | 2.779539354                | 33.35447225                |
| 1151.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11299.158              | 3.245293606                | 38.94352327                |
| 115                     |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11301.12               | 4.485545363                | 53.82654436                |
| 1152.                   | 2 0.804237385            | 4.342881876                       | 3.113501734                            | 0.739867669         | 0.869158513                     | 8.064257082                | 93.35881467                          | 33884.19326         | 11303.082              | 5.054257082                | 60.65108498                |
| 1152.                   | 4 0.806118483            | 4.353039809                       | 3.172077398                            | 0.74290394          | 0.869743299                     | 8.221501321                | 97.71455042                          | 33981.90781         | 11305.044              | 5.211501321                | 62.53801585                |
| 1152.                   | 6 0.807585289            | 4.360960561                       | 3.202499145                            | 0.744480852         | 0.870047012                     | 8.30324794                 | <mark>l</mark> 99.14849557           | 34081.05631         | 11307.006              | 5.29324794                 | 63.51897528                |
| 1152.                   | 8 0.808834657            | 4.367707145                       | 3.217434747                            | 0.74525504          | 0.870196121                     | 8.34340172                 | <mark>2</mark> 99.87989796           | 34180.93621         | 11308.968              | 5.33340172                 | 64.00082064                |
| 115                     | 3 0.809943791            | 4.37369647                        | 3.221788206                            | 0.745480701         | 0.870239583                     | 8.355108323                | <mark>3 100.1910603</mark>           | 34281.12727         | 11310.93               | 5.345108323                | 64.14129988                |
| 1153.                   | 2 0.81095262             | 4.37914415                        | 3.21803562                             |                     |                                 |                            |                                      | 34381.32802         | 11312.892              | 5.335017424                | 64.02020909                |
| 1153.                   | 4 0.811885018            | 4.384179096                       | 3.207597967                            | 0.74474515          | 0.870097916                     | 8.316954431                | 99.97183113                          | 34481.29985         | 11314.854              | 5.306954431                | 63.68345317                |
| 1153.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11316.816              | 5.263269015                | 63.15922818                |
| 1153.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11318.778              | 5.205434548                | 62.46521458                |
| 115                     |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11320.74               | 5.134346925                | 61.61216311                |
| 1154.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11322.702              | 5.050482779                | 60.60579334                |
| 1154.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11324.664              | 4.953982891                | 59.44779469                |
| 1154.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11326.626              | 4.844689949                | 58.13627939                |
| 1154.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11328.588              | 4.72215314                 | 56.66583768                |
| 115.                    |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11330.55               | 4.585602712                | 55.02723255                |
| 1155.<br>1155.          |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11332.512<br>11334.474 | 4.433890284<br>4.265381851 | 53.20668341<br>51.18458221 |
| 1155.<br>1155.          |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11334.474              | 4.205381851                | 48.93330969                |
| 1155.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11338.398              | 3.86778901                 | 46.41346811                |
| 1155.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11340.36               | 3.630586915                | 43.56704298                |
| 1156.                   |                          |                                   |                                        |                     |                                 |                            |                                      |                     | 11342.322              | 3.357638355                | 40.29166026                |
|                         |                          |                                   | 555                                    | 50-5                |                                 | 1.11.700000                |                                      |                     |                        | 2.22, 223333               |                            |

1156.8 0.822835464 4.443311503

4.446008499

4.448655249

4.451254569

4.45380902

1.512101991

1.114181509

1.26928047

1157 0.823334907

1157.2 0.823825046

1157.4 0.824306402

1157.6 0.824779448

1157.8 0.825244619

| Subarea<br>Subarea   |                  | Area (ac)<br>2.98                                 | Flow Path<br>Length (ft)<br>3 162 | Flow Path<br>Slope (vft/hft)<br>2 0.1366 |                                                        | Percent<br>Impervious<br>0.8074    | Soil Type<br>4                           | Design Storm<br>Frequency<br>50-yr | Fire Factor                                               | ) |            |                          |
|----------------------|------------------|---------------------------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------------------|------------------------------------|------------------------------------------|------------------------------------|-----------------------------------------------------------|---|------------|--------------------------|
| Outputs:             | : Solana         |                                                   |                                   |                                          |                                                        |                                    |                                          |                                    |                                                           |   |            |                          |
| Area (ac)<br>Subarea | )                | Modeled (50-<br>yr) Rainfall<br>Depth (in)<br>5.4 | Time of Concentration (min)       | • •                                      | 24-Hr Clear<br>Runoff Volume<br>(ac-ft)<br>1.012039774 | Flow Rate (cfs)                    | Peak Intensity<br>(in/hr)<br>3.221788206 | Runoff<br>Coefficient<br>(Cu)      | Developed<br>Runoff<br>Coefficient<br>(Cd)<br>0.870239583 | 3 |            |                          |
| Hydrogra             | aph: Sola        | ana - Subarea :                                   | 3                                 |                                          |                                                        |                                    |                                          |                                    |                                                           |   |            |                          |
| . •                  |                  | Incremental                                       | Incremental<br>Design Storm       | Intensity                                | Undeveloped<br>Runoff<br>Coefficient                   | Developed<br>Runoff<br>Coefficient | Clear Peak                               | Incremental                        | Cumulative                                                |   |            |                          |
| Time (mi             | •                | Masscurve                                         | Depth (in)                        | (in/hr)                                  | (Cu)                                                   | (Cd)                               |                                          | _                                  | , ,                                                       |   | ` <i>'</i> | r Q Vol. (cf)            |
|                      | 1156.4<br>1156.6 | 0.821806296<br>0.822326139                        |                                   |                                          |                                                        |                                    |                                          |                                    |                                                           |   |            | 5.39888348<br>1.63526629 |

0.843222353 3.799613831

0.833237901 3.151685532

2.744936014

2.61298012

2.006532353 0.667100489 0.855143554 5.113302158

1.178577114 0.533582132 0.829427919 2.913083393

0.826722989

0.605204323

0.553363974

0.519537848

4.45632094 1.063365542 0.508455199 0.824588471

35968.55183

36022.02933

36063.73712

36100.12574

36134.07385

32.1474968 36166.22135

64.55744609

53.47749594

41.70779618

36.38861355

33.94811644

11348.208

11350.17

11352.132

11356.056

11358.018

11354.094 Duration

11.0

2.103302158 25.2396259

0.789613831 9.475365974

0.141685532 1.700226389

108

Total

1,716

1,608

#### **Q ALLOWABLE CMP INFILTRATION:**

Subarea 3-Infiltration Tank C

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 8.00 feet

CMP<sub>Length</sub>: 22 linear feet

 $G_{depth}$  (Porous Stone): 8.50 feet  $G_{width}$  (Porous Stone): 12.00 feet  $G_{length}$  (Porous Stone): 26 feet T (Max. Drawdown Time): 1440 min

Allowable Q V<sub>design</sub> (CF): From HydroCalc csv file

Allowable Q  $V_{design}$  (CF): 1,716 C.F. Reduction Factor (RF): 5.20 unitless Safety Factor (SF): 3.00 unitless

Determine K<sub>sat,design</sub>

$$\begin{split} K_{sat,design} &= K_{sat,measured} \; / \; (RFxSF) \\ K_{sat,design} &= 6.01 \; in/hr & 0.1001 \; in/min \end{split}$$

Determine  $A_{\text{min}}$ 

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 143 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{\text{CMP}} = (\pi r^2) x \text{CMP}_{\text{Length}}$$
  
 $V_{\text{CMP}} = 1,106 \text{ C.F.}$ 

Determine V<sub>Stone</sub>

$$V_{\text{stone}} = ((G_{\text{depth}} \times G_{\text{width}} \times G_{\text{length}}) - V_{\text{CMP}}) \times 0.40$$
  
 $V_{\text{stone}} = 618 \text{ C.F.}$ 

Determine V<sub>Actual</sub>

$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= 1,724 \text{ C.F.} \\ V_{actuals} &> V_{design} \end{aligned}$$

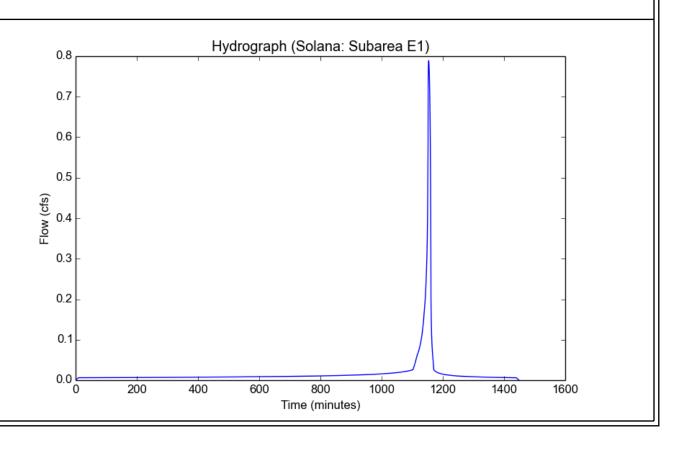
Determine A<sub>actual</sub>

$$A_{actual} = G_{width} \times G_{length}$$
 $A_{actual} = 312 \text{ S.F.}$ 

Determine T<sub>actual</sub>

$$\begin{split} T_{actual} &= (V_{actual} \ x \ 12 \ in/ft) \div (A_{actual} \ x \ K_{sat,design}) \\ T_{actual} &= 662.5 \ min \\ T_{actuals} &< T_{max} \end{split}$$

Determine T<sub>actual/min</sub>

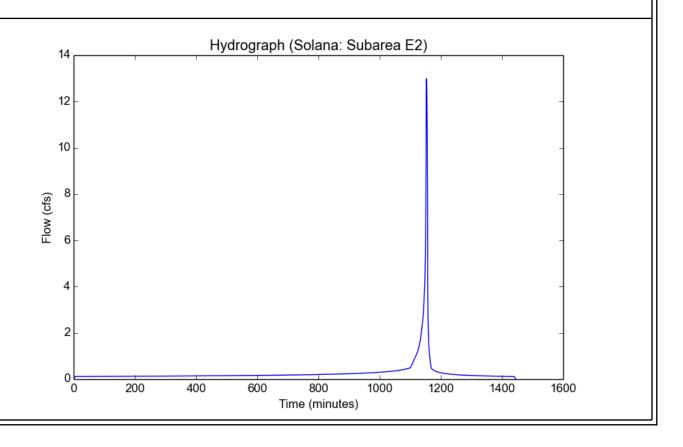

$$T_{\text{actual/min}} = A_{\text{actual}} \times (K_{\text{sat , design}} \div 12)$$
  
 $T_{\text{actual/min}} = 2.60 \text{ cf/min}$ 

File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - E1.pdf Version: HydroCalc 0.3.1

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea E1 |
| Area (ac)                 | 0.54       |
| Flow Path Length (ft)     | 853.0      |
| Flow Path Slope (vft/hft) | 0.13       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.01       |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Calput Nocalio                      |           |
|-------------------------------------|-----------|
| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
| Peak Intensity (in/hr)              | 2.1459    |
| Undeveloped Runoff Coefficient (Cu) | 0.6787    |
| Developed Runoff Coefficient (Cd)   | 0.6809    |
| Time of Concentration (min)         | 9.0       |
| Clear Peak Flow Rate (cfs)          | 0.789     |
| Burned Peak Flow Rate (cfs)         | 0.789     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0369    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 1605.5563 |
| . ,                                 |           |

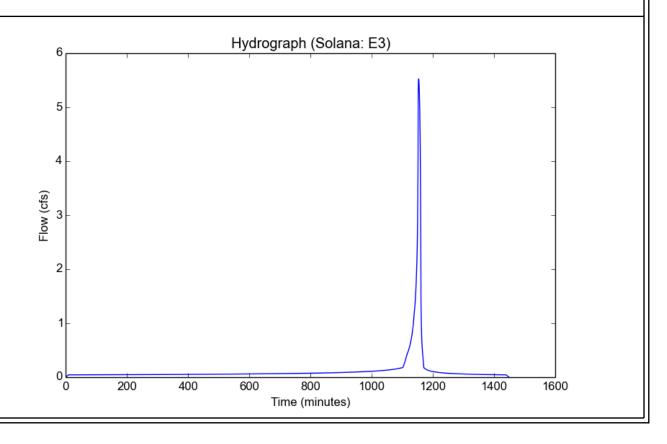



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - E2.pdf Version: HydroCalc 0.3.1

| Input | <b>Parame</b> | eters |
|-------|---------------|-------|
|-------|---------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea E2 |
| Area (ac)                 | 6.18       |
| Flow Path Length (ft)     | 363.0      |
| Flow Path Slope (vft/hft) | 1.4        |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.1        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412     |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 2.8287     |
| Undeveloped Runoff Coefficient (Cu) | 0.7251     |
| Developed Runoff Coefficient (Cd)   | 0.7426     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 12.9817    |
| Burned Peak Flow Rate (cfs)         | 12.9817    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.5827     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 25382.4344 |
|                                     |            |

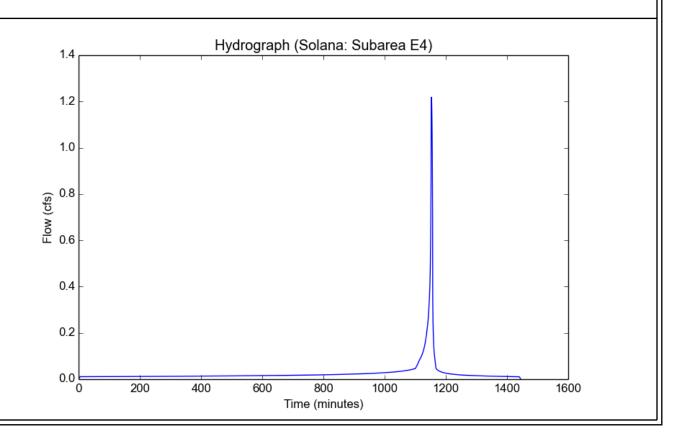



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - E3.pdf Version: HydroCalc 0.3.1

| Input | <b>Parameters</b> |
|-------|-------------------|
|-------|-------------------|

| Project Name              | Solana |
|---------------------------|--------|
| Subarea ID                | E3     |
| Area (ac)                 | 3.78   |
| Flow Path Length (ft)     | 702.0  |
| Flow Path Slope (vft/hft) | 0.06   |
| 50-yr Rainfall Depth (in) | 5.4    |
| Percent Impervious        | 0.01   |
| Soil Type                 | 4      |
| Design Storm Frequency    | 25-yr  |
| Fire Factor               | 0      |
| LID                       | False  |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412     |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 2.1459     |
| Undeveloped Runoff Coefficient (Cu) | 0.6787     |
| Developed Runoff Coefficient (Cd)   | 0.6809     |
| Time of Concentration (min)         | 9.0        |
| Clear Peak Flow Rate (cfs)          | 5.5231     |
| Burned Peak Flow Rate (cfs)         | 5.5231     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.258      |
| 24-Hr Clear Runoff Volume (cu-ft)   | 11238.8941 |
|                                     |            |

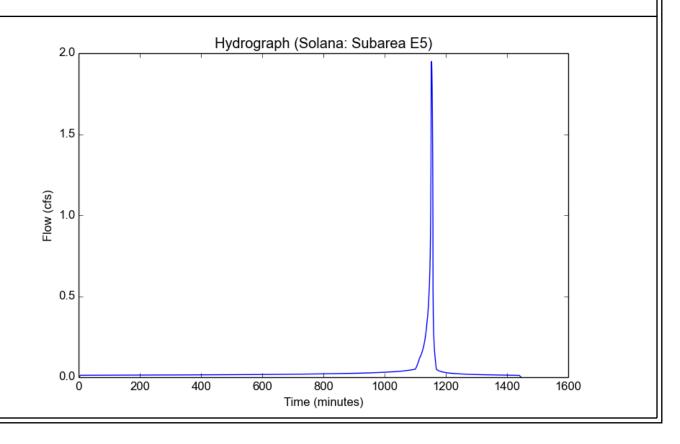



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - E4.pdf Version: HydroCalc 0.3.1

| Input | <b>Parame</b> | ters |
|-------|---------------|------|
|-------|---------------|------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea E4 |
| Area (ac)                 | 0.58       |
| Flow Path Length (ft)     | 334.0      |
| Flow Path Slope (vft/hft) | 0.63       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.1        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.7426    |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.2183    |
| Burned Peak Flow Rate (cfs)         | 1.2183    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0547    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 2382.1702 |
|                                     |           |

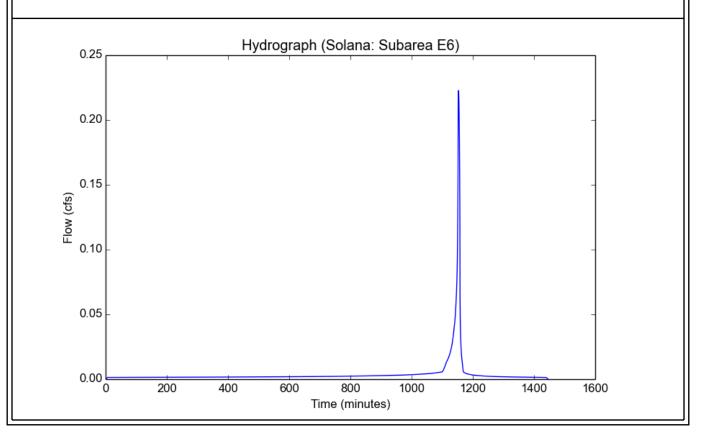



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea E5-updated.pdf Version: HydroCalc 0.3.1

| Input | <b>Parameters</b> | S |
|-------|-------------------|---|
|-------|-------------------|---|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea E5 |
| Area (ac)                 | 1.05       |
| Flow Path Length (ft)     | 502.0      |
| Flow Path Slope (vft/hft) | 0.14       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.01       |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.5964    |
| Undeveloped Runoff Coefficient (Cu) | 0.7131    |
| Developed Runoff Coefficient (Cd)   | 0.7149    |
| Time of Concentration (min)         | 6.0       |
| Clear Peak Flow Rate (cfs)          | 1.9491    |
| Burned Peak Flow Rate (cfs)         | 1.9491    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0718    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 3129.3951 |
|                                     |           |

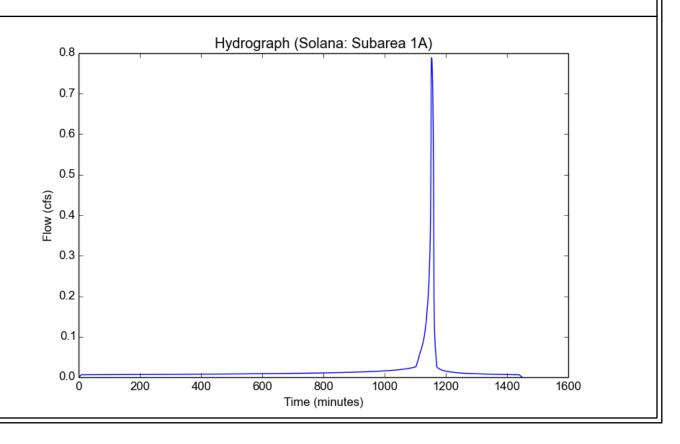



 $\label{location:R:ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - E6-updated.pdf \\ Version: HydroCalc 0.3.1$ 

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea E6 |
| Area (ac)                 | 0.12       |
| Flow Path Length (ft)     | 822.0      |
| Flow Path Slope (vft/hft) | 0.57       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.01       |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

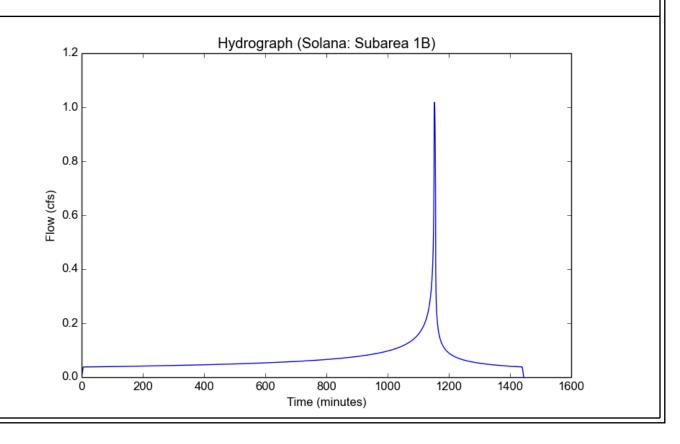
| Modeled (25-yr) Rainfall Depth (in) | 4.7412   |
|-------------------------------------|----------|
| Peak Intensity (in/hr)              | 2.5964   |
| Undeveloped Runoff Coefficient (Cu) | 0.7131   |
| Developed Runoff Coefficient (Cd)   | 0.7149   |
| Time of Concentration (min)         | 6.0      |
| Clear Peak Flow Rate (cfs)          | 0.2228   |
| Burned Peak Flow Rate (cfs)         | 0.2228   |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0082   |
| 24-Hr Clear Runoff Volume (cu-ft)   | 357.6452 |
|                                     |          |




File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 1A-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Parameters</b> | S |
|-------|-------------------|---|
|-------|-------------------|---|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 1A |
| Area (ac)                 | 0.54       |
| Flow Path Length (ft)     | 853.0      |
| Flow Path Slope (vft/hft) | 0.13       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.01       |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

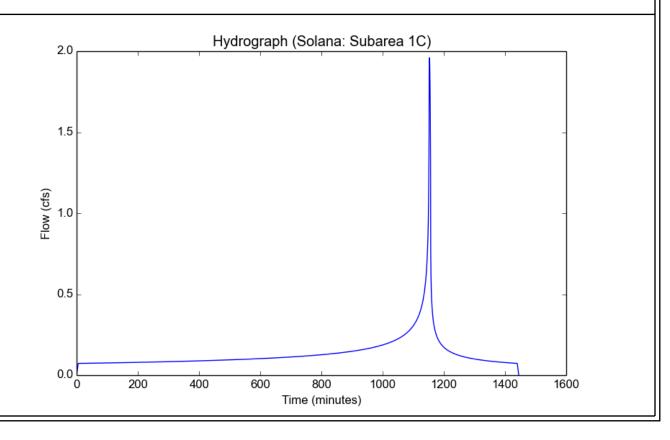

| Calput Nocalio                      |           |
|-------------------------------------|-----------|
| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
| Peak Intensity (in/hr)              | 2.1459    |
| Undeveloped Runoff Coefficient (Cu) | 0.6787    |
| Developed Runoff Coefficient (Cd)   | 0.6809    |
| Time of Concentration (min)         | 9.0       |
| Clear Peak Flow Rate (cfs)          | 0.789     |
| Burned Peak Flow Rate (cfs)         | 0.789     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0369    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 1605.5563 |
| . ,                                 |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 1B-25 year.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 1B |
| Area (ac)                 | 0.4        |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

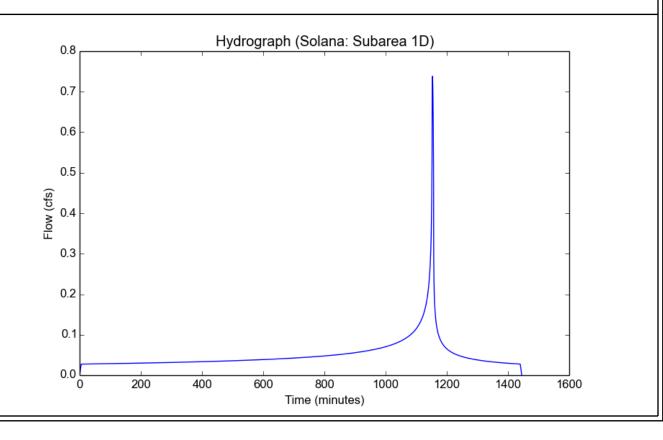
| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.0183    |
| Burned Peak Flow Rate (cfs)         | 1.0183    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1411    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 6144.5971 |
|                                     |           |




File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 1C-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 1C |
| Area (ac)                 | 0.77       |
| Flow Path Length (ft)     | 208.0      |
| Flow Path Slope (vft/hft) | 0.015      |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

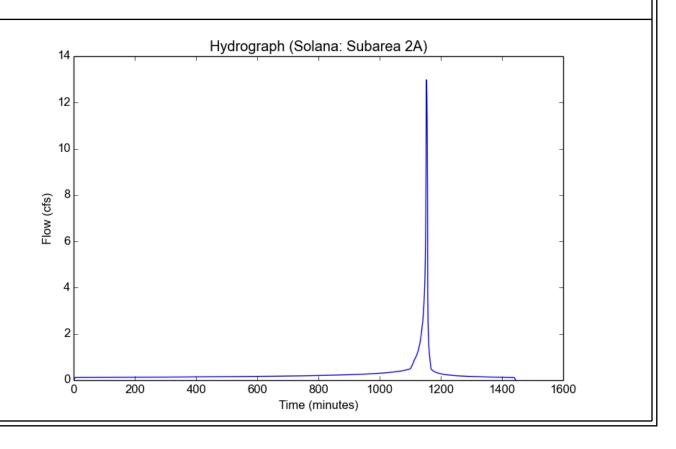

| Modeled (25-yr) Rainfall Depth (in) | 4.7412     |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 2.8287     |
| Undeveloped Runoff Coefficient (Cu) | 0.7251     |
| Developed Runoff Coefficient (Cd)   | 0.9        |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 1.9603     |
| Burned Peak Flow Rate (cfs)         | 1.9603     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.2715     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 11828.3495 |
|                                     |            |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 1D-25 year.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 1D |
| Area (ac)                 | 0.29       |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 0.7383    |
| Burned Peak Flow Rate (cfs)         | 0.7383    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1023    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 4454.8329 |
|                                     |           |

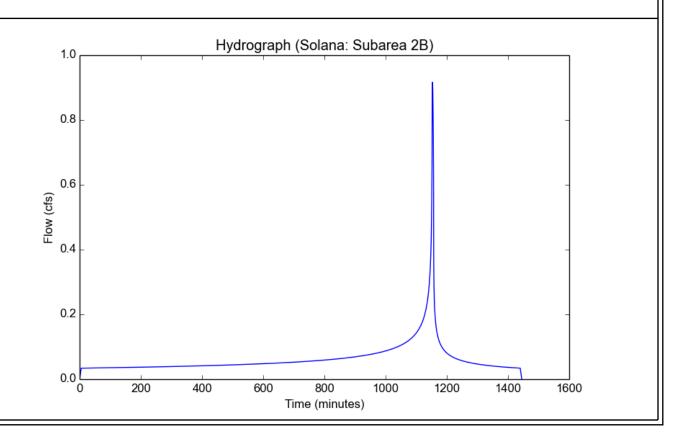



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 2A-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 2A |
| Area (ac)                 | 6.18       |
| Flow Path Length (ft)     | 363.0      |
| Flow Path Slope (vft/hft) | 1.4        |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.1        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

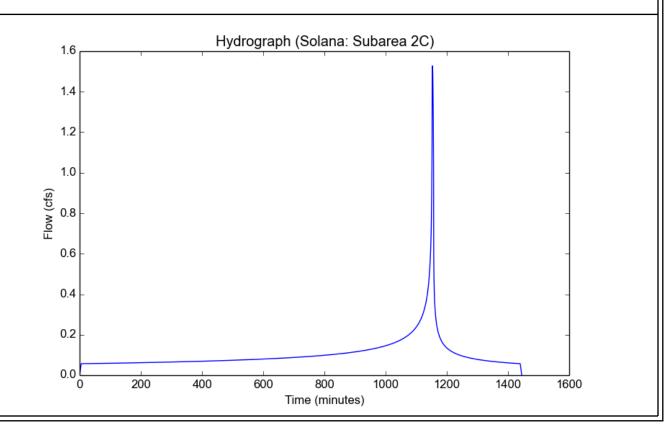
| Modeled (25-yr) Rainfall Depth (in) | 4.7412     |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 2.8287     |
| Undeveloped Runoff Coefficient (Cu) | 0.7251     |
| Developed Runoff Coefficient (Cd)   | 0.7426     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 12.9817    |
| Burned Peak Flow Rate (cfs)         | 12.9817    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.5827     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 25382.4344 |
|                                     |            |




File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 2B-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 2B |
| Area (ac)                 | 0.36       |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

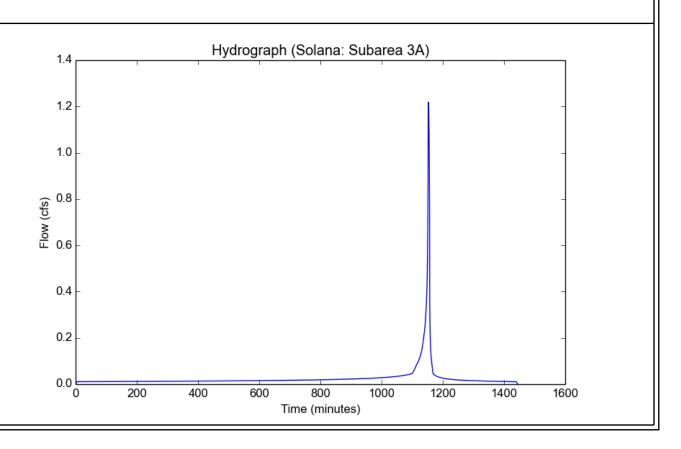

| Carpar recount                      |           |
|-------------------------------------|-----------|
| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 0.9165    |
| Burned Peak Flow Rate (cfs)         | 0.9165    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.127     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 5530.1374 |
|                                     |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 2C-25 year.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 2C |
| Area (ac)                 | 0.6        |
| Flow Path Length (ft)     | 192.0      |
| Flow Path Slope (vft/hft) | 0.045      |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.5275    |
| Burned Peak Flow Rate (cfs)         | 1.5275    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.2116    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 9216.8957 |
|                                     |           |

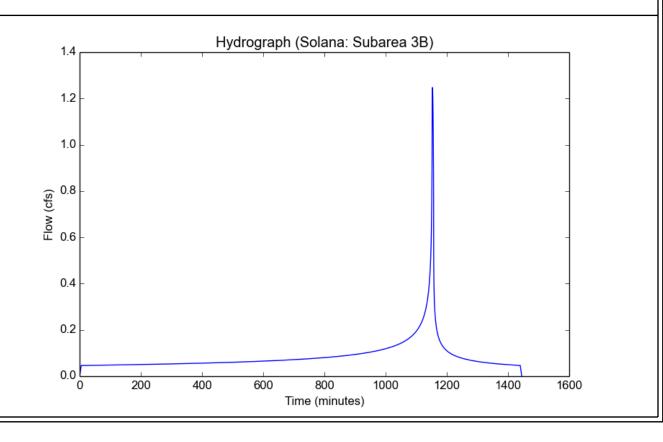



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 3A-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Parameters</b> |
|-------|-------------------|
|-------|-------------------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 3A |
| Area (ac)                 | 0.58       |
| Flow Path Length (ft)     | 334.0      |
| Flow Path Slope (vft/hft) | 0.63       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.1        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

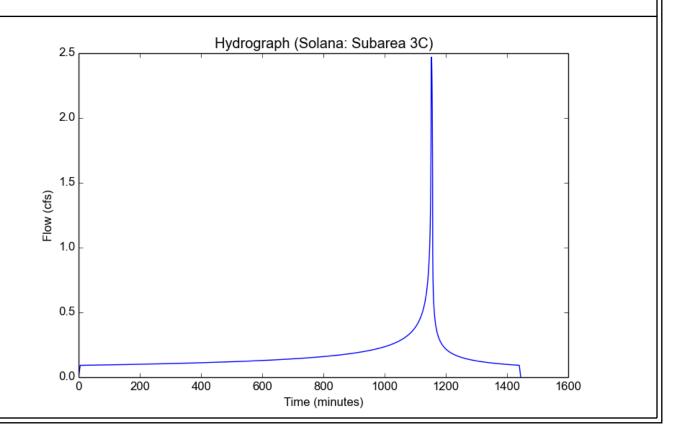
| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.7426    |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.2183    |
| Burned Peak Flow Rate (cfs)         | 1.2183    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0547    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 2382.1702 |
|                                     |           |




File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 3B-25 year.pdf Version: HydroCalc 0.3.1

| Input | <b>Parameters</b> | S |
|-------|-------------------|---|
|-------|-------------------|---|

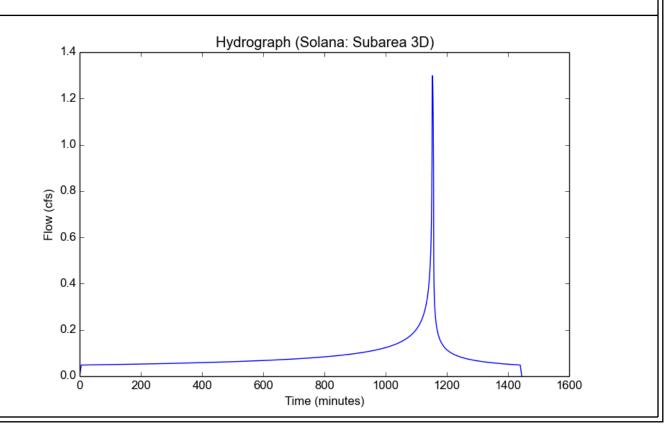
| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 3B |
| Area (ac)                 | 0.49       |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |


| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.2475    |
| Burned Peak Flow Rate (cfs)         | 1.2475    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1728    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 7527.1315 |
|                                     |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 3C-25 year.pdf Version: HydroCalc 0.3.1

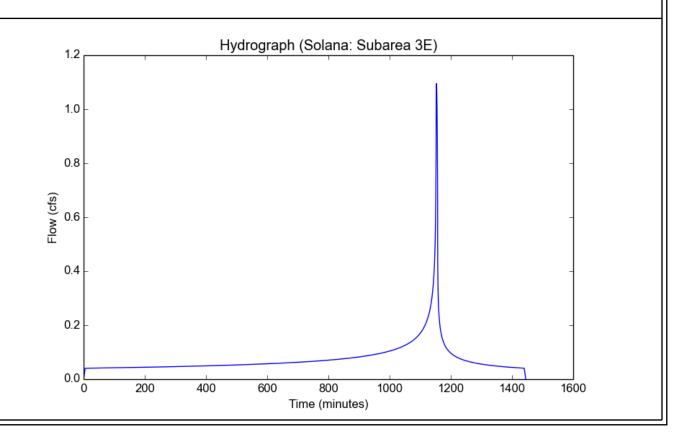
| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 3C |
| Area (ac)                 | 0.97       |
| Flow Path Length (ft)     | 254.0      |
| Flow Path Slope (vft/hft) | 0.011      |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |


| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 2.4695    |
| Burned Peak Flow Rate (cfs)         | 2.4695    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.3421    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 14900.648 |
|                                     |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 3D-25 year.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 3D |
| Area (ac)                 | 0.51       |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

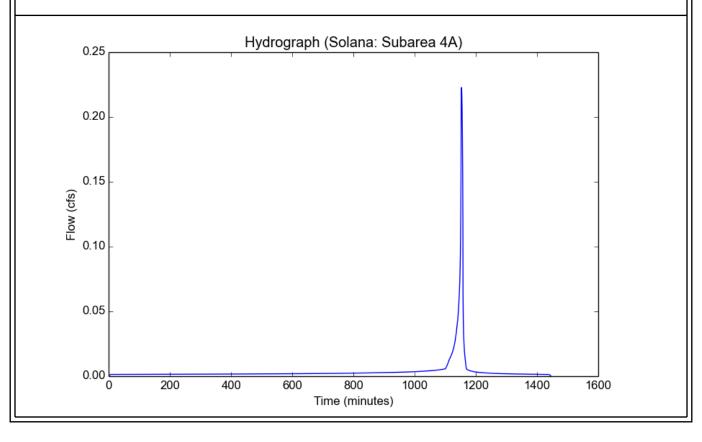

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.2984    |
| Burned Peak Flow Rate (cfs)         | 1.2984    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1799    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 7834.3613 |
|                                     |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 3E-25 year.pdf Version: HydroCalc 0.3.1

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 3E |
| Area (ac)                 | 0.43       |
| Flow Path Length (ft)     | 30.0       |
| Flow Path Slope (vft/hft) | 0.02       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 1.0        |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Modeled (25-yr) Rainfall Depth (in) | 4.7412    |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 2.8287    |
| Undeveloped Runoff Coefficient (Cu) | 0.7251    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.0947    |
| Burned Peak Flow Rate (cfs)         | 1.0947    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1516    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 6605.4419 |
|                                     |           |

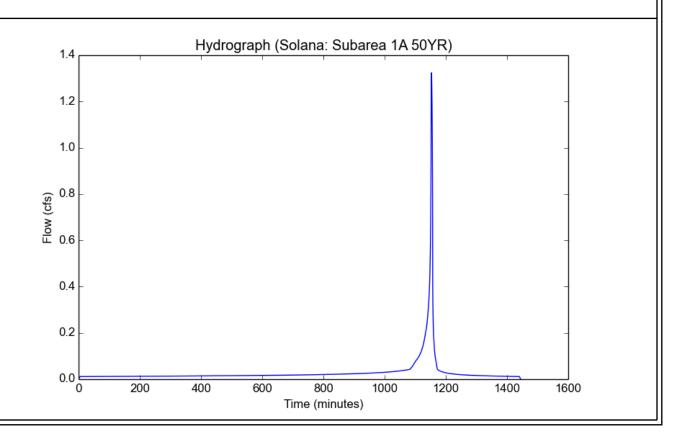



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-25 Year/Solana - Subarea 4A-25 year-upda ed.pdf Version: HydroCalc 0.3.1

| Input | Parameters 4 8 1 |
|-------|------------------|
|-------|------------------|

| Project Name              | Solana     |
|---------------------------|------------|
| Subarea ID                | Subarea 4A |
| Area (ac)                 | 0.12       |
| Flow Path Length (ft)     | 821.76     |
| Flow Path Slope (vft/hft) | 0.57       |
| 50-yr Rainfall Depth (in) | 5.4        |
| Percent Impervious        | 0.01       |
| Soil Type                 | 4          |
| Design Storm Frequency    | 25-yr      |
| Fire Factor               | 0          |
| LID                       | False      |

| Output Hoodito                      |          |
|-------------------------------------|----------|
| Modeled (25-yr) Rainfall Depth (in) | 4.7412   |
| Peak Intensity (in/hr)              | 2.5964   |
| Undeveloped Runoff Coefficient (Cu) | 0.7131   |
| Developed Runoff Coefficient (Cd)   | 0.7149   |
| Time of Concentration (min)         | 6.0      |
| Clear Peak Flow Rate (cfs)          | 0.2228   |
| Burned Peak Flow Rate (cfs)         | 0.2228   |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0082   |
| 24-Hr Clear Runoff Volume (cu-ft)   | 357.6452 |
|                                     |          |

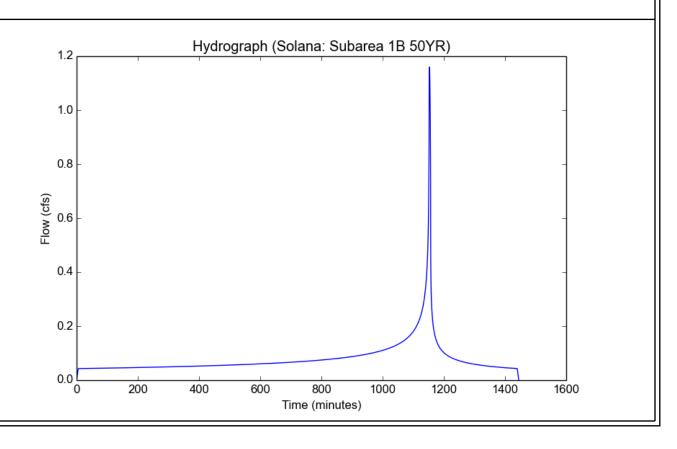



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 1A 50YR.pdf Version: HydroCalc 0.2.0-beta

### **Input Parameters**

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 1A 50YR |
| Area (ac)                 | 0.54            |
| Flow Path Length (ft)     | 340.0           |
| Flow Path Slope (vft/hft) | 0.32            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 0.1             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.7609    |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.3238    |
| Burned Peak Flow Rate (cfs)         | 1.3238    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0603    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 2628.2864 |
|                                     |           |

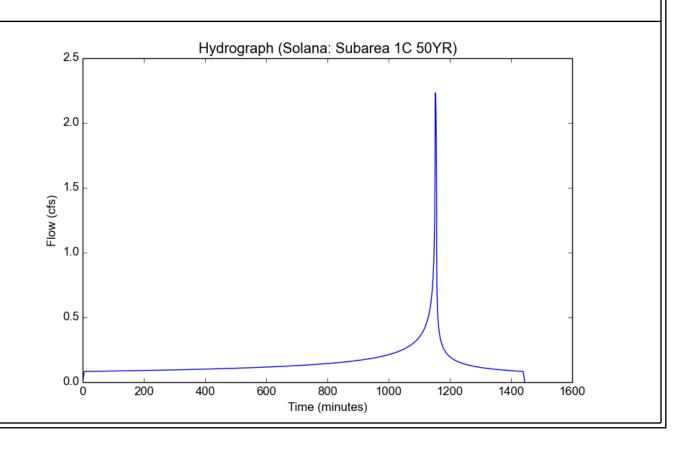



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 1B 50YR.pdf Version: HydroCalc 0.2.0-beta

| Input | <b>Parameters</b> |
|-------|-------------------|
|-------|-------------------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 1B 50YR |
| Area (ac)                 | 0.4             |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| Carpar recours                      |           |
|-------------------------------------|-----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.1598    |
| Burned Peak Flow Rate (cfs)         | 1.1598    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1607    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 6998.4022 |
|                                     |           |

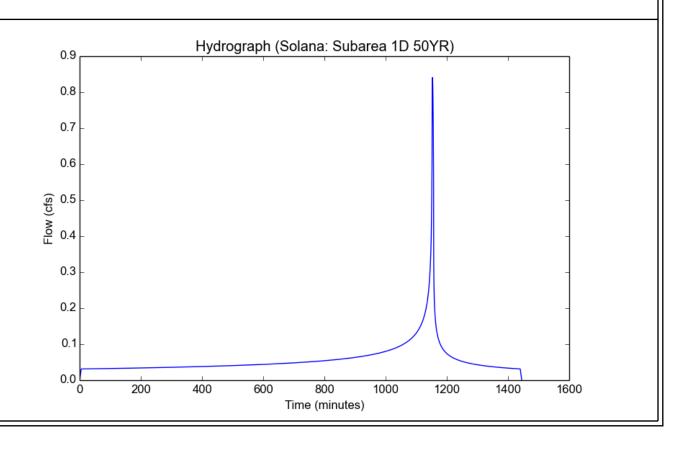



 $\label{location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 1C 50YR.pdf Version: HydroCalc 0.2.0-beta$ 

| Input | <b>Parameters</b> |
|-------|-------------------|
|-------|-------------------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 1C 50YR |
| Area (ac)                 | 0.77            |
| Flow Path Length (ft)     | 208.0           |
| Flow Path Slope (vft/hft) | 0.015           |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

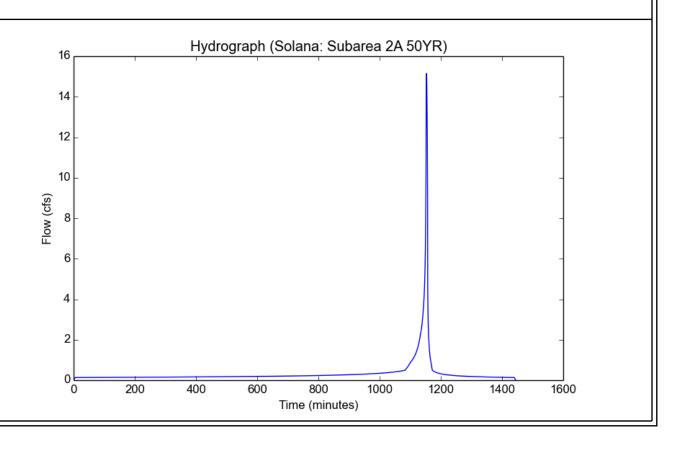
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.9        |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 2.2327     |
| Burned Peak Flow Rate (cfs)         | 2.2327     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.3093     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 13471.9242 |
|                                     |            |




 $\label{location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 1D 50YR.pdf Version: HydroCalc 0.2.0-beta$ 

| Input I | Paramete | ers |
|---------|----------|-----|
|---------|----------|-----|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 1D 50YR |
| Area (ac)                 | 0.29            |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

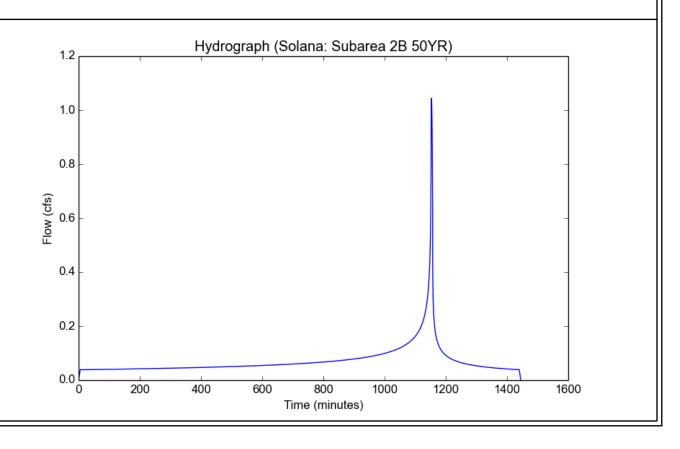

| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 0.8409    |
| Burned Peak Flow Rate (cfs)         | 0.8409    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1165    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 5073.8416 |
|                                     |           |



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 2A 50YR.pdf Version: HydroCalc 0.2.0-beta

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 2A 50YR |
| Area (ac)                 | 6.18            |
| Flow Path Length (ft)     | 363.0           |
| Flow Path Slope (vft/hft) | 1.4             |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 0.1             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| o aspat recounts                    |            |
|-------------------------------------|------------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.7609     |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 15.1507    |
| Burned Peak Flow Rate (cfs)         | 15.1507    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.6905     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 30079.2773 |
| •                                   |            |

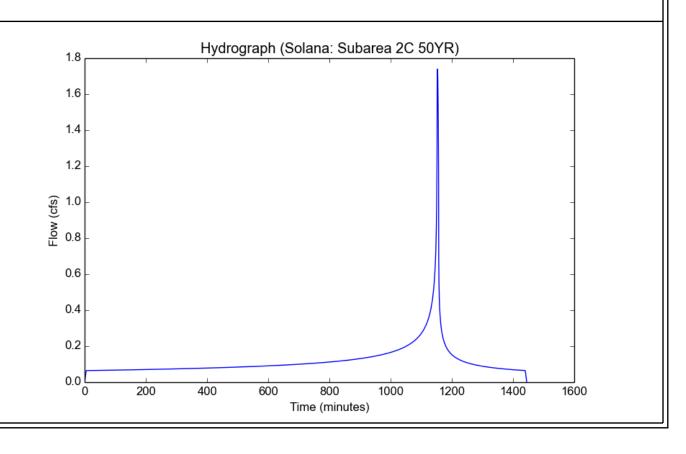



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 2B 50YR.pdf Version: HydroCalc 0.2.0-beta

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 2B 50YR |
| Area (ac)                 | 0.36            |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| o aspar resource                    |          |
|-------------------------------------|----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4      |
| Peak Intensity (in/hr)              | 3.2218   |
| Undeveloped Runoff Coefficient (Cu) | 0.7455   |
| Developed Runoff Coefficient (Cd)   | 0.9      |
| Time of Concentration (min)         | 5.0      |
| Clear Peak Flow Rate (cfs)          | 1.0439   |
| Burned Peak Flow Rate (cfs)         | 1.0439   |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1446   |
| 24-Hr Clear Runoff Volume (cu-ft)   | 6298.562 |
| ,                                   |          |

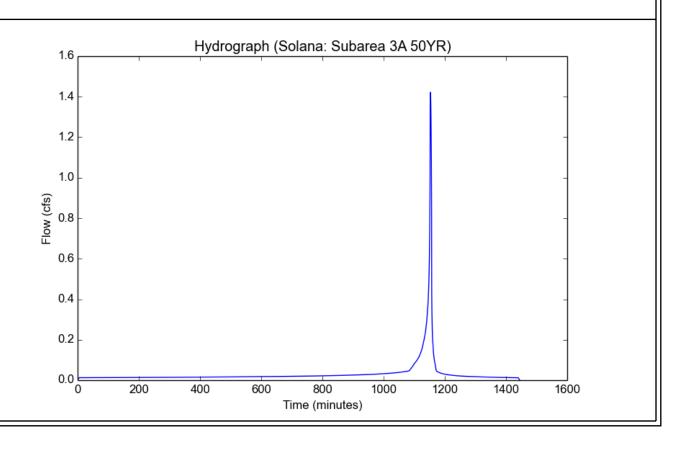



 $\label{location:reduced} File\ location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana-Subarea\ 2C\ 50YR.pdf\ Version: HydroCalc\ 0.2.0-beta$ 

| Input F | Parameters |
|---------|------------|
|---------|------------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 2C 50YR |
| Area (ac)                 | 0.6             |
| Flow Path Length (ft)     | 192.0           |
| Flow Path Slope (vft/hft) | 0.045           |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| o aspat resource                    |            |
|-------------------------------------|------------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.9        |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 1.7398     |
| Burned Peak Flow Rate (cfs)         | 1.7398     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.241      |
| 24-Hr Clear Runoff Volume (cu-ft)   | 10497.6033 |
|                                     |            |

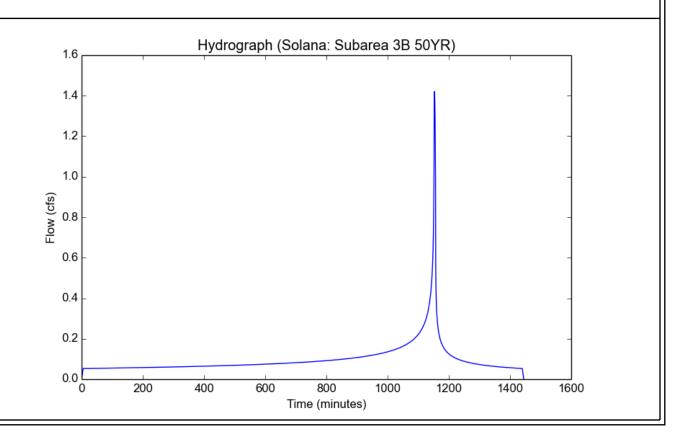



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 3A 50YR.pdf Version: HydroCalc 0.2.0-beta

# **Input Parameters**

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 3A 50YR |
| Area (ac)                 | 0.58            |
| Flow Path Length (ft)     | 334.0           |
| Flow Path Slope (vft/hft) | 0.63            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 0.1             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
|-------------------------------------|-----------|
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.7609    |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.4219    |
| Burned Peak Flow Rate (cfs)         | 1.4219    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0648    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 2822.9742 |
|                                     |           |

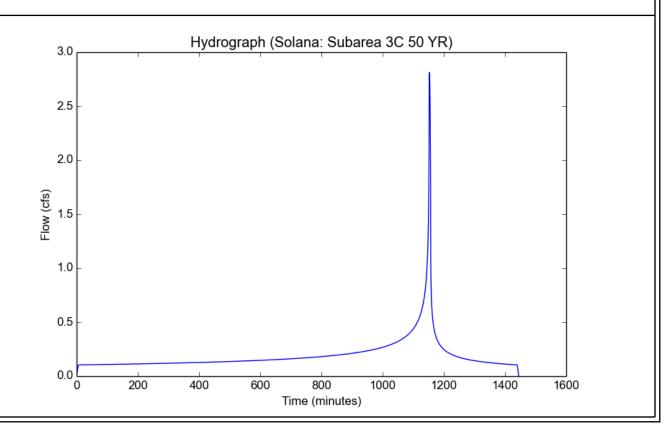



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 3B 50YR.pdf Version: HydroCalc 0.2.0-beta

| Input | <b>Param</b> | eters |
|-------|--------------|-------|
|-------|--------------|-------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 3B 50YR |
| Area (ac)                 | 0.49            |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| Carpar recount                      |           |
|-------------------------------------|-----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.4208    |
| Burned Peak Flow Rate (cfs)         | 1.4208    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1968    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 8573.0427 |
| •                                   |           |

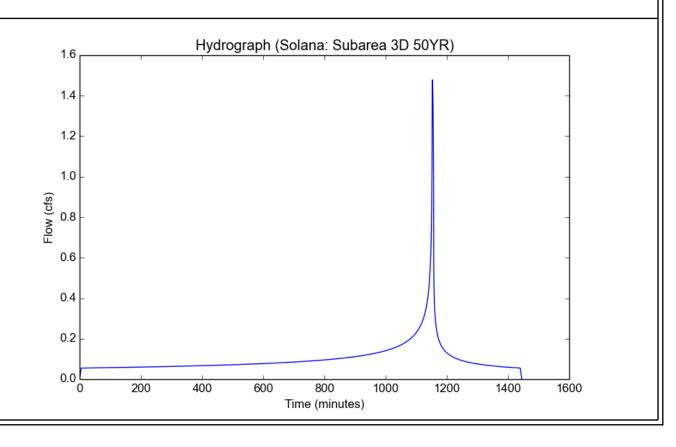



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-50 Year/Solana - Subarea 3C 50YR-updated.pdf Version: HydroCalc 0.3.1

| Input F | Parameters |
|---------|------------|
|---------|------------|

| Project Name              | Solana           |
|---------------------------|------------------|
| Subarea ID                | Subarea 3C 50 YR |
| Area (ac)                 | 0.97             |
| Flow Path Length (ft)     | 254.0            |
| Flow Path Slope (vft/hft) | 0.011            |
| 50-yr Rainfall Depth (in) | 5.4              |
| Percent Impervious        | 1.0              |
| Soil Type                 | 4                |
| Design Storm Frequency    | 50-yr            |
| Fire Factor               | 0                |
| LID                       | False            |

| Modeled (50-yr) Rainfall Depth (in) | 5.4        |
|-------------------------------------|------------|
| Peak Intensity (in/hr)              | 3.2218     |
| Undeveloped Runoff Coefficient (Cu) | 0.7455     |
| Developed Runoff Coefficient (Cd)   | 0.9        |
| Time of Concentration (min)         | 5.0        |
| Clear Peak Flow Rate (cfs)          | 2.8126     |
| Burned Peak Flow Rate (cfs)         | 2.8126     |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.3896     |
| 24-Hr Clear Runoff Volume (cu-ft)   | 16971.1253 |
|                                     |            |

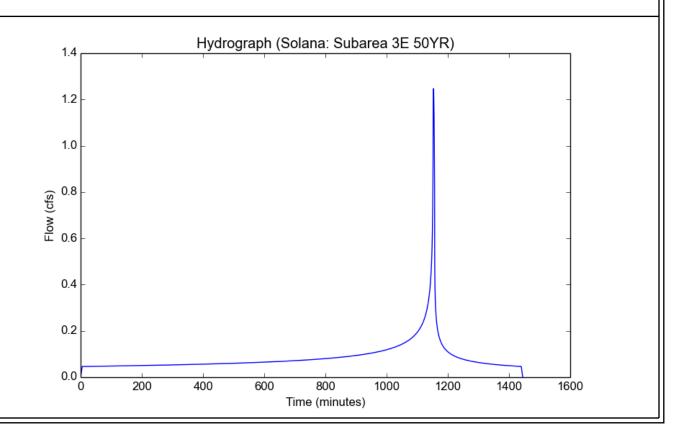



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 3D 50YR.pdf Version: HydroCalc 0.2.0-beta

| Input | <b>Parameters</b> | S |
|-------|-------------------|---|
|-------|-------------------|---|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 3D 50YR |
| Area (ac)                 | 0.51            |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| output recente                      |           |
|-------------------------------------|-----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.4788    |
| Burned Peak Flow Rate (cfs)         | 1.4788    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.2048    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 8922.9628 |
|                                     |           |

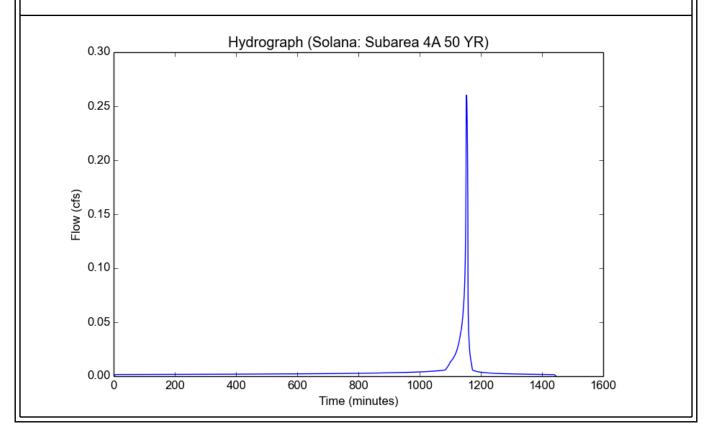



File location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Solana - Subarea 3E 50YR.pdf Version: HydroCalc 0.2.0-beta

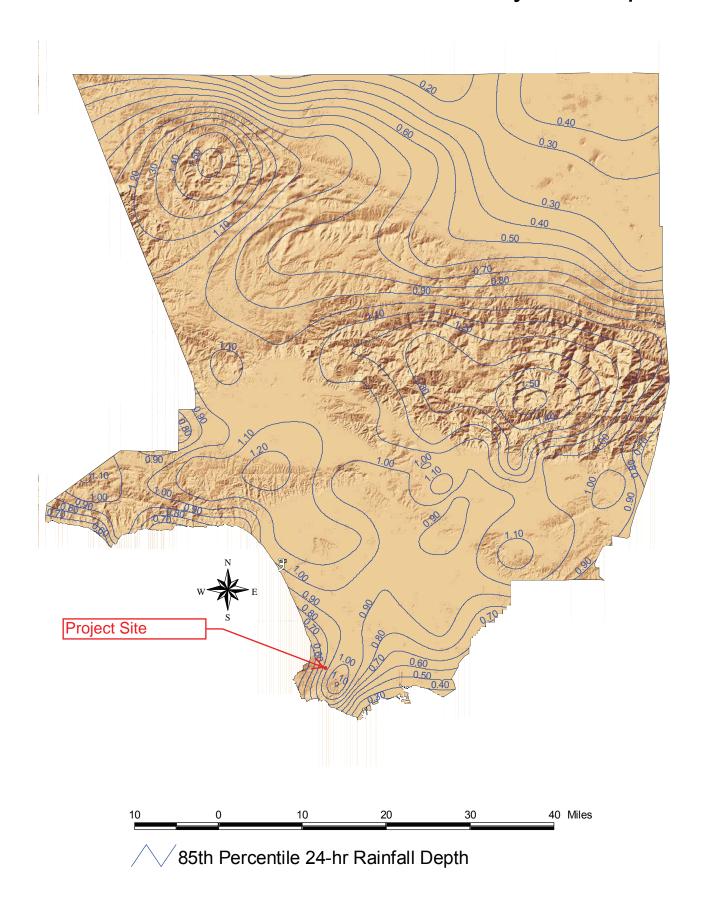
| Input | <b>Parame</b> | eters |
|-------|---------------|-------|
|-------|---------------|-------|

| Project Name              | Solana          |
|---------------------------|-----------------|
| Subarea ID                | Subarea 3E 50YR |
| Area (ac)                 | 0.43            |
| Flow Path Length (ft)     | 30.0            |
| Flow Path Slope (vft/hft) | 0.02            |
| 50-yr Rainfall Depth (in) | 5.4             |
| Percent Impervious        | 1.0             |
| Soil Type                 | 4               |
| Design Storm Frequency    | 50-yr           |
| Fire Factor               | 0               |
| LID                       | False           |

| o a par 1 too a to                  |           |
|-------------------------------------|-----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4       |
| Peak Intensity (in/hr)              | 3.2218    |
| Undeveloped Runoff Coefficient (Cu) | 0.7455    |
| Developed Runoff Coefficient (Cd)   | 0.9       |
| Time of Concentration (min)         | 5.0       |
| Clear Peak Flow Rate (cfs)          | 1.2468    |
| Burned Peak Flow Rate (cfs)         | 1.2468    |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.1727    |
| 24-Hr Clear Runoff Volume (cu-ft)   | 7523.2824 |
|                                     |           |




File location: R:/ReyLenn/ReyLenn-Torrance/Documents/Drainage Study/Calculations/Solana-50 Year/Solana - Subarea 4A 50YR-updated.pdf Version: HydroCalc 0.3.1

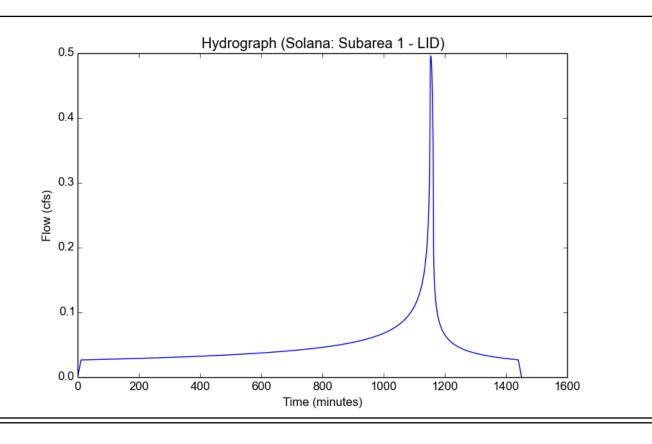

| Input I | <b>Parameters</b> |
|---------|-------------------|
|---------|-------------------|

| Project Name              | Solana           |
|---------------------------|------------------|
| Subarea ID                | Subarea 4A 50 YR |
| Area (ac)                 | 0.12             |
| Flow Path Length (ft)     | 821.76           |
| Flow Path Slope (vft/hft) | 0.57             |
| 50-yr Rainfall Depth (in) | 5.4              |
| Percent Impervious        | 0.01             |
| Soil Type                 | 4                |
| Design Storm Frequency    | 50-yr            |
| Fire Factor               | 0                |
| LID                       | False            |

| Output Roodito                      |          |
|-------------------------------------|----------|
| Modeled (50-yr) Rainfall Depth (in) | 5.4      |
| Peak Intensity (in/hr)              | 2.9572   |
| Undeveloped Runoff Coefficient (Cu) | 0.7318   |
| Developed Runoff Coefficient (Cd)   | 0.7334   |
| Time of Concentration (min)         | 6.0      |
| Clear Peak Flow Rate (cfs)          | 0.2603   |
| Burned Peak Flow Rate (cfs)         | 0.2603   |
| 24-Hr Clear Runoff Volume (ac-ft)   | 0.0099   |
| 24-Hr Clear Runoff Volume (cu-ft)   | 432.2331 |
| · , ,                               |          |



# 85th Percentile 24-hr Rainfall Isohyetal Map




 $\label{location:R:ReyLenn/ReyLenn-Torrance/Documents/LID/Calculations/Solana-Subarea~1-LID.pdf~ Version: HydroCalc~0.2.0-beta$ 

# **Input Parameters**

| Project Name                        | Solana                |
|-------------------------------------|-----------------------|
| Subarea ID                          | Subarea 1 - LID       |
| Area (ac)                           | 2.0                   |
| Flow Path Length (ft)               | 183.0                 |
| Flow Path Slope (vft/hft)           | 0.1                   |
| 85th Percentile Rainfall Depth (in) | 0.85                  |
| Percent Impervious                  | 0.76                  |
| Soil Type                           | 4                     |
| Design Storm Frequency              | 85th percentile storm |
| Fire Factor                         | 0                     |
| LID                                 | True                  |

| o atpat i too allo                                  |           |
|-----------------------------------------------------|-----------|
| Modeled (85th percentile storm) Rainfall Depth (in) | 0.85      |
| Peak Intensity (in/hr)                              | 0.3501    |
| Undeveloped Runoff Coefficient (Cu)                 | 0.1       |
| Developed Runoff Coefficient (Cd)                   | 0.708     |
| Time of Concentration (min)                         | 11.0      |
| Clear Peak Flow Rate (cfs)                          | 0.4957    |
| Burned Peak Flow Rate (cfs)                         | 0.4957    |
| 24-Hr Clear Runoff Volume (ac-ft)                   | 0.0995    |
| 24-Hr Clear Runoff Volume (cu-ft)                   | 4332.9666 |
| '                                                   |           |



#### LID CALCULATIONS CMP INFILTRATION:

Subarea 1-Infiltration Tank 1

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 8.00 feet

CMP<sub>Length</sub>: 59 linear feet

 $G_{depth}$  (Porous Stone): 8.50 feet  $G_{width}$  (Porous Stone): 12.00 feet  $G_{length}$  (Porous Stone): 63 feet

T (Max. Drawdown Time): 24 hr 1,440 min

 $V_{design}$  (CF) : From HydroCalc  $V_{design}$  (CF) : 4,333 C.F.

Reduction Factor (RF): 5.20 unitless Safety Factor (SF): 3.00 unitless

Determine K<sub>sat,design</sub>

$$K_{\text{sat,design}} = K_{\text{sat,measured}} / (RFxSF)$$
  
 $K_{\text{sat,design}} = 6.01 \text{ in/hr}$  0.1001 in/min

Determine A<sub>min</sub>

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 361 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{CMP} = (\pi r^2)xCMP_{Length}$$
  
 $V_{CMP} = 2,966 \text{ C.F.}$ 

Determine  $V_{\text{Stone}}$ 

$$V_{\text{stone}} = ((G_{\text{depth}} \times G_{\text{width}} \times G_{\text{length}}) - V_{\text{CMP}}) \times 0.40$$
  
 $V_{\text{stone}} = 1,384 \text{ C.F.}$ 

Determine  $V_{Actual}$ 

$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= & \textbf{4,350} \\ V_{actuals} > &= V_{design} \end{aligned} C.F.$$

Determine A<sub>actual</sub>

$$A_{actual} = G_{width} \times G_{length}$$
 $A_{actual} = 756 \text{ S.F.}$ 

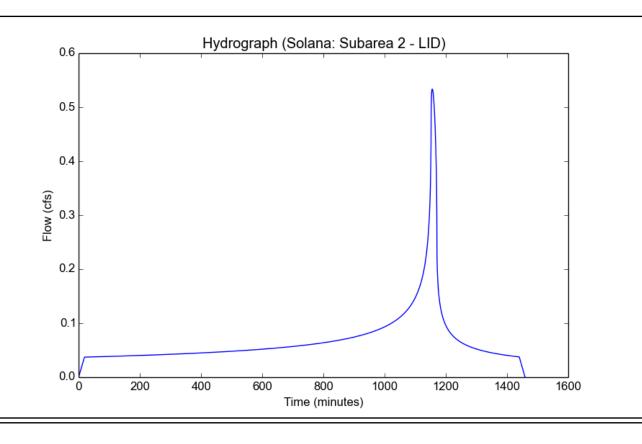
Determine Tactual

$$T_{actual} = (V_{actual} \times 12 \text{ in/ft}) \div (A_{actual} \times K_{sat,design})$$

$$T_{actual} = 11.50 \text{ hr} \qquad 689.7 \text{ min}$$

$$T_{actuals} < T_{max} \qquad TRUE$$

Determine T<sub>actual/min</sub>


$$T_{\text{actual/min}} = A_{\text{actual}} \times (K_{\text{sat , design}} \div 12)$$
  
 $T_{\text{actual/min}} = 6.31 \text{ cf/min}$ 

 $\label{location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Calculations/Solana - Subarea 2 - LID.pdf Version: \\ HydroCalc 0.2.0-beta$ 

# **Input Parameters**

| Project Name                        | Solana                |
|-------------------------------------|-----------------------|
| Subarea ID                          | Subarea 2 - LID       |
| Area (ac)                           | 7.14                  |
| Flow Path Length (ft)               | 332.0                 |
| Flow Path Slope (vft/hft)           | 1.216                 |
| 85th Percentile Rainfall Depth (in) | 0.85                  |
| Percent Impervious                  | 0.22                  |
| Soil Type                           | 4                     |
| Design Storm Frequency              | 85th percentile storm |
| Fire Factor                         | 0                     |
| LID                                 | True                  |

| Modeled (85th percentile storm) Rainfall Depth (in) | 0.85     |
|-----------------------------------------------------|----------|
| Peak Intensity (in/hr)                              | 0.2708   |
| Undeveloped Runoff Coefficient (Cu)                 | 0.1      |
| Developed Runoff Coefficient (Cd)                   | 0.276    |
| Time of Concentration (min)                         | 19.0     |
| Clear Peak Flow Rate (cfs)                          | 0.5336   |
| Burned Peak Flow Rate (cfs)                         | 0.5336   |
| 24-Hr Clear Runoff Volume (ac-ft)                   | 0.1384   |
| 24-Hr Clear Runoff Volume (cu-ft)                   | 6030.186 |
|                                                     |          |



#### LID CALCULATIONS CMP INFILTRATION:

Subarea 2-Infiltration Tank 2

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 8.00 feet

CMP<sub>Length</sub>: 90 linear feet

 $G_{depth}$  (Porous Stone): 8.50 feet  $G_{width}$  (Porous Stone): 12.00 feet  $G_{length}$  (Porous Stone): 94 feet

T (Max. Drawdown Time): 24 hr 1,440 min

 $V_{design}$  (CF) : From HydroCalc  $V_{design}$  (CF) : 6,030 C.F.

Reduction Factor (RF): 5.20 unitless

Safety Factor (SF): 3.00 unitless

Determine  $K_{\text{sat,design}}$ 

$$\begin{split} K_{sat,design} &= K_{sat,measured} \; / \; (RFxSF) \\ K_{sat,design} &= 6.01 \; in/hr & 0.1001 \; in/min \end{split}$$

Determine A<sub>min</sub>

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 502 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{CMP} = (\pi r^2)xCMP_{Length}$$
  
 $V_{CMP} = 4,524 \text{ C.F.}$ 

Determine  $V_{\text{Stone}}$ 

$$\begin{aligned} &V_{stone} = \left( \left( G_{depth} \ x \ G_{width} \ x \ G_{length} \right) \text{--} \ V_{CMP} \right) \times 0.40 \\ &V_{stone} = & 2,026 \ \text{C.F.} \end{aligned}$$

Determine V<sub>Actual</sub>

$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= & 6,550 \\ V_{actuals} > &= V_{design} \end{aligned} C.F.$$

Determine A<sub>actual</sub>

$$A_{actual} = G_{width} \times G_{length}$$
 $A_{actual} = 1,128 \text{ S.F.}$ 

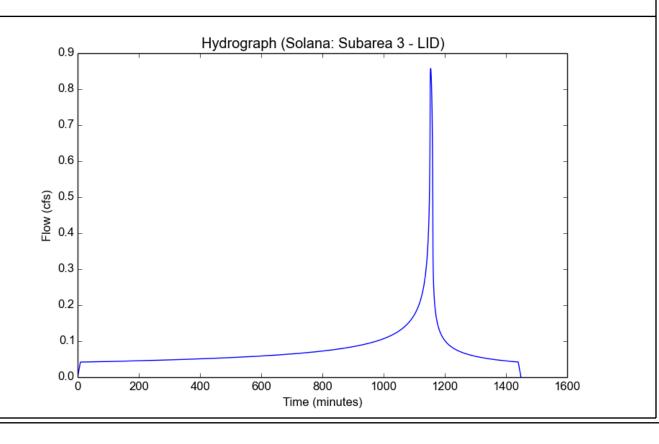
Determine Tactual

$$T_{actual} = (V_{actual} \times 12 \text{ in/ft}) \div (A_{actual} \times K_{sat,design})$$

$$T_{actual} = 11.60 \text{ hr} \qquad 696.0 \text{ min}$$

$$T_{actuals} < T_{max} \qquad TRUE$$

Determine T<sub>actual/min</sub>


$$T_{actual/min} = A_{actual} \times (K_{sat,design} \div 12)$$
  
 $T_{actual/min} = 9.41 \text{ cf/min}$ 

 $\label{location: R:/ReyLenn/ReyLenn-Torrance/Documents/LID/Calculations/Solana - Subarea \ 3 - LID.pdf \ Version: \ HydroCalc \ 0.2.0-beta$ 

| Input | <b>Param</b> | neters |
|-------|--------------|--------|
|-------|--------------|--------|

| Project Name                        | Solana                |
|-------------------------------------|-----------------------|
| Subarea ID                          | Subarea 3 - LID       |
| Area (ac)                           | 2.98                  |
| Flow Path Length (ft)               | 162.0                 |
| Flow Path Slope (vft/hft)           | 0.137                 |
| 85th Percentile Rainfall Depth (in) | 0.85                  |
| Percent Impervious                  | 0.81                  |
| Soil Type                           | 4                     |
| Design Storm Frequency              | 85th percentile storm |
| Fire Factor                         | 0                     |
| LID                                 | True                  |

| o atpat i too allo                                  |           |
|-----------------------------------------------------|-----------|
| Modeled (85th percentile storm) Rainfall Depth (in) | 0.85      |
| Peak Intensity (in/hr)                              | 0.3847    |
| Undeveloped Runoff Coefficient (Cu)                 | 0.1       |
| Developed Runoff Coefficient (Cd)                   | 0.748     |
| Time of Concentration (min)                         | 9.0       |
| Clear Peak Flow Rate (cfs)                          | 0.8576    |
| Burned Peak Flow Rate (cfs)                         | 0.8576    |
| 24-Hr Clear Runoff Volume (ac-ft)                   | 0.1566    |
| 24-Hr Clear Runoff Volume (cu-ft)                   | 6820.8694 |
|                                                     |           |



#### LID CALCULATIONS CMP INFILTRATION:

Subarea 3-Infiltration Tank 3

K<sub>sat,measured</sub>: 93.70 in/hr CMP Diameter: 8.00 feet

CMP<sub>Length</sub>: 94 linear feet

 $G_{depth}$  (Porous Stone): 8.50 feet  $G_{width}$  (Porous Stone): 12.00 feet  $G_{length}$  (Porous Stone): 98 feet

T (Max. Drawdown Time): 24 hr 1,440 min

 $V_{design}$  (CF) : From HydroCalc  $V_{design}$  (CF) : 6,821 C.F.

Reduction Factor (RF): 5.20 unitless Safety Factor (SF): 3.00 unitless

Determine  $K_{\text{sat,design}}$ 

$$K_{\text{sat,design}} = K_{\text{sat,measured}} / (RFxSF)$$
  
 $K_{\text{sat,design}} = 6.01 \text{ in/hr}$  0.1001 in/min

Determine A<sub>min</sub>

$$A_{min} = (V_{design} \times 12 \text{ in/ft}) \div (T \times K_{sat,design})$$
  
$$A_{min} = 568 \text{ S.F.}$$

Determine  $V_{\text{CMP}}$ 

$$V_{CMP} = (\pi r^2)xCMP_{Length}$$
  
 $V_{CMP} = 4,725 \text{ C.F.}$ 

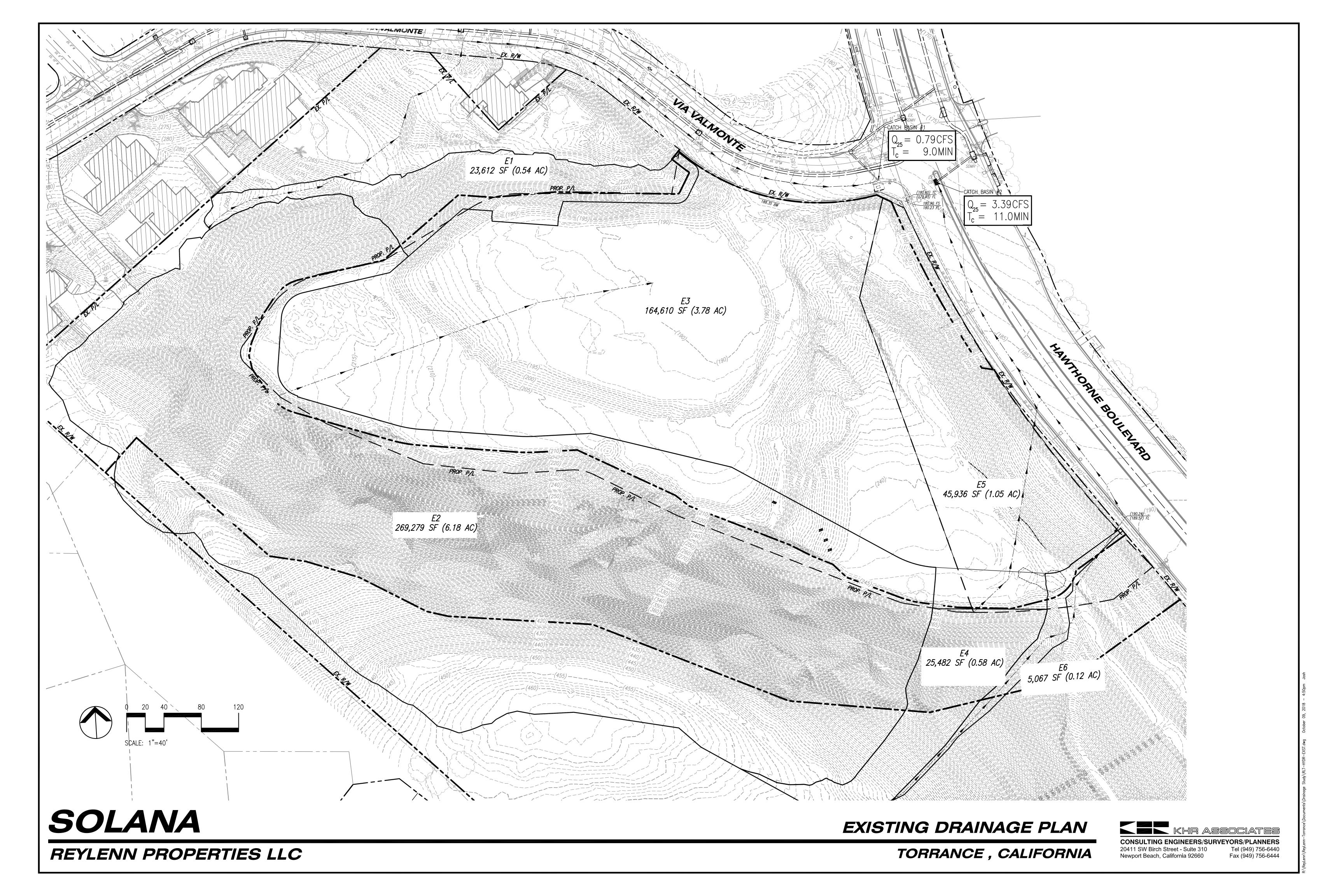
Determine V<sub>Stone</sub>

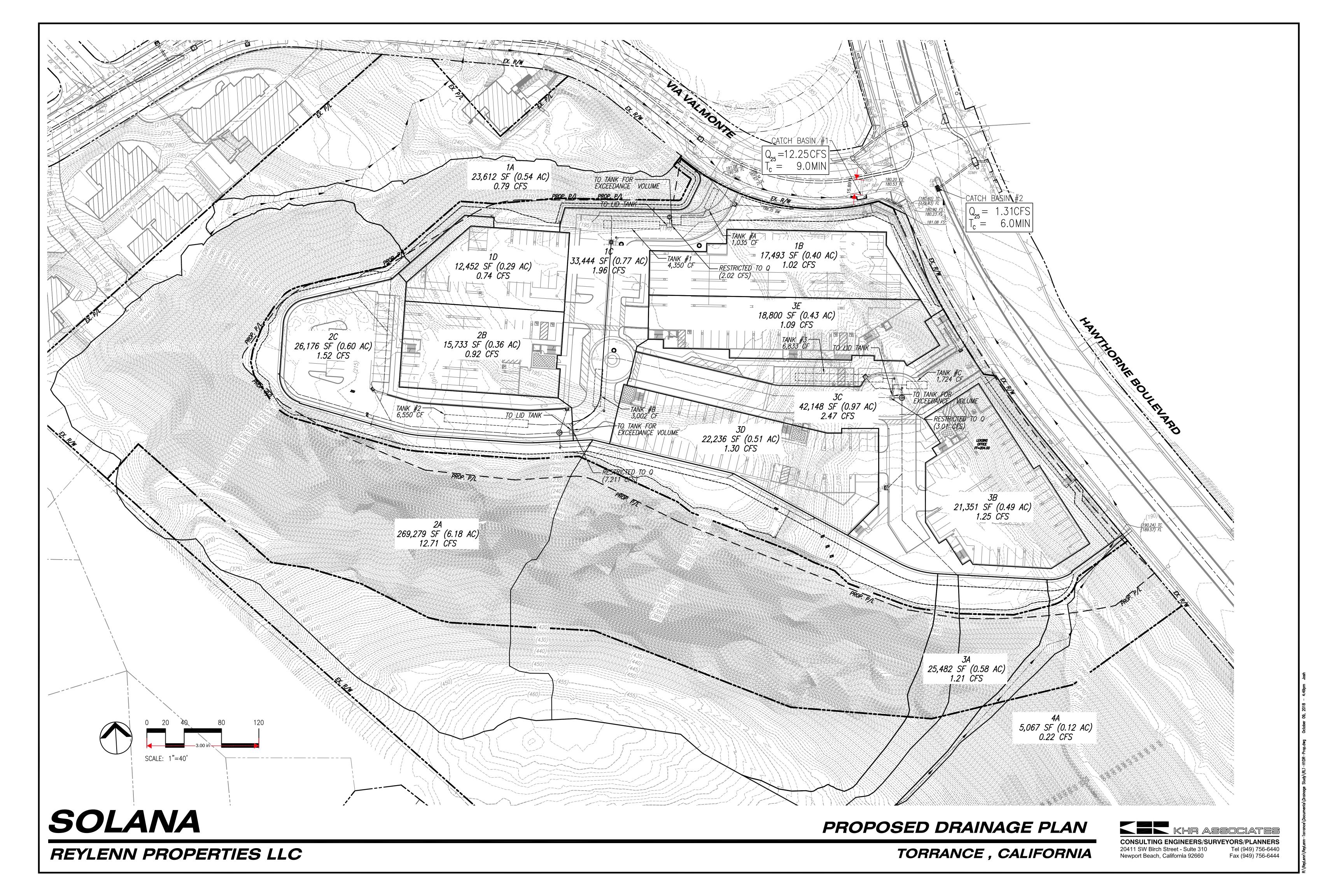
$$V_{\text{stone}} = ((G_{\text{depth}} \times G_{\text{width}} \times G_{\text{length}}) - V_{\text{CMP}}) \times 0.40$$
  
 $V_{\text{stone}} = 2,108 \text{ C.F.}$ 

Determine  $V_{Actual}$ 

$$\begin{aligned} V_{actual} &= V_{CMP} + V_{stone} \\ V_{actual} &= & 6,833 \\ V_{actuals} > &= V_{design} \end{aligned} C.F.$$

Determine A<sub>actual</sub>


$$A_{actual} = G_{width} \times G_{length}$$
 $A_{actual} = 1,176 \text{ S.F.}$ 


Determine T<sub>actual</sub>

$$\begin{split} T_{actual} &= (V_{actual} \ x \ 12 \ in/ft) \div (A_{actual} \ x \ K_{sat,design}) \\ T_{actual} &= 11.61 \ hr & 696.5 \ min \\ T_{actuals} &< T_{max} & TRUE \end{split}$$

Determine Tactual/min

$$T_{\text{actual/min}} = A_{\text{actual}} \times (K_{\text{sat , design}} \div 12)$$
  
 $T_{\text{actual/min}} = 9.81 \text{ cf/min}$ 



