Appendix J Traffic Impact Study, Solana Torrance, Torrance, California

SOLANA RESIDENTIAL DEVELOPMENT PROJECT DRAFT EIR CITY OF TORRANCE

Appendices

This page intentionally left blank.

Traffic Impact Study
 Solana Torrance Torrance, California

February 28, 2019

Prepared for

ReyLenn Properties LLC

Prepared by

ATTESTATION

This report has been prepared by, and under the direction of, the undersigned, a duly Registered Traffic Engineer and Registered Civil Engineer in the State of California. Except as noted, the undersigned attests to the technical information contained herein, and has judged to be acceptable the qualifications of any technical specialists providing engineering data for this report, upon which findings, conclusions, and recommendations are based.

Date: February 28, 2019
James H. Kawamura, P.E.
Registered Traffic Engineer No. TR1110
Registered Civil Engineer No. C30560

TABLE OF CONTENTS

ATTESTATION i
I. EXECUTIVE SUMMARY 1
Project Overview 1
Traffic Impact Study Scope 1
Revisions to TIS 2
Updated Levels of Service Results 3
Site Access, Circulation and Parking 6
Line of Sight Analysis 7
Recommendations 7
II. INTRODUCTION 9
Project Description 9
Figure 1 - Solana Torrance Site Plan 10
Site Location and Existing Uses 10
Figure 2 - Project Site Location within the City of Torrance 11
Figure 3 - Aerial Perspective of Project Site 12
Traffic Impact Study Area 12
Description of Roadway Segments 12
Table I - Study Area Roadways \& Intersections 13
Figure 4 - Location of Study Roadway Segments \& Intersections 13
Description of Study Intersections 14
Figure 5 - Hawthorne Boulevard \& Pacific Coast Highway 18
Figure 6 - Hawthorne Boulevard \& $244^{\text {th }}$ Street 19
Figure 7 - Hawthorne Boulevard \& Newton Street 19
Figure 8 - Hawthorne Boulevard \& Via Valmonte 20
Figure 9 - Hawthorne Boulevard \& Rolling Hills Road 20
Figure 10 - Rolling Hills Road \& Whiffletree Lane 21
Figure 11 - Rolling Hills Road \& Fallenleaf Drive 21
Figure 12 - Crenshaw Boulevard \& Rolling Hills Road 22
Figure 13 - Crenshaw Boulevard \& Pacific Coast Highway 22
Figure 14 - Anza Avenue/Vista Montana \& Pacific Coast Highway 23
Figure 15 - Via Valmonte \& Palos Verde Drive North 23
Figure 16 - Hawthorne Boulevard \& Palos Verdes Drive North 24
Figure 17 - Crenshaw Boulevard \& Palos Verdes Drive North 24
Figure 18 - Rolling Hills Road/Portuguese Bend \& Palos Verdes Drive North 25
Figure 19 - Newton Street \& Calle Mayor 25
Figure 20 - Vista Montana \& Newton Street 26
Figure 21 - Madison Street \& Newton Street 26
Figure 22 - Pacific Coast Highway \& Calle Mayor 27
III. STUDY TERMINOLOGY 27
A.M. and P.M. Peak Hours 27
Figure 23 - Intersection Lane Configurations 28
Average Daily Traffic 29
Capacity 29
Level of Service 30
Table II - Levels of Service for Roadway Classifications 30
Table III - Signalized Intersection LOS \& V/c Ratios 31
Table IV - Unsignalized \& Signalized Intersection LOS Criteria 31
Significant Transportation Impact 31
Trip Ends 32
Trip Generation 32
Trip Reduction 32
Trip Distribution/Trip Assignment 33
Ambient Growth 33
IV. TRIP GENERATION 33
Table V - Summary of SOLANA TORRANCE Trip Generation 34
V. TRIP DISTRIBUTION/TRIP ASSIGNMENTS 34
Trip Distribution 34
Figure 24 - Trip Distribution Assumptions 35
Trip Assignments 36
Existing Traffic - Year 2017 Conditions 36
Existing + Ambient Growth Conditions 36
Ambient+Project Traffic Conditions 36
Committed and Proposed Developments 36
Figure 25 - ADT \& Peak Hour "Project-Only" Trip Assignments 37
Figure 26 - 2017 Existing ADT \& Peak Hour Intersection Traffic Volumes 38
Figure 27 - Ex.+Ambient Growth ADT \& Peak Hour Intersection Traffic Volumes 39
Figure 28 - Ambient + Project ADT \& Peak Hour Intersection Traffic Volumes 40
Figure 29 - Location of Committed and Proposed Development Projects 41
Cumulative Traffic Conditions 41
Table VI - Committed and Proposed Development Projects 42
Figure 30 - Cumulative ADT \& Peak Hour Intersection Traffic Volumes 43
VI. EXISTING \& FUTURE LEVELS OF SERVICE 44
Existing, Ambient Growth, Project, and Cumulative Roadway LOS 44
Table VII -Roadway Segment 45
V/C RatioS \& Levels of Service 45
Existing (2017) \& Existing + Project Intersection LOS - ICU Method 45
Existing + Ambient \& Existing + Ambient + Project Intersection LOS - ICU Method 45
Table VIII - Existing (2017) \& Existing+PROJECT 46
SIGNALIZED INTERSECTIONS - ICU METHOD LOS 46
Table IX - EXISTING + Ambient (2019) \& EX. + AMBIENT + pROJECT 46
SIGNALIZED INTERSECTIONS - ICU method LOS 46
Existing + Ambient + Cumulative \& Existing + Ambient + Cumulative + Project Intersection LOS - ICU Method 47
Table X - EXISTING + Ambient + Cumulative 47
\& EXisting + AMBIENT + cumulative + pROJECT 47
SIGNALIZED INTERSECTIONS - ICU method LOS 47
Intersection LOS - HCM Method 47
Table XI - 2017 Existing \& Existing+PROJECT TRAFFIC 48
All INtersections - HCM method LOS 48
Table XII - Existing+Ambient \& EX+AMB+PROJECT TRAFFIC 49
All INtersections - HCM method LOS 49
Table XIII - CUMULATIVE W/O project \& w/ project trAFFIC 50
ALL INTERSECTIONS - HCM method LOS 50
VII. SITE ACCESS, CIRCULATION, \& PARKING 50
Street and Traffic Improvements 50
Site Access \& Internal Circulation 51
Figure 31 - Via Valmonte \& Hawthorne Boulevard Improvements 52
Line of Sight Analysis 53
Figure 32 - Line of Sight 54
Parking 55
Intersection Queuing Analysis 55
Table XIV - Queuing Survey ${ }^{1}$ 55
Table XV - Second Queuing Survey ${ }^{1}$ 56
Intersection Queuing Analysis - Hawthorne Blvd./Pacific Coast Highway 57
VIII. STUDY FINDINGS, CONCLUSIONS, \& RECOMMENDATIONS 58
Study Findings 59
Recommendations 61
IX. REFERENCES 62
APPENDIX SECTION 1

Solana Torrance Traffic Impact Study

February 28, 2019

I. EXECUTIVE SUMMARY

This report documents a Traffic Impact Study (TIS), and subsequent revisions, completed for the proposed Solana Torrance multi-family residential project (hereinafter referred to as the Project), proposed on the southwest corner of Hawthorne Boulevard and Via Valmonte, in the City of Torrance, California. In 2016, the TIS originally documented anticipated traffic impacts with a previous plan for 300 units. The Project scope was then revised and the First Revision (April 2017) analyzed traffic impacts with 248 units. Per the City's request, the Second Revision was modified to respond to questions/comments from interested parties including a revised trip generation rate for the proposed Project. The Third Revision included an expanded study area of additional intersections beyond the original study scope per the City's request. The Fourth and Fifth Revisions included adjustments made to the queuing analyses, per City comments, and completion dates. The Sixth and Seventh Revisions incorporated revised trip generation rates based upon the latest edition of the Institute of Transportation Engineers (ITE) Trip Generation manual - $10^{\text {th }}$ Edition. Note that the $10^{\text {th }}$ edition of the ITE manual was released in October 2017, after the initial preparation of the TIS. This Eighth Revision includes additional development scenarios for levels of service analyses, and a queuing analysis at a second location within the Study area. The latest edits were made per the recommendations of the environmental consultant and City staff.

Project Overview

The Project site is located on 24.68 acres of land on the southwest corner of Via Valmonte and Hawthorne Boulevard in the City of Torrance, California. Existing topography ranges from open space on a significant hillside to a disturbed area that contains a former diatomaceous soil surface mine. The disturbed surface mine area is planned to be reclaimed and redeveloped with 248 multifamily residential apartments and a 7,475-square foot leasing office/community clubhouse constructed over at-grade parking garages. The remaining 18.92 acres of the total site will be preserved as open space. Access to and from the Project site is proposed through one driveway on Hawthorne Boulevard (right-in/right-out only). One "exit-only" driveway with raised traffic barriers is proposed for Via Valmonte (right-out only).

Traffic Impact Study Scope

The TIS was commissioned by the Solana Torrance proponent and developer, Reylenn Properties, LLC, Solana Beach, California, and performed by KHR

Associates, Newport Beach, California. The original scope of work for the study was provided by staff with the City of Torrance, Public Works and Community Development Departments. As part of the TIS, traffic counts were taken at eleven study intersections and two roadway segments in April 2016. An annual growth factor of one percent was added to estimate updated 2017 volumes. Additionally, the City of Torrance, as well as neighboring cities provided lists of projects for inclusion in the cumulative analysis portion of the TIS. In addition to the original eleven intersections studied, seven more intersections were later added in the Third Revision.

Revisions to TIS

Reviews of the initial submittal of the TIS, on April 20, 2017, generated comments regarding some of the methodologies used in the study. Subsequently, as noted above, several revisions of the report included additional concerns and an expanded study scope involving changes to trip generation rates, levels of service, queuing analyses, and site circulation. The following summarizes these updates.

Trip Generation Rates

Trip generation rates used to estimate the number of vehicle trips (in and out of the Project site) in the first version of the TIS were obtained from the most recent version (at that time) of the ITE Trip Generation manual, $9^{\text {th }}$ Edition. For peak hour estimates, "Land Use Code" 223 - "Mid-Rise Apartment" was used for the Project because it was more specific to developments with the same number of floors. Note that Land Use Code 223 did not have a daily rate and therefore the more general "Land Use Code 220 - Apartment" was used to estimate average daily traffic. A comment was made that the study should use the more general "Apartment" rate (220) for peak hour analyses since it is a more established rate with broader survey samples. The second revision to the TIS was updated with the Land Use Code 220 trip generation rates for peak hour analyses. As indicated above, this Sixth Revision incorporated revised trip generation rates based upon the latest edition of the ITE Trip Generation manual - $10^{\text {th }}$ Edition. The new land use code is 221 "Mid Rise Multifamily".

Palos Verdes North/Hawthorne Boulevard Intersection

For the Second Revision, the City of Torrance asked that one additional intersection be reviewed for potential impacts that may result from the proposed Project. The intersection of Palos Verdes North and Hawthorne Boulevard (located south of the Project site) in the City of Rolling Hills Estates, was researched for current traffic volumes and LOS designations. Data from a recent traffic study prepared for the "Peninsula Pointe Assisted Living Project, March 2016, as provided by the City, revealed that in 2016, the intersection was operating at LOS D in the A.M. peak hour with a volume/capacity ratio of .828 and LOS B in the P.M. peak hour with a volume/capacity ratio of .682. Also, total volumes for each of the peak hours was provided as follows: during the A.M. peak hour (7:30 to 8:30 A.M.), 3,845 vehicles traveled through the intersection; and during the P.M. peak hour (4:45 to 5:45 P.M.), 3,364 vehicles were counted.

Using this existing data and adding the anticipated number of Project related vehicles (from this study's revised trip generation and distribution assumptions) results in the following: in the A.M. peak hour, a total of 12 Project vehicles are anticipated to travel through this intersection. In the P.M., 15 Project vehicles are anticipated. Comparing these totals with the overall intersection volumes above indicate that Project vehicles represent roughly a half percent of the totals. Also, since the intersection operates within acceptable LOS, the very incremental increase from Project vehicles should not make any measurable impact on the operation of that intersection. As a follow-up in the Third Revision of this report, seven additional intersections were counted and analyzed for traffic related impacts including this intersection. A summary of the revised LOS for all eighteen intersections is provided below.

Updated Levels of Service Results

The TIS included several procedures and considerations to identify potential Levels of Service (LOS) impacts associated with development of the Project. Below is a list of the steps and updates used in the analyses.

1) Traffic volume counts were taken in mid-April 2016. An ambient growth factor of one percent was added to the 2016 volumes to estimate 2017 conditions and reflect baseline conditions at study roadway segments and intersections.
2) The Project is estimated to generate a total of 1,349 daily trip ends; and 89 A.M. and 105 P.M. peak hour trips ends, respectively.
3) Based on the current site plan for the Project, vehicular access to and from the site will be provided via one future driveway along Hawthorne Boulevard. One "exit-only" driveway with raised barriers is proposed on Via Valmonte. Both Project driveways will be restricted to right-turn-only movements for residents and visitors. Only emergency vehicles will be allowed to turn left onto the site at the Via Valmonte entrance over the traffic movement barriers.
4) City capital improvements are slated (planned for 2018) for the intersections of Hawthorne Boulevard/Pacific Coast Highway and Vista Montana/Pacific Coast Highway that will reduce traffic congestion for each location.
5) Each intersection was originally analyzed for "Levels of Service" (LOS) using four scenarios: baseline conditions - existing plus one year of ambient growth 2017 volumes, two years of ambient growth, plus Project volumes, and plus cumulative development volumes for both the A.M. and P.M. peak hours. For this Eighth Revision, two more scenarios were analyzed including existing (baseline) conditions plus Project volumes (without an ambient growth factor), and cumulative development conditions without Project volumes.
6) Each signalized intersection was analyzed using two methods - Intersection Capacity Utilization (ICU), and Highway Capacity Manual (HCM). Calculation
sheets for each intersection/condition are within the Appendix section of this report. Stop controlled intersections were only analyzed with the HCM method.
7) Using the baseline - existing 2017 volumes, the ICU LOS at each of the study intersections, during both the A.M. and P.M. peak hours of weekday commute, fall within acceptable limits (i.e., "D" or better) with the exception of:
a. the Crenshaw Boulevard/Pacific Coast Highway intersection during the P.M. peak hour;
b. the Crenshaw Boulevard/Palos Verdes Drive North intersection during the A.M. peak hour;
c. the Rolling Hills Road/Palos Verdes Drive North intersection during the A.M and P.M. peak hours; and
d. Pacific Coast Highway/Calle Mayor intersection during the A.M. and P.M. peak hours.
8) Adding Project traffic to these baseline conditions resulted in no changes to the LOS designations from the 2017 baseline levels.
9) The further addition of ambient growth (i.e., one percent per year for two years) traffic to the 2017 volumes resulted in incremental increases in volumes for all intersections and a decrease in ICU intersection LOS for the Crenshaw Boulevard/Palos Verdes Drive North intersection during the P.M. peak hour. Note that two intersections: Hawthorne Boulevard/Pacific Coast Highway and Vista Montana/Pacific Coast Highway, improved in LOS due to the addition of planned capital improvements by the City of Torrance.
10) With the addition of Project traffic to the 2019 ambient conditions, no changes to the LOS designations occurred.
11) With the addition of cumulative development traffic to existing baseline and ambient growth (2019), the utilization of each intersection increased; however, the ICU LOS at each intersection is projected to stay within acceptable limits during both the A.M. and P.M. peak hours, again with the exception of the four intersections noted above.
12) With the addition of Project traffic to the 2019 cumulative conditions, no changes to the LOS designations occurred.
13) Using the HCM methodology to determine levels of service for the studied intersections revealed similar results in the existing baseline plus Project conditions (i.e., to that of the ICU calculations) with the exception of the Hawthorne Boulevard/Pacific Coast Highway intersection resulting in LOS "E" in the P.M. peak hour, the Crenshaw Boulevard/Rolling Hills Road intersection resulting in LOS " E " in the A.M. peak hour, and the Hawthorne

Boulevard/Palos Verdes Drive North intersection resulting in LOS "E" in the A.M. peak hour.
14) Intersection delays increased with 2019 ambient growth conditions; however, the LOS designations did not change with the addition of Project traffic.
15) Under the cumulative development conditions, many of the studied intersections showed increases in delays and further deterioration in LOS during both peak hours of traffic.
16) The addition of Project traffic to cumulative conditions did not result in any decreased LOS.
17) The two roadway segments analyzed - Via Valmonte (LOS "A") and Hawthorne Boulevard (LOS "B"), adjacent to the Project site both currently operate at acceptable levels, and will continue to do so with the addition of ambient growth. The only anticipated change in LOS occurs on Via Valmonte, from LOS "A" to an acceptable LOS "B" with the addition of cumulative traffic.

Queuing Analysis - Via Valmonte/Hawthorne Boulevard

Queuing analyses were performed for two intersections within the Study area. The first location was the eastbound approach to the Via Valmonte/Hawthorne Boulevard intersection. For this movement, an initial queuing analysis performed between the hours of 7:00 A.M. and 8:00 A.M. revealed that the hour long average of vehicles waiting within the left-turn lane during the A.M. peak hour was 2.8 vehicles (with an observed maximum of five vehicles) and the average signal cycle length was 90 seconds. A second queuing survey for this movement was conducted on Thursday, September 27, 2018, this time for two hours between 7:00 A.M. and 9:00 A.M. with the results showing the average queue of 3.62 vehicles and a maximum of nine vehicles occurring one time during the survey. By adding estimated Project traffic into the eastbound, left turn approach to the Via Valmonte/Hawthorne Boulevard intersection, it was estimated that there could be an average of 5.4 vehicles waiting to turn left at any given time during the peak hour, and a potential maximum of 10 vehicles.

Off-site improvements, as part of the Project plan, include constructing a second optional left turn lane for the eastbound approach to the intersection. The anticipated vehicle capacity of both left turn options is 250 feet (125 feet for each lane), which should accommodate at least 10 vehicles (space at 25 foot intervals). It should be noted that the additional lane is designed to be 16 feet wide for its entire length allowing right turning vehicles enough space to pass-by and avoid waiting in the leftturn queue. With the development of the proposed intersection improvements, and assuming a traffic signal cycle length of 90 seconds, there should be adequate space within the left turn pockets to accommodate existing plus Project related vehicles.

The City of Torrance asked for another analysis of impacts on queuing resulting from the use of a 120 second cycle, or 30 cycles per hour, if the signal timing were to be
adjusted in the future. Following the same methodology above, the average queue for left turn movements would be 7.2 vehicles during the A.M. peak hour - and a potential maximum of 14 vehicles.

Under extreme "worst-case" conditions, when there may be a significant number of vehicles attempting to exit the Project site onto Via Valmonte at the same time, the Project plan includes more than 120 feet of "on-site" queuing space within the driveway throat that could accommodate another six to seven vehicles.

Queuing Analysis - Hawthorne Boulevard/Via Valmonte

For the Eighth Revision of this report, a second queuing analysis was performed for the northbound left-turn movement at the Hawthorne Boulevard/Pacific Coast Highway intersection. The following summarizes the results as explained in the Site Access, Circulation and Parking section of this report.

1) Based upon traffic count data, during the A.M. peak hour, 278 A.M. peak hour vehicles will be traveling through the northbound left-turn movement during 25 cycles for an average of 11 vehicles per cycle. Using a worst-case design factor of 1.75 x the average, there may be a worst-case queuing demand of 19 vehicles. With a leftturn lane capacity of approximately 21 vehicles, there should be sufficient left-turn lane capacity to accommodate A.M. peak hour demands for this movement.
2) During the P.M. peak hour, 311 left-turning vehicles will travel through 25 cycles for an average of 12 vehicles per cycle. Using a worst-case design factor of 1.75 x the average, there may be a worst-case queuing demand of 21 vehicles - equaling the current capacity.
3) The City has indicated that proposed improvements for this northbound left-turn movement include constructing an asphalt berm at the $242^{\text {nd }}$ street crossing and eliminating the existing "keep clear" zone. The estimated additional queuing space is 60 feet which would accommodate space for at least another 2 vehicles.
4) Project related traffic traveling through this northbound left-turn movement is anticipated to be the heaviest during the A.M. peak hour with 10 additional vehicles. These vehicles added to the A.M. analysis above results in 288 vehicles traveling through 25 cycles for an average of 11 vehicles per cycle and a worst-case condition of 19 vehicles - still below the current capacity of 21 vehicles and the future capacity of 23 vehicles.

Site Access, Circulation and Parking

Development of Solana Torrance will include street improvements on Via Valmonte include widening of the eastbound approach leg to Hawthorne Boulevard, adjacent to the Project site, to provide an additional travel lane for optional left turn, through movement, or right turns. This improvement will include a new roadway surface; new curb, gutter, sidewalk, and parkway on the south side of Via Valmonte; a new
crosswalk across Via Valmonte at Hawthorne Boulevard; and new accessible ramps on the northwest and southwest corners of the intersection.

On Hawthorne Boulevard, street improvements will include widening and traffic lane re-striping to add a right southbound turn lane between Via Valmonte and the proposed Project driveway; a new sidewalk contiguous to the street curb; a landscaped parkway between the sidewalk and the Project property line wall; and modifications to the traffic signal at the Via Valmonte/Hawthorne Boulevard intersection.

Two driveways into the Project are proposed - one ingress/egress driveway on Hawthorne Boulevard and one egress driveway on Via Valmonte. Within the property, internal drive aisles lead directly into multiple subterranean parking structures located under the residential buildings. Designated guest parking will also be provided. In total, the 248 multi-family dwelling units will be served with 484 parking spaces.

Line of Sight Analysis

The City of Torrance requested that the TIS include an analysis of the "line of sight" from exiting vehicles on the proposed driveway on Hawthorne Boulevard looking north toward oncoming southbound traffic. The proposed driveway is designed for right-in/right-out movements only, with all exiting vehicles required to stop before entering the flow of traffic on Hawthorne Boulevard. With a vehicle stopped in the exit lane at the stop limit line, drivers will first look to see if there are any pedestrians crossing the driveway, and secondly, look north along Hawthorne Boulevard to see if any vehicles are approaching the driveway.

The line of sight distance from the Project exit lane stop limit line is 290 feet to the center of the lane closest to the sidewalk curb (or Number 3 Lane). All traffic formed by these two lines of sight is within the cone of visibility by a driver exiting the Project driveway. Once the proposed street improvements along Hawthorne Boulevard are constructed (i.e., relocation of power poles; widening the street to include a southbound right turn/deceleration lane onto the Project driveway; modifying the traffic signal at Hawthorne Boulevard and Via Valmonte; and moving the sidewalk to be contiguous to the curb in lieu of a landscaped parkway), there should be no visual impairments to drivers exiting the Project site onto Hawthorne Boulevard.

Recommendations

Based on the study findings and conclusions, the proposed Project is not anticipated to result in any significant traffic impacts to any of the study street segments or intersections. Therefore, the following recommendations are made:

1) Construct Project driveways only allowing right-turn, "exit-only" movements to Via Valmonte, and right-turn, ingress/egress movements to Hawthorne Blvd.
2) Complete the off-site widening and improvements to Via Valmonte as shown on the Project plan.
3) Construct the intersection improvements, including an additional left/through lane to the eastbound approach leg of the Via Valmonte/Hawthorne Boulevard; a new crosswalk on Via Valmonte leg; accessible ramps on the corners; and traffic signal improvements (e.g., modification of signal mast arms) on Via Valmonte.
4) Widen and restripe the west side of Hawthorne Boulevard for a right turn deceleration lane, adjacent to the site for Project related traffic ingress.
5) Provide various traffic controls, including signage, striping, and pavement marking, to provide safe and efficient vehicular, pedestrian, and bicycle movement through and within the Project site.

II. INTRODUCTION

Reylenn Properties, LLC (Reylenn), Solana Beach, originally proposed a 300-unit multi-family residential development (known as Solana Torrance) on a vacant site located on the southwest corner of Hawthorne Boulevard and Via Valmonte, in the Hillside Residential Neighborhood District of the City of Torrance, California. Subsequently, the Project was redesigned and now includes 248 units. As part of its environmental review process, the City determined that a traffic impact study (TIS) was necessary, and that potential impacts associated with the proposed development must be analyzed, and mitigation measures must be identified.

Reylenn was given permission by the City to commission KHR Associates, Newport Beach, California, to work with City staff and undertake the TIS. The City specified the requirements of the TIS, and identified intersection and roadway segments of concern. The City also provided a list of other development projects within the general proximity of the proposed development that should be analyzed for potential cumulative traffic impacts. Moreover, future development lists were gathered from neighboring cities in order to fully estimate future traffic increases on study intersections leading up to Project buildout.

Information regarding the proposed Solana Torrance development was provided by Reylenn and the project architect, Withee Malcolm Architects, Torrance, California. The results of the TIS are presented herein, and the findings, conclusions, and recommendations are solely those of KHR Associates, and may not be reflect the opinions of Reylenn, the City of Torrance, or any other interested parties.

Project Description

The Project site is an assemblage of terraced, existing parcels covering 24.68 acres on the southwest corner of Via Valmonte and Hawthorne Boulevard in the City of Torrance, CA. Topography ranges from natural open space on a significant hillside to a highly disturbed area that contains a former diatomaceous soil surface mine. The 5.76-acre portion of the site that encompasses the disturbed surface mine area will be reclaimed and redeveloped. The remaining 18.92 acres of the total site will be preserved as open space.

Proposed development on the 5.76-acre portion consists of 248 multifamily residential apartments and a 7,475-square foot leasing office/community clubhouse in three, four, and five-story residential structures constructed over at-grade parking garages. A free-standing, five level on-grade parking structure with a rooftop outdoor recreation area is also proposed at the rear of the planned community. The Project's residential unit mix will include 135 one-bedroom units and 113 two-bedroom units. A total of 484 parking spaces will be provided by a combination of surface parking and in the parking structures.

Access to and from the Project site is proposed through one driveway entrance on Hawthorne Boulevard (right-in/right-out only). One "exit-only" driveway is proposed for Via Valmonte (right-out only). Only emergency vehicles will be allowed to enter the driveway on Via Valmonte. Figure 1 depicts the most current conceptual site plan for the Project.

Figure 1 - Solana Torrance Site Plan

Site Location and Existing Uses

The Project site is located on the southwesterly corner of Hawthorne Boulevard and Via Valmonte, within the City of Torrance, California. The Project is within the Hillside Overlay Zone, with General Plan Land Use Designations of Low Density Residential (R-LO), and a Zoning designation of A1 - Light Agricultural. Adjacent land uses include residential uses to the north and west, residential and light commercial/office to the east and vacant/hillside land to the south. Hawthorne Boulevard, running along the east side of the Project site, is within the Hawthorne Boulevard Corridor Specific Plan. Figure 2 illustrates the location of the Project site within the City of Torrance along with the City's Residential Neighborhood Districts.

Current existing major land uses in close proximity to the Project site include the Torrance Municipal Airport (also known as Zamperini Field), a general aviation airport owned and operated by the City of Torrance, providing regional aviation access to recreational pilots, businesses, and emergency services flights; and Del Amo Fashion Center, a superregional shopping center with approximately three million square feet of retail space. The Project site is currently undeveloped land, vacant and unutilized. Figure 3 provides a recent aerial perspective of the configuration and limits of the Project site.

Figure 2 - Project Site Location within the City of Torrance ${ }^{A}$

[^0]

Figure 3 - Aerial Perspective of Project Site

Traffic Impact Study Area

The TIS area generally consists of the development site and surrounding residential communities and commercial properties. Three major transportation corridors exist within close proximity - Hawthorne Boulevard, Crenshaw Boulevard, and Pacific Coast Highway, which all provide regional access opportunities to either the San Diego Freeway (l-405) or the Harbor Freeway (l-110). Study intersections and arterial roadway segments were identified by the Public Works Department, and are listed in Table I. Figure 4 provides an aerial view of the study roadway segments and intersections within the general study area.

Description of Roadway Segments

The existing regional network of streets and highways servicing the development site include Via Valmonte, Hawthorne Boulevard, Pacific Coast Highway, and Crenshaw Boulevard. Freeways in the Project vicinity include the San Diego (l-405) Freeway and the Harbor (I-110) freeway.

The following briefly describes each of these existing roadways, as described within the City's General Plan - Circulation and Infrastructure Element.

TABLE I - STUDY AREA ROADWAYS \& INTERSECTIONS	
ID	Roadway Segments
A	Hawthorne Boulevard south of Via Valmonte
B	Via Valmonte west of Hawthorne Boulevard
No.	Intersection
1	Hawthorne Boulevard \& Pacific Coast Highway
2	Hawthorne Boulevard \& 244 ${ }^{\text {th }}$ Street
3	Hawthorne Boulevard \& Newton Street
4	Hawthorne Boulevard \& Via Valmonte
5	Hawthorne Boulevard \& Rolling Hills Road
6	Rolling Hills Road \& Whiffle Tree Lane
7	Rolling Hills Road \& Fallenleaf Drive
8	Crenshaw Boulevard \& Rolling Hills Road
9	Crenshaw Boulevard \& Pacific Coast Highway
10	Anza Avenue/Vista Montana \& Pacific Coast Highway
11	Via Valmonte \& Palos Verdes Drive North
12	Hawthorne Boulevard \& Palos Verdes Drive North
13	Crenshaw Boulevard \& Palos Verdes Drive North
14	Rolling Hills Road \& Palos Verdes Drive North
15	Newton Street \& Calle Mayor
16	Vista Montana \& Newton Street
17	Madison Street \& Newton Street
18	Pacific Coast Highway \& Calle Mayor

Figure 4 - Location of Study Roadway Segments \& Intersections

Hawthorne Boulevard - Hawthorne Boulevard (SR-107) runs in a primarily north to south direction from Century Boulevard to Palos Verdes Drive, respectively. Hawthorne Boulevard is classified as a Principal Arterial, and is generally an eightlane divided roadway with a raised median. Adjacent the project site, Hawthorne Boulevard is six lanes, divided, with an existing half right of way from the centerline to the westerly right of way line of 50 feet along the entire property frontage, and a centerline to westerly face-of-curb dimension of 40 feet. From Interstate 405, Hawthorne Boulevard provides access to the Del Amo Fashion Center as well as residential areas.

Via Valmonte - Via Valmonte is a Collector street providing access to the residential neighborhood adjacent to the development site. Trending in an east to west direction, terminating at Hawthorne Boulevard to the east and Paseo Del Campo to the west, Via Valmonte consists of two lanes, undivided.

Pacific Coast Highway - Pacific Coast Highway (SR-1) is a major state highway running along most of the Pacific coastline of California. Within the City of Torrance, Pacific Coast Highway is designated a Major Arterial, tending in an east-west direction with six lanes, divided.

San Diego (I-405) Freeway - The San Diego (l-405) freeway runs in a northwestsoutheast orientation through the City of Torrance. The l-405 freeway was constructed as a bypass of the Santa Ana freeway (l-5), and it continues to serve interstate and regional travel needs to major destinations within the western and southern parts of the greater Los Angeles area. The I-405 freeway features four to five mixed flow lanes and HOV lanes in each direction.

Harbor (I-110) Freeway - The Harbor (I-110) freeway runs in a north-south direction, connecting San Pedro and the Port of Los Angeles with Downtown Los Angeles and Pasadena. The I-110 freeway features at least four mixed flow lanes and HOV lanes in each direction.

Description of Study Intersections

The eighteen study intersections are briefly described below, followed by aerial views of each study intersection (see Figures 5 through 22). The current lane configurations of the approach legs to the eighteen study intersection are depicted in Figure 23.

1) Hawthorne Boulevard \& Pacific Coast Highway - This intersection is signalized for eight phases of traffic movement. The northbound approach leg features three through lanes and dual left turn lanes. The southbound approach leg has three through lanes, a separate right turn lane, and dual left turn lanes. The eastbound approach leg has three through lanes and a left turn pocket. The westbound approach leg has three through lanes and a left turn pocket. Highvisibility crosswalks are marked across all four legs of the intersection.

The City of Torrance has indicated that this intersection is slated for capital improvements in 2018 to include three through lanes and dual left turn lanes in all directions. The intersection will continue to operate with eight phases.
2) Hawthorne Boulevard \& $\mathbf{2 4 4}{ }^{\text {th }}$ Street - This intersection is signalized for two phases of traffic movement. The northbound and southbound approach legs each feature three through lanes and a left turn pocket. The eastbound and westbound approach legs each have one lane for left, through and right turns. Crosswalks are marked across all four legs of the intersection. There is a current time period restriction for no northbound right or left turns between 6 and 9 A.M., Monday through Friday at this intersection. Also, southbound U-turns are not permitted.
3) Hawthorne Boulevard \& Newton Street - The intersection of Hawthorne Boulevard and Newton Street is signalized for four phases of traffic movement. The northbound approach leg features three through lanes and a left turn pocket. The southbound approach leg has three through lanes and a left turn pocket. The eastbound approach leg has one through/right turn lane and a left turn pocket. The westbound approach leg has one through lane, a separate right turn lane, and a left turn pocket. Crosswalks are marked across all four legs of the intersection. Time period restrictions for this intersection include no northbound right turns between 6 and 9 A.M., Monday through Friday.
4) Hawthorne Boulevard \& Via Valmonte - The intersection of Hawthorne Boulevard and Via Valmonte is signalized for two phases of movement. The northbound approach leg features three through lanes, a right turn lane, a left turn pocket, and a raised median island. The southbound approach leg has three through lanes and a left turn pocket, and a raised median island. The eastbound leg has an optional through/right turn/left turn lane, along with enough shoulder for separate right turn movements. The westbound leg has optional through/left and through/right turn lanes. Crosswalks are marked across the southbound, eastbound and westbound legs. U-turns in the northbound and southbound directions are currently prohibited.
5) Hawthorne Boulevard \& Rolling Hills Road - The intersection of Hawthorn Boulevard and Rolling Hills Road is signalized for four phases of traffic movement. The northbound approach leg features two through lanes and a left turn pocket. The southbound approach leg has two through lanes and dual left turn lanes. The eastbound approach leg serves as the driveway for the Sunrise at Palos Verdes development. The westbound approach leg has an optional through/right turn lane, a separate right turn lane, and a separate left turn lane. Crosswalks are marked across the northbound, southbound and westbound approach legs. U-turns in the northbound direction are not permitted.
6) Rolling Hills Road \& Whiffletree Lane - The intersection of Rolling Hills Road and Whiffletree Lane is signalized for two phases of traffic movement. The northbound and southbound approach legs (Whiffletree Lane) each feature one lane serving all movements. The eastbound and westbound approach legs each
have two through lanes with left turn movements yielding to opposing traffic. Crosswalks are marked across all four legs.
7) Rolling Hills Road \& Fallenleaf Drive - The intersection of Rolling Hills Road and Fallenleaf Drive is signalized for two phases of traffic movement. The eastbound and westbound approach legs (Rolling Hills Road) each feature two through lanes and a left turn pocket. The northbound and southbound legs each have a single through lane serving all movements. Crosswalks are marked across all four legs of the intersection.
8) Crenshaw Boulevard \& Rolling Hills Road - The intersection of Crenshaw Boulevard and Rolling Hills Road is signalized for eight phases of traffic movement. The eastbound and westbound approach legs (Rolling Hills Road) each feature one through lane, a separate right turn lane, and a left turn pocket. The northbound and southbound approach legs have three through lanes and a left turn pocket. Crosswalks are marked across all four legs of the intersection.
9) Crenshaw Boulevard \& Pacific Coast Highway - The intersection of Crenshaw Boulevard and Pacific Coast Highway is signalized for eight phases of traffic movement. The northbound approach leg (Crenshaw Boulevard) has three through lanes, a separate right turn lane, and a left turn pocket. The southbound approach leg has three through lanes and a left turn pocket. The eastbound approach leg (Pacific Coast Highway) has two through lanes and dual left turn lanes. The westbound approach leg features three through lanes and dual left turn lanes. High-visibility crosswalks are marked across all four legs.
10) Anza Avenue/Vista Montana \& Pacific Coast Highway - The intersection of Anza Avenue/Vista Montana and Pacific Coast Highway is signalized for six phases of traffic movement. The northbound approach leg features one left turn lane, one left/through lane, and one through/right turn lane. The southbound approach leg has one left turn lane, one left/through lane, one through lane and a separate right turn lane. The eastbound and westbound approach legs each have two through lanes and a left turn pocket. The intersection currently operates with a split phase in the north and south directions. Crosswalks are marked across the northbound, southbound, and eastbound legs of the intersection. Traffic signage indicates that southbound left turns between 4 and 7 P.M., Monday through Friday, are prohibited at the Vista Montana/Newton Street intersection.

The City of Torrance has indicated that this intersection is slated for capital improvements in 2018 to include: dual left turn lanes, one through lane and one through/right turn lane in the northbound direction; and dual left turn lanes, two through lanes and a separate right turn lane in the southbound direction. The intersection will operate with eight phases of movement.
11) Via Valmonte \& Palos Verdes Drive North - The intersection of Via Valmonte and Palos Verdes Drive North is controlled in each direction by stop signs. The northbound approach leg features a through lane and a left turn pocket. The
southbound approach leg has one lane serving all movements. The eastbound and westbound approach legs each have one lane serving all movements. The north leg of the intersection is separated by wide parkway that includes a pedestrian path that continues northwest to Via Alameda. Crosswalks are marked across the southbound, eastbound and westbound legs of the intersection.
12) Hawthorne Boulevard \& Palos Verdes Drive North - This intersection is signalized for eight phases of traffic movement. The northbound approach leg (Hawthorne Boulevard) features two through lanes, a separate right turn lane, and a left turn pocket. The southbound approach leg (Hawthorne Boulevard) has two through lanes, a separate right turn lane, and a left turn pocket. The eastbound approach leg (Palos Verdes Drive North) has two through lanes, a separate right turn lane, and a left turn pocket. The westbound approach leg (Palos Verdes Drive North) has two through lanes, a separate right turn lane, and dual left turn lanes. Crosswalks are marked across all four legs of the intersection. Also, eastbound and westbound U-turns are not permitted.
13) Crenshaw Boulevard \& Palos Verdes Drive North - This intersection is signalized for eight phases of traffic movement. The northbound and southbound approach legs (Crenshaw Boulevard) each feature two through lanes, a separate right turn lane, and a left turn pocket. The eastbound and westbound approach legs (Palos Verdes Drive North) each have two through lanes and dual left turn lanes. Crosswalks are marked across all four legs of the intersection. Traffic signage indicates that northbound right turns on red are prohibited between 7 A.M. to 6 P.M., Monday through Friday at this intersection.
14) Rolling Hills Road/Portuguese Bend Road \& Palos Verdes North - This intersection is signalized for four phases of traffic movement. The northbound approach leg (Rolling Hills Road/Portuguese Bend Road) features a through lane, a separate right turn lane, and a left turn pocket. The southbound approach leg (Rolling Hills Road/Portuguese Bend Road) has an optional through/right turn/left turn lane and a left turn pocket. The eastbound approach leg (Palos Verdes Drive North) has one through lane, a separate right turn lane, and a left turn pocket. The westbound approach leg (Palos Verdes Drive North) has one through lane, a separate right turn lane, and a left turn pocket. Crosswalks are marked across all four legs of the intersection. Northbound U-turns are not permitted.
15) Newton Street \& Calle Mayor - This "T" intersection is controlled by a stop sign in the westbound direction only (Newton Street). The northbound approach leg has one lane serving all movements, while the southbound approach leg has a through lane and a left turn pocket. The westbound approach leg features one lane serving all movements. A yellow (school) crosswalk is marked across the northbound leg only.
16) Vista Montana \& Newton Street - This intersection is controlled in each direction by stop signs. The northbound approach leg (Vista Montana) features one lane serving all movements. The southbound approach leg has a through
lane, a separate right turn lane, and a left turn pocket. The eastbound and westbound approach legs (Newton Street) each have one lane serving all movements. Crosswalks are marked on the northbound, southbound, and eastbound legs.
17) Madison Street \& Newton Street - This intersection is controlled in all directions by stop signs. The northbound, southbound, eastbound, and westbound approach legs each feature one lane serving all movements. There is adequate street width on all approach legs for allow two vehicles to stop side by side (i.e., one going through and one turning right). Yellow (school) crosswalks are marked on all legs of the intersection.
18) Pacific Coast Highway \& Calle Mayor - This intersection is signalized for eight phases of traffic movement. The northbound and southbound approach legs (Calle Mayor) each have a through lane, a separate right turn lane, and a left turn pocket. The westbound approach leg (Pacific Coast Highway) features two through lanes and a left turn pocket. The eastbound approach leg (Pacific Coast Highway) has two through lanes and a left turn pocket. Crosswalks are marked across all four legs of the intersection. Northbound, southbound, eastbound and westbound U-turns are not permitted. Yellow (school) crosswalks are marked on all legs of the intersection.

Figure 5 - Hawthorne Boulevard \& Pacific Coast Highway

Figure 6 - Hawthorne Boulevard \& 244 ${ }^{\text {th }}$ Street

Figure 7 - Hawthorne Boulevard \& Newton Street

Figure 8 - Hawthorne Boulevard \& Via Valmonte

Figure 9 - Hawthorne Boulevard \& Rolling Hills Road

Figure 10 - Rolling Hills Road \& Whiffletree Lane

Figure 11 - Rolling Hills Road \& Fallenleaf Drive

Figure 12 - Crenshaw Boulevard \& Rolling Hills Road

Figure 13 - Crenshaw Boulevard \& Pacific Coast Highway

Figure 14 - Anza Avenue/Vista Montana \& Pacific Coast Highway

Figure 15 - Via Valmonte \& Palos Verde Drive North

Figure 16 - Hawthorne Boulevard \& Palos Verdes Drive North

Figure 17 - Crenshaw Boulevard \& Palos Verdes Drive North

Figure 18 - Rolling Hills Road/Portuguese Bend \& Palos Verdes Drive North

Figure 19 - Newton Street \& Calle Mayor

Figure 20 - Vista Montana \& Newton Street

Figure 21 - Madison Street \& Newton Street

Figure 22 - Pacific Coast Highway \& Calle Mayor

III. STUDY TERMINOLOGY

The following are definitions of some of the more frequent terminology used throughout this report.

A.M. and P.M. Peak Hours

The A.M and P.M. peak hours refer to the morning and late afternoon times of the day during which the greatest number of motor vehicles are carried on a given roadway segment or intersection. Typically, the significant peak hours of traffic on an average weekday occur during the morning commute, between 7:00 and 9:00 A.M., and during the afternoon, between 4:00 and 6:00 P.M. These hours do not necessarily correspond to the peak trip generation, which, for commercial uses, can occur mid-day and on weekends. For the subject study, A.M. and P.M. peak hour turn movement traffic counts were collected in the month of April 2016 for each study intersection on a Wednesday. An annual growth factor of one percent was then added to the 2016 counts to estimate 2017 volumes. These intersection turn movement counts were independently collected for KHR Associates by National Data \& Surveying Services (NDS), Santa Ana, California. The summary intersection traffic count results can be found in the Appendix section of this report.

Figure 23 - Intersection Lane Configurations

Average Daily Traffic

The average daily traffic (ADT) volume is an estimate of the number of motor vehicles carried on a given roadway segment over a 24 -hour period of time. The estimate of ADT is often based on one or more days of actual traffic counts taken by a mechanical device designed specifically for counting traffic on streets. ADT volumes are typically expressed as the total number of vehicles for both directions of travel, but may be separated by direction when such information is useful, as was done for this traffic analysis. ADT volumes do not typically change in dramatic fashion from month to month or year to year, unless the area in question is undergoing rapid growth and development or seasonal variations are significant. For the subject study, directional roadway segment traffic counts were continuously collected in the month of April 2016 over 24 consecutive hours - on a Wednesday. These daily traffic counts were also independently collected for KHR Associates by NDS. The summary ADT count results can be found in the Appendix section of this report.

Capacity

The capacity of a roadway segment or intersection is the maximum rate of vehicular traffic flow under prevailing traffic, physical design, and operational conditions. Factors affecting capacity include the type and frequency of traffic controls; the operational characteristics of traffic signals (if present); lane widths; horizontal and vertical grades; horizontal and vertical clearances from obstructions; the amount of truck and/or bus traffic; the availability of on-street parking and the rate of parking turnover; restrictions on mid-property access; and the volume of turn movements at adjacent intersections and driveways. Capacity is most commonly defined for hourly periods of time, and most analyses rely on peak 15 -minute count increments to establish capacity values. It is useful to define capacity as the maximum volume of traffic that an intersection may be expected to carry, under the least desirable conditions (e.g., with heavy congestion during the peak hours).

For planning purposes, roadway segments are also assigned "capacities" based on the number of travel lanes; width of the roadway; access restrictions; medians; parkway and intersection design; and land uses. 24-hour segment capacities are not indicative of the maximum number of vehicles that can be physically carried - rather, such capacities suggest the maximum number of vehicles that should be allowed under ideal conditions given the characteristics of the roadway and community preferences. These capacity values vary somewhat between jurisdictions. The City of Torrance uses a per lane capacity of 1,600 vehicles.

Hourly capacities for roadways are typically stated in vehicles per hour per lane (VPHPL). On multi-lane arterials and freeways, unimpeded capacity is $2,000 \mathrm{VPHPL}$. On two-lane roadways, with directional traffic split $50 \% / 50 \%$, the total capacity for both directions combined is 2,800 vehicles per hour (VPH). Lane capacities on surface streets vary from $1,500 \mathrm{VPH}$ to $1,900 \mathrm{VPH}$, depending on ambient and
operational conditions, including the types of adjacent land uses, number and location of driveways, intersection signal operations, and other factors.

Level of Service

The level of service (LOS) of a roadway segment or an intersection is a qualitatively defined measure of prevailing traffic, design, and operational conditions. The LOS, denoted alphabetically from "A" to "F," best to worst, is an evaluation of the degree of congestion, roadway design constraints, delay, accident potential, and driver discomfort experienced during a given period of time - typically during the peak hour or on a daily basis. LOS "D" or better is considered to be a target for intersection operations within the City of Torrance to maintain stable traffic flow, realizing that peak hour congestion may occur at locations with unusual traffic characteristics due to regional traffic flow. ${ }^{\text {B }}$

The LOS may be quantitatively calculated by a number of methods that generally compare traffic volumes with the physical and operational capacity of a roadway section or intersection to carry traffic demands placed upon it. For roadway segments and intersections, the volume-to-capacity (V/C) ratio is indicative of LOS. Traffic volumes are measured by conducting actual counts over prescribed periods of time. Capacity figures are established by the governing jurisdiction, and often based on localized conditions. Intersection LOS can also be determined using computer software to account for various influencing factors such as lane configurations, traffic signal timing (for signalized intersections), and vehicle delays.

Table II lists the typical service volumes corresponding to the number of lanes and median type. It should be noted that the LOS for roadway segments are generally used for planning purposes only, and do not indicate true operational LOS.

TABLE II - LEVELS OF SERVICE FOR ROADWAY CLASSIFICATIONS							
Traffic Lane	Levels of Service						
Configuration	A	B	C	D	E	F	
8 (divided)	45,000	52,500	60,000	67,500	75,000	$>75,000$	
6 (divided)	33,900	39,400	45,000	50,600	56,300	$>56,300$	
4 (divided)	22,500	26,300	30,000	33,800	37,500	$>37,500$	
4 (undivided)	15,000	17,500	20,000	22,500	25,000	$>25,000$	
2 (undivided)	7,500	8,800	10,000	11,300	12,500	$>12,500$	

Various methods of computing intersection LOS are used, including the Intersection Capacity Utilization (ICU) and HCS+ software, based on the 2010 Highway Capacity Manual (HCM). ${ }^{\text {C }}$ Table III provides City of Torrance LOS definitions for signalized intersections at corresponding volume-to-capacity (V/C) ratios. Table IV provides

[^1]criteria for signalized and unsignalized intersections, based on HCM methodologies for determining LOS. These LOS are used to approximate true operating conditions, and are calculated for intersections during morning and late afternoon peak hours. It should be noted that four of the eighteen studied intersections are located along Pacific Coast Highway - State Route 1 and are therefore under the jurisdiction of the Caltrans which evaluates intersection impacts using the HCM method - included within this study.

TABLE III - SIGNALIZED INTERSECTION LOS \& VIC RATIOS

\(\left.$$
\begin{array}{ccl}\frac{\text { LOS }}{\text { A }} & \underline{\text { VIC Ratio }} & \leq 0.60\end{array}
$$ \begin{array}{l}Definitions

B

Cxcellent operation. All approaches to the intersection appear quite open,

turning movements are easily made, and nearly all drivers find freedom of

operation.\end{array}\right]=0.60 \leq 0.70\)| Very good operation. Many drivers begin to feel somewhat restricted within |
| :--- |
| platoons of vehicles. This represents stable flow. An approach to an |
| intersection may occasionally be fully utilized and traffic queues start to form. |

TABLE IV - UNSIGNALIZED \& SIGNALIZED INTERSECTION LOS CRITERIA

		$\frac{\text { Intersection Delay (in Seconds) }}{}$	
Level of Service		Unsignalized Intersection	≤ 10.0
A		Signalized Intersection	
B	>10.0 and ≤ 15.0	≤ 10.0	
C	>15.0 and ≤ 25.0	>10.0 and ≤ 20.0	
D	>25.0 and ≤ 35.0	>20.0 and ≤ 35.0	
E	>35.0 and ≤ 50.0	>35.0 and ≤ 55.0	
F	>50.0	>55.0 and ≤ 80.0	
		>80.0	

Source: Highway Capacity Manual, HCM 2010 \& Caltrans Guide for the Preparation of Traffic Impact Studies, 2002.

Significant Transportation Impact

Although the methodologies for calculating LOS are well-established and fairly consistent, determining whether or not a "significant transportation impact" or intersection traffic impact occurs is not as easy to quantify. Local jurisdictions have varying interpretations of what constitutes a significant impact. Some agencies base
significant impacts on the number of seconds added to average intersection delay per vehicle or the number of additional vehicles added to a critical intersection turn movement. The City of Torrance defines a significant impact as when project traffic increases volume/capacity by .02 or more and the resulting LOS is E or worse. The neighboring City of Rolling Hills Estates considers a significant impact as a change in LOS from C to D, or D to E, or a change in volume/capacity by .02 or more within LOS C or D, or a change of . 01 within LOS E or F. The City of Palos Verdes Estates considers added delay, in seconds, (e.g., 3 seconds or more within LOS D).

Trip Ends

Traffic generated by different types of development and land use is typically expressed in terms of trip ends. A trip end (or trip) is the directional movement of a single motor vehicle either to or from a development site. When a vehicle enters a development site, one trip end is generated. When a vehicle exits a development site, one trip end is generated. Therefore, each vehicle entering and exiting a development site generates two trip ends. For analysis purposes, the number of trip ends generated over a given time period is the total of all vehicles entering plus all vehicles exiting the site during that time period. Trip ends generated to a development site are designated inbound trips and trip ends generated from a development site are designated outbound trips.

Trip Generation

Trip generation refers to the number of trip ends generated by a given development or land use over a specified period of time - usually per day and during morning and late afternoon peak hours of traffic demand. Attempts to quantify the trip making propensities of given land uses and types of development have led to the formulation of trip generation rates. In simplified travel demand forecasting, trip ends are often estimated by applying these empirically-determined trip generation rates. Rates for a variety of land uses, including residential developments, may be found in technical reference documents such as the Institute of Transportation Engineers' (ITE) Trip Generation manual. ${ }^{\text {D }}$ The data found in these documents typically include average weekday and peak hour rates that correspond with the peak periods of commuter traffic. A wide assortment of land uses, including multi-family residential, commercial office, and lodging are covered. For multi-family residential development, the independent variable is typically the number of dwelling units, and trip generation is stated in terms of trip ends per dwelling unit.

Trip Reduction

The convenient and price-sensitive availability of transit service to and from a given project site can also reduce private vehicle trips. The City provides a municipally operated transit system called the "Torrance Transit" serving the South Bay region of

[^2]Los Angeles County. In addition, the proliferation of private taxi services such as Uber and Lyft are having an impact on how small groups of people routinely travel to certain destinations and venues. Due to the uncertain benefit of these services, trip reduction estimates were not used to estimate future traffic related impacts.

Trip Distribution/Trip Assignment

In addition to trip generation, travel demand forecasting also includes trip distribution and trip assignment. Trip distribution signifies by general direction (i.e., east, west, north, and south) the percentage of all traffic generated to and from a given project site. Trip assignment identifies the particular routes used by traffic generated to and from a given project site. These steps are often combined for small projects and/or areas of analysis. Trip distribution/trip assignment is used to predict the patterns of traffic generated by a given project site, taking into consideration several factors, including: observations of existing traffic patterns; existing land use and proposed land use; surrounding land uses; volumes of traffic on streets and highways; the carrying capacity of these streets and highways; and access restrictions.

Ambient Growth

In order to effectively estimate future traffic conditions at the Project completion, an ambient growth factor was included in the evaluations per the recommendation of the City of Torrance. Volumes recorded in 2016 for study roadways and intersections were multiplied by one percent to estimate current 2017 conditions and another one percent per year for the next two years - the estimated date of occupancy.

IV. TRIP GENERATION

Trip generation for the proposed Project can be estimated by applying known trip generation rates for the various proposed uses. For urban settings, trip generation is calculated for an average weekday (24-hour period, and for the morning and afternoon peak hours of weekday commute (typically 7:00 to 9:00 A.M. and 4:00 to 6:00 P.M.) on streets serving a given project). For the proposed Project residential use, the ITE Trip Generation manual provides the following definitions, as updated with the $10^{\text {th }}$ Edition of the ITE Trip Generation manual:

Land Use Code 221 - Multifamily Housing (Mid-Rise)

Per ITE Land Use Code 221, Multifamily Housing (Mid-Rise) buildings are defined as buildings containing three to ten floors, located in a General Urban/Suburban setting. This general land use includes a variety of multifamily housing types with varying sizes, locations, and price ranges. Additionally, with respect to analyzing potential traffic impacts associated with residential housing, "the peak hour of the generator typically coincides with the peak hour of the adjacent street traffic." ${ }^{E}$

[^3]| TABLE V - SUMMARY OF SOLANA TORRANCE TRIP GENERATION AVERAGE DAILY TRIPS ON A WEEKDAY | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use Category (Code) ${ }^{1}$ | Size ${ }^{2}$ | Trip Rate ${ }^{3}$ | $\begin{array}{l}\text { Inbound/ } \\ \text { Outbound }\end{array}$ | Inbound
 Trip Ends ${ }^{4}$ | Outbound
 Trip Ends ${ }^{4}$ | Total Trip Ends ${ }^{4}$ |
| Multi-Family Residential (221) | 248 DU | 5.44/DU | 50\%/50\% | 674 | 675 | 1,349 |
| WEEKDAY A.M. PEAK HOUR OF ADJACENT STREET TRAFFIC | | | | | | |
| Land Use Category (Code) ${ }^{1}$ | Size ${ }^{2}$ | Trip Rate ${ }^{3}$ | Inbound/ Outbound ${ }^{3}$ | $\begin{aligned} & \text { Inbound } \\ & \text { Trip Ends }{ }^{4} \\ & \hline \end{aligned}$ | Outbound Trip Ends ${ }^{4}$ | Total Trip Ends |
| Multi-Family Residential (221) | 248 DU | 0.36/DU | 26\%/74\% | 23 | 66 | 89 |
| WEEKDAY P.M. PEAK HOUR OF ADJACENT STREET TRAFFIC | | | | | | |
| Land Use Category (Code) ${ }^{1}$ | Size 2 | Trip Rate ${ }^{3}$ | Inbound/ Outbound ${ }^{3}$ | Inbound Trip Ends ${ }^{4}$ | Outbound Trip Ends ${ }^{4}$ | Total Trip Ends |
| $\begin{aligned} & \text { Multi-Family } \\ & \text { Residential (221) } \end{aligned}$ | 248 DU | 0.44/DU | 61\%/39\% | 66 | 43 | 109 |
| Notes:
 1 - Land Use Code Per Trip Generation Manual, $10^{\text {th }}$ Ed., Institute of Transportation Engineers.
 2 - DU = Dwelling Units
 3 - Trip Generation Rate \& Percentage of Inbound/Outbound Trips Per Trip Generation Manual, $10^{\text {th }}$ Ed., Institute of Transportation Engineers
 4 - All Trip Ends Rounded to Nearest Whole Unit | | | | | | |

As indicated in Table V, the proposed Project is estimated to generate a total of 1,349 daily trip ends, as well as 89 A.M. peak hour trip ends (23 inbound and 66 outbound) and 109 P.M. peak hour trip ends (66 inbound and 43 outbound).

V. TRIP DISTRIBUTION/TRIP ASSIGNMENTS

Trip distribution and trip assignments for the proposed Project were formulated with input from the City of Torrance Traffic and Transportation Division.

Trip Distribution

Based on known trip making propensities and travel routes taken by those residing, working, and traveling within the regional proximity of the proposed Project, trip distribution assumptions were formulated. The distribution of inbound and outbound trips generated by the proposed Project are depicted in Figure 24. As noted, the majority of trips (80 percent) are oriented toward the north, where most employment centers, commercial businesses, and schools are located. The remaining 20 percent were oriented to the south along Hawthorne Boulevard where access exists to Crenshaw Boulevard, Palos Verdes Drive, and Western Avenue.

Figure 24 - Trip Distribution Assumptions

Trip Assignments

Based on the trip distribution assumptions illustrated in Figure 24, trip assignments were made. These trip assignments were based on physical and operational constraints affecting roadways and intersections; direction (i.e., inbound or outbound) and time of day (i.e., A.M. or P.M. peak hour) of travel; and traffic control devices that regulate the flow of traffic on the streets and highways network servicing the Project site. It should be noted that, at the northbound approach to the Via Valmonte/ Hawthorne Boulevard intersection, U-turns leading to southbound Hawthorne are not permitted. Therefore, Project vehicles coming from the south were sent through this intersection to ultimately make U-turns at the Hawthorne/Newton Street intersection.

Inbound and outbound trips generated by the proposed Project during the daily, and A.M. and P.M. peak hours of weekday commute were assigned to various roadway segments and study intersections based on trip distribution percentages in each direction from the Project site. These inbound and outbound trip assignments during daily, and A.M. and P.M. peak hours are depicted in Figure 25.

Existing Traffic - Year 2017 Conditions

Existing traffic (2016 Volumes plus 1\% Annual Growth) at roadways and intersections were documented by 24 -hour (i.e., ADT) and peak hour (i.e., A.M. and P.M. peak hours) turn movement counts. The results are illustrated in Figure 26.

Existing + Ambient Growth Conditions

Adding ambient growth traffic (i.e., 1\% per year for two years) to existing (2017) traffic at study roadway segments and intersections during the A.M. and P.M peak hours of weekday commute are illustrated in Figure 27.

Ambient+Project Traffic Conditions

Adding Project traffic to the Ambient Growth condition at study roadway segments and intersections during the A.M. and P.M peak hours of weekday commute are illustrated in Figure 28.

Committed and Proposed Developments

There are a number of development projects within the regional area of the Project site that are either in the design or advanced planning stages, or under construction that will generate varying amounts of traffic on the regional streets and highways network. Traffic generated by these development projects need to be taken into account when evaluating the proposed Project's fair share responsibilities for traffic improvements. Although the timing of completion of each development will vary, for this study, a worst-case scenario was used by assuming build-out and occupancy of each development in two years.

Figure 25 - ADT \& Peak Hour "Project-Only" Trip Assignments

Figure 26-2017 Existing ADT \& Peak Hour Intersection Traffic Volumes

Figure 27 - Ex.+Ambient Growth ADT \& Peak Hour Intersection Traffic Volumes

Figure 28 - Ambient + Project ADT \& Peak Hour Intersection Traffic Volumes

Table VI contains a list of committed and proposed projects within the area of the Project site, as provided by the Cities of Torrance, Rancho Palos Verdes, Rolling Hills Estates, Redondo Beach and Lomita. Note that Palos Verdes Estates did not have any new developments on the horizon. Also listed are their respective amounts of traffic estimated to be generated upon completion. The location of each of these projects is identified in Figure 29. Additionally, since the previous version of this report, another project located directly across Via Valmonte is proposed for a mixeduse development that is anticipated to create a minor addition of traffic to the intersection of Via Valmonte and Hawthorne Boulevard. These anticipated trips have been added to Table VI and included in the analysis.

Figure 29 - Location of Committed and Proposed Development Projects

Cumulative Traffic Conditions

Adding cumulative development traffic to the existing traffic, ambient growth, and project development traffic at study roadway segments and intersections during the A.M. and P.M peak hours of weekday commute are illustrated in Figure 30.

Notes:

DU: Dwelling Unit; SF: Square Feet; RM: Room
${ }^{1}$ Trip Gen. Rate \& Percent of In/Out Trips Per Trip Generation Manual, $9^{\text {th }}$ Ed., Institute of Transportation Engineers.
${ }^{2}$ All Trip Ends Rounded to Nearest Whole Unit.
${ }^{3}$ Data from Available Traffic Studies.

Figure 30 - Cumulative ADT \& Peak Hour Intersection Traffic Volumes

VI. EXISTING \& FUTURE LEVELS OF SERVICE

Future traffic conditions resulting from additional development may be predicted by performing a travel demand forecast. Such forecasts vary in magnitude and complexity, but at minimum include defining the streets and highways network of interest; estimating the amount of traffic generated by a given development or geographic area; determining the area-wide distribution of this traffic; and assigning it to specific portions of the streets and highways network. In order to determine the magnitude and impact of additional traffic generated onto streets surrounding the project site, a travel demand forecast of future traffic conditions was undertaken for the proposed Project. Using the 2017 traffic volumes and employing trip generation, distribution and assignment of future traffic, as described in Section V , existing and future roadway and intersection levels of service can be determined.

Both the ICU and the HCM methodologies were employed to determine intersection levels of service for signalized intersections. For stop-controlled intersections, only the HCM method was used due to several factors that contribute to LOS for these types of movements. For Project and Cumulative estimates, Capital Improvements, as described in Section II, slated for the Pacific Coast Highway/Hawthorne Boulevard and Pacific Coast Highway/Vista Montana intersections were included in the analyses. Also, the Hawthorne Boulevard/Via Valmonte intersection analysis includes additional capacity provided by the additional left turn lane proposed as part of the Project. Roadway segments were evaluated based on typical level of service volumes for each roadway designation.

Existing, Ambient Growth, Project, and Cumulative Roadway LOS

Based on a comparison between the ADT count in Appendix A of this report (plus the one percent annual growth) and the City's Circulation Element designations for roadway classifications, the LOS for study roadways for the 2017 conditions, and existing plus ambient growth (i.e., one percent per year for two years) volumes were determined. Then, the Project traffic and the cumulative development related traffic were added to estimate future LOS conditions.

Cumulative impacts refer to the combined effects of traffic generated by individual projects within a defined area of concern. The City's list of committed and proposed projects along with neighboring City projects will generate varying amounts of additional traffic (see Table VII). While the traffic impacts associated with each project may not be individually significant, cumulatively, the traffic impacts can be significant, or have the potential of compounding or increasing the effects of traffic impacts of the proposed Project. As noted in Table VII, all roadway segments currently operate at acceptable levels of service, and should continue to operate at acceptable levels of service. The only change in roadway segment LOS occurs on Via Valmonte adjacent to the Project site - from "A" to "B" with the addition of cumulative traffic.

Existing (2017) \& Existing + Project Intersection LOS - ICU Method

Existing intersection LOS, as calculated using the ICU method, are summarized in Table VIII for the signalized intersections studied. Turn movement counts for existing traffic were taken in April 2016 (plus the one percent annual growth), and in November 2017 for the added intersections establishing the 2017 baseline conditions. Anticipated Project traffic (as well as the proposed intersection improvements at Via Valmonte/Hawthorne Boulevard) was then added to the intersections to determine Project related impacts on baseline conditions. As shown, with the addition of Project traffic, no changes in LOS occurred between the two scenarios. The ICU calculation forms may be found in the Appendix section of this report. Table VIII shows that most of intersections operate within acceptable levels of LOS "D" or better under both scenarios with the exception of the following:

- Crenshaw Blvd/Pacific Coast Hwy intersection - LOS "E" P.M.
- Crenshaw Blvd/Palos Verdes Dr. N. intersection - LOS "E" A.M \& P.M.
- Rolling Hills Rd/Palos Verdes Dr. N. intersection - LOS "F" A.M \& P.M.
- Calle Mayor/Pacific Coast Hwy intersection - LOS "E" A.M. / LOS "F" P.M.

Existing + Ambient \& Existing + Ambient + Project Intersection LOS - ICU Method

Future "Existing + Ambient (2019)" conditions as calculated using the ICU method, are summarized in Table IX for the signalized intersections studied. This time period includes two more years of ambient growth. Also, these estimates included the capital improvements slated for the Pacific Coast Highway/ Hawthorne Boulevard and Pacific Coast Highway/Vista Montana intersections. Project traffic was then added and the listed values for the Hawthorne Boulevard/Via Valmonte intersection under the + Project scenario include additional capacity provided by the additional left turn lane proposed as part of the Project. As shown in Table IX, the LOS designations remain the same between the two scenarios.

Intersection	$\begin{aligned} & \text { III - EXI } \\ & \text { IZED IN } \end{aligned}$	$\begin{aligned} & \text { ISTING } \\ & \text { ITERS } \end{aligned}$	$\begin{aligned} & \text { (2017) } \\ & \text { ECTION } \end{aligned}$	$\begin{aligned} & \& \text { EXI } \\ & \text { S - IC } \end{aligned}$	$\begin{aligned} & \text { JG+PR } \\ & \text { ETHOL } \end{aligned}$	$\begin{aligned} & \text { JECT } \\ & \text { LOS } \end{aligned}$		
	2017 EXISTING 1				EXISTING + PROJECT ${ }^{2}$			
	A.M. Peak Hour		P.M. Peak Hour		A.M. Peak Hour		P.M. Peak Hour	
	ICU	LOS	ICU	LOS	ICU	Los	ICU	LOS
Hawthorne Blvd/Pacific Coast Hwy	0.878	D	0.870	D	0.886	D	0.878	D
Hawthorne Blvd/244 ${ }^{\text {th }}$ Street	0.504	A	0.521	A	0.514	A	0.528	A
Hawthorne Blvd/Newton Street	0.627	B	0.773	C	0.640	B	0.794	C
Hawthorne Blvd/Via Valmonte	0.576	A	0.633	B	0.521^{3}	A	0.609^{3}	B
Hawthorne Blvd/Rolling Hills Road	0.658	B	0.606	B	0.660	B	0.609	B
Whiffletree Lane/Rolling Hills Road	0.393	A	0.399	A	0.394	A	0.402	A
Fallenleaf Drive/Rolling Hills Road	0.318	A	0.288	A	0.318	A	0.290	A
Crenshaw Blvd/Rolling Hills Road	0.780	C	0.840	D	0.782	C	0.846	D
Crenshaw Blvd/Pacific Coast Hwy.	0.882	D	0.980	E	0.897	D	0.986	E
Vista Montana/Pacific Coast Hwy.	0.779	C	0.843	D	0.783	C	0.847	D
Hawthorne Blvd/Palos Verdes Dr. N	0.764	c	0.709	C	0.766	c	0.712	C
Crenshaw Blvd/Palos Verdes Dr. N	0.939	E	0.884	D	0.940	E	0.885	D
Rolling Hills Rd/Palos Verdes Dr. N	1.398	F	1.401	F	1.399	F	1.402	F
Pacific Coast Hwy/Calle Mayor	0.974	E	1.028	F	0.976	E	1.030	F
${ }^{1}$ Intersection Counts Taken by NDS, April 2016 (Plus 1\% Annual Growth), and November 2017 for Added Locations ${ }_{3}^{2}$ Project Related Trips Per Trip Distribution and Turn Movement Restrictions and Opportunities ${ }^{3}$ Includes Project Related Improvements								

TABLE IX - EXISTING + AMBIENT (2019) \& EX. + AMBIENT + PROJECT SIGNALIZED INTERSECTIONS - ICU METHOD LOS

Intersection	EXISTING+AMBIENT (2019) ${ }^{1}$				EX.+AMBIENT+PROJECT ${ }^{2}$			
	A.M. Peak Hour		P.M. Peak Hour		A.M. Peak Hour		P.M. Peak Hour	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
Hawthorne Blvd/Pacific Coast Hwy ${ }^{3}$	0.809	C	0.700	C	0.817	D	0.761	C
Hawthorne Blvd/244 ${ }^{\text {th }}$ Street	0.512	A	0.529	A	0.522	A	0.536	A
Hawthorne Blvd/Newton Street	0.638	B	0.786	C	0.652	B	0.807	D
Hawthorne Blvd/Via Valmonte	0.586	A	0.643	B	0.529^{4}	A	0.619^{4}	B
Hawthorne Blvd/Rolling Hills Road	0.670	B	0.617	B	0.672	B	0.620	B
Whiffletree Lane/Rolling Hills Road	0.397	A	0.404	A	0.399	A	0.407	A
Fallenleaf Drive/Rolling Hills Road	0.323	A	0.292	A	0.324	A	0.294	A
Crenshaw Blvd/Rolling Hills Road	0.795	C	0.854	D	0.796	C	0.854	D
Crenshaw Blvd/Pacific Coast Hwy.	0.897	D	0.998	E	0.899	D	0.998	E
Vista Montana/Pacific Coast Hwy ${ }^{3}$	0.794	C	0.858	C	0.798	C	0.862	C
Hawthorne Blvd/Palos Verdes Dr. N	0.778	C	0.721	C	0.779	C	0.724	C
Crenshaw Blvd/Palos Verdes Dr. N	0.956	E	0.900	E	0.957	E	0.900	E
Rolling Hills Rd/Palos Verdes Dr. N	1.424	F	1.429	F	1.427	F	1.429	F
Pacific Coast Hwy/Calle Mayor	0.992	E	1.047	F	0.994	E	1.048	F

[^4]
Existing + Ambient + Cumulative \& Existing + Ambient + Cumulative + Project Intersection LOS - ICU Method

Future "Existing+Ambient+Cumulative" and "Existing+Ambient+Cumulative+Project" LOS, as calculated using the ICU method, are summarized in Table X for the signalized intersections studied. These estimates also included the capital improvements slated for the Pacific Coast Highway/Hawthorne Boulevard and Pacific Coast Highway/Vista Montana intersections. Under the + Project scenario, the values for the Hawthorne Boulevard/Via Valmonte intersection include additional capacity provided by the additional left turn lane proposed as part of the Project.

As shown in Table X, the addition of Cumulative development results in decreased volume/capacity ratios, and in some locations and time periods, the LOS designations decrease with the added traffic from surrounding development. With the addition of Project traffic, the LOS designations do not change worsen any further.

Intersection	$\begin{array}{r} X-E X \\ \text { NG + A } \\ \text { IZED IN } \\ \text { EX. } \end{array}$	STIN MBIE TERS AMB. +	$\begin{aligned} & \text { + AMB } \\ & \text { T + CUN } \\ & \text { ECTION } \\ & \text { UMULAT } \end{aligned}$	$\begin{aligned} & \text { ENT + } \\ & \text { NULAT } \\ & \text { S - ICU } \\ & \text { VVE }^{1} \end{aligned}$	MULA + PRO ETHOD EX.+A	IVE JECT LOS MB+CU	U.+PROJ	CT ${ }^{2}$
	A.M. Peak Hour		P.M. Peak Hour		A.M. Peak Hour		P.M. Peak Hour	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
Hawthorne Blvd/Pacific Coast Hwy ${ }^{3}$	0.772	C	0.769	C	0.779	C	0.776	C
Hawthorne Blvd/244 ${ }^{\text {th }}$ Street	0.530	A	0.549	A	0.540	A	0.556	A
Hawthorne Blvd/Newton Street	0.647	B	0.809	D	0.660	B	0.830	D
Hawthorne Blvd/Via Valmonte	0.522	A	0.609	B	0.540^{4}	A	$0.633{ }^{4}$	B
Hawthorne Blvd/Rolling Hills Road	0.684	B	0.628	B	0.686	B	0.631	B
Whiffletree Lane/Rolling Hills Road	0.399	A	0.407	A	0.401	A	0.410	A
Fallenleaf Drive/Rolling Hills Road	0.326	A	0.294	A	0.327	A	0.296	A
Crenshaw Blvd/Rolling Hills Road	0.811	D	0.867	D	0.813	D	0.868	D
Crenshaw Blvd/Pacific Coast Hwy.	0.913	E	1.032	F	0.919	E	1.033	F
Vista Montana/Pacific Coast Hwy ${ }^{3}$	0.772	C	0.727	C	0.776	C	0.780	C
Hawthorne Blvd/Palos Verdes Dr. N	0.792	C	0.736	C	0.793	C	0.739	C
Crenshaw Blvd/Palos Verdes Dr. N	0.961	E	0.913	E	0.962	E	0.914	E
Rolling Hills Rd/Palos Verdes Dr. N	1.429	F	1.451	F	1.431	F	1.451	F
Pacific Coast Hwy/Calle Mayor	. 998	F	1.059	F	1.000	F	1.061	F
${ }^{1}$ Project Related Trips Per Trip Distribution and Turn Movement Restrictions and Opportunities ${ }^{2}$ Cumulative Developments - Volumes Based Upon Various Trip Distribution Percentages for Each Region ${ }^{3}$ Includes Planned Capital Improvements ${ }^{4}$ Includes Project Related Improvements								

Intersection LOS - HCM Method

"Existing" and "Existing+Project" Growth LOS, as calculated using the HCM method, are summarized in Table XI for all eighteen intersections studied. The
"Existing+Ambient" and and "Existing+Ambient+Project" scenarios are shown in Table XII. The "Cumulative" condition without the Project, and with the Project are shown in Table XIII. The HCM calculation forms may be found in the Appendix section of this report.

TABLE XI - 2017 EXISTING \& EXISTING+PROJECT TRAFFIC ALL INTERSECTIONS - HCM METHOD LOS

Intersection	2017 EXISTING ${ }^{1}$				EXISTING+PROJECT ${ }^{2}$			
	A.M. Peak Hour		P.M. Peak Hour		A.M. Peak Hour		P.M. Peak Hour	
	Delay ${ }^{3}$	LOS						
Hawthorne Blvd/Pacific Coast Hwy.	50.3	D	67.2	E	52.5	D	70.5	E
Hawthorne Blvd/244 ${ }^{\text {th }}$ Street	21.8	C	21.9	C	26.3	C	24.8	C
Hawthorne Blvd/Newton Street	10.9	B	12.6	B	11.1	B	13.3	B
Hawthorne Blvd/Via Valmonte	11.6	B	15.0	B	14.3	B	18.7	B
Hawthorne Blvd/Rolling Hills Road	17.5	B	13.7	B	17.7	B	13.7	B
Whiffletree Lane/Rolling Hills Road	5.4	A	4.2	A	5.4	A	4.2	A
Fallenleaf Drive/Rolling Hills Road	6.3	A	4.9	A	6.3	A	4.9	A
Crenshaw Blvd/Rolling Hills Road	67.3	E	46.2	D	68.5	E	46.5	D
Crenshaw Blvd/Pacific Coast Hwy.	48.5	D	59.7	E	49.4	D	60.8	E
Vista Montana/Pacific Coast Hwy.	72.3	E	44.8	D	76.9	E	45.6	D
Palos Verdes Drive/Via Valmonte	29.7	D	26.7	D	29.8	D	26.8	D
Hawthorne Blvd/Palos Verdes Dr. N.	55.3	E	31.2	C	56.1	E	31.6	C
Crenshaw Blvd/Palos Verdes Dr. N.	103.5	F	104.1	F	104.3	F	104.7	F
Rolling Hills Rd/Palos Verdes Dr. N.	292.0	F	257.2	F	294.0	F	260.2	F
Newton Street/Calle Mayor	14.0	B	11.8	B	14.0	B	11.8	B
Vista Montana/Newton Street	15.0	C	11.1	B	15.1	C	11.1	B
Madison Street/Newton Street	8.7	A	9.2	A	8.7	A	9.2	A
Pacific Coast Hwy/Calle Mayor	112.1	F	179.9	F	113.4	F	181.5	F
${ }^{1}$ Intersection Counts Taken by NDS, April 2016 (Plus 1\% Annual Growth ${ }^{2}$ Annual Growth Rate of 1 Percent per Year for 2 Years ${ }^{3}$ Worst Case Direction Average Intersection Delay Per Vehicle (In Seconds) ${ }^{4}$ Includes Planned Capital Improvements to that Intersection								

As shown in the Table XI, many of the intersections operate within acceptable levels of LOS "D" or better under both scenarios with the exception of the following:

- Hawthorne Blvd/Pacific Coast Hwy - LOS "E" in the P.M. conditions
- Crenshaw Blvd/Rolling Hills Road. - LOS "E" in the A.M. conditions
- Crenshaw Blvd/Pacific Coast Hwy - LOS "E" in the P.M. conditions
- Vista Montana/Pacific Coast Hwy - LOS "E" in A.M. conditions
- Hawthorne Blvd/Palos Verdes Dr. N. - LOS "E" in the A.M. conditions
- Crenshaw Blvd/Palos Verdes Dr. N. - LOS "F" in all conditions
- Rolling Hills Rd/Palos Verdes Dr. N. - LOS "F" in all conditions
- Calle Mayor/Pacific Coast Hwy - LOS "F" in all conditions

Also, as shown, the intersection LOS do not decrease with Project traffic.

TABLE XII	ISTING INTERS	AMB ECTI	ENT \& EX ONS - H	$E X+A M$	$\begin{aligned} & \text { PROJEC } \\ & \text { IOD LOS } \end{aligned}$	T TRA		
	EXISTING+AMBIENT ${ }^{1}$				EX+AMB+PROJECT ${ }^{2}$			
	A.M. Peak Hour		P.M. Peak Hour		A.M. Peak Hour		P.M. Peak Hour	
	Delay ${ }^{3}$	LOS						
Hawthorne Blvd/Pacific Coast Hwy. ${ }^{4}$	47.5	D	64.4	E	49.8	D	71.4	E
Hawthorne Blvd/244 ${ }^{\text {th }}$ Street	24.1	C	24.1	C	29.8	C	27.4	C
Hawthorne Blvd/Newton Street	11.0	B	12.9	B	11.4	B	13.7	B
Hawthorne Blva/Via Valmonte	11.9	B	10.7	B	14.5	B	12.0	B
Hawthorne Blvd/Rolling Hills Road	18.5	B	13.6	B	18.7	B	13.6	B
Whiffletree Lane/Rolling Hills Road	5.5	A	4.2	A	5.4	A	4.3	A
Fallenleaf Drive/Rolling Hills Road	6.4	A	4.9	A	6.4	A	4.9	A
Crenshaw Blvd/Rolling Hills Road	72.4	E	47.4	D	73.7	E	47.8	D
Crenshaw Blvd/Pacific Coast Hwy.	50.9	D	63.9	E	52.1	D	65.1	E
Vista Montana/Pacific Coast Hwy. ${ }^{4}$	$49.1{ }^{4}$	D	37.1^{4}	D	$51.1{ }^{4}$	D	37.6^{4}	D
Palos Verdes DriveNia Valmonte	34.4	D	29.7	D	34.4	D	30.2	D
Hawthorne Blvd/Palos Verdes Dr. N.	56.8	E	31.8	C	58.7	E	32.2	C
Crenshaw Blvd/Palos Verdes Dr. N.	107.1	F	107.7	F	108	F	108.3	F
Rolling Hills Rd/Palos Verdes Dr. N.	303.3	F	269.3	F	305.4	F	272.4	F
Newton Street/Calle Mayor	14.5	B	12.1	B	14.5	B	12.1	B
Vista Montana/Newton Street	15.6	C	11.3	B	15.8	C	11.3	B
Madison Street/Newton Street	8.7	A	9.3	A	8.7	A	9.4	A
Pacific Coast Hwy/Calle Mayor	119.6	F	190.1	F	120.9	F	191.7	F
${ }^{1}$ Intersection Counts Taken by NDS, April 2016 (Plus 1\% Annual Growth ${ }^{2}$ Annual Growth Rate of 1 Percent per Year for 2 Years ${ }^{3}$ Worst Case Direction Average Intersection Delay Per Vehicle (In Seconds) ${ }^{4}$ Includes Planned Capital Improvements to that Intersection								

As shown in the Table XII, with the addition of two years of ambient growth, many of the intersections experience increased delays, however, the LOS designations do not decrease from those shown in Table XI. In fact, two of the intersections that are planned for Capital Improvements improved in delay and/or LOS designations.

As shown in the Table XIII, there are further incremental increases in intersection delays with cumulative traffic. Also, many of the intersections show a decreased LOS. The addition of Project traffic to the cumulative conditions does not result in decreased LOS.

VII. SITE ACCESS, CIRCULATION, \& PARKING

Proposed site access, internal circulation, and parking for the proposed Project were analyzed by reviewing the Project site plan, the proposed off-site improvements, and other constraints and opportunities for access to the site. It is important to note that turn movement restrictions placed upon the proposed Project restrict resident and visitor vehicle ingress and egress to right turns only on Hawthorne Boulevard, and "exit-only" right turns on Via Valmonte. With these restrictions, internal circulation and off-site improvements for site access were designed accordingly.

Street and Traffic Improvements

Vehicular access to and from the Project site is proposed via one main driveway on Hawthorne Boulevard. A second exit-only driveway is proposed on Via Valmonte. The turn movements at these two locations will be restricted to right turns only, with the exception of emergency vehicle access at the Via Valmonte driveway. Raised traffic movement barriers at the Via Valmonte driveway will allow only emergency vehicles to access the property from this direction.

On Via Valmonte, street improvements include widening of the eastbound approach leg to Hawthorne Boulevard, adjacent to the Project site, to provide an additional travel lane for optional left turn, through movement, or right turns. This additional lane is designed to be 16 feet wide for its entire length allowing right turning vehicles enough space to pass-by and avoid waiting in the left-turn queue. This improvement will include a new roadway surface; new curb, gutter, sidewalk, and parkway on the south side of Via Valmonte; a new crosswalk across Via Valmonte at Hawthorne Boulevard; and new accessible ramps on the northwest and southwest corners of the intersection.

On Hawthorne Boulevard, street improvements include widening and traffic lane restriping to add a right southbound turn lane between Via Valmonte and the proposed Project driveway; a new sidewalk contiguous to the street curb; a landscaped parkway between the sidewalk and the Project property line wall; and modifications to the traffic signal at the Via Valmonte/Hawthorne Boulevard intersection.

Figure 31 illustrates the proposed street and traffic improvements along Via Valmonte and Hawthorne Boulevard, and at the intersection of Via Valmonte/Hawthorne Boulevard.

Currently, the Via Valmonte/Hawthorne Boulevard intersection operates in two phases - the northbound and southbound movements as one phase and the eastbound and westbound movements as another phase with left turn movements yielding to oncoming traffic in all directions. In the current operation, both the eastbound and westbound left turning vehicles must wait for opposing through vehicles to clear before proceeding, causing delays.

The proposed improvements to the intersection include "splitting" the eastbound and westbound movements (designating the eastbound movement as the lead) and adding a left turn arrow to the eastbound approach on Via Valmonte. This will allow all eastbound vehicles (far greater in volume than the westbound) to clear first, followed by the westbound movement from the shopping center driveway. It should be noted that, since many cycles will not include any westbound traffic, this movement will be skipped in the cycle increasing the time available for other movements. Additionally, the east-west crosswalk across Hawthorne Boulevard will be moved from the north leg to the south leg to lessen delays caused by conflicts between pedestrians and motor vehicles.

Site Access \& Internal Circulation

A review of the site plan for the proposed Project reveals a simple, yet efficient, circulation system with convenient access to and from the Project via two driveways one ingress/egress driveway on Hawthorne Boulevard and one egress driveway on Via Valmonte.

Figure 31 - Via Valmonte \& Hawthorne Boulevard Improvements

Within the property, internal drive aisles lead directly into a subterranean parking structure. Within the parking structure, parking spaces and drive aisles are appropriately sized to accommodate resident and guest parking. Appropriately-sized fire lanes and maintenance roads are also provided on site. There are no gates or speed bumps to impede traffic entering the Project site. Gates that control entry into the parking garage are located over 150 feet from the Hawthorne Boulevard driveway entrance. Therefore, there should be no queuing of entering vehicles that back up onto Hawthorne Boulevard.

Line of Sight Analysis

The City of Torrance requested that the TIS include an analysis of the "line of sight" from exiting vehicles on the proposed driveway on Hawthorne Boulevard looking north toward oncoming southbound traffic. The proposed driveway is designed for right-in/right-out movements only, with all exiting vehicles required to stop before entering the flow of traffic on Hawthorne Boulevard. With a vehicle stopped in the exit lane at the stop limit line, drivers will first look to see if there are any pedestrians crossing the driveway, and secondly, look north along Hawthorne Boulevard to see if any vehicles are approaching the driveway.

According to the Caltrans Highway Design Manual ${ }^{F}$, the line of sight for corner sight distance is to be determined from a 3 and $1 / 2$-foot height at the driver's location on the minor road (Project driveway) to a 4 and $1 / 4$-foot object height in the center of the approaching lane of the major road (Hawthorne Boulevard). As illustrated in Figure 32, assuming a design speed of 45 miles per hour (the posted speed limit) on Hawthorne Boulevard, the line of sight distance from the Project exit lane stop limit line (looking north toward southbound traffic on Hawthorne Boulevard) is 495 feet to the center of the lane closest to the center median (known as the Number 1 Lane).

The line of sight distance from the Project exit lane stop limit line is 290 feet to the center of the lane closest to the sidewalk curb (or Number 3 Lane). All traffic formed by these two lines of sight is within the cone of visibility by a driver exiting the Project driveway. Once the proposed street improvements along Hawthorne Boulevard are constructed (i.e., undergrounding power poles; widening the street to include a southbound right turn/deceleration lane onto the Project driveway; modifying the traffic signal at Hawthorne Boulevard and Via Valmonte; and moving the sidewalk to be contiguous to the curb in lieu of a landscaped parkway), there should be no visual impairments to any driver exiting the Project site on Hawthorne Boulevard. The closest object to creating visual impairment is the new power pole that will be installed near the Project driveway. However, as noted in Figure 32, the line of sight is approximately 3 foot clear of the power pole.

[^5]

Figure 32 - Line of Sight

Parking

All vehicle parking for the proposed Project will be provided on-site. There will be feature multiple subterranean parking structures located under the residential buildings. Vehicular access to the parking structure will be controlled by signage. Designated guest parking will also be provided. In total, the 248 multi-family dwelling units will be served with 484 parking spaces. This includes one parking space for each one bedroom unit and two spaces for each two bedroom unit with an additional 50 spaces for guest parking.

Intersection Queuing Analysis

The City of Torrance requested, as part of the TIS, that a queuing analysis be performed for the eastbound approach to the Via Valmonte/Hawthorne Boulevard intersection. The queuing analysis was intended to show the number of vehicles that typically wait (i.e., stopped at the traffic signal waiting for a green light) for the left turn movement onto northbound Hawthorne Boulevard during the A.M. peak hour. Between 7:00 A.M. and 8:00 A.M, on May 24, 2016 a field survey was taken to identify the number of vehicles stopped in the left turn lane at each traffic signal cycle. During that hour, a total of 112 vehicles were stopped in the left queueing lane at the eastbound approach and there were a total of 40 traffic signal cycles - 90 seconds each. This results in an hour-long average of 2.8 vehicles turning left per cycle. Broken down into 15 minute time intervals, the surveyed average vehicle queue is shown in Table XIV.

As shown in the table, the largest average queue of 3.2 vehicles occurred between 7:30 and 7:45 A.M. Note that the largest number observed at any given time during any cycle was five, which occurred twice during the hour long observation. It is important to emphasize that vehicles not having to stop and wait for the green light were not included in the survey and, that right turning vehicles did not wait within the left turn queue as there was enough space to pass-by.

TABLE XIV - QUEUING SURVEY ${ }^{1}$

Time Period

7:00-7:15 A.M. 2.25
7:15-7:30 A.M.
7:30-7:45 A.M.
7:45-8:00 A.M.
2.90
3.20
2.10
${ }^{1}$ Queuing Survey Taken May 24, 2016
As a follow-up, a second, two hour queuing survey was conducted on Thursday, September 27, 2018. The purpose of the second survey was to not only verify the findings from the previous survey, but to extend the survey period to include the 8:00
A.M. to 9:00 A.M. hour. Since the traffic volume counts taken in 2016 showed a significant increase in intersection traffic from the 7:00 to 8:00 A.M hour to the 8:00 A.M. to 9:00 A.M. hour, it was necessary to update the queuing analysis to reflect the higher volume time period. The results of the follow-up second survey are summarized in Table XV.

TABLE XV - SECOND QUEUING SURVEY ${ }^{1}$

Time Period

7:00-7:15 A.M. 2.31
7:15-7:30 A.M.
7:30-7:45 A.M.
7:45-8:00 A.M.
8:00-8:15 A.M.
8:15-8:30 A.M.
8:30-8:45 A.M.
8:45-9:00 A.M.
${ }^{1}$ Queuing Survey Taken September 27, 2018

As shown in the Table XV , the average queues between the two surveys are similar during the 7:00 to 8:00 A.M. hour. Also shown are higher averages occurring in the 8:00 to 9:00 A.M. hour with the largest average queue of 3.62 vehicles between 8:45 and 9:00 A.M. The largest number observed at any given time during any cycle was nine, which occurred once during the 8:45 to 9:00 A.M. time period. The highest hourly number of left turning vehicles occurred in the 8:00 to 9:00 hour with a total of 198 vehicles. Of these, 36 did not have to stop in the queue (i.e., they approached and went through the intersection during a green light. That left 162 vehicles that had to wait in the left turn lane during a red light sometime during that hour.

In order to estimate the impact of additional Project related trips to the left turn queue, the trip generation/distribution during the A.M. peak hour, as shown in Figure 25, was added to the surveyed vehicles. A total of 55 A.M. peak hour, left turning Project vehicles leaving the site from the Via Valmonte driveway, which divided by 40 traffic signal cycles, equals an average of 1.4 vehicles per cycle. The 55 Project vehicles added to the surveyed 162 vehicles brought the future hourly total to an estimated 217 vehicles turning left during the A.M. hour with Project buildout. Divided by 40 traffic signal cycles, the average queue for left turn movements is 5.4 vehicles during the A.M. peak hour.

To estimate a worst case scenario, the average Project vehicles per cycle (i.e., 1.4) added to the $95^{\text {th }}$ percentile of the maximum observed queue (i.e., nine $x .95=8.6$) brought the total worst-case queue to 10 vehicles.

As described above, the Project plan includes constructing a second optional left turn lane for the eastbound approach to the intersection. The anticipated vehicle capacity of both left turn options is 250 feet (125 feet for each lane), which should accommodate at least 10 vehicles (spaced at 25 foot intervals). With the development of the proposed intersection improvements, there should be adequate space within the left turn pockets to accommodate existing plus Project related vehicles during the highest use time periods.

The City of Torrance asked that the potential impacts on queuing on Via Valmonte be addressed using a 120 second cycle (or 30 cycles per hour), if the signal timing were to be adjusted in the future from the 90 second cycle (or 40 cycles per hour). Following the same methodology (i.e., 217 vehicles divided by 30 cycles), the average queue for left turn movements would be 7.2 vehicles during the A.M. peak hour. This anticipated average queue of left turning vehicles, with a longer traffic signal cycle length, should still be accommodated during the A.M. peak hour with the construction of Project related off-site improvements.

To estimate the potential worst-case (i.e., maximum) queue under the 120 second cycle scenario, the potential worst-case queue during the 90 second cycle (i.e., $95^{\text {th }}$ percentile of 10 vehicles) was multiplied by the number of 90 second cycles per hour (40 cycles) divided by the number of 120 second cycles per hour (30 cycles).

10 vehicles $\times 40$ cycles $/ 30$ cycles $=10 \times 1.33=13.33$ or 14 vehicles (rounded up) .
Thus, the estimated worst-case maximum queue under a 120 second signal cycle is 14 vehicles, or 4 more than the current 10 vehicles under a 90 second cycle.

Under extreme "worst-case" conditions, when there may be a significant number of vehicles attempting to exit the Project site onto Via Valmonte at the same time, the Project plan includes more than 120 feet of "on-site" queuing space within the driveway throat that could accommodate another six to seven vehicles.

Intersection Queuing Analysis - Hawthorne Blvd./Pacific Coast Highway

For the Eighth Revision, a second queuing analysis was performed for the northbound left-turn movement at the Hawthorne Boulevard/Pacific Coast Highway intersection. Data used in the analysis was provided by the City of Torrance.

Currently, there are two northbound left-turn lanes at the Hawthorne Blvd./Pacific Coast Highway intersection. The length of each of these lanes is approximately 213 feet long up to the nearest intersection of Hawthorne Blvd. and $242^{\text {nd }}$ street. After existing "keep clear" zones at $242^{\text {nd }}$ street, queuing for the northbound left-turn lanes continues further south in one of the lanes for another 105 feet. Therefore, the total queuing distance for both lanes is approximately 531 feet. The total vehicle capacity of both left turn lanes is approximately 21 vehicles (assuming vehicle spacing at 25 feet per vehicle).

Using volume counts collected for this study in April 2016, the total number of vehicles traveling through the northbound left-turn movement was 278 in the A.M. and 311 in the P.M. peak hour.

During the A.M. peak hour, the traffic signal timing at this intersection operates at a range of 135 to 145 seconds per cycle - per data provided by the City. Using the higher value - representing longer delays (i.e., 145 seconds), there may be an average of 25 cycles in the A.M. peak hour. Therefore, 278 A.M. peak hour vehicles will be traveling through the northbound left-turn movement during 25 cycles for an average of 11 vehicles per cycle. Further, applying a design factor of $1.75 \times$ the average, per recommendations within the "Highway Design Manual", the worst-case queuing may reach 19 vehicles. As noted above, with a left-turn lane capacity of approximately 21 vehicles, there should be sufficient left-turn lane capacity to accommodate worst-case A.M. peak hour demands for this movement.

Applying the same methodology as above for the P.M. peak hour, 311 left-turning vehicles will travel through 25 cycles for an average of 12 vehicles per cycle. With the design factor of 1.75 , the worst-case queuing may reach 21 vehicles - equaling the 21 vehicle capacity.

The City has indicated that proposed improvements for this northbound left-turn movement include constructing an asphalt berm at the $242^{\text {nd }}$ street crossing and eliminating the existing "keep clear" zone. The estimated additional queuing space is 60 feet which would accommodate space for at least another 2 vehicles.

Project related traffic traveling through this northbound left-turn movement is anticipated to be the heaviest during the A.M. peak hour with 10 additional vehicles. These vehicles added to the A.M. analysis above results in 288 vehicles traveling through 25 cycles for an average of 11 vehicles per cycle and a worst-case condition of 19 vehicles - still below the current capacity of 21 vehicles and the future capacity of 23 vehicles.

VIII. STUDY FINDINGS, CONCLUSIONS, \& RECOMMENDATIONS

The proposed Solana Torrance project will replace a closed surface mine operation with 248 new multi-family residences, utilizing only 5.71 acres of previously disturbed land within a 24.68 -acre property. The remaining 18.97 acres of land will be preserved as natural open space.

The potential traffic impacts associated with the proposed Project were documented and analyzed in this Traffic Impact Study by focusing on two key roadway segments and eighteen key intersections, as identified by the City of Torrance. The City also required that cumulative traffic impacts associated with the build-out of other projects in the vicinity of the site be analyzed. The study findings and recommendations are presented as follows:

Study Findings

Based on the analyses presented herein, the following findings were made:

1) New traffic counts were taken in mid-April 2016. An annual growth factor of one percent was added to the 2016 volumes to estimate 2017 conditions and reflect baseline conditions at study roadway segments and intersections.
2) The Project is estimated to generate a total of 1,349 average weekday trip ends; and 89 A.M. and 109 P.M. peak hour trips ends, respectively.
3) The potential for "internal capture" of vehicle trips will be present, however, the percentage of such trip reduction is uncertain.
4) While the Project will generate some degree of regular transit use, thus potentially reducing private vehicle trips, the percentage of such trip reduction is uncertain.
5) Based on the current site plan for the Project, vehicular access to and from the site will be provided via one future driveway along Hawthorne Boulevard. One "exit-only" driveway with raised traffic movement barriers is proposed on Via Valmonte.
6) Both Project driveways will be restricted to right-turn-only movements for residents and visitors. Only emergency vehicles will be allowed to turn left into the site at the Via Valmonte entrance through the raised traffic movement barriers.
7) Capital Improvements are slated (planned for 2018) for the intersections of Hawthorne Boulevard/Pacific Coast Highway and Vista Montana/Pacific Coast Highway that will reduce traffic congestion for each location.
8) Each intersection was analyzed for "Levels of Service" (LOS) using four scenarios: existing plus one year of ambient growth 2017 volumes, two years of ambient growth volumes, plus Project volumes, and plus cumulative development volumes for both the A.M. and P.M. peak hours.
9) Each signalized intersection was analyzed using two methods - Intersection Capacity Utilization (ICU), and Highway Capacity Manual (HCM). Calculation sheets for each intersection/condition are within the Appendix section of this report. Stop controlled intersections were only analyzed with the HCM method.
10) Using the Existing 2017 conditions the ICU LOS at each of the study intersections, during both the A.M. and P.M. peak hours of weekday commute, fall within acceptable limits (i.e., "D" or better) with the exception of:
a. the Crenshaw Boulevard/Pacific Coast Highway intersection during the P.M. peak hour;
b. the Crenshaw Boulevard/Palos Verdes Drive North intersection during the A.M. peak hour;
c. the Rolling Hills Road/Palos Verdes Drive North intersection during the A.M and P.M. peak hours; and
d. the Pacific Coast Highway/Calle Mayor intersection during the A.M. and P.M. peak hours.
11) The addition of Project traffic did not result in any changes in LOS from existing conditions.
12) The further addition of ambient growth (i.e., one percent per year for two years) traffic to the 2017 volumes resulted in incremental increases in volumes for all intersections and a decrease in ICU intersection LOS for the Crenshaw Boulevard/Palos Verdes Drive North intersection during the P.M. peak hour.
13) With the addition of cumulative development traffic, the utilization of each intersection increased, however, the ICU LOS at each intersection is projected to stay within acceptable limits during both the A.M. and P.M. peak hours, again with the exception of the four intersections noted above.
14) Using the HCM methodology to determine levels of service for the studied intersections revealed similar results in the existing and ambient conditions (i.e., to that of the ICU calculations) with the exception of the Hawthorne Boulevard/Pacific Coast Highway intersection resulting in LOS "E" in the P.M. peak hour, the Crenshaw Boulevard/Rolling Hills Road intersection resulting in LOS "E" in the A.M. peak hour, and the Hawthorne Boulevard/Palos Verdes Drive North intersection resulting in LOS "E" in the A.M. peak hour.
15) Intersection delays increased with each scenario, however, the LOS designations did not change from the 2017 existing levels with the addition of Project traffic.
16) Under the cumulative development conditions, many of the studied intersections showed increases in delays and further deterioration in LOS during both peak hours of traffic. However, the addition of Project traffic did not decrease the LOS any further.
17) The two roadway segments analyzed - Via Valmonte (LOS "A") and Hawthorne Boulevard (LOS "B"), adjacent to the Project site both currently operate at acceptable levels, and will continue to do so with the addition of ambient growth. The only anticipated change in LOS occurs on Via Valmonte, from LOS "A" to an acceptable LOS "B" with the addition of cumulative traffic.
18) In the queueing analysis, with the development of the proposed intersection improvements, and assuming a traffic signal cycle length of 90 seconds, there should be adequate space within the left turn lanes to accommodate existing
plus Project related vehicles. Using a 120 second cycle, or 30 cycles per hour, if the signal timing were to be adjusted in the future, the average queue for left turn movements would be 7.2 vehicles during the A.M. peak hour - under the anticipated capacity of 10 vehicles. For extreme conditions when more vehicles may try to exit the Project site at the same time onto Via Valmonte, there is planned to be more than 120 feet of on-site queuing space accommodating another six to eight vehicles.
19) Existing queuing capacity for the northbound left-turn movement at the Hawthorn Blvd./Pacific Coast Highway intersection is approximately 21 vehicles and is expected to expand to 23 vehicles with proposed improvements. This queuing capacity is anticipated to accommodate existing and future demands with Project development.
20) The line of sight distance from the Project exit lane stop limit line is 290 feet to the center of the lane closest to the sidewalk curb (or Number 3 Lane). All traffic formed by these two lines of sight is within the cone of visibility by a driver exiting the Project driveway. Once the proposed street improvements along Hawthorne Boulevard are constructed (i.e., relocation of power poles; widening the street to include a southbound right turn/deceleration lane onto the Project driveway; modifying the traffic signal at Hawthorne Boulevard and Via Valmonte; and moving the sidewalk to be contiguous to the curb in lieu of a landscaped parkway), there should be no visual impairments to drivers exiting the Project site onto Hawthorne Boulevard.

Recommendations

Based on the study findings and conclusions, the proposed Project is not anticipated to result in any significant traffic impacts to any of the study street segments or intersections. Therefore, the following recommendations are made:

1) Construct Project driveways only allowing right-turn, "exit-only" movements to Via Valmonte, and right-turn, ingress/egress movements to Hawthorne Blvd.
2) Complete the off-site widening and improvements to Via Valmonte as shown on the Project plan.
3) Construct the intersection improvements, including an additional left/through lane to the eastbound approach leg of the Via Valmonte/Hawthorne Boulevard; a new crosswalk on the Via Valmonte leg; accessible ramps on the corners; and traffic signal improvements (e.g., modification of signal mast arms) on Via Valmonte.
4) Widen and restripe the west side of Hawthorne Boulevard for a right turn deceleration lane, adjacent to the site for Project related traffic ingress.
5) Provide various traffic controls, including signage, striping, and pavement
marking, to provide safe and efficient vehicular, pedestrian, and bicycle movement through and within the Project site.

IX. REFERENCES

1. City of Torrance General Plan, Circulation and Infrastructure Element, April 2010.
2. Institute of Transportation Engineers' (ITE) Trip Generation manual, 10^{TH} Ed., 2017.
3. City of Torrance "Citywide Traffic Analysis," June 2008.
4. Caltrans Guide for the Preparation of Traffic Impact Studies, December 2002.
5. Transportation Research Board, Highway Capacity Manual, HCM2010, 2010.
6. Caltrans Highway Design Manual, 6 ${ }^{\text {th }}$ Ed., November 2017.

APPENDIX SECTION

Appendix A - Existing Roadway ADT and

A.M.IP.M. Peak Hour Intersection Counts

VOLUME

Day: Wednesday
Date: 4/13/2016

City: Torrance
Project \#: CA16_5230_002

Prepared by NDS/ATD
VOLUME
Via Valmonte W/O Hawthorne Blvd
Day: Wednesday
Date: 4/13/2016
City: Torrance
Project \#: CA16_5230_001

DAILY TOTALS	NB	SB	WB	Total
	0	0	3,097	3,276

ITM Peak Hour Summary

Natlonal Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

National Data \& Surveying Services

ITM Peak Hour Summary

Prepared by:
N應

National Data \& Surveying Services

ITM Peak Hour Summary

National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary
 Prepared by:
 NDS

National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary
 Prepared by:
 ND S

National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

National Data \& Surveying Services

ITM Peak Hour Summary

National Data \& Surveying Servicas

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary
ND S
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
N窝

National Data \& Surveying Services

Hawthorne Blvd \& Palos Verdes Dr North
Peak Hour Turning Movement Count

Crenshaw Blvd \& Palos Verdes Dr North

Peak Hour Turning Movement Count

Rolling Hills Rd/Portuguese Bend Rd \& Palos Verdes Dr North

Newton St \& Calle Mayor
Peak Hour Turning Movement Count

ID: 17-05764-006
City: Torrance

Newton St
SOUTHBOUND

Total Vehicles (NOON)

Total Vehicles (NOON)
Day: Wednesday
Date: 11/15/2017

AM	2	0	1	0	0	AM
NOON	0	0	0	0	0	NOON
PM	0	0	0	0	1	PM
	\langle	\checkmark		L	\uparrow	
	0	1	0	0		-

Vista Montana \& Newton St

Peak Hour Turning Movement Count

ID: 17-05764-005
City: Torrance

Total Vehicles (NOON)

Total Vehicles (PM)

Vista Montana
SOUTHBOUND

Day: Wednesday
Date: 11/15/2017

Total Vehicles (NOON)

Total Vehicles (PM)

Madison St \& Newton St

Peak Hour Turning Movement Count

Pacific Coast Hwy \& Calls Mayor
Peak Hour Turning Movement Count

Appendix B - ICU Worksheets

Existing \& Existing Plus Project

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street: Annual Growth Rate: Pacific Coast Highway	

Count Date:	Wed. April 13, 2016
Horizon Date:	2019
Peak Hour: Data Source: Input By: $7: 30-8: 30$ AM C. B..	

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	2	3200	281	291	0.088	0.091
	Through	3	4800	1378	1416	0.287 *	0.295
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	2	3200	181	181	0.057	0.057
	Through	3	4800	726	733	0.151	0.153
	Right Turn	1	1600	302	302	0.189	0.189
Eastbound	Left Turn	1	1600	265	265	0.166	0.166
	Through	3	4800	1282	1285	0.267	0.268
	Right Turn**	0	0	0	0	-	
Westbound	Left Turn	1	1600		144	0.089	0.090
	Through	3	4800	1290	1290	0.269	0.269
	Right Turn**	0	0	0	0	-	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						0.878	
						D	
ICU Plus Lost Time Factor of . 10							0.886
Plus Project Level of Service							D
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
North-South Street:

Existing (2017) Plus Project
City of Torrance, California
Hawthorne Boulevard
Pacific Coast Highway

Annual Growth Rate:

Comments:
Capacity Volume of Vehicles Per Hour Per Lane $=1600$ Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
\qquad
\qquad

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	2	3200	314	320	0.098	0.100
	Through	3	4800	949	970	0.198	0.202
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	2	3200	376	376	0.118	0.118
	Through	3	4800	1206	1222	0.251	0.255
	Right Turn	1	1600	375	384	0.234	0.240
Eastbound	Left Turn	1	1600	220	220	0.138	0.138
	Through	3	4800	1460	1460	0.304	0.304
	Right Turn**	0	0	0	0	-	
Westbound	Left Turn	1	1600	187	191	0.117	0.119
	Through	3	4800	1199	1199	0.250	0.250
	Right Turn**	0	0	0	0	-	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						0.870	
						D	
ICU Plus Lost Time Factor of . 10							0.878
Plus Project Level of Service							D
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	244th Street
Annual Growth Rate:	1.00\%

Count Date: \quad Wed. April 13, 2016
Horizon Date:
Peak Hour: \quad 7:30-8:30 AM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	1	1600	4	4	0.003	0.003
	Through	3	4800	1581	1629	0.329 *	0.339
	Right Turn**	0	0			-	
Southbound	Left Turn	1	1600	38	38	0.024 *	0.024
	Through	3	4800	1043	1055	0.217	0.220
	Right Turn**	0	0			-	
Eastbound	Left Turn***	0	0			-	-
	Through	1	1600	24	24	0.015 *	0.015
	Right Turn	0.5	800	4	4	0.005	0.005
Westbound	Left Turn***	0	0			-	-
	Through	1	1600	57	57	0.036 *	0.036
	Right Turn	0.5	800	51	51		0.064
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						0.504	
						A	
ICU Plus Lost Time Factor of . 10							0.514
Plus Project Level of Service							A
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements Left Turn Volumes Added to Through Movements							Study Intersection No.
							2

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Existing (2017) Plus Project Count Date: Wed. April 13, 2016								
Location: North-South Street: East-West Street: Annual Growth Rate	City of	City of Torrance, California			Horizon Date: Peak Hour: Data Source: Input By:	2019		
	Hawthorne Boulevard					7:30-8:30 AM		
	Newton Street							
	Rate: 1.00%					C. B.		
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$							
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$							
Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio		
				Existing (2017)		Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	1	1600	96	103	0.060	0.064	
	Through	3	4800	1584	1636	0.330	0.341	
	Right Turn**	0	0	0	0	-		
Southbound	Left Turn	1	1600	36	36	0.023	0.023	
	Through	2	3200	1009	1021	0.315	0.319	
	Right Turn**	0	0	0	0	-		
Eastbound	Left Turn	1	1600	22	22	0.014	0.014	
	Through	0.5	800	75	75	0.094	0.094	
	Right Turn	0.5	800	80	82	0.100	0.103	
Westbound	Left Turn	1	1600	83	87	0.052	0.054	
	Through	1	1600	112	112	0.070	0.070	
	Right Turn	1	1600	104	104	0.065	0.065	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						$\begin{gathered} 0.627 \\ \text { B } \end{gathered}$		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Plus Project Level of Service							$\begin{gathered} 0.640 \\ \text { B } \end{gathered}$	
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements							Study Intersection No. 3	

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017)
Location:	City of Torrance, California
North-South Street: Hawthorne Boulevard East-West Street: Via Valmonte Annual Growth Rate: 1.00%	

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 8:00-9:00 AM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Lanes }\end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume	Volume/Capacity Ratio	
				Existing (2017)	Existing (2017)	
Northbound	Left Turn	1	1600	45	0.028	
	Through	3	4800	1566	0.326	
	Right Turn	1	1600	36	0.023	
Southbound	Left Turn	1	1600	3	0.002	
	Through	3	4800	1158	0.241	
	Right Turn**	0	0	0	-	
Eastbound	Left Turn***	0	0	0	-	
	Through	1	1600	236	0.148	
	Right Turn	0.5	800	67	0.084	
Westbound	Left Turn***	0	0	0	-	
	Through	1	1600	1	0.001 *	
		1		1		
ICU Plus Lost Time Factor of $\mathbf{1 0}$ Existing 2017 Level of Service					0.576	WWWUWUW
ICU Plus Lost Time Factor of. 10						
Plus Project Level of Service						

* Denotes Critical Movement
** Right Turn Volumes Added to Through Movements
*** Left Turn Volumes Added to Through Movements

Study Intersection

No.
4

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
North-South Street:
East-West Street:
Annual Growth Rate:
Existing (2017) Plus Project
City of Torrance, California

Hawthorne Boulevard
Via Valmonte
1.00\%

Count Date:
Horizon Date:
Peak Hour:
Wed. April 13, 2016
2019

Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
\qquad
\qquad

* Denotes Critical Movement
** Right Turn Volumes Added to Through Movements
*** Left Turn Volumes Added to Through Movements

Study Intersection

No.
4

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

[^6]Study
Intersection
No.
4

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
North-South Street:
East-West Street:
Annual Growth Rate:

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 5:00-6:00 PM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

* Denotes Critical Movement
** Right Turn Volumes Added to Through Movements
*** Left Turn Volumes Added to Through Movements

Study
Intersection
No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date:	Wed. April 13,2016
Horizon Date:	2019
Peak Hour:	7:30-8:30 AM
Data Source: Input By:	
	C. B.

Comments: $\frac{\text { Capacity Volume of Vehicles Per Hour Per Lane }=1600}{\text { Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes }=3200}$

[^7]Study Intersection

No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
Existing (2017) Plus Project
North-South Street:
City of Torrance, California
East-West Street:
Annual Growth Rate:

> Rolling Hills Road
1.00\%

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 7:30-8:30 AM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
Existing (2017) Plus Project
City of Torrance, California
North-South Street:
Whiffletree Lane
East-West Street:
Rolling Hills Road
Annual Growth Rate: \qquad
1.00\%

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 5:00-6:00 PM
Data Source:
Input By : C. B.

Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

* Denotes Critical Movement
** Right Turn Volumes Added to Through Movements
*** Left Turn Volumes Added to Through Movements

Study Intersection

No.
6

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Fallenleaf Drive
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date:	Wed. April 13,2016
Horizon Date:	2019
Peak Hour:	7:30-8:30 AM
Data Source:	
Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn*** Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 45 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 45 \\ 0 \end{gathered}$	$\begin{array}{cc} - \\ 0.028 & * \\ - \end{array}$	0.028
Southbound	Left Turn*** Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 59 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 59 \\ 0 \end{gathered}$	$\begin{gathered} - \\ 0.037 \\ - \end{gathered}$	0.037
Eastbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 29 \\ 314 \\ 0 \end{gathered}$	$\begin{gathered} 29 \\ 318 \\ 0 \end{gathered}$	$\begin{array}{cc} \hline 0.018 & * \\ 0.098 & \\ & \\ \hline \end{array}$	0.018 0.099 *
Westbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 431 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 433 \\ 0 \end{gathered}$	$\begin{aligned} & 0.007 \\ & 0.135 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.135 \end{aligned}$
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						$\begin{gathered} 0.318 \\ \text { A } \end{gathered}$	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Plus Project Level of Service							$\begin{gathered} 0.318 \\ \text { A } \end{gathered}$
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No. 7

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS							
Comments:	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
Direction of Travel	Lane Movement	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Lanes }\end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn*** Through Right Turn**	0	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 24 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 24 \\ 0 \end{gathered}$	0.015	0.015
Southbound	Left Turn*** Through Right Turn**	0	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 46 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 46 \\ 0 \end{gathered}$	0.029	0.029
Eastbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 35 \\ 437 \\ 0 \end{gathered}$	$\begin{gathered} 35 \\ 439 \\ 0 \end{gathered}$	$\begin{aligned} & 0.022 \\ & 0.137 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.137 \end{aligned}$
Westbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 393 \\ 0 \end{gathered}$	$\begin{gathered} 20 \\ 399 \\ 0 \end{gathered}$	$\begin{aligned} & 0.013 \\ & 0.123 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.125 \end{aligned}$
ICU Plus Lost Time Factor of 10 Existing 2017 Level of Service						$\begin{gathered} 0.288 \\ \mathrm{~A} \\ \hline \end{gathered}$	
ICU Plus Lost Time Factor of 10 Plus Project Level of Service							$\begin{gathered} 0.290 \\ \text { A } \end{gathered}$
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No. 7

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location:	Existing (2017) Plus Project				Count Date: Horizon Date:	Wed. April 13, 2016				
	City of Torrance, California					2019				
North-South Street: Crenshaw Boulevard					Peak Hour: Data Source: Input By:	8:00-9:00 AM				
East-West Street: Pacific Coast Highway										
Annual Grow	Rate: 1.00%					C. B.				
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$									
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$									
				Peak Hour Volume		Volume/Capacity Ratio				
Direction of Travel	Lane Movement	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Lanes }\end{array}$	Capacity (Veh/Hr) On Green	Existing (2017)	Existing +Project	Existing (2017)	Existing +Project			
	Left Turn	1	1600	57	57	0.036	0.036			
Northbound	Through	3	4800	985	986	0.205	0.205			
	Right Turn	1	1600	478	479	0.299	0.299			
	Left Turn	1	1600	135	135	0.084	0.084			
Southbound	Through	3	4800	619	624	0.129	0.130			
	Right Turn**	0	0			-				
	Left Turn	2	3200	163	167	0.051	0.052			
Eastbound	Through	2	3200	938	945	0.293	0.295			
	Right Turn**	0	0	0	0	-				
	Left Turn	2	3200	637	641	0.199	0.200			
Westbound	Through	3	4800	1917	1924	0.399	0.401			
	Right Turn**	0	0	0	0	-				
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						0.882				
ICU Plus Lost Time Factor of $\mathbf{1 0}$ Plus Project Level of Service						:				
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No. 9			

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
North-South Street:
East-West Street:
Annual Growth Rate:

Existing (2017) Plus Project
City of Torrance, California
Vista Montana
Pacific Coast Highway
\qquad

Count Date:
Horizon Date:
Peak Hour:
Wed. April 13, 2016

Data Source:
Input By:
2019
7:30-8:30 AM
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Trave	Lane Movement	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Lanes }\end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				$\begin{aligned} & \text { Existing } \\ & \text { (2017) } \end{aligned}$	Existing +Project	$\begin{aligned} & \text { Existing } \\ & \text { (2017) } \end{aligned}$	Existing +Project
Northbound	Left Turn	1.5	2400	150	150	0.063	0.063
	Through	1.5	2400	145	146	0.060	0.061
	Right Turn	0.5	800	119	119	0.149	0.149
Southbound	Left Turn	1.5	2400	282	283	0.118	0.118
	Through	1.5	2400	114	114	0.048	0.048
	Right Turn	1	1600	190	190	0.119	0.119
Eastbound	Left Turn	1	1600	47	47	0.029	0.029
	Through	2	3200	1131	1133	0.353	0.354
	Right Turn**	0	0	0	0	-	
Westbound	Left Turn	1	1600	65	65	0.041	0.041
	Through	2	3200	1510	1520	0.472	0.475
	Right Turn**	0	0	0	0	-	
ICU Plus Lost Time Factor of 10 Existing 2017 Level of Service						0.779	
ICU Plus Lost Time Factor of 10						WWUWW	0.783
Plus Project Level of Service							C

[^8]Study Intersection

No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Crenshaw Boulevard
East-West Street:	Palos Verdes Drive North
Annual Growth Rate:	1.00%

Count Date: Wed. November 15, 2017
Horizon Date:
Peak Hour: 5:00-6:00 PM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$

* Denotes Critical Movement
** U-Turn Volumes Added to Left Turn Movements
*** Right Turn Volumes Added to Through Movements

Study
Intersection
No.
13

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location:	City of Torrance, California
North-South Street:	Rolling Hills Road/Portuguese Road
East-West Street: Palos Verdes Drive North Annual Growth Rate: 1.00% .	

Count Date: \quad Wed. November 15, 2017
Horizon Date: 2019
Peak Hour: \quad 7:15-8:15 AM
Data Source:
$\begin{array}{ll}\text { Input By: } & \text { C. B. }\end{array}$

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	1	1600	62	62	0.039	0.039
	Through	1	1600	846	846	0.529	0.529
	Right Turn	1	1600	209	209	0.131	0.131
Southbound	Left Turn	1	1600	28	28	0.018	0.018
	Through	0.5	800	887	887	1.109	1.109
	Right Turn	0.5	800	13	13	0.016	0.016
Eastbound	Left Turn	1	1600	29	29	0.018	0.018
	Through	1	1600	54	56	0.034	0.035
	Right Turn	1	1600	51	51	0.032	
Westbound	Left Turn	1	1600	187	187	0.117	0.117
	Through	1	1600	59	60	0.037	0.038
	Right Turn	1	1600	33	33	0.021	
ICU Plus Lost Time Factor of . 10 Existing 2017 Level of Service						1.398	
						F	
ICU Plus Lost Time Factor of $\mathbf{1 0}$							1.399
Plus Project Level of Service							F

* Denotes Critical Movement
** U-Turn Volumes Added to Left Turn Movements
Study Intersection

No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project	Count Date:	Wed. November 15, 2017
Location:	City of Torrance, California	Horizon Date:	2019
North-South Street:	Rolling Hills Road/Portuguese Road	Peak Hour:	4:15-5:15 PM
East-West Street:	Palos Verdes Drive North	Data Source:	
Annual Growth Rate:	1.00\%	Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$ Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing (2017)	Existing +Project	Existing (2017)	Existing +Project
Northbound	Left Turn	1	1600	33	33	0.021	0.021 *
	Through	1	1600	829	829	0.518	0.518
	Right Turn	1	1600	221	221	0.138	
Southbound	Left Turn	1	1600	5	5	0.003	0.003
	Through	0.5	800	679	679	0.849 *	0.849
	Right Turn	0.5	800	11	11	0.014	0.014
Eastbound		1	1600	22	22	0.014	0.014
	Through	1	1600	47	48	0.029 *	0.030
	Right Turn	1	1600	78	78		
Westbound	Left Turn	1	1600	644	644	0.403	0.403 *
	Through	1	1600	56	58	0.035	0.036
	Right Turn	1	1600	25	25	0.016	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Existing 2017 Level of Service						1.401	
						F	
ICU Plus Lost Time Factor of $\mathbf{~} 10$ Plus Project Level of Service							1.402
						F	
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No.
							14

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Existing (2017) Plus Project
Location: City of Torrance, California North-South Street: Pacific Coast Highway East-West Street: Calle Mayor Annual Growth Rate: 1.00% .	

Count Date:	Wed. November 15,2017
Horizon Date:	2019
Peak Hour:	7:30-8:30 AM
Data Source:	
Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

* Denotes Critical Movement
** U-Turn Volumes Added to Left Turn Movements
*** Right Turn Volumes Added to Through Movements

Appendix C - ICU Worksheets

Ambient \& Ambient Plus Project

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate	Ambient (2019), Ambient+Proj				Count Date: Horizon Date: Peak Hour: Data Source: Input By :	Wed. April 13, 2016	
	City of Torrance, California					2019	
	: Hawthorne Boulevard					5:00-6:00 PM	
	244th Street						
	Rate: 1.00\%					C. B.	
Comments	Capacity Volume of Vehicles Per Hour Per Lane = 1600						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
	Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year						
Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
		Number of Lanes		Existing +Ambient (2019)	Existing +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	31	31	0.019	0.019
	Through	3	4800	1268	1295	0.264	0.270
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	1	1600	75	75	0.047	0.047
	Through	3	4800	1613	1646	0.336	0.343
	Right Turn**	0	0	0	0	-	
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	60	60	0.038	0.038
	Right Turn	0.5	800	22	22	0.028	0.028
Westbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	58	58	0.036	0.036
	Right Turn	0.5	800	52	52	0.065	0.065
ICU Plus Lost Time Factor of .10 Level of Service						0.529	
						A	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.536
							A
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements ** Left Turn Volumes Added to Through Movements							Study Intersection No. 2

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient+Proj
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	Newton Street
Annual Growth Rate:	1.00%

Count Date:	Wed. April 13,2016
Horizon Date: Peak Hour: Data Source: Input By: 5:00-6:00 PM C. B.	

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street:	Ambient + Proj Easty of Torrance, California Eawthorne Boulevard Annual Growth Rate:
Via Valmonte	
1.00%	

Count Date:	Wed. April 13,2016
Horizon Date:	2019
Peak Hour:	$8: 00-9: 00$ AM
Data Source:	
Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019),
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	Via Valmonte
Annual Growth Rate:	1.00\%

Count Date:	Wed. April 13, 2016
Horizon Date:	2019
Peak Hour: Data Source: Input By:	5:00-6:00 PM

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement	$\begin{array}{\|c\|} \hline \text { Number } \\ \text { of } \\ \text { Lanes } \\ \hline \end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume	Volume/Capacity Ratio	
				Existing +Ambient (2019)	Existing +Ambient (2019)	
Northbound	Left Turn	1	1600	64		
	Through	3	4800	1203	0.251	
	Right Turn	1	1600	18	0.011	
Southbound		1	1600	16	0.010	
	Through	3	4800	1910	0.398 *	
	Right Turn**	0	0	0		
Eastbound	Left Turn***	0	0	0	-	
	Through	1	1600	152	0.095	
	Right Turn	0.5	800	61		
Westbound	Left Turn***	0		0	-	
	Through	1	1600	16	0.010 *	
	Right Turn	1		20	0.013	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service					0.643	
					B	
ICU Plus Lost Time Factor of .10 Level of Service						
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements						Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS								
Conditions Location: North-South East-West Annual Gro Comments: Direction of Travel	Ambient (2019), Ambient+Proj				Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. April 13, 2016		
					2019			
	eet: Hawthorne Boulevard					7:30-8:30 AM		
	Rolling Hills Road							
	Rate: 1.00%					C. B.		
	Capacity Volume of Vehicles Per Hour Per Lane $=1600$							
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes = 3200							
	Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year							
				Peak Hour Volume		Volume/Capacity Ratio		
	Lane Movement	```Number of Lanes```	Capacity (Veh/Hr) On Green	Existing +Ambient (2019)		Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
	Left Turn	1	1600	0	0	0.000	0.000	
Northbound	Through	2	3200	1360	1362	0.425	0.426	
	Right Turn**	0	0	0	0			
	Left Turn	2	3200	283	287	0.088	0.090	
Southbound	Through	2	3200	825	835	0.258	0.261	
	Right Turn**	0	0	0	0	-		
	Left Turn***	0	0	0	0	-	-	
Eastbound	Through	1	1600	2	2	0.001	0.001	
	Right Turn	0.5	800	0	0	0.000	0.000	
	Left Turn	1	1600	88	88	0.055	0.055	
Westbound	Through	0.5	800	2	2	0.003	0.003	
	Right Turn	1.5	2400	433	435	0.180	0.181	
ICU Plus Lost Time Factor of . 10 Level of Service						0.670		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.672	
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.	

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	$\frac{\text { Ambient (2019), Ambient }+ \text { Proj }}{\text { Location: }}$
North-South Street:	City of Torrance, California
East-West Street:	Whiffletree Lane
Rolling Hills Road	
Annual Growth Rate:	1.00%

Count Date:	Wed. April 13,2016
Horizon Date:	2019
Peak Hour:	$7: 30-8: 30$ AM
Data Source:	
Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	45	45	0.028	0.028
	Right Turn	0.5	800	20	20	0.025	0.025
Southbound	Left Turn***	0	0	0	0	-	
	Through	1	1600	14	14	0.009	0.009
	Right Turn	0.5	800	3	3	0.004	0.004
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	336	340	0.105	0.106
	Right Turn**	0		0	0	-	
Westbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	497	499	0.155	0.156
	Right Turn**	0	0	0	0	-	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.397	
						A	
ICU Plus Lost Time Factor of . 10							0.399
Level of Service							A
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate:	Ambie	2019), Am	bient+Proj		Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. April 13, 2016		
	City of Torrance, California					2019		
	: Whiflletree Lane					5:00-6:00 PM		
	$\frac{\text { Rolling Hills Road }}{1.00 \%}$					C. B.		
Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$								
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$								
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year								
Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio		
		$\begin{array}{\|c} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Lanes } \end{array} \\ \hline \end{array}$		Existing +Ambient (2019)		Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn***	0	0	0	0	-	-	
	Through	1	1600	15	15	0.009	0.009	
	Right Turn	0.5	800	15	15	0.019	0.019	
Southbound	Left Turn***	0	0	0	0	-		
	Through	1	1600	16	16	0.010	0.010	
	Right Turn	0.5	800	6	6	0.008	0.008	
Eastbound	Left Turn***	0	0	0	0	-	-	
	Through	2	3200	518	520	0.162	0.163	
	Right Turn**	0	0	0	0	-		
Westbound	Left Turn***	0	0	0	0	-	-	
	Through	2	3200	394	400	0.123	0.125	
	Right Turn**	0	0	0	0	-		
ICU Plus Lost Time Factor of .10 Level of Service						0.404		
						A		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.407	
							A	
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements ** Left Turn Volumes Added to Through Movements							Study Intersection No.	

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	
Location:	Ambient (2019), Ambient+Proj North-South Street: East-West Street: City of Torrance, California Annual Growth Rate: Rolling Hills Road .

Count Date: Wed. April 13, 2016
Horizon Date:
Peak Hour:
7:30-8:30 AM
Data Source:
Input By : C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Lanes } \end{gathered}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn*** Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 47 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 47 \\ 0 \end{gathered}$	0.029	0.029
Southbound	Left Turn*** Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 60 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 60 \\ 0 \end{gathered}$	0.038	0.038
Eastbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 320 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 324 \\ 0 \end{gathered}$	$\begin{aligned} & 0.019 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.101 \end{aligned}$
Westbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 440 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 442 \\ 0 \end{gathered}$	$\begin{aligned} & 0.007 \\ & 0.138 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.138 \end{aligned}$
ICU Plus Lost Time Factor of . 10 Level of Service						$\begin{gathered} 0.323 \\ \mathrm{~A} \\ \hline \end{gathered}$	淢
ICU Plus Lost Time Factor of . 10 Level of Service							$\begin{gathered} 0.324 \\ \text { A } \end{gathered}$
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No. 7

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient + Proj
Location:	City of Torrance, California
North-South Street:	Fallenleaf Drive
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date:	Wed. April 13,2016
Horizon Date:	2019
Peak Hour:	$4: 30-5: 30$ PM
Data Source:	
Input By:	C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn**夫 Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 0 \end{gathered}$	0.016	0.016
Southbound	Left Turn*** Through Right Turn**	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1600 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 46 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 46 \\ 0 \end{gathered}$	0.029	0.029
Eastbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 36 \\ 446 \\ 0 \end{gathered}$	$\begin{gathered} 36 \\ 448 \\ 0 \end{gathered}$	$\begin{aligned} & 0.023 \\ & 0.139 \end{aligned}$	$\begin{aligned} & 0.023 \\ & 0.140 \end{aligned}$
Westbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 21 \\ 401 \\ 0 \end{gathered}$	$\begin{gathered} 21 \\ 407 \\ 0 \end{gathered}$	$\begin{aligned} & 0.013 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.127 \end{aligned}$
ICU Plus Lost Time Factor of $\mathbf{~} 10$ Level of Service						$\begin{gathered} 0.292 \\ \text { A } \end{gathered}$	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							$\begin{gathered} 0.294 \\ \text { A } \end{gathered}$
* Denotes Critical Movement ${ }^{* *}$ Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No. 7

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient+Proj
Location:	City of Torrance, California
North-South Street:	Crenshaw Boulevard
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00\%

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 7:45-8:45 AM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	117	118	0.073	0.074
	Through	3	4800	1340	1340	0.279	0.279
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	1	1600	157	157	0.098	0.098
	Through	3	4800	1024	1025	0.213	0.214
	Right Turn**	0	0	0	0	-	
Eastbound	Left Turn	1	1600	146	148	0.091	0.093
	Through	1	1600	147	147	0.092	0.092
	Right Turn	1	1600	60	62	0.038	0.039
Westbound	Left Turn	1	1600	22	22	0.014	0.014
	Through	0.5	800	181	181	0.226	0.226
	Right Turn	1.5	2400	200	200	0.083	0.083
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.795	
						C	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.796
							C
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient + Proj
Location:	City of Torrance, California
North-South Street:	Crenshaw Boulevard
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date: Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 4:45-5:45 PM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance = 1 \% Per Year

$\begin{gathered} \text { Direction } \\ \text { of } \\ \text { Travel } \\ \hline \end{gathered}$	Lane Movement	NumberofLanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	101	104	0.063	0.065
	Through	3	4800	1006	1006	0.210	0.210
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	1	1600	274	274	0.171	0.171
	Through	3	4800	1022	1025	0.213	0.214
	Right Turn**	0	0	0	0	-	
Eastbound	Left Turn	1	1600		164	0.102	0.103
	Through	1	1600	286	286	0.179	0.179
	Right Turn	1	1600	88	89	0.055	0.056
Westbound	Left Turn	1	1600	42	42	0.026	0.026
	Through	0.5	800	217	217	0.271	0.271
	Right Turn	1.5		164	164	0.068	0.068
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.854	
						D	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.855
							D
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient+Proj
Location:	City of Torrance, California
North-South Street:	Crenshaw Boulevard
East-West Street:	Pacific Coast Highway
Annual Growth Rate:	1.00\%

Count Date: \quad Wed. April 13, 2016
Horizon Date: 2019
Peak Hour: 8:00-9:00 AM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:
Location:
North-South Street:
East-West Street:

$\frac{\text { Ambient (2019), Ambient+Proj }}{\text { City of Torrance, California }}$
Crenshaw Boulevard
Pacific Coast Highway
1.00%

Count Date:
Horizon Date:
Peak Hour:
Data Source:
Input By:
C. B.

Comments:
Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate:		2019), Am	bient+Proj		Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. November 15, 2017	
		City of Torrance, California					
		Hawthorne Boulevard				5:00-6:00 PM	
		Palos Verdes Drive North					
						C. B.	
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
	Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year						
Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
		Number of Lanes		Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	232	232	0.145	0.145
	Through	2	3200	354	358	0.111	0.112
	Right Turn	1	1600	136	136	0.085	0.085
Southbound	Left Turn	1	1600	201	202	0.126	0.126
	Through	2	3200	405	411	0.127	0.128
	Right Turn	1	1600	23	24	0.014	0.015
Eastbound	Left Turn**	1	1600	24	25	0.015	0.016
	Through	2	3200	721	721	0.225	0.225
	Right Turn	1	1600	237	237	0.148	0.148
Westbound	Left Turn**	2	3200	141	141	0.044	0.044
	Through	2	3200	1071	1071	0.335	0.335
	Right Turn	1	1600	319	321	0.199	0.201
ICU Plus Lost Time Factor of .10 Level of Service						0.721	
						C	
ICU Plus Lost Time Factor of $\mathbf{1 0}$ Level of Service							0.724
							c
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No. 12

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient+Proj
Location:	City of Torrance, California
North-South Street: Crenshaw Boulevard East-West Street: Palos Verdes Drive North Annual Growth Rate: 1.00%	

Count Date: Wed. November 15, 2017
Horizon Date: 2019
Peak Hour: \quad 7:45-8:45 AM
Data Source:
Input By:
C. B

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Ambient (2019), Ambient+Proj
Location: North-South Street: City of Torrance, California Erenshaw Boulevard East-West Street: Palos Verdes Drive North Annual Growth Rate: 1.00% .	

Count Date:	Wed. November 15,2017
Horizon Date:	2019
Peak Hour:	5:00-6:00 PM
Data Source: Input By: C. B.	

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn**	1	1600	497	497	0.311	0.311
	Through	2	3200	365	368	0.114	0.115
	Right Turn	1	1600	65	65	0.041	0.041
Southbound	Left Turn**	1	1600	361	361	0.226	0.226
	Through	2	3200	369	370	0.115	0.116
	Right Turn	1	1600	54	54	0.034	0.034
Eastbound	Left Turn**	2	3200	48	48	0.015	0.015
	Through	2	3200	1080	1081	0.338 *	0.338
	Right Turn***	0	0	0	0	-	-
Westbound	Left Turn**	2	3200	116	116	0.036 *	0.036
	Through	2	3200	1009	1011	0.315	0.316
	Right Turn***	0	0	0	0	-	-
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.900	
						E	
ICU Plus Lost Time Factor of . 10							0.900
Level of Service							E
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements *** Right Turn Volumes Added to Through Movements							Study Intersection No.
							13

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS								
Conditions: Location: North-South East-West Annual Grow Comments: Direction of Travel	Ambient (2019), Ambient + Proj				Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. November 15, 2017		
					2019			
	eet: Rolling Hills Road/Portuguese Road					7:15-8:15 AM		
	Palos Verdes Drive North							
	Rate: 1.00\%					C. B.		
	Capacity Volume of Vehicles Per Hour Per Lane = 1600							
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$							
	Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year							
				Peak Hour Volume		Volume/Capacity Ratio		
	Lane Movement	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Lanes } \end{array}$	Capacity (Veh/Hr) On Green	Existing +Ambient (2019)		Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
	Left Turn	1	1600	63	63	0.039	0.039	
Northbound	Through	1	1600	863	863	0.539	0.539	
	Right Turn	1	1600	213	213	0.133	0.133	
	Left Turn	1	1600	29	29	0.018	0.018	
Southbound	Through	0.5	800	905	905	1.131	1.131	
	Right Turn	0.5	800				0.016	
	Left Turn	1	1600	30	30	0.019	0.019	
Eastbound	Through	1	1600	55	59	0.034	0.037	
	Right Turn	1	1600	52	52	0.033		
	Left Turn	1	1600	191	191	0.119	0.119	
Westbound	Through	1	1600	60	61	0.038		
	Right Turn	1	1600	34	34	0.021		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						1.424		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							1.427	
							F	
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No.	
							14	

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: \quad Ambient (2019), Ambient+Proj Count Date: Wed. November 15, 2017							
Location: $\begin{array}{ll}\text { North-South Street: } \\ \text { East-West Street: }\end{array}$ Rolling Hills Road/Portuguese Road Eastorance, California Annual Growth Rate: Palos Verdes Drive North 1.00%					Horizon Date:	$\frac{2019}{4: 15-5: 15 ~ P M}$	
					Peak Hour:		
					Data Source:		
					Input By:	C. B.	
Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$							
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$							
Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year							
Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	35	35	0.022	0.022
	Through	1	1600	863	863	0.539	0.539
	Right Turn	1	1600	230	230	0.144	
Southbound	Left Turn	1	1600	5	5	0.003	0.003
	Through	0.5	800	693	693	0.866	0.866
	Right Turn	0.5	800	11	11	0.014	0.014
Eastbound	Left Turn	1	1600	22	22	0.014	0.014
	Through	1	1600	48	49	0.030	0.031
	Right Turn	1	1600	80		0.050	
Westbound	Left Turn	1	1600	657	657	0.411	0.411
	Through	1	1600	57	59	0.036	0.037
	Right Turn	1	1600	26	26	0.016	
ICU Plus Lost Time Factor of . 10 Level of Service						1.429	
						F	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							1.429
						3	F
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No. 14

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS							
Conditions: Location: North-South East-West Annual Gro Comments: Direction of Travel	$\begin{array}{ll} & \begin{array}{l} \text { Ambien } \\ \text { reet: } \\ \text { et: } \end{array} \\ \text { Rate: } & \frac{\text { Pity of }}{\text { Pacific }} \\ & \begin{array}{l} \text { Calle M } \\ 1.00 \% \end{array} \end{array}$	2019), Am rance, Ca ast Highw or	bient+Proj		Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. Novemb 2019 7:30-8:30 AM C. B.	$15,2017$
	apacity Volume	Vehicles	Per Hour Per	ne $=1600$ ual Left-Turn rrance $=1$	anes = 3200 Per Year		
				Peak Hour Volume		Volume/Capacity Ratio	
	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn Through Right Turn	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	$\begin{gathered} 148 \\ 804 \\ 33 \end{gathered}$	$\begin{gathered} 148 \\ 804 \\ 33 \end{gathered}$	$\begin{aligned} & 0.093 \\ & 0.503 \\ & 0.021 \end{aligned}$	$\begin{aligned} & 0.093 \\ & 0.503 \\ & 0.021 \end{aligned}$
Southbound	Left Turn Through Right Turn	1 1 1	$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	$\begin{aligned} & 180 \\ & 960 \\ & 305 \end{aligned}$	$\begin{aligned} & 180 \\ & 960 \\ & 305 \end{aligned}$	$\begin{aligned} & 0.113 \\ & 0.600 \\ & 0.191 \end{aligned}$	$\begin{aligned} & 0.113 \\ & 0.600 \\ & 0.191 \end{aligned}$
Eastbound	Left Turn Through Right Turn***	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 120 \\ 380 \\ 0 \end{gathered}$	$\begin{gathered} 120 \\ 382 \\ 0 \end{gathered}$	$\begin{aligned} & 0.075 \\ & 0.119 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.119 \end{aligned}$
Westbound	Left Turn Through Right Turn***	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 3200 \\ 0 \end{gathered}$	$\begin{gathered} 96 \\ 397 \\ 0 \end{gathered}$	$\begin{gathered} 96 \\ 404 \\ 0 \end{gathered}$	$\begin{aligned} & 0.060 \\ & 0.124 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.126 \end{aligned}$
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						$\begin{gathered} 0.992 \\ E \end{gathered}$	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							$\begin{gathered} 0.994 \\ E \end{gathered}$
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements *** Right Turn Volumes Added to Through Movements							Study Intersection No. 18

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate:	Ambien	2019), Amb	bient+Proj		Count Date: Horizon Date: Peak Hour: Data Source: Input By:	Wed. November 15, 2017	
	City of Torrance, California					2019	
	Pacific Coast Highway					4:15-5:15 PM	
	Calle Mayor						
	Rate: 1.00%					C. B.	
Comments	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
	Ambient Traffic Increase Factor per City of Torrance $=1 \%$ Per Year						
Direction of Travel	Lane Movement	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Lanes }\end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Existing +Ambient (2019)	Ambient +Project (2019)	Existing +Ambient (2019)	Ambient +Project (2019)
Northbound	Left Turn	1	1600	194	194	0.121	0.121
	Through	1	1600	1050	1050	0.656	0.656
	Right Turn	1	1600	50	50	0.031	0.031
Southbound	Left Turn	1	1600	175	175	0.109	0.109
	Through	1	1600	959	959	0.599	0.599
	Right Turn	1	1600	86	86	0.054	0.054
Eastbound	Left Turn	1	1600	120	120	0.075	0.075
	Through	2	3200	465	471	0.145	0.147
	Right Turn***	0	0	0	0	-	-
Westbound	Left Turn	1	1600	57	57	0.036	0.036
	Through	2	3200	280	285	0.088	0.089
	Right Turn***	0	0	0	0	-	-
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						1.047	
						F	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							1.048
							F
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements *** Right Turn Volumes Added to Through Movements							Study Intersection No.

Appendix D - ICU Worksheets

Cumulative \& Cumulative Plus Project

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate	Cumula	e w/ and w	w/o Project		Count Date: Horizon Date: Peak Hour: Data Source: Input By:		
	City of Torrance, California					2019	
	Hawthorne Boulevard					7:30-8:30 AM	
	Pacific Coast Highway						
	Rate: 1.00\%					C. B.	
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	2	3200	293	303	0.092	0.095
	Through	3	4800	1407	1438	0.293	0.300
	Right Turn	1	1600	61	68	0.038	0.043
Southbound	Left Turn	2	3200	202	202	0.063	0.063
	Through	3	4800	765	772	0.159	0.161
	Right Turn	1	1600	325	325	0.203	0.203
Eastbound	Left Turn	2	3200	294	294	0.092	0.092
	Through	3	4800	1045	1045	0.218	0.218
	Right Turn	1	1600	270	273	0.169	0.171
Westbound	Left Turn	2	3200	145	147	0.045	0.046
	Through	3	4800	1075	1075	0.224	0.224
	Right Turn	1	1600		277	0.173	0.173
ICU Plus Lost Time Factor of . 10 Level of Service						0.772	T
						C	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.779
							C
* Denotes Critical Movement							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate	Cumulative w/ and w/o Project				Count Date: Horizon Date: Peak Hour: Data Source: Input By:			
					2019			
	eet: Hawtho	e Boulevard				5:00-6:00 PM		
	Pacific Coast Highway							
	Rate: 1.00\%					C. B.		
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$							
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$							
Direction of Travel	Lane Movement	$\begin{array}{\|c\|} \hline \text { Number } \\ \text { of } \\ \text { Lanes } \end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio		
				Cumulative w/o Project		Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	2	3200	324	330	0.101	0.103	
	Through	3	4800	943	961	0.196	0.200	
	Right Turn	1	1600	74	77	0.046	0.048	
Southbound	Left Turn	2	3200	423	423	0.132	0.132	
	Through	3	4800	1289	1305	0.269	0.272	
	Right Turn	1	1600	430	430	0.269	0.269	
Eastbound	Left Turn	2	3200	254	254	0.079	0.079	
	Through	3	4800	1147	1147	0.239	0.239	
	Right Turn	1	1600	355	364	0.222	0.228	
Westbound	Left Turn	2	3200	194	198	0.061	0.062	
	Through	3	4800	998	998	0.208	0.208	
	Right Turn	1	1600	254	254	0.159	0.159	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.769		
ICU Plus Lost Time Factor of . 10 Level of Service							0.776	
							C	
* Denotes Critical Movement							Study Intersection No.	

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumula	w/ and	w/o Project		Count Date:		
Location:	City of	rance, C	lifornia		Horizon Date:	2019	
North-South	eet: Hawtho	e Bouleva			Peak Hour:	7:30-8:30 AM	
East-West S	: \quad 244th S				Data Source:		
Annual Grow	Rate: 1.00\%				Input By:	C. B.	
Comments:	apacity Volume	Vehicles	Per Hour Pe	Lane $=1600$			
	apacity Volume	Vehicles	Per Hour For	Dual Left-Turn	nes $=3200$		
				Peak H	r Volume	Volume/C	city Ratio
of Travel	Lane Movement	of Lanes	(Veh/Hr) On Green	Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
	Left Turn	1	1600	4	4	0.003	0.003
Northbound	Through	3	4800	1671	1719	0.348	0.358
	Right Turn**	0	0	0	0	-	
	Left Turn	1	1600	42	42	0.026	0.026
Southbound	Through	3	4800	1088	1100	0.227	0.229
	Right Turn**	0	0	0	0	-	
	Left Turn***	0	0	0	0	-	-
Eastbound	Through	1	1600	29	29	0.018	0.018
	Right Turn	0.5	800	8	8	0.010	0.010
	Left Turn***	0	0	0	0	-	-
Westbound	Through	1	1600	60	60	0.038	0.038
	Right Turn	0.5	800	57	57	0.071	0.071
		ICU Plus	Lost Time F	ctor of .10		0.530	
		Level of	Service			A	
		ICU Plus	Lost Time F	ctor of .10			0.540
		Level of	Service				A
	notes Critical ight Turn Volum ft Turn Volume	vement Added to Added to T	Through Mo hrough Mov	ments ents			Study Intersection No.
							2

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate	Cumula	e $\mathrm{w} /$ and w	w/o Project		Count Date: Horizon Date: Peak Hour: Data Source: Input By:		
	City of Torrance, California					2019	
	Hawthorne Boulevard					5:00-6:00 PM	
	treet: \quad 244th S	244th Street					
	wth Rate: 1.00%					C. B.	
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	$\underline{\text { Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes }=3200}$						
Direction of Travel	Lane Movement	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Lanes } \\ \hline \end{gathered}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	1	1600	31	31	0.019	0.019
	Through	3	4800	1314	1341	0.274	0.279
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	1	1600	82	82	0.051	0.051
	Through	3	4800	1681	1714	0.350	0.357
	Right Turn**			0		-	
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	65	65	0.041	0.041
	Right Turn	0.5		27	27	0.034	
Westbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	62	62	0.039	0.039
	Right Turn	0.5	800	52	58		0.073
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.549	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						-	0.556
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.
							2

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate:	Cumul	e w/ and w	w/o Project		Count Date: Horizon Date: Peak Hour: Data Source: Input By:		
	City of Torrance, California					2019	
	Hawthorne Boulevard					7:30-8:30 AM	
	Newton Street						
	Rate: 1.00%					C. B.	
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
Direction of Travel	LaneMovement	$\begin{array}{\|c} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Lanes } \end{array} \end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	1	1600	103	110	0.064	0.069
	Through	3	4800	1666	1718	0.347	0.358
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	1	1600	39	39	0.024	0.024
	Through	2	3200	1049	1061	0.328	0.332
	Right Turn**	0	0	0	0	-	
Eastbound	Left Turn	1	1600	27	27	0.017	0.017
	Through	0.5	800	77	77	0.096	0.096
	Right Turn	0.5	800	80	82	0.100	0.103
Westbound	Left Turn	1	1600	87	91	0.054	0.057
	Through	1	1600	114	114	0.071	0.071
	Right Turn	1	1600	111	111	0.069	0.069
ICU Plus Lost Time Factor of . 10 Level of Service						0.647	
						B	
ICU Plus Lost Time Factor of .10 Level of Service							0.660
							B
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements							Study Intersection No. 3

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative $\mathrm{w} /$ and w/o Project
Location:	City of Torrance, California
North-South Street: Hawthorne Boulevard East-West Street: Newton Street .	

Count Date:
Horizon Date: 2019
Peak Hour: 5:00-6:00 PM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date:
Horizon Date: 2019
Peak Hour:
7:30-8:30 AM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	1	1600	0	0	0.000	0.000
	Through	2	3200	1403	1405	0.438	0.439
	Right Turn**	0	0	0	0	-	
Southbound	Left Turn	2	3200	285	289	0.089	0.090
	Through	2	3200	843	853	0.263	0.267
	Right Turn**	0	0	0	0	-	
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	2	2	0.001	0.001
	Right Turn	0.5	800	0	0	0.000	0.000
Westbound	Left Turn	1	1600	88	88	0.055	0.055
	Through	0.5	800	2	2	0.003	0.003
	Right Turn	1.5		438	440		0.183
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.684	
						B	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.686
							B
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street: Whiffletree Lane East-West Street: Rolling Hills Road Annual Growth Rate: 1.00%	

Count Date:
Horizon Date: 2019
Peak Hour: 7:30-8:30 AM
Data Source:
Input By: C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Lanes } \end{gathered}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	45	45	0.028	0.028
	Right Turn	0.5	800	21	21	0.026	0.026
Southbound	Left Turn***	0	0	0	0	-	
	Through	1	1600	15	15	0.009	0.009
	Right Turn	0.5	800	4	4	0.005	0.005
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	338	342	0.106	0.107
	Right Turn**	0	0	0	0	-	
Westbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	498	500	0.156	0.156
	Right Turn**			0	0		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.399	
						A	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.401
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street:	Whiffletree Lane
East-West Street:	Rolling Hills Road
Annual Growth Rate:	1.00%

Count Date:
Horizon Date:
Peak Hour:

$$
2019
$$

Data Source:
Input By: \qquad

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn***	0	0	0	0	-	-
	Through	1	1600	15	15	0.009	0.009
	Right Turn	0.5	800	16	16	0.020	0.020
Southbound	Left Turn***	0	0	0	0	-	
	Through	1	1600	16	16	0.010	0.010
	Right Turn	0.5	800	7	7	0.009	0.009
Eastbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	525	527	0.164	0.165
	Right Turn**	0	0	0	0	-	
Westbound	Left Turn***	0	0	0	0	-	-
	Through	2	3200	396	402	0.124	0.126
	Right Turn**	0		0	0		
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.407	
						A	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.410
							A
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street: Crenshaw Boulevard East-West Street: Rolling Hills Road Annual Growth Rate: 1.00%	

Count Date:
Horizon Date: 2019
Peak Hour: 7:45-8:45 AM
Data Source:
Input By: C. B.

Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
				Peak Ho	Volume	Volume/	pacity Ratio
of Travel	Lane Movement	of Lanes	(Veh/Hr) On Green	Cumulative w/o Project	Cumulative w Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 3 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 4800 \\ 0 \end{gathered}$	$\begin{gathered} \hline 117 \\ 1392 \\ 0 \end{gathered}$	$\begin{gathered} 118 \\ 1392 \\ 0 \end{gathered}$	$\begin{aligned} & 0.073 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.290 \end{aligned}$
Southbound	Left Turn Through Right Turn**	$\begin{aligned} & 1 \\ & 3 \\ & 0 \end{aligned}$	$\begin{gathered} 1600 \\ 4800 \\ 0 \end{gathered}$	$\begin{gathered} 159 \\ 1045 \\ 0 \end{gathered}$	$\begin{gathered} 159 \\ 1046 \\ 0 \end{gathered}$	$\begin{aligned} & 0.099 \\ & 0.218 \end{aligned}$	$\begin{aligned} & 0.099 \\ & 0.218 \end{aligned}$
Eastbound	Left Turn Through Right Turn	1 1 1	$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	$\begin{gathered} 153 \\ 147 \\ 60 \end{gathered}$	$\begin{gathered} 155 \\ 147 \\ 62 \end{gathered}$	$\begin{aligned} & 0.096 \\ & 0.092 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.097 \\ & 0.092 \\ & 0.039 \end{aligned}$
Westbound	Left Turn Through Right Turn	$\begin{gathered} 1 \\ 0.5 \\ 1.5 \end{gathered}$	$\begin{gathered} 1600 \\ 800 \\ 2400 \end{gathered}$	$\begin{gathered} 24 \\ 181 \\ 206 \end{gathered}$	$\begin{gathered} 24 \\ 181 \\ 206 \end{gathered}$	$\begin{aligned} & 0.015 \\ & 0.226 \\ & 0.086 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.226 \\ & 0.086 \end{aligned}$
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						$\begin{gathered} 0.811 \\ \mathrm{D} \end{gathered}$	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							$\begin{gathered} 0.813 \\ \mathrm{D} \end{gathered}$
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements *** Left Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES

INTERSECTION CAPACITY UTILIZATION ANALYSIS

	Cumula	e w/ and	w/o Project				
Location:	City of	rrance, Ca	alifornia		Horizon Date:	2019	
North-South	reet: Crensh	Boulevar			Peak Hour:	4:45-5:45 PM	
East-West S	: Rolling	ills Road			Data Source:		
Annual Grow	Rate: 1.00%				Input By:	C. B.	
Comments:	apacity Volume	Vehicles	Per Hour Per	Lane $=1600$			
	apacity Volume	Vehicles	Per Hour For	Dual Left-Turn	nes $=3200$		
				Peak H	Volume	Volume/C	pacity Ratio
of Travel	Lane Movement	of Lanes	(Veh/Hr) On Green	Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
	Left Turn	1	1600	101	104	0.063	0.065
Northbound	Through	3	4800	1039	1039	0.216	0.216
	Right Turn**	0	0	0	0	-	
	Left Turn	1	1600	279	279	0.174	0.174
Southbound	Through	3	4800	1088	1091	0.227	0.227
	Right Turn**	0	0	0	0	-	
	Left Turn	1	1600	168	169	0.105	0.106
Eastbound	Through	1	1600	286	286	0.179	0.179
	Right Turn	1	1600	88	89	0.055	0.056
	Left Turn	1	1600	46	46	0.029	0.029
Westbound	Through	0.5	800	217	217	0.271	0.271
	Right Turn	1.5	2400		167	0.070	0.070
		ICU Plus	Lost Time F	ctor of .10		0.867	
		Level of	Service			D	
		ICU Plus	Lost Time F	ctor of .10			0.868
		Level of	Service				
	notes Critical ight Turn Volum ft Turn Volume	vement Added to dded to T	Through Mo hrough Mov	ments ents			Study Intersection No.
							8

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street:	Vista Montana
East-West Street:	Pacific Coast Highway
Annual Growth Rate:	1.00%

Count Date:

Horizon Date: 2019
Peak Hour: \quad 7:30-8:30 AM
Data Source:
Input By:
C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	Number of Lanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	2	3200	153	153	0.048	0.048
	Through	1.5	2400	150	151	0.063	0.063
	Right Turn	0.5	800	130	130	0.163	0.163
Southbound	Left Turn	2	3200	289	290	0.090	0.091
	Through	2	3200	116	116	0.036	0.036
	Right Turn	1		194	194	0.121	0.121
Eastbound	Left Turn	1	1600	48	48	0.030	0.030
	Through	2	3200	1175	1177	0.367	0.368
	Right Turn**					-	
Westbound	Left Turn	1	1600	72	72	0.045	0.045
	Through	2	3200	1565	1575	0.489	0.492
	Right Turn**					-	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.772	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							0.776
							C
* Denotes Critical Movement ** Right Turn Volumes Added to Through Movements							Study Intersection No.

KHR ASSOCIATES
 INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street:	Hawthorne Boulevard
East-West Street:	Palos Verdes Drive North
Annual Growth Rate:	1.00%

Count Date:
Horizon Date:
Peak Hour: \qquad

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Lanes } \end{array}$	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	1	1600	187	187	0.117	0.117
	Through	2	3200	460	461	0.144	0.144
	Right Turn	1	1600	168	168	0.105	0.105
Southbound	Left Turn	1	1600	345	347	0.216	0.217
	Through	2	3200	424	430	0.133	0.134
	Right Turn	1	1600	16	18	0.010	0.011
Eastbound	Left Turn**	1	1600	35	35	0.022	0.022
	Through	2	3200	935	935	0.292	0.292
	Right Turn	1	1600	291	291	0.182	0.182
Westbound	Left Turn**	2	3200	129	129	0.040	0.040
	Through	2	3200	564	564	0.176	0.176
	Right Turn	1	1600	262	263	0.164	0.164
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						0.792	
						C	
ICU Plus Lost Time Factor of . 10 Level of Service							0.793
							C
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No.
							12

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions: Location: North-South Street: East-West Street: Annual Growth Rate	Cumulative w/ and w/o Project				Count Date: Horizon Date: Peak Hour: Data Source: Input By:		
	City of Torrance, California					2019	
	Rolling Hills Road/Portuguese Road					7:15-8:15 AM	
	Palos Verdes Drive North						
	Rate: 1.00\%					C. B.	
Comments:	Capacity Volume of Vehicles Per Hour Per Lane $=1600$						
	Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$						
Direction of Travel	Lane Movement		Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/Project
Northbound	Left Turn	1	1600	63	63	0.039	0.039
	Through	1	1600	863	863	0.539	0.539
	Right Turn	1	1600	213	213	0.133	0.133
Southbound	Left Turn	1	1600	31	31	0.019	0.019
	Through	0.5	800	905	905	1.131	1.131
	Right Turn		800	13	13		0.016
Eastbound	Left Turn	1	1600	30	30	0.019	0.019
	Through	1	1600	63	65	0.039	0.041
	Right Turn	1				0.033	
Westbound	Left Turn	1	1600	191	191	0.119	0.119
	Through	1	1600	77	78	0.048	0.049
	Right Turn	1	1600	42	42	0.026	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service						1.429	
ICU Plus Lost Time Factor of $\mathbf{. 1 0}$ Level of Service							1.431
							F
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements							Study Intersection No. 14

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

KHR ASSOCIATES INTERSECTION CAPACITY UTILIZATION ANALYSIS

Conditions:	Cumulative w/ and w/o Project
Location:	City of Torrance, California
North-South Street: Pacific Coast Highway East-West Street: Calle Mayor Annual Growth Rate: 1.00%	

Count Date:
Horizon Date: 2019
Peak Hour: 7:30-8:30 AM
Data Source:
Input By : C. B.

Comments: Capacity Volume of Vehicles Per Hour Per Lane $=1600$
Capacity Volume of Vehicles Per Hour For Dual Left-Turn Lanes $=3200$

Direction of Travel	Lane Movement	NumberofLanes	Capacity (Veh/Hr) On Green	Peak Hour Volume		Volume/Capacity Ratio	
				Cumulative w/o Project	Cumulative w/ Project	Cumulative w/o Project	Cumulative w/ Project
Northbound	Left Turn	1	1600	148	148	0.093	0.093
	Through	1	1600	805	805	0.503	0.503
	Right Turn	1	1600	33	33	0.021	0.021
Southbound	Left Turn	1	1600	180	180	0.113	0.113
	Through	1	1600	960	960	0.600	0.600
	Right Turn	1	1600	305	305	0.191	0.191
Eastbound	Left Turn	1	1600	120	120	0.075	0.075
	Through	2	3200	403	405	0.126	0.127
	Right Turn***	0	0	0	0	-	-
Westbound	Left Turn	1	1600	96	96	0.060	0.060
	Through	2	3200	417	424	0.130	0.133
	Right Turn***	0	0	0	0	-	-
ICU Plus Lost Time Factor of . 10						0.998	
Level of Service						E	$\underline{\square}$
ICU Plus Lost Time Factor of . 10							1.000
Level of Service							F
* Denotes Critical Movement ** U-Turn Volumes Added to Left Turn Movements *** Right Turn Volumes Added to Through Movements							Study Intersection No.

2017 Existing Conditions

 Highway Capacity MethodHCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	5	2	1	6	3	8	7	4
Case Number	2.0	4.0	2.0	4.0	2.0	4.0	2.0	3.0
Phase Duration, s	20.0	50.2	19.8	50.0	18.0	30.0	20.0	32.0
Change Period, ($Y+R_{c}$), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Allow Headway (MAH), s	3.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0
Queue Clearance Time (g_{s}), s	18.0		15.8		13.8	24.0	16.2	30.0
Green Extension Time (g_{e}), s	0.0	0.0	0.0	0.0	0.2	1.6	0.0	0.0
Phase Call Probability	1.00		1.00		1.00	1.00	1.00	1.00
Max Out Probability	1.00		1.00		1.00	1.00	1.00	1.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	244	1127	496	208	917	415	349	712	343	418	1340	417
Adjusted Saturation Flow Rate (s), veh/h/ln	1781	1870	1643	1781	1841	1665	1743	1885	1811	1743	1712	1581
Queue Service Time (g_{s}), s	16.0	31.8	31.9	13.8	24.6	24.6	11.8	21.9	22.0	14.2	28.0	28.0
Cycle Queue Clearance Time (g_{c}), s	16.0	31.8	31.9	13.8	24.6	24.6	11.8	21.9	22.0	14.2	28.0	28.0
Green Ratio (g / C)	0.13	0.39	0.39	0.13	0.38	0.38	0.12	0.22	0.22	0.13	0.23	0.23
Capacity (c), veh/h	238	1441	633	234	1411	638	407	817	392	465	1198	369
Volume-to-Capacity Ratio (X)	1.029	0.782	0.783	0.888	0.650	0.650	0.858	0.871	0.874	0.899	1.118	1.129
Back of Queue (Q), ft/ln (50 th percentile)	286.9	367.9	341.6	200.5	279.7	257.7	143.8	277.4	288.7	183.2	470.1	494.7
Back of Queue (Q), veh/ln (50 th percentile)	11.3	14.5	13.7	7.9	10.8	10.3	5.7	11.0	11.5	7.3	18.7	19.5
Queue Storage Ratio ($R Q$) (50 th percentile)	0.96	1.23	1.16	0.67	0.93	0.89	0.72	1.39	1.46	0.61	1.57	1.65
Uniform Delay (d_{1}), s/veh	52.0	32.4	32.5	51.3	30.4	30.4	52.0	45.4	45.4	51.2	46.0	46.0
Incremental Delay (d_{2}), s/veh	66.0	4.3	9.3	29.6	2.3	5.1	12.2	9.7	18.4	19.6	64.8	86.7
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	118.0	36.7	41.8	80.9	32.7	35.5	64.2	55.1	63.8	70.8	110.8	132.7
Level of Service (LOS)	F	D	D	F	C	D	E	E	E	E	F	F
Approach Delay, s/veh / LOS	48.7		D	40.0			59.5			107.3		F
Intersection Delay, s/veh / LOS	67.2						E					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	3.4	C	3.5	C	3.3	C	3.3	C
Bicycle LOS Score / LOS	1.5	B	1.3	A	1.3	A	1.7	B

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

[^9]Generated. 8/28/2017 10:49:00 AM

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

[^10]

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

[^11]HCS7 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

[^12]HCS7 ${ }^{7 / 5}$ Streets Version 7.
Generated: 8/28/2017 11.04. 13 AM

Phone: Fax:
EMail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad

Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00-9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
Volume Worksheet 2 - Volume Adjustments and Site Characteristics \qquad
\% Thrus Left Lane

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li Li	Li	LD	Li	Li	Li	LD

hRT-adj	-0.6	-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad
Workshet 4 - Departure Headway

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	207		202		13	489	266	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.18		0.18		0.01	0.43	0.24	
hd, final value	6.97		6.98		7.01	6.50	6.61	
x, final value	0.40		0.392		0.025	0.883	0.48	
Move-up time, m	2.0		2.0		2.3		2.0	
Service Time	5.0		5.0		4.7	4.2	4.6	

Phone: Fax:
EMail:
ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad

Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 5:00 - 6:00 P.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
Worksheet 2 - Volume Adjustments and Site Characteristics
Worksheet 2 - Volume Adjustments and Site Characteristics___ _ _ _

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
Li 12	L 1	L 2	L 1	L 2	L 1	Lh

Configuration	LIR	CTR	L	T	CTR
PH	1.00	1.00	1.00	1.00	1.00
Flow Rate	23	185	6	382	577
\% Heavy Ven	0		0	0	0
No. Lanes	1	1	2	0	
Opposing-Lanes	1	1	1	1	
Conflicting-lanes	2	2	1	2	
Geometry group	2	2	5	1	
Da			4 a		

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li	LD	Li	LD	LI	LD	Li

Flow Rates:

Total in Lane	23
Left-Turn	0

185	6	382	577
0	6	0	0
0	0	0	0
0.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

2
5
$4 a$
Geometry Group 2
Adjustments Exhibit 17-33:

| hLT-adj | 0.2 | 0.2 | 0.5 |
| :--- | :--- | :--- | :--- | :--- |

hRT-adj	-0.6	-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5
0.0	0.0				

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	23		185		6	382	577	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.02		0.16		0.01	0.34	0.51	
hd, final value	7.06		6.48		6.43	5.93	5.35	
x, final value	0.045		0.333		0.011	0.629	0.858	
Move-up time, m	2.0		2.0		2.3		2.0	
Service Time	5.1		4.5		4.1	3.6	3.4	

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound	Westbound	Northbound		Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Elow Rate	23	185	6	382	577
Service Time	5.1	4.5	4.1	3.6	3.4
Utilization, x	0.045	0.333	0.011	0.629	0.858
Dep. headway, hd	7.06	6.48	6.43	5.93	5.35
Capacity	460	561	600	606	671
95\% Queue Length	0.1	1.5	0.0	4.9	14.0
Delay	10.4	12.7	9.2	18.5	37.4
LOS	B	B	A	C	E
Approach:					
Delay	10.4	12.7		. 4	37.4
LOS	B	B	C		E
Intersection Delay	26.7	Intersection	LOS D		

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	5	2	1	6	3	8	7	4
Case Number	1.1	3.0	1.1	3.0	1.1	3.0	2.0	3.0
Phase Duration, s	7.5	67.9	10.0	70.3	20.0	22.2	20.0	22.2
Change Period, ($Y+R \mathrm{c}$), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Allow Headway (MAH), s	3.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0
Queue Clearance Time (g_{s}), s	2.8		4.3		16.2	14.4	16.6	16.4
Green Extension Time (g_{e}), s	0.0	0.0	0.3	0.0	0.0	1.9	0.0	1.8
Phase Call Probability	0.59		0.99		1.00	1.00	1.00	1.00
Max Out Probability	0.00		0.00		1.00	0.03	1.00	0.06

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	27	786	258	153	1167	348	252	386	148	219	441	26
Adjusted Saturation Flow Rate (s), veh/h/ln	1753	1752	1608	1702	1752	1608	1781	1781	1607	1781	1781	1579
Queue Service Time (g_{s}), s	0.8	16.2	10.7	2.3	26.8	14.8	14.2	12.4	10.3	14.6	14.4	1.7
Cycle Queue Clearance Time (g_{c}), s	0.8	16.2	10.7	2.3	26.8	14.8	14.2	12.4	10.3	14.6	14.4	1.7
Green Ratio (g / C)	0.56	0.53	0.53	0.59	0.55	0.55	0.28	0.15	0.15	0.13	0.15	0.15
Capacity (c), veh/h	260	1865	856	827	1936	888	312	539	243	238	539	239
Volume-to-Capacity Ratio (X)	0.103	0.421	0.301	0.185	0.603	0.391	0.809	0.715	0.607	0.922	0.818	0.107
Back of Queue (Q), ft/ln (50 th percentile)	7.8	162	97.6	21.3	266	133.9	181.5	137	102.1	222.6	163.8	16.4
Back of Queue (Q), veh/ln (50 th percentile)	0.3	6.3	3.9	0.8	10.3	5.4	7.1	5.4	4.1	8.8	6.4	0.6
Queue Storage Ratio ($R Q$) (50 th percentile)	0.03	0.54	0.34	0.07	0.89	0.46	0.91	0.69	0.52	0.74	0.55	0.05
Uniform Delay (d_{1}), s/veh	14.8	16.9	15.6	12.1	18.0	15.3	37.1	48.4	47.6	51.4	49.3	43.9
Incremental Delay (d_{2}), s/veh	0.1	0.7	0.9	0.0	1.4	1.3	13.7	0.7	0.9	37.1	3.1	0.1
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	14.8	17.6	16.5	12.1	19.4	16.6	50.8	49.1	48.5	88.5	52.4	44.0
Level of Service (LOS)	B	B	B	B	B	B	D	D	D	F	D	D
Approach Delay, s/veh / LOS	17.3		B	18.2		B	49.5		D	63.6		E

Intersection Delay, s/veh / LOS
31.2

C
Multimodal Results
Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS

EB		WB	
2.9	C	2.9	C
1.4	A	1.9	B

NB		SB	
3.1	C	3.0	C
1.1	A	1.1	A

HCS7 Signalized Intersection Results Summary

Phone:
Fax:
EMail:
ALL-WAY STOP CONTROL (AWS) ANALYSIS \qquad

Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad
 \% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
Li	L2	Li	LD	LI	LD	LI

Configuration
PH
Flow Rate
\% Heavy Veh
No. Lanes
Opposing-Lanes
Conflicting-lanes
Geometry group
Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li	LD	Li	LD	LI	LD	Li

Flow Rates:
Total in Lane
Left-Turn
Right-Turn
Prop. Left-Turns
Prop. Right-Turns

L	R	TR
1.00	1.00	1.00
73	137	444
0	0	0

2
1
LT
$1.00 \quad 1.00$
131277
0
0
2
$0 \quad 2 \quad 1$

2 2
3 b
2
13 b

5

Prop. Heavy Vehicle
Geometry Group
Adjustments Exhibit 17-33: hLT-adj

73	137	444		131	277
73	0	0		131	0
0	137	94		0	0
1.0	0.0	0.0		1.0	0.0
0.0	1.0	0.2		0.0	0.0
0.0	0.0	0.0		0.0	0.0
	1		$3 b$		5

hRT-adj
hHV-adj
hadj, computed
-0.6
$1.7 \quad 1.7$
1.7
-0.7
1.7
$\begin{array}{lllll}0.2 & -0.6 & -0.1 & 0.5 & 0.0\end{array}$

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound	Southbound	
L1	L2	L1	L2	L1 L2	L1	L2
		73	137	444	131	277
3.20	3.20	3.20	3.20	$3.20 \quad 3.20$	3.20	3.20
		0.06	0.12	0.39	0.12	0.25
		6.16	5.35	5.28	6.10	5.59
		0.125	0.204	0.651	0.222	0.430
		2.0		2.0		3
		4.2	3.4	3.3	3.8	3.3

Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound				
L1	L2	L1	L2	L1	L2	L1	L2

Flow Rate
Service Time
Utilization, x
Dep. headway, hd
Capacity
95\% Queue Length
Delay
LOS
Approach:
Delay
LOS

73	137	444	131	277
4.2	3.4	3.3	3.8	3.3
0.125	0.204	0.651	0.222	0.430
6.16	5.35	5.28	6.10	5.59
608	685	683	595	644
0.4	0.8	5.4	0.9	2.2
$10.0+$	9.7	18.0	10.5	12.5
B	A	C	B	B

9.8
18.0
C
A
11.9

B
Intersection Delay 14.0
Intersection LOS B

Phone:
Fax:
EMail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad

Analyst:
Agency/Co.:
KHR Associates
Date Performed:
11/15/17
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound				
Li	L2	Li	L2	LI	L2	LI	L2

Configuration	L	R	TR	L	T
PH	1.00	1.00	1.00	1.00	1.00
Flow Rate	60	60	350	88	330
$\%$ Heavy Ven	0	0	0	0	
No. Lanes		2	1	0	
Opposing-Lanes	0	2	1		
Conflicting-lanes	2	2	2		
Geometry group	1	$3 b$	5		

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li LD	Li	LD	LI	LD	LD	LD

Flow Rates:

Total in Lane	60	60	350	88	330
Left-Turn	60	0	0	88	0
Right-Turn	0	60	46	0	0
op. Left-Turns	1.0	0.0	0.0	1.0	0.0
op. Right-Turns	0.0	1.0	0.1	0.0	0.0
op. Heavy Vehicle	0.0	0.0	0.0	0.0	
ometry Group	1		$3 b$	0.0	
justments Exhibit 17-33:		0.2		0.2	0.5

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1	L2
		60	60	350		88	330
3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
		0.05	0.05	0.31		0.08	0.29
		5.89	5.09	5.04		5.67	5.17
		0.098	0.085	0.490		0.139	0.474
							3
		3.9	3.1	3.0		3.4	2.9

Worksheet 5 - Capacity and Level of Service \qquad
Eastbound
L1 L2

Flow Rate
Service Time
Utilization, x
Dep. headway, hd
Capacity
95\% Queue Length
Delay
LOS
Approach:
Delay
LOS

Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2
				88	330
60	60	350		3.4	2.9
3.9	3.1	3.0		0.139	0.474
0.098	0.085	0.490		5.67	5.17
5.89	5.09	5.04	629	702	
600	750	714	0.5	2.7	
0.3	0.3	2.8	9.3	12.5	
9.5	8.6	12.9	A	B	
A	A	B			

LOS
9.0

A
12.9

B
11.8

B

Intersection Delay 11.8
Intersection LOS B

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad

Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		LTR		L	TR
PHF	1.00		1.00		1.00		1.00	1.00
Flow Rate	291		364		265		60	125
\% Heavy Veh	0		0		0		0	0
No. Lanes		1		1		1		2
Opposing-Lanes		1		1		2		1
Conflicting-lanes		2		2		1		1
Geometry group		2		2		4 a		5
Duration, T 1.00	hrs							

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
L1	L2	L1	L2	L1	L2	L1	L2

Flow Rates:

Total in Lane	291	364	265	60	125
Left-Turn	77	41	71	60	0
Right-Turn	75	141	19	0	33
op. Left-Turns	0.3	0.1	0.3	1.0	0.0
op. Right-Turns	0.3	0.0		0.1	0.0
op. Heavy Vehicle0.0	2	2	0.0	0.3	
ometry Group				$4 a$	0.0
justments Exhibit $17-33:$	0.2		0.2		0.2

hLT-adj
0.2
0.2
0.2
0.5

hRT-adj	-0.6	-0.6		-0.6
hHV-adj	1.7	1.7	1.7	-0.7
hadj, computed	-0.1	-0.2	0.0	

Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	291		364		265		60	125
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.26		0.32		0.24		0.05	0.11
hd, final value	6.01		5.77		6.44		7.56	6.86
x, final value	0.486		0.583		0.474		0.126	0.238
Move-up time, m		0		. 0				3
Service Time	4.0		3.8		4.4		5.3	4.6
_Wo	ksheet	- Ca	city an	Leve	of Servi	ce		
	East	und	Westb	und	Northb	und	South	und
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	291		364		265		60	125
Service Time	4.0		3.8		4.4		5.3	4.6
Utilization, x	0.486		0.583		0.474		0.126	0.238
Dep. headway, hd	6.01		5.77		6.44		7.56	6.86
Capacity	594		628		564		462	521
95\% Queue Length	2.8		4.1		2.7		0.4	0.9
Delay	14.7		16.8		15.2		11.4	11.7
LOS	B		C		C		B	B
Approach:								
Delay		. 7		. 8		. 2		. 6
LOS			C		C			
Intersection Delay	$15.0-$		Inte	secti	LOS B			

Phone:
Fax:
EMail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: $\quad 11 / 15 / 2017$
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li	LD	LI	L2	Li	L2	LI

Flow Rates:

Total in Lane	121	312	170	63	214	
Left-Turn	39	36	10	63	0	
Right-Turn	10	207		15	0	52
op. Left-Turns	0.3	0.1	0.1	1.0	0.0	
op. Right-Turns	0.1	0.0		0.1	0.0	0.2
op. Heavy Vehicle 0.0	2	2	0.0	0.0	0.0	
merry Group				$4 a$	5	
justments Exhibit $17-33:$	0.2		0.2		0.2	0.5

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.4	-0.0

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	121		312		170		63	214
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.11		0.28		0.15		0.06	0.19
hd, final value	5.67		4.97		5.61		6.43	5.75
x , final value	0.191		0.431		0.265		0.113	0.342
Move-up time, m								3
Service Time	3.7		3.0		3.6		4.1	3.5

\qquad Worksheet 5 - Capacity and Level of Service \qquad

| Eastbound | Westbound |
| :--- | ---: | :--- | ---: |
| L1 12 | L1 |

| Northbound | Southbound |
| :---: | ---: | ---: | ---: |
| L1 L2 | L1 |

Flow Rate	121	312	170	63	214
Service Time	3.7	3.0	3.6	4.1	3.5
Utilization, x	0.191	0.431	0.265	0.113	0.342
Dep. headway, hd	5.67	637	4.97	5.61	6.43
Capacity	726	654	5.75		
95% Queue Length	0.7	2.2	1.1	573	629
Delay	$10.0+$	11.7	10.6	0.4	1.5
LOS	B	B	B	9.9	11.4

Approach:

Delay
LOS
$10.0+$
B

11.7

B
Intersection LOS B
Intersection Delay 11.1

$$
11.1
$$

B
10.6

B

Fax:
Phone:
EMail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad

Analyst:
Agency/Co.:
KHR Associates
Date Performed:
11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Configuration	LT	R	LT	R	LT	R	LT	R
PH	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flow Rate	181	5	116	103	23	14	15	40
\% Heavy Ven	0	0	0	0	0	0	0	0
No. Lanes		2		2	2	2		
Opposing-Lanes	2	2	2	2	2			
Conflicting-lanes	2		2	2	5			
Geometry group		5		5	5	5		

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
Li	Li	LI	Lh	Li	Le	Li	Lh

Flow Rates:

hRT-adj	-0.7		-0.7	-0.7	-0.7	
hHV-adj	1.7	1.7	1.7	1.7		
hadj, computed	0.3	-0.7	0.0	-0.7	0.3	-0.7

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	181	5	116	103	23	14	15	40
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.16	0.00	0.10	0.09	0.02	0.01	0.01	0.04
hd, final value	5.20	4.21	4.91	4.19	5.80	4.79	5.87	4.77
x, final value	0.261	0.006	0.158	0.120	0.037	0.019	0.024	0.053
Move-up time, m		3		3				3
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5

Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	181	5	116	103	23	14	15	40
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5
Utilization, x	0.261	0.006	0.158	0.120	0.037	0.019	0.024	0.053
Dep. headway, hd	5.20	4.21	4.91	4.19	5.80	4.79	5.87	4.77
Capacity	696	500	725	858	575	700	750	800
95\% Queue Length	1.1	0.0	0.6	0.4	0.1	0.1	0.1	0.2
Delay	9.7	6.9	8.5	7.5	8.7	7.6	8.7	7.7
Los	A	A	A	A	A	A	A	A
Approach:								
Delay	9.7		8.0		8.3		8.0	
LOS	A		A		A		A	
Intersection Delay	8.7		Intersection LOS A					

Phone:
Fax:
EMail:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45 - 8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.2	-0.7	0.0	-0.7	0.2

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	169	12	147	15	34	2	53	150
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.15	0.01	0.13	0.01	0.03	0.00	0.05	0.13
hd, final value	5.41	4.56	5.30	4.58	5.83	4.90	5.77	4.72
x, final value	0.254	0.015	0.216	0.019	0.055	0.003	0.085	0.197
Move-up time, m						3		
Service Time	3.1	2.3	3.0	2.3	3.5	2.6	3.5	. 4

Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	169	12	147	15	34	2	53	150
Service Time	3.1	2.3	3.0	2.3	3.5	2.6	3.5	2.4
Utilization, x	0.254	0.015	0.216	0.019	0.055	0.003	0.085	0.197
Dep. headway, hd	5.41	4.56	5.30	4.58	5.83	4.90	5.77	4.72
Capacity	676	600	668	750	567	0	663	750
95\% Queue Length	1.0	0.0	0.8	0.1	0.2	0.0	0.3	0.7
Delay	10.0-	7.3	9.5	7.4	8.9	7.6	9.0	8.6
LOS	A	A	A	A	A	A	A	A
Approach:	9.8		9.3		8.8		8.7	
Delay			A		A			
LOS	A				Intersection LOS A		A	

HCS7 Signalized Intersection Results Summary

General Information		KHR Associates						Intersection Information					$\downarrow+6$					
Agency								Duration, h			0.25			$\frac{1+b}{1+b}$				
Analyst		-		Analysis Date		8/1/2016		Area Type			Other							
Jurisdiction		Torrance California		Time Period				PHF			0.90			$w \frac{v}{w}$				
Urban Street		Pacific Coast Highway		Analysis Year		2016		Analysis Period			1> 7:30							
Intersection		Calle Mayor		File Name		18-PCH-Calle Mayor Exist AM.xus							$\dagger \uparrow$					
Project Description														$1+14$				
Demand Information				EB			WB			NB								
				SB														
Approach Movement							L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				118	206	167	94	229	160	145	788	32	176	941	299			
Signal Information																		
									Us									
Cycle, s	90.0	Reference Phase	2				$\ddot{\Rightarrow}$	\uparrow										
Offset, s	0	Reference Point	End	Green	5.6	1.0	25.5	6.9	1.1	33.9								
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	0.0	4.0	4.0	0.0	4.0					†			
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0								

HCS7 Signalized Intersection Results Summary

Existing Plus Project

Highway Capacity Method

HCS 2010 Signalized Intersection Results Summary

[^13]HCS 2010 Signalized Intersection Results Summary

[^14]HCS 2010 Signalized Intersection Results Summary

[^15]HCS 2010 Signalized Intersection Results Summary

[^16]HCS 2010 Signalized Intersection Results Summary

[^17]HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

[^18]HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

[^19]HCS 2010 Signalized Intersection Results Summary

[^20]HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

[^21]Phone:
EMail:

Fax:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00 - 9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
t Lane
\% Thrus Left Lane

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
Li	LD	LI	LD	LI	LT	Li	L2

hRT-adj	-0.6		-0.6	-0.7	-0.6
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

Worksheet 4 - Departure Headway and Service Time

	Eastbound	Westbound	Northbound		Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Flow rate	207	202	13	489	267
hd, initial value	$3.20 \quad 3.20$	$3.20 \quad 3.20$	3.20	3.20	$3.20 \quad 3.20$
x , initial	0.18	0.18	0.01	0.43	0.24
hd, final value	6.97	6.99	7.02	6.51	6.62
x, final value	0.401	0.392	0.025	0.884	0.491
Move-up time, m	2.0	2.0		3	2.0
Service Time	5.0	5.0	4.7	4.2	4.6
Worksheet 5 - Capacity and Level of Service					
	Eastbound	Westbound	Northbound		Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Elow Rate	207	202	13	489	267
Service Time	5.0	5.0	4.7	4.2	4.6
Utilization, x	0.401	0.392	0.025	0.884	0.491
Dep. headway, hd	6.97	6.99	7.02	6.51	6.62
Capacity	518	518	433	556	545
95\% Queue Length	2.0	1.9	0.1	15.4	2.8
Delay	14.6	14.5	9.9	50.5	15.9
LOS	B	B	A	F	C
Approach:					
Delay	14.6	14.5		. 5	15.9
LOS	B	B	E		C
Intersection Delay	29.8	Intersecti	LOS D		

```
Phone: Fax:
```

EMail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS
\qquad

Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 5:00 - 6:00 P.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
Worksheet 2 - Volume Adjustments and Site Characteristics

\% Thrus Left Lane

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
Li	Le	Li	L2	LI	L2	Li	LD

Flow Rates:
Total in Lane 23

185	6	383	577
0	6	0	0
0	0	0	0
0.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Left-Turn 0
Right-Turn 0
Prop. Left-Turns 0.00 .0
$0.0 \quad 0.0 \quad 0.0$
Prop. Right-Turns 0.00 .0
$\begin{array}{lll}0.0 & 0.0 & 0.0\end{array}$
Prop. Heavy Vehicle 0.0
Geometry Group 2
Adjustments Exhibit 17-33:
hLT-adj 0.2
0.2
0.5
0.2

hRT-adj	-0.6	-0.6		-0.7	-0.6
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

	Eastbound	Westbound	Northbound		Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Flow rate	23	185	6	383	577
hd, initial value	$3.20 \quad 3.20$	$3.20 \quad 3.20$	3.20	3.20	$3.20 \quad 3.20$
x , initial	0.02	0.16	0.01	0.34	0.51
hd, final value	7.07	6.48	6.44	5.93	5.36
x, final value	0.045	0.333	0.011	0.631	0.858
Move-up time, m	2.0	2.0		3	2.0
Service Time	5.1	4.5	4.1	3.6	3.4
Wo	ksheet $5-\mathrm{C}$	city and Leve	of Serv	ce	
	Eastbound	Westbound	Northb	und	Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Elow Rate	23	185	6	383	577
Service Time	5.1	4.5	4.1	3.6	3.4
Utilization, x	0.045	0.333	0.011	0.631	0.858
Dep. headway, hd	7.07	6.48	6.44	5.93	5.36
Capacity	460	561	600	608	671
95\% Queue Length	0.1	1.5	0.0	4.9	14.0
Delay	10.4	12.7	9.2	18.6	37.5
LOS	B	B	A	C	E
Approach:					
Delay	10.4	12.7		. 5	37.5
LOS	B	B	C		E
Intersection Delay	26.8	Intersecti	LOS D		

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

Phone:
E-Mail:

Fax:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Configuration	L	R	TR	L	T
PHF	1.00	1.00	1.00	1.00	1.00
Flow Rate	73	137	444	131	277
$\%$ Heavy Veh	0	0	0	0	0
No. Lanes		2	1	2	
Opposing-Lanes	0	2	1	2	
Conflicting-lanes	2	2	$3 b$	5	

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Flow Rates:
Total in Lane
Left-Turn
Right-Turn
Prop. Left-Turns
Prop. Right-Turns
Prop. Heavy Vehicle
Geometry Group
Adjustments Exhibit 17-33:
hLT-adj

73	137	444		131	277
73	0	0		131	0
0	137	94		0	0
1.0	0.0	0.0		1.0	0.0
0.0	1.0	0.2		0.0	0.0
0.0	0.0	0.0		0.0	0.0
	1			$3 b$	
	0.2		0.2		5

hRT-adj	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7
hadj, computed	0.2	-0.6	-0.1

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound	Southbound	
L1	L2	L1	L2	L1 L2	L1	L2
		73	137	444	131	277
3.20	3.20	3.20	3.20	$3.20 \quad 3.20$	3.20	3.20
		0.06	0.12	0.39	0.12	0.25
		6.16	5.35	5.28	6.10	5.59
		0.125	0.204	0.651	0.222	0.430
		2.0		2.0		3
		4.2	3.4	3.3	3.8	3.3

Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rate	73	137	444	131	277
Service Time	4.2	3.4	3.3	3.8	3.3
Utilization, x	0.125	0.204	0.651	0.222	0.430
Dep. headway, hd	6.16	5.35	5.28	6.10	5.59
Capacity	608	685	683	595	644
95% Queue Length	0.4	0.8	5.4	0.9	2.2
Delay	$10.0+$	9.7	18.0	10.5	12.5
Los	B	A	C	B	B

Approach:
Delay
LOS
$9.8 \quad 18.0 \quad 11.9$
A C B
Intersection Delay 14.0
Intersection LOS B

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:

Agency/Co.:	KHR Associates
Date Performed:	$11 / 15 / 17$
Analysis Time Period:	$4: 00-5: 00$ P.M.
Intersection:	
Jurisdiction:	
Units: U. S. Customary	
Analysis Year:	
Project ID: Existing	PM Peak Hour
East/West Street:	Newton Street
North/South Street:	Calle Mayor

\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
\% Thrus Left Lane

Duration, T 1.00 hrs .
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li	LD	Li	LD	Li	LD	Li

Flow Rates:

	60	60	350	88	330
Total in Lane	60	0	0	88	0
Left-Turn	0	60	46	0	0
Right-Turn	1.0	0.0	0.0	1.0	0.0
op. Left-Turns	0.0	1.0	0.1	0.0	0.0
op. Right-Turns	0.0	0.0	0.0	0.0	0.0
op. Heavy Vehicle	1		$3 b$	5	

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1	L2
		60	60	350		88	330
3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
		0.05	0.05	0.31		0.08	0.29
		5.89	5.09	5.04		5.67	5.17
		0.098	0.085	0.490		0.139	0.474
		2.0		2.0		2.3	
		3.9	3.1	3.0		3.4	2.9

Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rate	60	60	350	88	330
Service Time	3.9	3.1	3.0	3.4	2.9
Utilization, x	0.098	0.085	0.490	0.139	0.474
Dep. headway, hd	5.89	5.09	5.04	5.67	5.17
Capacity	600	750	714	629	702
95 Queue Length	0.3	0.3	2.8	0.5	2.7
Delay	9.5	8.6	12.9	9.3	12.5
LOS	A	A	B	A	B
Approach:		9.0		12.9	11.8
\quad Delay		A	B	B	

Phone: E-Mail:

Fax:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing AM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
___ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		LTR		L	TR
PHF	1.00		1.00		1.00		1.00	1.00
Flow Rate	291		367		265		60	125
\% Heavy Veh	0		0		0		0	0
No. Lanes		1		1		1		2
Opposing-Lanes		1		1		2		1
Conflicting-lanes		2		2		1		1
Geometry group		2		2		4 a		5
Duration, T 1.00	hrs							

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 L2
Westbound

Northbound
Southbound
L1 L2
L1 L2
Elow Rates:

hRT-adj	-0.6	-0.6		-0.6
hHV-adj	1.7	1.7	1.7	-0.7
hadj, computed	-0.1	-0.2	0.0	0.5

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	291		367		265		60	125
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.26		0.33		0.24		0.05	0.11
hd, final value	6.02		5.78		6.45		7.58	6.87
x, final value	0.487		0.589		0.475		0.126	0.239
Move-up time, m	2.0		2.0		2.0		2.3	
Service Time	4.0		3.8		4.5		5.3	4.6

	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Elow Rate	291	367	265	60	125
Service Time	4.0	3.8	4.5	5.3	4.6
Utilization, x	0.487	0.589	0.475	0.126	0.239
Dep. headway, hd	6.02	5.78	6.45	7.58	6.87
Capacity	594	622	564	462	521
95\% Queue Length	2.8	4.2	2.7	0.4	0.9
Delay	14.7	17.0	15.2	11.4	11.7
LOS	B	C	C	B	B
Approach:					
Delay	14.7	17.0	15.2		11.6
LOS	B	C	C		B
Intersection Delay	15.1	Intersect	LOS C		

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
Worksheet 2 - Volume Adjustments

Volume
\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Li Le | Li | LD | Li | LD | Li |

Flow Rates:

Total in Lane	121	316	170	63	214
Left-Turn	39	38	10	63	0
Right-Turn	10	209	15	0	52
op. Left-Turns	0.3	0.1	0.1	1.0	0.0
op. Right-Turns	0.1	0.7		0.1	0.0
op. Heavy Vehicle 0.0		2	0.0	0.2	
merry Group	2			$4 a$	0.0
justments Exhibit $17-33:$	0.2		0.2		0.2

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.4	-0.0

	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Elow rate	121	316	170	63	214
hd, initial value	$3.20 \quad 3.20$	$3.20 \quad 3.20$	$3.20 \quad 3.20$	3.20	3.20
x , initial	0.11	0.28	0.15	0.06	0.19
hd, final value	5.68	4.98	5.62	6.44	5.76
x , final value	0.191	0.437	0.265	0.113	0.343
Move-up time, m	2.0	2.0	2.0		
Service Time	3.7	3.0	3.6	4.1	3.5
Worksheet 5 - Capacity and Level of Service					
	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Elow Rate	121	316	170	63	214
Service Time	3.7	3.0	3.6	4.1	3.5
Utilization, x	0.191	0.437	0.265	0.113	0.343
Dep. headway, hd	5.68	4.98	5.62	6.44	5.76
Capacity	637	718	630	573	629
95\% Queue Length	0.7	2.3	1.1	0.4	1.6
Delay	$10.0+$	11.8	10.6	10.0-	11.5
LOS	B	B	B	A	B
Approach:					
Delay	$10.0+$	11.8	10.6	11.1	
LOS	B	B	B		
Intersection Delay	11.1	Intersection LOS B			

Fax:
E-Mail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:

Agency/Co.:	KHR Associates
Date Performed:	$11 / 15 \% 2017$
Analysis Time Period:	$7: 45-8: 45$ A.M.
Intersection:	
Jurisdiction:	
Units: U. S. Customary	
Analysis Year:	
Project ID: Existing	AM Peak Hour
East/West Street:	Newton Street
North/South Street:	Madison Street

\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.3	-0.7	0.0	-0.7	0.3
-0.7	0.4	-0.7			

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	185	5	120	103	23	14	15	40
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.16	0.00	0.11	0.09	0.02	0.01	0.01	0.04
hd, final value	5.19	4.21	4.91	4.20	5.81	4.81	5.89	4.79
x, final value	0.267	0.006	0.164	0.120	0.037	0.019	0.025	0.053
Move-up time, m								3
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow Rate	185	5	120	103	23	14	15	40
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5
Utilization, x	0.267	0.006	0.164	0.120	0.037	0.019	0.025	0.053
Dep. headway, hd	5.19	4.21	4.91	4.20	5.81	4.81	5.89	4.79
Capacity	685	500	750	858	575	700	750	800
95\% Queue Length	1.1	0.0	0.6	0.4	0.1	0.1	0.1	0.2
Delay	9.8	6.9	8.6	7.5	8.7	7.6	8.7	7.8
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	9.7		8.1		8.3		8.0	
LOS	A		A		A		A	
Intersection Dela	8.7		Intersection LOS A					

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Existing PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
Worksheet 2 - Volume Adjustments and Site Characteristics \qquad
\qquad

Eastbound			Westbound			Northbound			Southbound		
L	T	R	L	T	R	L	T	R	L	T	R
1											
153	118	12		142	15	16	18	2	37	16	150

Volume
153
t Lane
\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT	R	LT	R	LT	R	LT	R
PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Elow Rate	171	12	147	15	34	2	53	150
\% Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes				2				2
Opposing-Lanes				2				2
Conflicting-lanes				2				2
Geometry group				5				5

Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
\qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Elow Rates:

Total in Lane	171	12	147	15	34	2	53	150
Left-Turn	53	0	5	0	16	0	37	0
Right-Turn	0	12	0	15	0	2	0	150
rop. Left-Turns	0.3	0.0	0.0	0.0	0.5	0.0	0.7	0.0
rop. Right-Turns	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0
rop. Heavy Vehicle 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ametry Group	5		5		5	5		

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.2	-0.7	0.0	-0.7	0.2

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	171	12	147	15	34	2	53	150
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.15	0.01	0.13	0.01	0.03	0.00	0.05	0.13
hd, final value	5.41	4.56	5.30	4.58	5.84	4.90	5.77	4.73
x, final value	0.257	0.015	0.216	0.019	0.055	0.003	0.085	0.197
Move-up time, m				3		3		3
Service Time	3.1	2.3	3.0	2.3	3.5	2.6	3.5	2.4

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow Rate	171	12	147	15	34	2	53	150
Service Time	3.1	2.3	3.0	2.3	3.5	2.6	3.5	2.4
Utilization, x	0.257	0.015	0.216	0.019	0.055	0.003	0.085	0.197
Dep. headway, hd	5.41	4.56	5.30	4.58	5.84	4.90	5.77	4.73
Capacity	658	600	668	750	567	0	589	750
95\% Queve Length	1.0	0.0	0.8	0.1	0.2	0.0	0.3	0.7
Delay	10.0-	7.3	9.5	7.4	8.9	7.6	9.0	8.6
LOS	A	A	A	A	A	A	A	A
Approach:	9.8							
Delay			9.3		8.8		8.7	
LOS	A		A		A		A	
Intersection Delay	9.2		Intersection LOS A					

HCS 2010 Signalized Intersection Results Summary

[^22]HCS 2010 Signalized Intersection Results Summary

[^23]
2019 Existing Plus Ambient Growth Conditions Highway Capacity Method

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Kesuits Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

Timer Results
Assigned Phase
Case Number
Phase Duration, s
Change Period, $(Y+R c)$, s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time (g_{e}), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/In (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay $\left(d_{1}\right), s /$ veh
Incremental Delay $\left(d_{2}\right)$, s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
	2		6	3	8	7	4
	8.0		5.0	2.0	4.0	2.0	4.0
	18.5		18.5	0.0	27.6	13.9	41.5
	4.0		4.0	4.0	4.0	4.0	4.0
	0.0		0.0	0.0	3.0	3.1	3.0
					17.1	9.2	15.6
	0.0		0.0	0.0	6.5	0.7	8.0
					1.00	1.00	1.00
					0.25	0.07	0.04

Multimodal Results

Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS

HCS7 Signalized Intersection Results Summary

Timer Results	EBL		EBT	WBL		WBT	NBL		NBT	SBL		SBT
Assigned Phase			2			6			8			4
Case Number			8.0			8.0			12.0			12.0
Phase Duration, s			32.0			32.0			7.7			5.3
Change Period, $\left(Y+R_{c}\right)$, s			4.0			4.0			4.0			4.0
Max Allow Headway (MAH), s			0.0			0.0			3.1			3.1
Queue Clearance Time (g_{s}), s									3.9			2.5
Green Extension Time (g_{e}), s			0.0			0.0			0.1			0.0
Phase Call Probability									0.61			0.21
Max Out Probability									0.00			0.00
Movement Group Results		EB			WB			NB			SB	
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	0		0	0		0		0			0	
Adjusted Saturation Flow Rate (s), veh/h/ln	0		0	0		0		0			0	
Queue Service Time ($g s$), s	0.0		0.0	0.0		0.0		0.0			0.0	
Cycle Queue Clearance Time (g_{c}), s	0.0		0.0	0.0		0.0		0.0			0.0	
Green Ratio (g / C)												
Capacity (c), veh/h												
Volume-to-Capacity Ratio (X)	0.000		0.000	0.000		0.000		0.000			0.000	
Back of Queue (Q), ft/ln (50 th percentile)	0		0	0		0		0			0	
Back of Queue (Q), veh/ln (50 th percentile)	0.0		0.0	0.0		0.0		0.0			0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.00		0.00	0.00		0.00		0.00			0.00	
Uniform Delay (d_{1}), s/veh												
Incremental Delay (d_{2}), s/veh	0.0		0.0	0.0		0.0		0.0			0.0	
Initial Queue Delay (d_{3}), s/veh	0.0		0.0	0.0		0.0		0.0			0.0	
Control Delay (d), s/veh												
Level of Service (LOS)												
Approach Delay, s/veh / LOS	3.7		A	4.0		A	20.9		C	23.1		C
Intersection Delay, s/veh / LOS	5.5						A					
Multimodal Results	EB			WB			NB			SB		
Pedestrian LOS Score / LOS	2.0		B	2.0		B	2.7		C	2.7		C
Bicycle LOS Score / LOS	0.8		A	1.0		A	0.6		A	0.5		A

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

[^24]HCS7 ${ }^{\text {TM }}$ Strcets Version 7.2
Generated: 10/6/2017 10:09.56 AMM

HCS7 Signalized Intersection Results Summary

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | | 2 | | 6 | | 8 | | 4 |
| Case Number | | 6.0 | | 6.0 | | 12.0 | | 12.0 |
| Phase Duration, s | | 32.6 | | 32.6 | | 5.7 | | 6.7 |
| Change Period, $(Y+R c), s$ | | 4.0 | | 4.0 | | 4.0 | | 4.0 |
| Max Allow Headway $(M A H), s$ | | 0.0 | | 0.0 | | 3.0 | | 3.0 |
| Queue Clearance Time $(g s), s$ | | | | | | 2.6 | | 3.1 |
| Green Extension Time $\left(g_{e}\right), s$ | | 0.0 | | 0.0 | | 0.0 | | 0.1 |
| Phase Call Probability | | | | | | 0.28 | | 0.46 |
| Max Out Probability | | | | | | 0.00 | | 0.00 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	38	465	0	22	418	0		0			0	
Adjusted Saturation Flow Rate (s), veh/h/ln	984	1900	0	943	1900	0		0			0	
Queue Service Time ($g s$), s	0.7	2.3	0.0	0.4	2.0	0.0		0.0			0.0	
Cycle Queue Clearance Time (g_{c}), s	2.8	2.3	0.0	2.7	2.0	0.0		0.0			0.0	
Green Ratio (g / C)	0.64	0.64		0.64	0.64							
Capacity (c), veh/h	740	2414		711	2414							
Volume-to-Capacity Ratio (X)	0.051	0.192	0.000	0.031	0.173	0.000		0.000			0.000	
Back of Queue (Q), ftlln (50 th percentile)	2.6	11.2	0	1.6	9.9	0		0			0	
Back of Queue (Q), veh/ln (50 th percentile)	0.1	0.4	0.0	0.1	0.4	0.0		0.0			0.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.03	0.06	0.00	0.02	0.05	0.00		0.00			0.00	
Uniform Delay (d_{1}), s/veh	3.9	3.4		4.0	3.4							
Incremental Delay (d_{2}), s/veh	0.1	0.2	0.0	0.1	0.2	0.0		0.0			0.0	
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Control Delay (d), s/veh	4.1	3.6		4.1	3.5							
Level of Service (LOS)	A	A		A	A							
Approach Delay, s/veh / LOS	3.6		A	3.5		A	22.4		C	21.3		C
Intersection Delay, s/veh / LOS	4.9						A					
Multimodal Results	EB			WB			NB			SB		
Pedestrian LOS Score / LOS	2.0		B	2.0		B	2.8		C	2.8		C
Bicycle LOS Score / LOS	0.9		A	0.9		A	0.5		A	0.6		A

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 1.1 | 4.0 | 1.1 | 4.0 | 2.0 | 3.0 | 1.1 | 4.0 |
| Phase Duration, s | 10.0 | 50.0 | 20.0 | 60.0 | 9.3 | 37.1 | 12.8 | 40.7 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Queue Clearance Time $(g s), s$ | 5.7 | | 17.5 | | 6.1 | 35.1 | 8.8 | 14.5 |
| Green Extension Time $(g e), s$ | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 6.2 |
| Phase Call Probability | 1.00 | | 1.00 | | 0.87 | 1.00 | 0.99 | 1.00 |
| Max Out Probability | 0.00 | | 1.00 | | 0.00 | 1.00 | 0.01 | 0.07 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2		1	6		3	8	18	7	4	
Adjusted Flow Rate (v), veh/h	175	1007		684	2059		61	1057	513	145	665	
Adjusted Saturation Flow Rate (s), veh/h/ln	1689	1738		1689	1658		1781	1698	1608	1781	1698	
Queue Service Time ($g s$), s	3.7	32.1		15.5	47.3		4.1	22.7	33.1	6.8	12.5	
Cycle Queue Clearance Time (g_{c}), s	3.7	32.1		15.5	47.3		4.1	22.7	33.1	6.8	12.5	
Green Ratio (g/C)	0.43	0.38		0.53	0.47		0.04	0.28	0.28	0.36	0.31	
Capacity (c), veh/h	311	1331		698	2323		79	1407	444	237	1557	
Volume-to-Capacity Ratio (X)	0.562	0.757		0.980	0.886		0.774	0.751	1.154	0.612	0.427	
Back of Queue (Q), ft/ln (50 th percentile)	38	384		237.9	537.8		48.7	238.9	599.9	72.5	127.3	
Back of Queue (Q), veh/ln (50 th percentile)	1.5	14.8		9.2	20.7		1.9	9.4	24.0	2.9	5.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.13	1.28		0.79	1.79		0.24	1.19	3.05	0.24	0.42	
Uniform Delay (d_{1}), s/veh	29.2	39.5		30.2	38.3		56.7	39.7	43.4	29.9	33.3	
Incremental Delay (d_{2}), s/veh	0.6	4.1		29.0	5.5		5.9	2.1	92.2	1.0	0.1	
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Control Delay (α), s/veh	29.8	43.6		59.2	43.8		62.7	41.7	135.7	30.9	33.3	
Level of Service (LOS)	C	D		E	D		E	D	F	C	C	
Approach Delay, s/veh / LOS	41.5			47.6			72.0		E	32.9		C
Intersection Delay, s/veh / LOS	50.9						D					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score /LOS	3.4	C	3.3	C	3.1	C	3.3	C
Bicycle LOS Score / LOS	1.5	A	2.0	B	1.4	A	0.9	A

Copyright 2017 University of Florida. All Rights Reserved.
HCS7 ${ }^{\text {ru }}$ Streets Version 7.2
Generated: 10/6/2017 10:19.07 AM

HCS7 Signalized Intersection Results Summary

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 1.1 | 4.0 | 1.1 | 4.0 | 2.0 | 3.0 | 1.1 | 4.0 |
| Phase Duration, s | 10.1 | 50.5 | 19.5 | 59.9 | 10.8 | 30.0 | 20.0 | 39.2 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Queue Clearance Time $(g s), s$ | 5.9 | | 15.4 | | 7.2 | 28.0 | 18.0 | 27.2 |
| Green Extension Time $\left(g_{e}\right), s$ | 0.3 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 4.3 |
| Phase Call Probability | 1.00 | | 1.00 | | 0.93 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.00 | | 1.00 | | 0.00 | 1.00 | 1.00 | 0.54 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2		1	6		3	8	18	7	4	
Adjusted Flow Rate (v), veh/h	183	1353		502	1546		79	748	483	350	1166	
Adjusted Saturation Flow Rate (s), veh/h/ln	1689	1738		1689	1658		1781	1698	1608	1781	1698	
Queue Service Time ($g s$), s	3.9	46.5		13.4	32.4		5.2	16.2	26.0	16.0	25.2	
Cycle Queue Clearance Time (g_{c}), s	3.9	46.5		13.4	32.4		5.2	16.2	26.0	16.0	25.2	
Green Ratio (g/C)	0.44	0.39		0.53	0.47		0.06	0.22	0.22	0.37	0.29	
Capacity (c), veh/h	409	1348		556	2317		100	1104	348	356	1496	
Volume-to-Capacity Ratio (X)	0.448	1.004		0.904	0.667		0.784	0.677	1.386	0.983	0.779	
Back of Queue (Q), ft/ln (50 th percentile)	39.1	651.9		231.5	357.2		61.8	170.7	712.1	301.7	264.2	
Back of Queue (Q), veh/ln (50 th percentile)	1.5	25.1		8.9	13.7		2.4	6.7	28.5	11.9	10.4	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.13	2.17		0.77	1.19		0.31	0.85	3.62	1.01	0.88	
Uniform Delay (d_{1}), s/veh	24.1	44.5		38.9	33.3		55.9	43.2	47.0	34.8	38.8	
Incremental Delay (d_{2}), s/veh	0.3	25.5		17.0	1.5		5.0	1.4	190.7	43.0	2.5	
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	24.4	70.0		55.9	34.8		60.9	44.5	237.7	77.7	41.3	
Level of Service (LOS)	C	F		E	C		E	D	F	E	D	
Approach Delay, s/veh / LOS	64.5		E	40.0		D	116.8		F	49.7		D
Intersection Delay, s/veh / LOS	63.9						E					

Multimodal Results	EB		WB		NB			SB	
Pedestrian LOS Score / LOS	3.4	C	3.3	C	3.1	C	3.3	C	
Bicycle LOS Score / LOS	1.8	B	1.6	B	1.2	A	1.3	A	

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 1.1 | 4.0 | 1.1 | 4.0 | 2.0 | 4.0 | 2.0 | 3.0 |
| Phase Duration, s | 9.2 | 71.7 | 9.6 | 72.1 | 12.9 | 20.0 | 18.7 | 25.7 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.1 | 3.0 | 3.1 |
| Queue Clearance Time $\left(g_{s}\right), s$ | 3.7 | | 4.4 | | 8.7 | 14.0 | 14.5 | 20.4 |
| Green Extension Time $\left(g_{e}\right), s$ | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 1.3 | 0.2 | 1.3 |
| Phase Call Probability | 0.87 | | 0.94 | | 1.00 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.00 | | 0.00 | | 0.01 | 0.01 | 1.00 | 0.01 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2		1	6		3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	62	1479		85	1978		197	181	165	368	149	249
Adjusted Saturation Flow Rate (s), veh/h/ln	1739	1738		1739	1738		1730	1870	1594	1730	1781	1577
Queue Service Time ($g s$), s	1.7	44.5		2.4	68.1		6.7	11.2	12.0	12.5	4.3	18.4
Cycle Queue Clearance Time ($g c$), s	1.7	44.5		2.4	68.1		6.7	11.2	12.0	12.5	4.3	18.4
Green Ratio (g / C)	0.61	0.56		0.61	0.57		0.07	0.13	0.13	0.12	0.18	0.18
Capacity (c), veh/h	136	1961		209	1973		258	249	212	423	645	286
Volume-to-Capacity Ratio (X)	0.453	0.754		0.405	1.003		0.766	0.729	0.776	0.869	0.231	0.871
Back of Queue (Q), ft/ln (50 th percentile)	25.6	514.9		26.8	906		74.2	132	119.8	155.8	46.9	194.2
Back of Queue (Q), veh/ln (50 th percentile)	1.0	19.8		1.0	34.8		2.9	5.2	4.8	6.1	1.8	7.6
Queue Storage Ratio ($R Q$) (50 th percentile)	0.17	1.72		0.22	3.62		0.49	0.66	0.61	1.04	0.26	0.97
Uniform Delay (d_{1}), s/veh	29.1	30.2		20.8	37.3		54.5	49.9	50.3	51.7	42.0	47.8
Incremental Delay (d_{2}), s/veh	0.9	2.8		0.5	20.9		1.8	1.5	2.3	14.3	0.1	8.0
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	30.0	32.9		21.3	58.2		56.3	51.5	52.6	66.0	42.1	55.8
Level of Service (LOS)	C	C		C	F		E	D	D	E	D	E
Approach Delay, s/veh / LOS	32.8		C	56.7		E	53.6		D	58.0		E
Intersection Delay, s/veh / LOS	49.1						D					

Multimodal Results

Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS

EB		WB	
2.9	C	3.0	C
1.8	B	2.2	B

NB		SB	
2.9	C	2.9	C
0.9	A	1.1	A

HCS7 Signalized Intersection Results Summary

[^25]Fax:
Phone:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00 - 9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North

\% Thrus Left Lane

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
Li	LT	Li	LD	Li	LD	Li	L2

Flow Rates:

Total in Lane	211	206	13	499	271
Left-Turn	0	0	13	0	0
Right-Turn	0	0	0	0	0
op. Left-Turns	0.0	0.0	1.0	0.0	0.0
op. Right-Turns	0.0	0.0	0.0	0.0	0.0
op. Heavy Vehicle 0.0	0.0		0.0	0.0	0.0
ometry Group	2	2		5	

Adjustments Exhibit 17-33:
hLT-adj
0.2
0.2
0.5
0.2

hRT-adj	-0.6		-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7		
hadj, computed	0.0		0.0		0.5	0.0

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	211		206		13	499	271	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.19		0.18		0.01	0.44	0.24	
hd, final value	7.08		7.10		7.09	6.58	6.72	
x, final value	0.415		0.406		0.026	0.913	0.50	
Move-up time, m				0		3		
Service Time	5.1		5.1		4.8	4.3	4.7	

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rate	211	206	13	499	271
Service Time	5.1	5.1	4.8	4.3	4.7
Utilization, x	0.415	0.406	0.026	0.913	0.506
Dep. headway, hd	7.08	7.10	7.09	6.58	6.72
Capacity	502	502	433	548	531
95% Queue Length	2.1	2.0	0.1	17.9	3.0
Delay	15.1	14.9	$10.0-$	61.0	16.6
LOS	C	B	A	F	C

Approach:

Phone:
Fax:
EMail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 5:00 - 6:00 P.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient PM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
___ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
LI LD

Westbound
Northbound
Southbound
L1 L2
LI L2
LI Le
LI LL
Flow Rates:

Total in Lane	23	189	6	389	588	
Left-Turn	0	0	6	0	0	
Right-Turn	0	0		0	0	0
Prop. Left-Turns	0.0	0.0	1.0	0.0	0.0	
Prop. Right-Turns	0.0	0.0		0.0	0.0	0.0
Prop. Heavy Vehicle 0.0	2	0.0	2	0.0	0.0	0.0
Geometry Group	$2:$			5	4 a	
Adjustments Exhibit $17-33:$	0.2		0.2		0.5	0.2

hRT-adj	-0.6		-0.6	-0.7	-0.6
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

\qquad Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	23		189		6	389	588	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.02		0.17		0.01	0.35	0.52	
hd, final value	7.16		6.54		6.48	5.98	5.40	
$x, f i n a l ~ v a l u e ~$	0.046		0.34		0.011	0.646	0.881	
Move-up time, m								0
Service Time	5.2		4.5		4.2	3.7	3.4	

HCS7 Signalized Intersection Results Summary

Timer Results	EBL		EBT	WBL		WBT	NBL		NBT	SBL		SBT
Assigned Phase	5		2	1		6	3		8	7		4
Case Number	1.1		3.0	1.1		3.0	1.1		3.0	2.0		3.0
Phase Duration, s	7.5		67.5	10.0		70.0	20.0		22.5	20.0		22.5
Change Period, ($Y+R_{c}$), s	4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0
Max Allow Headway (MAH), s	3.0		0.0	3.0		0.0	3.0		3.0	3.0		3.0
Queue Clearance Time ($g s$), s	2.8			4.4			16.5		14.6	16.9		16.7
Green Extension Time (g_{e}), s	0.0		0.0	0.3		0.0	0.0		1.9	0.0		1.8
Phase Call Probability	0.59			0.99			1.00		1.00	1.00		1.00
Max Out Probability	0.00			0.00			1.00		0.03	1.00		0.08
Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	27	801	263	157	1190	354	258	393	151	223	450	26
Adjusted Saturation Flow Rate (s), veh/h/ln	1753	1752	1608	1702	1752	1608	1781	1781	1607	1781	1781	1579
Queue Service Time ($g s$), s	0.8	16.7	11.1	2.4	27.8	15.3	14.5	12.6	10.5	14.9	14.7	1.7
Cycle Queue Clearance Time (g_{c}), s	0.8	16.7	11.1	2.4	27.8	15.3	14.5	12.6	10.5	14.9	14.7	1.7
Green Ratio (g / C)	0.56	0.53	0.53	0.58	0.55	0.55	0.29	0.15	0.15	0.13	0.15	0.15
Capacity (c), veh/h	251	1856	852	811	1927	884	312	549	248	238	549	243
Volume-to-Capacity Ratio (X)	0.106	0.432	0.309	0.193	0.618	0.401	0.827	0.717	0.610	0.940	0.820	0.105
Back of Queue (Q), ft/ln (50 th percentile)	7.9	167.1	100.9	22	276.8	138.3	189.1	140.1	104.3	233.9	167.6	16.4
Back of Queue (Q), veh/ln (50 th percentile)	0.3	6.5	4.0	0.9	10.7	5.5	7.4	5.5	4.2	9.2	6.6	0.6
Queue Storage Ratio ($R Q$) (50 th percentile)	0.03	0.56	0.35	0.07	0.92	0.48	0.95	0.70	0.53	0.78	0.56	0.05
Uniform Delay (d_{1}), s/veh	15.2	17.2	15.9	12.3	18.4	15.6	37.0	48.3	47.4	51.5	49.1	43.6
Incremental Delay (d_{2}), s/veh	0.1	0.7	0.9	0.0	1.5	1.4	15.7	0.8	0.9	41.7	3.4	0.1
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	15.2	17.9	16.8	12.4	19.9	16.9	52.7	49.1	48.3	93.2	52.5	43.7
Level of Service (LOS)	B	B	B	B	B	B	D	D	D	F	D	D
Approach Delay, s/veh / LOS	17.6		B	18.6		B	50.1		D	65.2		E
Intersection Delay, s/veh / LOS	31.8						C					

Multimodal Results	EB		WB			NB		SB	
Pedestrian LOS Score / LOS	2.9	C	2.9	C	3.1	C	3.0	C	
Bicycle LOS Score /LOS	1.4	A	1.9	B	1.1	A	1.1	A	

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 1.1 | 4.0 | 1.1 | 4.0 | 1.1 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 9.0 | 69.0 | 9.9 | 69.9 | 20.0 | 21.1 | 20.0 | 21.1 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Queue Clearance Time $\left(g_{s}\right), s$ | 2.8 | | 3.9 | | 18.0 | 15.2 | 18.0 | 15.4 |
| Green Extension Time $\left(g_{e}\right), s$ | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 1.8 | 0.0 | 1.7 |
| Phase Call Probability | 0.83 | | 0.99 | | 1.00 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.00 | | 0.00 | | 1.00 | 0.03 | 1.00 | 0.03 |

Movement Group Results		EB			WB			NB				
Approach Movement	L	T	R	L	WB			NB			SB	
Assigned Movement	5	2	12	1	6	R	L	T	R	L	T	R
Adjusted Flow Rate (v), veh/h	53	629	571	129	585	536	552	806	18	7	4	14
Adjusted Saturation Flow Rate (s), veh/h/ln	1702	1841	1665	1702	1841	1683	1781	析	72	401	410	60
Queue Service Time ($\mathrm{g} s$), s	0.8	28.5	28.8	19	25.	253	1781	1781	1607	1781	781	1578
Cycle Queue Clearance Time (g_{c}), s	0.8	28.5	28.8	19	25.			13.2	4.8	16.0	13.4	4.1
Green Ratio (g / C)	0.58	0.54	0.54	0.59	0.55	2.35	16.0	13.2	4.8	6.0	13.4	4.1
Capacity (c), veh/h	579	996	901	564	1011	924	312	0.14	0.14	0.13	0.14	0.14
Volume-to-Capacity Ratio (X)	0.092	0.631	0.634	0.228	0.579	0.580	1.772	508	229	238	508	225
Back of Queue (Q), fflln (50 th percentile)	7.3	310.9	276.8	17.5	271.2	243		0.798	0.315	1.689	0.807	0.266
Back of Queue (Q), veh/ln (50 th percentile)	0.3	12.0	11.1	0.7	10.5	97		148	47.7	725.2	150.7	40
Queue Storage Ratio ($R Q$) (50 th percentile)	0.02	1.04	0.95	0.06	0.90	0.84	38.9	5.8	1.9	28.6	5.9	1.6
Uniform Delay (d_{1}), s/veh	13.7	19.2	19.2	14.5	17.9	179	40.8	0.74	0.24	2.42	0.50	0.13
Incremental Delay (d_{2}), s/veh	0.0	3.0	3.4	0.1	2.4	27	0	17		52.0	49.8	45.8
Initial Queue Delay ($\left.d_{3}\right)^{\text {, }}$, /veh	0.0	0.0	0.0	0.0	0.0	0.0	360.0	1.7	0.3	327.6	2.0	0.2
Control Delay (d), s/veh	13.7	22.2	22.6	14.5	20.3	20.6	400			0.0	0.0	0.0
Level of Service (LOS)	B	C	C	B	C			51.5	46.5	379.6	51.8	46.1
Approach Delay, s/veh / LOS	22.		C	19.8		C	238.5	D	D		\| F	
Intersection Delay, s/veh / LOS	22.0 ${ }_{\text {c }}$							F		202.3		

Multimodal Results

Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
EMail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: $\quad 11 / 15 / 17$
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor

\% Thrus Left Lane

Configuration
SHF
Eastbound
LI LD

Northbound
Southbound
LI L2
LI
Li L2
LI LL

Flow Rate

TR
LT
$1.00 \quad 1.00$
134283
0
2
0
2
1

1
1.00

453
0

2
2
$3 b$

0
2
1
\% Heavy Veh
No. Lanes
Opposing-Lanes
Conflicting-lanes
Geometry group
Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li LD	Li	LD	LI	LT	L1	LD

Flow Rates:
Total in Lane
Left-Turn

75	140	45
75	0	0

Right-Turn
Prop. Left-Turns
$0 \quad 140 \quad 96$
$1.0 \quad 0.0 \quad 0.0$
$0.0 \quad 1.0 \quad 0.2$
0.0

1
$3 b$
134
1340
00
$1.0 \quad 0.0$
$0.0 \quad 0.0$
$0.0 \quad 0.0$
5
0.2
0.2
0.5
hRT-adj
hHV-adj
hadj, computed

Worksheet 4 - Departure Headway and Service Time
\qquad
\qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate			75	140	453		134	283
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial			0.07	0.12	0.40		0.12	0.25
hd, final value			6.21	5.40	5.31		6.13	5.63
x, final value			0.129	0.210	0.669		0.228	0.442
Move-up time, m			2.0		2.0		2.3	
Service Time			4.2	3.4	3.3		3.8	3.3

Phone:
EMail:

Fax:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: $\quad 11 / 15 / 17$
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient PM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
Li	Li	Li	L2	Li	LD	Li

Configuration	L	R	TR	L	T
PH	1.00	1.00	1.00	1.00	1.00
Flow Rate	61	61	357	90	337
\% Heavy Ven	0	0	0	0	0
No. Lanes		2		1	2
Opposing-Lanes	0	2	1		
Conflicting-lanes	2	2	2		
Geometry group		1	$3 b$	5	

Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li Li	Li	LD	Li	LD	Li	L2

Flow Rates:
Total in Lane
Left-Turn
Right-Turn
Prop. Left-Turns
Prop. Right-Turns
Prop. Heavy Vehicle
Geometry Group
Adjustments Exhibit 17-33:
hLT-adj
61
$61 \quad 0 \quad 0$
$0 \quad 61 \quad 47$
$1.0 \quad 0.0$
$1.0 \quad 0.0$
$-1.0 \quad 0.1$
$0.0 \quad 0.0 \quad 0.0$
1
0.2

Sb
0.2
0.5

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate			61	61	357		90	337
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial			0.05	0.05	0.32		0.08	0.30
hd, final value			5.93	5.12	5.06		5.69	5.18
x, final value			0.100	0.087	0.502		0.142	0.485
Move-up time, m				0				3
Service Time			3.9	3.1	3.1		3.4	2.9

Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rate
Service Time
Utilization, x
Dep. headway, hd
Capacity
95\% Queue Length
Delay
LOS
$\begin{array}{lllll}3.9 & 3.1 & 3.1 & 3.4 & 2.9\end{array}$
$\begin{array}{lllll}0.100 & 0.087 & 0.502 & 0.142 & 0.485\end{array}$
$\begin{array}{lllll}5.93 & 5.12 & 5.06 & 5.69 & 5.18\end{array}$

610	678	714	643

$\begin{array}{lllll}0.3 & 0.3 & 3.0 & 0.5 & 2.8\end{array}$
$\begin{array}{lllll}9.6 & 8.6 & 13.1 & 9.3 & 12.7\end{array}$
A A B A B
Approach:
Delay
LOS
$\begin{array}{ll}9.1 & 13.1 \\ \text { A } & \text { B }\end{array}$
12.0

B
Intersection Delay 12.1 Intersection LOS B

Phone: Fax:
EMail:
ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient AM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana

\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
Li	LD	Li	LD	LT	L2	LT	LD

Flow Rates:

Total in Lane	298	372	270	61	128
Left-Turn	79	42	72	61	0
Right-Turn	77	144	19	0	34
op. Left-Turns	0.3	0.1	0.3	1.0	0.0
op. Right-Turns	0.3	0.4	0.1	0.0	0.3
op. Heavy Vehicle 0.0	0.0	0.0	0.0	0.0	
ometry Group	2		2	$4 a$	5

hLT-adj	0.2	0.2	0.2	0.5

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	-0.1	-0.2	0.0	

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound	Southbound	
	L1	L2	L1	L2	L1	L2	L1


```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		LTR		L	TR
PHF	1.00		1.00		1.00		1.00	1.00
Flow Rate	123		318		173		64	218
\% Heavy Veh	0		0		0		0	0
No. Lanes		1		1		1		
Opposing-Lanes		1		1		2		
Conflicting-lanes		2		2		1		
Geometry group		2		2		4 a		

Duration, T 1.00 hrs.

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.4	-0.0

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	123		318		173		64	218
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.11		0.28		0.15		0.06	0.19
hd, final value	5.72		5.01		5.65		6.47	5.79
x , final value	0.195		0.443		0.272		0.115	0.351
Move-up time, m								3
Service Time	3.7		3.0		3.7		4.2	3.5

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound		Northbound	Southbound		
L1	L2	L1	L2	L1	L2	L1

Flow Rate	123	318	173	64	218
Service Time	3.7	3.0	3.7	4.2	3.5
Utilization, x ha	0.195	5.72	0.443	0.272	0.115
Dep. headway, hd	5.01	5.65	6.47	5.79	
Capacity	615	723	641	582	623
95% Queue Length	0.7	2.4	1.1	0.4	1.6
Delay	10.1	B	12.0	10.8	$10.0+$
LOS	B	B	B	B	

Approach:

Delay $\quad 10.1$
LOS B
Intersection Delay 11.3
12.0
10.8

B
11.2

B

HCS+: Unsignalized Intersections Release 5.6

Phone:
EMail:

Fax:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient AM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics

\% Thrus Left Lane

Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

$\left.\begin{array}{ccccccc}\text { hRT-adj } & -0.7 & & -0.7 & -0.7 & -0.7 \\ \text { hHV-adj } & 1.7 & 1.7 & 1.7 & 1.7 \\ \text { hadj, computed } & 0.3 & -0.7 & 0.0 & -0.7 & 0.3 & -0.7\end{array}\right] 0.4$
\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	185	5	118	103	23	14	15	41
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.16	0.00	0.10	0.09	0.02	0.01	0.01	0.04
hd, final value	5.20	4.21	4.91	4.20	5.81	4.81	5.89	4.79
x , final value	0.267	0.006	0.161	0.120	0.037	0.019	0.025	0.055
Move-up time, m						3		3
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5

\qquad Worksheet 5 - Capacity and Level of Service \qquad
Eastbound
L1 12
Westbound
L1 L2

| Northbound | Southbound | |
| ---: | ---: | ---: | ---: |
| L1 | L2 | L1 |

Flow Rate	185	5	118	103	23	14	15	41
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5
Utilization, x	0.267	0.006	0.161	0.120	0.037	0.019	0.025	0.055
Dep. headway, hd	5.20	4.21	4.91	4.20	5.81	4.81	5.89	4.79
Capacity	685	500	738	858	575	700	750	820
95% Queue Length	1.1	0.0	0.6	0.4	0.1	0.1	0.1	0.2
Delay	9.8	6.9	8.6	7.5	8.7	7.6	8.7	7.8
LOS	A	A	A	A	A	A	A	A

Approach:

Delay LOS
9.7

A
8.1

A
8.3

A
8.0

A

Intersection Delay 8.7 Intersection LOS A

Phone:
Fax:
EMail:

ALL-WAY STOP CONTROL (AWS) ANALYSIS \qquad
Analyst:
Agency/Co.:
KHR Associates
Date Performed:
11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Ambient PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street

\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
Li Li	Li	LD	LI	L2	LI	LD

Flow Rates:

Total in Lane	172	12	150	15	34	2	54	153
Left-Turn	54	0	5	0	16	0	38	0
Right-Turn	0	12	0	15	0	2	0	153
Pop. Left-Turns	0.3	0.0	0.0	0.0	0.5	0.0	0.7	0.0
crop. Right-Turns	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0
crop. Heavy Vehicle 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
geometry Group	5		5		5	5		

hLT-adj 0.5
0.5
0.5
0.5

```
    hRT-adj
    -0.7
    -0.7
        -0.7
        -0.7
    hHV-adj
    1.7 1.7
        1.7
hadj, computed 
```

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	172	12	150	15	34	2	54	153
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.15	0.01	0.13	0.01	0.03	0.00	0.05	0.14
hd, final value	5.43	4.57	5.31	4.60	5.86	4.92	5.79	4.74
x , final value	0.259	0.015	0.221	0.019	0.055	0.003	0.087	0.201
Move-up time, m	2.3		2.3		2.3		2.3	
Service Time	3.1	2.3	3.0	2.3	3.6	2.6	3.5	2.4

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	172	12	150	15	34	2	54	153
Service Time	3.1	2.3	3.0	2.3	3.6	2.6	3.5	2.4
Utilization, x	0.259	0.015	0.221	0.019	0.055	0.003	0.087	0.201
Dep. headway, hd	5.43	4.57	5.31	4.60	5.86	4.92	5.79	4.74
Capacity	662	600	682	750	567	0	600	765
95\% Queue Length	1.0	0.0	0.9	0.1	0.2	0.0	0.3	0.8
Delay	$10.0+$	7.3	9.5	7.4	8.9	7.6	9.0	8.6
LOS	B	A	A	A	A	A	A	A
Approach:								
Delay	9.9		9.3		8.8		8.7	
LOS	A		A		A		A	
Intersection Delay	9.3		Intersection LOS A					

HCS7 Signalized Intersection Results Summary

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	5	2	1	6	3	8	7	4
Case Number	1.1	4.0	1.1	4.0	1.1	3.0	1.1	3.0
Phase Duration, s	10.7	30.4	9.6	29.4	11.1	37.8	12.2	38.9
Change Period, ($Y+R_{c}$), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Allow Headway (MAH), s	3.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0
Queue Clearance Time (g_{s}), s	6.8		5.8		7.0	35.7	8.1	36.9
Green Extension Time (g_{e}), s	0.1	0.0	0.1	0.0	0.2	0.0	0.2	0.0
Phase Call Probability	0.96		0.93		0.98	1.00	0.99	1.00
Max Out Probability	0.00		0.00		0.00	1.00	0.01	1.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	133	223	199	107	232	209	164	893	37	200	1067	339
Adjusted Saturation Flow Rate (s), veh/h/ln	1753	1841	1567	1753	1841	1587	1781	1870	1609	1781	1870	1583
Queue Service Time (g s), s	4.8	8.8	9.3	3.8	9.3	9.8	5.0	33.7	1.3	6.1	34.9	15.0
Cycle Queue Clearance Time (g_{c}), s	4.8	8.8	9.3	3.8	9.3	9.8	5.0	33.7	1.3	6.1	34.9	15.0
Green Ratio (g/C)	0.36	0.29	0.29	0.34	0.28	0.28	0.45	0.38	0.38	0.47	0.39	0.39
Capacity (c), veh/h	372	541	460	349	519	448	220	701	603	243	726	614
Volume-to-Capacity Ratio (X)	0.359	0.412	0.433	0.305	0.448	0.467	0.748	1.274	0.061	0.822	1.470	0.552
Back of Queue (Q), ft/ln (50 th percentile)	47.2	101.3	90	38	109	97.4	49.3	$\begin{gathered} 1007 . \\ 8 \end{gathered}$	11.4	60.7	1474.5	131.3
Back of Queue (Q), veh/ln (50 th percentile)	1.8	3.9	3.6	1.5	4.2	3.9	1.9	39.7	0.5	2.4	58.0	5.2
Queue Storage Ratio ($R Q$) (50 th percentile)	0.16	0.34	0.31	0.13	0.36	0.33	0.25	5.04	0.06	0.20	4.91	0.44
Uniform Delay (d_{1}), s/veh	20.8	25.5	25.7	21.3	26.6	26.7	21.1	28.1	18.0	20.8	27.5	21.5
Incremental Delay (d_{2}), s/veh	0.2	2.3	2.9	0.2	2.8	3.5	1.9	134.2	0.0	2.9	219.0	0.6
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	21.0	27.8	28.7	21.4	29.3	30.2	23.1	162.3	18.0	23.6	246.5	22.1
Level of Service (LOS)	C	C	C	C	C	C	C	F	B	C	F	C
Approach Delay, s/veh / LOS	26.5		C	28.1	C		136.5		F	171.4		F
Intersection Delay, s/veh / LOS	119.6						F					

Multimodal Results	EB		WB		NB		SB		
Pedestrian LOS Score / LOS	2.4	B	2.4	B	2.8	C	2.8	C	
Bicycle LOS Score / LOS	0.9		A	0.9	A	2.3	B	3.1	C

HCS7 Signalized Intersection Results Summary

Timer Results	EBL		EBT	WBL		WBT	NBL		NBT	SBL		SBT
Assigned Phase	5		2	1		6	3		8	7		4
Case Number	1.1		4.0	1.1		4.0	1.1		3.0	1.1		3.0
Phase Duration, s	10.7		31.2	8.8		29.4	12.8		37.9	12.1		37.2
Change Period, ($Y+R_{c}$), s	4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0
Max Allow Headway (MAH), s	3.0		0.0	3.0		0.0	3.0		2.9	3.0		2.9
Queue Clearance Time (g_{s}), s	6.8			4.2			8.6		35.9	8.0		35.2
Green Extension Time (g_{e}), s	0.1		0.0	0.1		0.0	0.2		0.0	0.2		0.0
Phase Call Probability	0.96			0.79			1.00		1.00	0.99		1.00
Max Out Probability	0.00			0.00			0.01		1.00	0.00		1.00
Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	133	262	256	63	160	151	216	1167	56	194	1066	96
Adjusted Saturation Flow Rate (s), veh/h/ln	1753	1841	1555	1753	1841	1554	1781	1870	1609	1781	1870	1582
Queue Service Time (g s), s	4.8	10.4	12.3	2.2	6.2	7.0	6.6	33.9	2.0	6.0	33.2	3.7
Cycle Queue Clearance Time (g_{c}), s	4.8	10.4	12.3	2.2	6.2	7.0	6.6	33.9	2.0	6.0	33.2	3.7
Green Ratio (g / C)	0.36	0.30	0.30	0.33	0.28	0.28	0.47	0.38	0.38	0.46	0.37	0.37
Capacity (c), veh/h	425	557	471	298	519	438	254	704	605	241	690	583
Volume-to-Capacity Ratio (X)	0.314	0.470	0.543	0.213	0.308	0.345	0.848	1.658	0.092	0.808	1.545	0.164
Back of Queue (Q), ft/ln (50 th percentile)	47.1	120.7	120.6	22.4	70.7	66.8	71.2	$\begin{gathered} 1846 . \\ 1 \end{gathered}$	17.4	59.2	1568.4	31.8
Back of Queue (Q), veh/ln (50 th percentile)	1.8	4.7	4.8	0.9	2.7	2.7	2.8	72.7	0.7	2.3	61.7	1.3
Queue Storage Ratio ($R Q$) (50 th percentile)	0.16	0.40	0.42	0.07	0.24	0.23	0.36	9.23	0.09	0.20	5.23	0.11
Uniform Delay (d_{1}), s/veh	20.5	25.5	26.2	21.6	25.4	25.7	20.7	28.1	18.1	20.9	28.4	19.1
Incremental Delay (d_{2}), s/veh	0.2	2.8	4.4	0.1	1.5	2.1	5.8	302.3	0.0	2.5	252.6	0.0
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	20.7	28.3	30.6	21.7	26.9	27.8	26.5	330.3	18.2	23.4	281.0	19.1
Level of Service (LOS)	C	C	C	C	C	C	C	F	B	C	F	B
Approach Delay, s/veh / LOS	27.7		C	26.4		C	272.7	F		225.6	F	
Intersection Delay, s/veh / LOS	190.1						F					
Multimodal Results	EB			WB			NB			SB		
Pedestrian LOS Score / LOS	2.4		B	2.4		B	2.8		C	2.8	C	
Bicycle LOS Score / LOS	1.0		A			A			C	2.7	C	

HCS 2010 Signalized Intersection Results Summary

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	2.9	C	3.2	C	2.4	B	2.2	B
Bicycle LOS Score / LOS	0.8	A	1.0	A	1.5	A	1.4	A

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary


```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00-9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHF	1.00		1.00		1.00	1.00	1.00	
Elow Rate	211		206		13	499	271	
\% Heavy Veh	0		0		0	0	0	
No. Lanes		1		1		2		1
Opposing-Lanes		1		1		1		2
Conflicting-lanes		2		2		1		1
Geometry group		2		2		5		4 a
Duration, T 1.00	hrs.							

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Flow Rates:

Total in Lane 211	206		13	499	271	
Left-Turn 0	0		13	0	0	
Right-Turn 0	0		0	0	0	
rop. Left-Turns 0.0	0.0		1.0	0.0	0.0	
rop. Right-Turns 0.0	0.0		0.0	0.0	0.0	
rop. Heavy Vehicle0.0	0.0		0.0	0.0	0.0	
ometry Group 2		2	5		4 a	
justments Exhibit 17-33:			0.5		0.2	
hLT-adj 0.2		0.2				

hRT-adj	-0.6		-0.6	-0.7	-0.6
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad


```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Eax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 5:00 - 6:00 P.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project PM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad
 \% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHF	1.00		1.00		1.00	1.00	1.00	
Flow Rate	23		189		6	389	590	
\% Heavy Veh	0		0		0	0	0	
No. Lanes						2		1
Opposing-Lanes						,		2
Conflicting-lanes								1
Geometry group						5		4 a

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rates:

Total in Lane	23	189	6	389	590
Left-Turn	0	0	6	0	0
Right-Turn	0	0	0	0	0
Prop. Left-Turns	0.0	0.0	1.0	0.0	0.0
Prop. Right-Turns	0.0	0.0	0.0	0.0	0.0
Prop. Heavy Vehicle0.0	0.0	0.0	0.0	0.0	

Geometry Group 2
2
5
4a
Adjustments Exhibit 17-33: hLT-adj 0.2
0.2
0.5
0.2

hRT-adj	-0.6	-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

Worksheet 4 - Departure Headway and Service Time \qquad

HCS 2010 Signalized Intersection Results Summary

HCS+: Unsignalized Intersections Release 5.6

Phone:
E-Mail:

Fax:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
\% Thrus Left Lane

	Eastbound	Westbound		Northbound		Southbound	
	L1 L2	L1	L2	L1	L2	L1	L2
Configuration		L	R	TR		L	T
PHE		1.00	1.00	1.00		1.00	1.00
Elow Rate		75	140	453		134	283
\% Heavy Veh		0	0	0		0	0
No. Lanes		2		1			2
Opposing-Lanes		0		2			1
Conflicting-lanes		2		2			2
Geometry group		1		3 b			5

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Flow Rates:					
Total in Lane	75	140	453	134	283
Left-Turn	75	0	0	134	0
Right-Turn	0	140	96	0	0
Prop. Left-Turns	1.0	0.0	0.0	1.0	0.0
Prop. Right-Turns	0.0	1.0	0.2	0.0	0.0
Prop. Heavy Vehicle	0.0	0.0	0.0	0.0	0.0
Geometry Group	1		$3 b$	5	
Adjustments Exhibit 17-33:		0.2	0.2	0.5	

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate			75	140	453		134	283
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial			0.07	0.12	0.40		0.12	0.25
hd, final value			6.21	5.40	5.31		6.13	5.63
x, final value			0.129	0.210	0.669		0.228	0.442
Move-up time, m			2.0		2.0			3
Service Time			4.2	3.4	3.3		3.8	3.3

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1

Flow Rate	75	140	453	134	283
Service Time	4.2	3.4	3.3	3.8	3.3
Utilization, x	0.129	0.210	0.669	0.228	0.442
Dep. headway, hd	6.21	5.40	5.31	6.13	5.63
Capacity	577	667	676	583	643
95% Queue Length	0.4	0.8	5.8	0.9	2.3
Delay	10.1	9.8	18.9	10.6	12.8
LOS	B	A	C	B	B

Approach:
Delay
LOS

9.9	18.9
A	C

12.1

LOS
Intersection LOS B

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
E-Mail:

Fax:
\qquad ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project PM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	I		R	L	T	R	L	T	R	L	T	R
	1											
Volume	10	0	0	1	337	61		310	47	90	337	0

\% Thrus Left Lane

	Eastbound L1 L2	Westbound		Northbound		Southbound	
Configuration		L	R	TR		L	T
PHF		1.00	1.00	1.00		1.00	1.00
Elow Rate		61	61	357		90	337
\% Heavy Veh		0	0	0		0	0
No. Lanes					1		
Opposing-Lanes					2		
Conflicting-lanes					2		
Geometry group					3 b		

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rates:

Total in Lane	61	61	357	90	337
Left-Turn	61	0	0	90	0
Right-Turn	0	61	47	0	0
op. Left-Turns	1.0	0.0	0.0	1.0	0.0
op. Right-Turns	0.0	1.0	0.1	0.0	0.0
op. Heavy Vehicle	0.0	0.0	0.0		0.0
ometry Group	1		$3 b$	5	
justments Exhibit 17-33:		0.2		0.2	0.0

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Flow Rate
Service Time
Utilization, x
Dep. headway, hd
Capacity
95\% Queue Length
Delay
LOS
Approach:
Delay
LOS
Intersection Delay 12.1

61	61	357	90	337
3.9	3.1	3.1	3.4	2.9
0.100	0.087	0.502	0.142	0.485
5.93	5.12	5.06	5.69	5.18
610	678	714	643	688
0.3	0.3	3.0	0.5	2.8
9.6	8.6	13.1	9.3	12.7
A	A	B	A	B

A B
9.1
13.1
12.0

A
B
B
Intersection LOS B

```
Phone: Fax:
```

E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project AM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Eastbound			Westbound			Northbound			Southbound		
L	T	R	L	T	R	L	T	R	L	T	R
79	142		44	$18 \overline{6}$	145	72	179	21	61	94	

Volume
179 Lane

	Eastbound		Westbound		Northbound		Southbound
	L1	L2	L1	L2	L1	L2	L1
L2							

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 L2
Westbound
L1 L2

| Northbound | Southbound | |
| :---: | ---: | ---: | ---: |
| L1 | L1 | L2 |

Elow Rates:
Total in Lane 298

375	272	61	128
44	72	61	0
145	21	0	34
0.1	0.3	1.0	0.0
0.4	0.1	0.0	0.3
0.0	0.0	0.0	0.0

Prop. Heavy Vehicle0.0
Geometry Group
Adjustments Exhibit 17-33:
hLT-adj 0.2
0.2
0.2
0.5

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	-0.1	-0.2	0.0	0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad


```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	,	b			tb			thb			thb	
	L	T	R	L	T	R	L	T	R	L	T	R
	1											
Volume	$1 \overline{40}$	73	10	9	70	213	10	148	17	64	165	53

\% Thrus Left Lane

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Elow Rates:					
Total in Lane	123	322	175	64	218
Left-Turn	40	39	10	64	0
Right-Turn	10	213	17	0	53
Prop. Left-Turns	0.3	0.1	0.1	1.0	0.0
Prop. Right-Turns	0.1	0.7		0.1	0.0
Prop. Heavy Vehicle0.0		0.0	2	0.0	0.2
Geometry Group	2			4 a	0.0
Adjustments Exhibit $17-33:$	0.2		0.2		0.2

hRT-adj

$$
-0.6
$$

1.7
-0.6
-0.6
-0.7
hHV-adj

$$
1.7
$$

$$
1.7
$$

0.0
$-0.4 \quad-0.0$
hadj, computed

W

	Eastbound	Westbound	Northbound	Southbound
	L1 L2	L1 L2	L1 L2	L1 L2
Elow rate	123	322	175	64218
hd, initial value	$3.20 \quad 3.20$	$3.20 \quad 3.20$	$3.20 \quad 3.20$	$3.20 \quad 3.20$
x , initial	0.11	0.29	0.16	$0.06 \quad 0.19$
hd, final value	5.73	5.02	5.66	$6.49 \quad 5.81$
x, final value	0.196	0.449	0.275	0.1150 .352
Move-up time, m	2.0	2.0	2.0	2.3
Service Time	3.7	3.0	3.7	4.23 .5

	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Flow Rate	123	322	175	64	218
Service Time	3.7	3.0	3.7	4.2	3.5
Utilization, x	0.196	0.449	0.275	0.115	0.352
Dep. headway, hd	5.73	5.02	5.66	6.49	5.81
Capacity	615	716	625	533	623
95\% Queue Length	0.7	2.4	1.1	0.4	1.6
Delay	10.1	12.1	10.8	10.0+	11.7
LOS	B	B	B	B	B
Approach:					
Delay	10.1	12.1	10.8		. 3
LOS	B	B	B	B	
Intersection Delay	11.3	Intersect	LOS B		

Phone: Eax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project AM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT	R	LT	R	LT	R	LT	R
PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Elow Rate	189	5	122	103	23	14	15	41
\% Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes		2		2				2
Opposing-Lanes		2		2				2
Conflicting-lanes		2		2				2
Geometry group		5		5				5
Duration, T 1.00	hrs							

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 L2

Westbound	
L1	L2
122	103
3	0
0	103
0.0	0.0
0.0	1.0
0.0	0.0

5
0.5
0.5
0.5

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.3	-0.7	0.0	-0.7	0.3

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	189	5	122	103	23	14	15	41
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.17	0.00	0.11	0.09	0.02	0.01	0.01	0.04
hd, final value	5.20	4.22	4.92	4.20	5.83	4.83	5.91	4.81
x, final value	0.273	0.006	0.167	0.120	0.037	0.019	0.025	0.055
Move-up time, m		3				3		3
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5
Worksheet 5 - Capacity and Level of Service								
	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	189	5	122	103	23	14	15	41
Service Time	2.9	1.9	2.6	1.9	3.5	2.5	3.6	2.5
Utilization, x	0.273	0.006	0.167	0.120	0.037	0.019	0.025	0.055
Dep. headway, hd	5.20	4.22	4.92	4.20	5.83	4.83	5.91	4.81
Capacity	700	500	718	858	575	700	750	820
95\% Queue Length	1.1	0.0	0.6	0.4	0.1	0.1	0.1	0.2
Delay	9.8	6.9	8.6	7.5	8.8	7.6	8.8	7.8
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	9.8		8.1		8.3		8.0	
LOS	A		A		A		A	
Intersection Delay	8.7		Intersection LOS A					

Phone:
Fax:
E-Mail:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Project PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

		bo			bo			thb			thb	
	L	T	R	L	T	R	L	T	R	L	T	R
Volume	154	120	12		160	5		18		38	16	153

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT	R	LT	R	LT	R	LT	R
PHE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Elow Rate	174	12	165	15	34	2	54	153
\% Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes								
Opposing-Lanes								
Conflicting-lanes								
Geometry group								

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 | L2 | L1 | L2 | L1 | L2 | L1 |

Flow Rates:

Total in Lane	174	12	165	15	34	2	54	153
Left-Turn	54	0	5	0	16	0	38	0
Right-Turn	0	12	0	15	0	2	0	153
op. Left-Turns	0.3	0.0	0.0	0.0	0.5	0.0	0.7	0.0
op. Right-Turns	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0
op. Heavy Vehicle0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ometry Group	5			5		5	5	

Adjustments Exhibit 17-33:

hLT-adj 0.5
0.5
0.5
0.5

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.2	-0.7	0.0	-0.7	0.2

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	174	12	165	15	34	2	54	153
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.15	0.01	0.15	0.01	0.03	0.00	0.05	0.14
hd, final value	5.45	4.59	5.32	4.60	5.91	4.97	5.83	4.78
x , final value	0.263	0.015	0.244	0.019	0.056	0.003	0.088	0.203
Move-up time, m								
Service Time	3.1	2.3	3.0	2.3	3.6	2.7	3.5	2.5

\qquad Worksheet 5 - Capacity and Level of Service \qquad
Eastbound
L1 12
Westbound
L1 L2

| Northbound | Southbound |
| :---: | ---: | ---: | ---: |
| L1 L2 | L1 |

Elow Rate	174	12	165	15	34	2	54	153
Service Time	3.1	2.3	3.0	2.3	3.6	2.7	3.5	2.5
Utilization, x	0.263	0.015	0.244	0.019	0.056	0.003	0.088	0.203
Dep. headway, hd	5.45	4.59	5.32	4.60	5.91	4.97	5.83	4.78
Capacity	669	600	688	750	567	0	600	765
95% Queue Length	1.1	0.0	1.0	0.1	0.2	0.0	0.3	0.8
Delay	10.1	7.4	9.7	7.4	9.0	7.7	9.1	8.7
LOS	B	A	A	A	A	A	A	A

Approach:
Delay 9.9

LOS A

```
9.5
A
```

8.9
A
8.8

A
Intersection Delay 9.4 Intersection LOS A

HCS 2010 Signalized Intersection Results Summary

[^26]
Cumulative without Project

Highway Capacity Method

HCS 2010 Signalized Intersection Results Summary

Timer Results	EBL		$\begin{gathered} \text { EBT } \\ \hline 2 \end{gathered}$	WBL		$\begin{gathered} \text { WBT } \\ \hline 6 \end{gathered}$	NBL		$\begin{gathered} \text { NBT } \\ \hline 8 \end{gathered}$	SBL		$\begin{gathered} \text { SBT } \\ \hline 4 \end{gathered}$
Assigned Phase	5			1			3			7		
Case Number	2.0		3.0	2.0		3.0	2.0		3.0	2.0		3.0
Phase Duration, s	17.3		58.4	11.6		52.7	16.9		36.4	13.6		33.1
Change Period, ($\left.Y+R_{c}\right)$, s	4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0
Max Allow Headway (MAH), s	3.0		0.0	3.0		0.0	3.0		3.0	3.0		3.0
Queue Clearance Time ($g s$), s	13.1			7.5			12.7		34.4	9.3		27.6
Green Extension Time (g_{e}), s	0.2		0.0	0.2		0.0	0.2		0.0	0.2		1.2
Phase Call Probability	1.00			0.99			1.00		1.00	1.00		1.00
Max Out Probability	1.00			0.00			0.73		1.00	0.01		1.00
Movement Group Results		EB			WB			NB			SB	
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	313	1112	287	154	1144	295	312	1497	65	215	814	346
Adjusted Saturation Flow Rate (s), veh/h/ln	1673	1643	1531	1673	1643	1530	1723	1691	1577	1723	1691	1573
Queue Service Time ($g s$), s	11.1	22.2	17.9	5.5	24.0	19.3	10.7	32.4	3.8	7.3	17.4	25.6
Cycle Queue Clearance Time (g_{c}), s	11.1	22.2	17.9	5.5	24.0	19.3	10.7	32.4	3.8	7.3	17.4	25.6
Green Ratio (g / C)	0.11	0.45	0.45	0.06	0.41	0.41	0.11	0.27	0.27	0.08	0.24	0.24
Capacity (6), veh/h	371	2234	694	212	2001	621	370	1371	426	275	1230	381
Volume-to-Capacity Ratio (X)	0.843	0.498	0.414	0.727	0.572	0.475	0.842	1.092	0.152	0.781	0.662	0.907
Back of Queue (Q), ft/ln (50 th percentile)	136.1	241.2	187.4	60.9	262.9	204.4	129	514.1	36.7	82.5	185.6	316.4
Back of Queue (Q), veh/ln (50 th percentile)	5.2	9.3	7.2	2.3	10.1	7.9	5.0	19.8	1.4	3.2	7.1	12.2
Queue Storage Ratio ($R Q$) (50 th percentile)	0.45	0.80	0.62	0.20	0.88	0.68	0.63	2.51	0.18	0.27	0.60	1.03
Uniform Delay (d_{1}), s/veh	54.5	30.6	29.2	56.4	34.8	33.1	52.5	43.8	33.3	54.2	41.0	44.1
Incremental Delay (d_{2}), s/veh	10.2	0.8	1.8	1.8	1.2	2.6	9.3	53.5	0.1	1.8	1.1	24.1
Initial Queue Delay $\left(d_{3}\right)$, s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	64.8	31.4	31.0	58.2	36.0	35.6	61.9	97.3	33.4	56.0	42.1	68.3
Level of Service (LOS)	E	C	C	E	D	D	E	F	C	E	D	E
Approach Delay, s/veh / LOS	37.4		D	38.1		D	89.2		F	50.8		D
Intersection Delay, s/veh / LOS												
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	3.5		C									
Bicycle LOS Score / LOS	1.4		A	1.4		A	1.5		A	1.2		A

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

E-Mail:

Fax:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00 - 9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHE	1.00		1.00		1.00	1.00	1.00	
Flow Rate	211		206		13	499	270	
\% Heavy Veh	0		0		0	0	0	
No. Lanes		1				2		1
Opposing-Lanes		1				1		2
Conflicting-lanes		2				1		1
Geometry group		2				5		4 a

Duration, T 1.00 hrs.

hRT-adj	-0.6		-0.6		-0.7
hHV-adj	1.7	1.7	1.7	-0.6	
hadj, computed	0.0		0.0		0.5

Worksheet 4 - Departure Headway and Service Time \qquad

\qquad
Analyst:

Agency/Co.:	KHR Associates
Date Performed:	$8 / 4 / 2016$
Analysis Time Period:	$5: 00-6: 00$ P.M.
Intersection:	Palos Verdes North
Jurisdiction:	
Units: U. S. Customary	
Analysis Year:	
Project ID: Cumulative PM Peak Hour	
East/West Street:	Via Valmonte
North/South Street:	Palos Verdes North


```
% Thrus Left Lane
```

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHE	1.00		1.00		1.00	1.00	1.00	
Elow Rate	23		189		6	389	588	
\% Heavy Veh	0		0		0	0	0	
No. Lanes		1				2		1
Opposing-Lanes		1				1		2
Conflicting-lanes		2				1		1
Geometry group		2				5		4 a

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Elow Rates:
Total in Lane 23
Left-Turn 0
Right-Turn 0
Prop. Left-Turns 0.0
189

6	389	588
6	0	0
0	0	0
1.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0

Prop. Heavy Vehicle0.0
Geometry Group 2
3 :
$\begin{array}{cr}\text { Adjustments Exhibit } & 17-33: \\ \text { hLT-adj } & 0.2\end{array}$
5
4 a
0.2
0.5
0.2

hRT-adj	-0.6		-0.6	-0.7	-0.6
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	23		189		6	389	588	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.02		0.17		0.01	0.35	0.52	
hd, final value	7.16		6.54		6.48	5.98	5.40	
x, final value	0.046		0.34		0.011	0.646	0.88	
Move-up time, m				0		3		
Service Time	5.2		4.5		4.2	3.7	3.4	

	Eastbound	Westbound	Northbound		Southbound
	L1 L2	L1 L2	L1	L2	L1 L2
Flow Rate	23	189	6	389	588
Service Time	5.2	4.5	4.2	3.7	3.4
Utilization, x	0.046	0.343	0.011	0.646	0.881
Dep. headway, hd	7.16	6.54	6.48	5.98	5.40
Capacity	460	556	600	598	668
95\% Queue Length	0.1	1.6	0.0	5.2	15.9
Delay	10.5	12.9	9.3	19.4	42.9
LOS	B	B	A	C	E
Approach:					
Delay	10.5	12.9		9.2	42.9
LOS	B	B	C		E
Intersection Delay	29.7	Intersect	LOS D		

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary


```
HCS+: Unsignalized Intersections Release 5.6
```

```
Phone:
Fax:
```

E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
___ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Configuration	L	R	TR	L	T
PHF	1.00	1.00	1.00	1.00	1.00
Elow Rate	77	141	455	135	283
$\%$ Heavy Veh	0	0	0	0	0
No. Lanes		2		1	2
Opposing-Lanes	0	2	1		
Conflicting-lanes	2	2	2		
Geometry group	1	$3 b$	5		

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Flow Rates:
Total in Lane

77	141	455	135	283
77	0	0	135	0
0	141	98	0	0
1.0	0.0	0.0	1.0	0.0
0.0	1.0	0.2	0.0	0.0
0.0	0.0	0.0	0.0	0.0

1
$3 b$
5
Geometry Group
Adjustments Exhibit 17-33:
hLT-adj
0.2
0.2
0.5

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1	L2
		77	141	455		135	283
3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
		0.07	0.13	0.40		0.12	0.25
		6.22	5.41	5.32		6.15	5.64
		0.133	0.212	0.673		0.231	0.444
		2.0		2.0			3
		4.2	3.4	3.3		3.8	3.3

\qquad Worksheet 5 - Capacity and Level of Service \qquad
Eastbound
L1 L2

Flow Rate
Service Time
Utilization, x
Dep. headway, hd Capacity
95\% Queue Length
Delay
LOS
Approach:
Delay
LOS
Westbound
L1 L2
Northbound
L1

Southbound
L1 L2
L1 L2
$\begin{array}{llll}77 & 141 & 455 & 135\end{array}$

4.2	3.4	3.3	3.8	3.3

$\begin{array}{lllll}0.133 & 0.212 & 0.673 & 0.231 & 0.444\end{array}$
$\begin{array}{lllll}6.22 & 5.41 & 5.32 & 6.15 & 5.64\end{array}$

592	671	679	587

$\begin{array}{lllll}0.5 & 0.8 & 5.9 & 0.9 & 2.4\end{array}$
$\begin{array}{lllll}10.2 & 9.9 & 19.1 & 10.7 & 12.8\end{array}$
B A C B B

Intersection Delay 14.6
$10.0-19.1$
A C
12.1

B
Intersection LOS B

Phone: E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 4:00 - 5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	1 L	T	R	L	T	R	I	T	R	L	T	R
	1											
Volume	10	0	0	63	337	62		310	51	92	337	0

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Configuration	L	R	TR	L	T
PHF	1.00	1.00	1.00	1.00	1.00
Flow Rate	63	62	361	92	337
\% Heavy Veh	0	0	0	0	0
No. Lanes		2		1	2
Opposing-Lanes		0	2	1	
Conflicting-lanes	2	2	2		
Geometry group			$3 b$	5	

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Elow Rates:
Total in Lane
$63 \quad 62$
Left-Turn
Right-Turn
Prop. Left-Turns
630
$0 \quad 62 \quad 51$
$\begin{array}{lll}1.0 & 0.0 & 0.0\end{array}$
$\begin{array}{lll}0.0 & 1.0 & 0.1\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 0.0\end{array}$
1
$3 b$
0.2
0.2
0.5

hRT-adj	-0.6	-0.6	-0.7	
hHV-adj	1.7	1.7	1.7	
hadj, computed	0.2	-0.6	-0.1	0.5

Worksheet 4 - Departure Headway and Service Time \qquad
Eastbound
L1 L2

Flow rate
hd, initial value $3.20 \quad 3.20$
x , initial
hd, final value
x, final value
Move-up time, m
Service Time

Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2
63	62	361		92	337
3.20	3.20	3.20	3.20	3.20	3.20
0.06	0.06	0.32		0.08	0.30
5.95	5.14	5.06		5.70	5.20
0.104	0.088	0.508		0.146	0.487
		2.0		2.3	
3.9	3.1	3.1		3.4	2.9

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound
Westbound
L1

Northbound
Southbound
L1 L2

Elow Rate	63	62	361	92	337
Service Time	3.9	3.1	3.1	3.4	2.9
Utilization, x	0.104	0.088	0.508	0.146	0.4
Dep. headway, hd	5.95	5.14	5.06	5.70	5.2
Capacity	630	689	708	613	688
95\% Queue Length	0.3	0.3	3.0	0.5	2.8
Delay	9.6	8.6	13.3	9.4	12.
LOS	A	A	B	A	B
Approach:					
Delay	9.1		13.3	12.1	
LOS	A		B	B	
Intersection Delay 12.1	Inte	sectio	LOS B		

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rates:
Total in Lane $301 \quad 379 \quad 270 \quad 65$
Left-Turn 7
Right-Turn 7
$42 \quad 72$
$72 \quad 65 \quad 0$
Prop. Left-Turns 0.3
$148 \quad 19$
$19 \quad 0 \quad 34$
Prop. Right-Turns 0.
$0.3 \quad 1.0 \quad 0.0$
$0.1 \quad 0.3$
$\begin{array}{ll}0.4 & 0.1 \\ 0.0 & 0.0\end{array}$
$\begin{array}{ll}1.0 & 0.3 \\ 0.0 & 0.0\end{array}$
Prop. Heavy Vehicle0.
Geometry Group 2
Adjustments Exhibit 17-33:
hLT-adj 0.2
2
$\begin{array}{ll}0.4 & 0.1 \\ 0.0 & 0.0\end{array}$
0.2
4 a
5
0.5

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	-0.1	-0.2	0.0	0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	301		379		270		65	128
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.27		0.34		0.24		0.06	0.11
hd, final value	6.15		5.89		6.59		7.72	7.02
x, final value	0.514		0.620		0.49		0.139	0.249
Move-up time, m	2.0		2.0		2.0			
Service Time	4.1		3.9		4.6		5.4	4.7

HCS+: Unsignalized Intersections Release 5.6

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		LTR		L	TR
PHF	1.00		1.00		1.00		1.00	1.00
Elow Rate	129		323		173		69	218
\% Heavy Veh	0		0		0		0	0
No. Lanes		1		1		1		2
Opposing-Lanes		1		1		2		1
Conflicting-lanes		2		2		1		1
Geometry group		2		2		4 a		5

Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 L2
Westbound
L1 L2

| Northbound | Southbound |
| :---: | ---: | ---: | ---: |
| L1 L2 | L1 |

Flow Rates:

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.4	-0.0

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	129		323		173		69	218
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x, initial	0.11		0.29		0.15		0.06	0.19
hd, final value	5.75		5.04		5.71		6.51	5.83
x, final value	0.206		0.453		0.274		0.125	0.353
Move-up time, m	2.0		2.0		2.0			
Service Time	3.8		3.0		3.7		4.2	3.5

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
___ Worksheet 2 - Volume Adjustments and Site Characteristics___

Volume

| Eastbound | Westbound | Northbound | Louthbound |
| :--- | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 L2 | L1 | |

Configuration	LT	R	LT	R	LT	R	LT	R
PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Elow Rate	190	5	129	107	23	14	15	41
s Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes		2		2	2	2	2	
Opposing-Lanes	2	2		2	2			
Conflicting-lanes	2		2	2	2			
Geometry group		5		5	5	5		

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 L2
Westbound

Southbound
L1 L2 L1 L2 L1 L2

Flow Rates:

Total in Lane 190

Left-Turn

Right-Turn
Prop. Left-Turns 0.60 .0
Prop. Right-Turns $0.0 \quad 1.0$
Prop. Heavy Vehicle0.0 0.0
Geometry Group 5 5
$33:$

Adjustments Exhibit 17-33:

hLT-adj
0.5
0.5
0.5
0.5

hRT-adj	-0.7	-0.7		-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.3	-0.7	0.0	-0.7	0.3

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	190	5	129	107	23	14	15	41
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x, initial	0.17	0.00	0.11	0.10	0.02	0.01	0.01	0.04
hd, final value	5.21	4.23	4.93	4.21	5.86	4.85	5.93	4.83
x, final value	0.275	0.006	0.177	0.125	0.037	0.019	0.025	0.055
Move-up time, m		3				3		3.
Service Time	2.9	1.9	2.6	1.9	3.6	2.6	3.6	2.5

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	190	5	129	107	23	14	15	41
Service Time	2.9	1.9	2.6	1.9	3.6	2.6	3.6	2.5
Utilization, x	0.275	0.006	0.177	0.125	0.037	0.019	0.025	0.055
Dep. headway, hd	5.21	4.23	4.93	4.21	5.86	4.85	5.93	4.83
Capacity	679	500	717	823	575	700	750	683
95\% Queue Length	1.1	0.0	0.6	0.4	0.1	0.1	0.1	0.2
Delay	9.9	7.0	8.7	7.5	8.8	7.6	8.8	7.8
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	9.8		8.2		8.4		8.1	
LOS	A		A		A		A	
Intersection Delay	8.8		Intersection LOS A					

HCS+: Unsignalized Intersections Release 5.6

Phone:
E-Mail:

Fax:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45 - 8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
Worksheet 2 - Volume Adjustments

Volume
\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT	R	LT	R	LT	R	LT	R
PHE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flow Rate	178	12	74	28	34	2	54	153
\% Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes								
Opposing-Lanes								
Conflicting-lanes								
Geometry group								

Duration, T 1.00 hrs .
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Elow Rates:

hLT-adj
0.5
0.5
0.5
0.5

hRT-adj	-0.7		-0.7		-0.7
hHV-adj	1.7	1.7	1.7	-0.7	
hadj, computed	0.2	-0.7	0.1	-0.7	0.2

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	178	12	74	28	34	2	54	153
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.16	0.01	0.07	0.02	0.03	0.00	0.05	0.14
hd, final value	5.35	4.49	5.40	4.58	5.69	4.76	5.64	4.59
x, final value	0.265	0.015	0.111	0.036	0.054	0.003	0.085	0.195
Move-up time, m						3		3
Service Time	3.0	2.2	3.1	2.3	3.4	2.5	3.3	2.3

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	178	12	74	28	34	2	54	153
Service Time	3.0	2.2	3.1	2.3	3.4	2.5	3.3	2.3
Utilization, x	0.265	0.015	0.111	0.036	0.054	0.003	0.085	0.195
Dep. headway, hd	5.35	4.49	5.40	4.58	5.69	4.76	5.64	4.59
Capacity	685	1200	673	700	680	0	675	765
95\% Queue Length	1.1	0.0	0.4	0.1	0.2	0.0	0.3	0.7
Delay	10.0-	7.3	8.8	7.4	8.7	7.5	8.9	8.4
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	9.8		8.4		8.6		8.5	
LOS	A		A		A		A	
Intersection Delay	9.0		Intersection LOS A					

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

2019 Project Plus Cumulative Development Conditions Highway Capacity Method

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

General Information
Agency

Analyst		An
Jurisdiction	Torrance California	Tin
Urban Street	Pacific Coast Highway	An
Intersection	Hawthorne Boulevard	Fil
Project Description		

Project Description

Intersection Information
Duration, h Area Type PHF Analysis Period
File Name \quad 1-PCH-Hawthorne Cumu PM.xus

Demand Information	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	254	1147	364	198	998	254	330	961	77	423	1305	430

Signal Information						$\stackrel{\pi}{=}$			1.3			$\vec{\nabla}$		4
Cycle, s	120.0	Reference Phase	2											
Offset, s	0	Reference Point	End											
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	0.0	4.0	14.7	1.3 0	4.0				
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0				

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 16.2 | 56.0 | 14.0 | 53.8 | 18.7 | 30.0 | 20.0 | 31.3 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Queue Clearance Time $\left(g_{s}\right), s$ | 12.0 | | 9.8 | | 14.5 | 27.1 | 18.0 | 29.3 |
| Green Extension Time $\left(g_{e}\right), s$ | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 |
| Phase Call Probability | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.37 | | 0.03 | | 1.00 | 1.00 | 1.00 | 1.00 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	282	1274	404	220	1109	282	367	1068	86	470	1450	478
Adjusted Saturation Flow Rate (s), veh/h/ln	1673	1643	1531	1673	1643	1530	1723	1691	1576	1723	1691	1572
Queue Service Time ($g s$), s	10.0	26.7	27.4	7.8	23.0	18.3	12.5	25.1	5.4	16.0	27.3	27.3
Cycle Queue Clearance Time (g_{c}), s	10.0	26.7	27.4	7.8	23.0	18.3	12.5	25.1	5.4	16.0	27.3	27.3
Green Ratio (g / C)	0.10	0.43	0.43	0.08	0.41	0.41	0.12	0.22	0.22	0.13	0.23	0.23
Capacity (c), veh/h	341	2135	663	280	2044	634	422	1099	342	459	1155	358
Volume-to-Capacity Ratio (X)	0.827	0.597	0.610	0.787	0.543	0.445	0.869	0.971	0.250	1.023	1.256	1.335
Back of Queue (Q), ftlln (50 th percentile)	119.3	291.3	292.1	87.2	251.1	192.2	158.9	317.9	53.4	254	627.2	703.5
Back of Queue (Q), veh/ln (50 th percentile)	4.6	11.2	11.2	3.4	9.7	7.4	6.1	12.2	2.1	9.8	24.1	27.1
Queue Storage Ratio ($R Q$) (50 th percentile)	0.40	0.97	0.97	0.29	0.84	0.64	0.78	1.55	0.26	0.83	2.04	2.29
Uniform Delay (d_{1}), s/veh	54.9	33.7	33.9	55.6	33.7	32.0	51.7	46.6	38.9	52.0	46.3	46.3
Incremental Delay (d_{2}), s/veh	7.4	1.2	4.1	1.9	1.0	2.3	14.3	20.4	0.1	48.0	122.4	168.8
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	62.3	34.9	38.1	57.5	34.8	34.3	66.0	67.0	39.1	100.0	168.7	215.2
Level of Service (LOS)	E	C	D	E	C	C	E	E	D	F	F	F
Approach Delay, s/veh / LOS	39.5		D	37.8		D	65.2		E	164.5		F
Intersection Delay, s/veh / LOS	84.4						F					

| Multimodal Results | EB | | WB | | NB | | SB | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 3.5 | C | 3.5 | C | 3.5 | C | 3.5 | C |
| Bicycle LOS Score /LOS | 1.6 | A | 1.4 | A | 1.3 | A | 1.8 | A |

HCS 2010 Signalized Intersection Results Summary

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase		2		6		8		4
Case Number		6.0		6.0		12.0		12.0
Phase Duration, s		32.5		32.5		5.7		6.7
Change Period, ($Y+R_{c}$), s		4.0		4.0		4.0		4.0
Max Allow Headway (MAH), s		0.0		0.0		3.0		3.0
Queue Clearance Time ($g s$), s						2.6		3.1
Green Extension Time (g_{e}), s		0.0		0.0		0.0		0.1
Phase Call Probability						0.29		0.46
Max Out Probability						0.00		0.00

Movement Group Results
Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/ln (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

EB			WB			NB			SB		
L	T	R	L	T	R	L	T	R	L	T	R
5	2	12	1	6	16	3	8	18	7	4	14
38	469	0	23	426	0		0			0	
977	1900	0	939	1900	0		0			0	
0.7	2.3	0.0	0.5	2.1	0.0		0.0			0.0	
2.8	2.3	0.0	2.8	2.1	0.0		0.0			0.0	
0.63	0.63		0.63	0.63							
734	2409		707	2409							
0.051	0.195	0.000	0.032	0.177	0.000		0.000			0.000	
2.7	11.3	0	1.7	10.1	0		0			0	
0.1	0.5	0.0	0.1	0.4	0.0		0.0			0.0	
0.03	0.06	0.00	0.02	0.05	0.00		0.00			0.00	
4.0	3.4		4.0	3.4							
0.1	0.2	0.0	0.1	0.2	0.0		0.0			0.0	
0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
4.1	3.6		4.1	3.6							
A	A		A	A							
3.7		A	3.6		A	22.3		C	21.3		C
5.0						A					

| Multimodal Results | EB | | WB | | NB | | SB | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.0 | B | 2.0 | B | 2.8 | C | 2.8 | C |
| Bicycle LOS Score / LOS | 0.9 | A | 0.9 | A | 0.5 | A | 0.6 | A |

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	5	2	1	6	3	8	7	4
Case Number	2.0	3.0	2.0	3.0	1.1	4.0	1.1	4.0
Phase Duration, s	18.0	61.2	8.8	52.0	11.4	30.0	20.0	38.6
Change Period, ($Y+R_{c}$), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Allow Headway (MAH), s	3.0	0.0	3.0	0.0	3.0	2.9	3.0	2.9
Queue Clearance Time ($g s$), s	14.0		5.3		7.6	27.2	17.0	26.3
Green Extension Time (g_{e}), s	0.1	0.0	0.0	0.0	0.1	0.0	0.0	4.1
Phase Call Probability	1.00		0.79		0.97	1.00	1.00	1.00
Max Out Probability	1.00		0.00		0.00	1.00	1.00	0.44

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8		7	4	
Adjusted Flow Rate (v), veh/h	174	295	92	47	224	172	107	1071		288	1125	
Adjusted Saturation Flow Rate (s), veh/h/ln	1723	1810	1608	1723	1810	1607	1774	1691		1774	1691	
Queue Service Time ($g s$), s	12.0	15.0	4.9	3.3	11.9	10.2	5.6	25.2		15.0	24.3	
Cycle Queue Clearance Time ($g c$), s	12.0	15.0	4.9	3.3	11.9	10.2	5.6	25.2		15.0	24.3	
Green Ratio (g / C)	0.12	0.48	0.48	0.04	0.40	0.40	0.28	0.22		0.37	0.29	
Capacity (c), veh/h	201	863	767	68	724	642	204	1099		300	1461	
Volume-to-Capacity Ratio (X)	0.866	0.342	0.120	0.693	0.309	0.268	0.525	0.974		0.958	0.770	
Back of Queue (Q), ft/ln (50 th percentile)	170.4	181.9	46.5	38.9	143.5	104.1	61.9	320.7		247.7	260.8	
Back of Queue (Q), veh/ln (50 th percentile)	6.6	7.0	1.9	1.5	5.5	4.2	2.4	12.3		9.5	10.0	
Queue Storage Ratio ($R Q$) (50 th percentile)	0.57	0.61	0.16	0.13	0.48	0.36	0.30	1.57		0.81	0.85	
Uniform Delay (d_{1}), s/veh	54.4	26.5	23.1	57.7	30.8	30.1	34.9	46.7		33.1	39.1	
Incremental Delay (d_{2}), s/veh	23.2	1.1	0.3	4.6	1.1	1.0	0.8	21.0		40.3	2.3	
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	77.6	27.6	23.4	62.3	31.9	31.2	35.7	67.7		73.3	41.4	
Level of Service (LOS)	E	C	C	E	C	C	D	E		E	D	
Approach Delay, s/veh / LOS	42.4		D	34.8		C	64.8			47.9		D
Intersection Delay, s/veh / LOS	51.0											

| Multimodal Results | EB | | WB | | NB | | SB | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 3.3 | C | 3.3 | C | 2.5 | B | 2.4 | B |
| Bicycle LOS Score / LOS | 1.4 | A | 1.2 | A | 1.1 | A | 1.3 | A |

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary


```
HCS+: Unsignalized Intersections Release 5.6
```

Phone: Fax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 8:00 - 9:00 A.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	1 L	T	R	L	T	R	L	T	R	L	T	R
	1											
Volume	10	211	0		206	0	13	499	42	0	271	0

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHF	1.00		1.00		1.00	1.00	1.00	
Elow Rate	211		206		13	499	271	
\% Heavy Veh	0		0		0	0	0	
No. Lanes						2		1
Opposing-Lanes								2
Conflicting-lanes						,		1
Geometry group								4 a

Duration, T 1.00 hrs.

Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

| Eastbound | Westbound | Northbound | Southbound | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| L1 L2 | L1 | L2 | L1 | L2 | L1 |

Flow Rates:

Total in Lane	211	206	13	499	271
Left-Turn	0	0	13	0	0
Right-Turn	0	0	0	0	0
op. Left-Turns	0.0	0.0	1.0	0.0	0.0
op. Right-Turns	0.0	0.0	0.0	0.0	0.0
op. Heavy Vehicle0.0	0.0	0.0	0.0	0.0	

$\begin{array}{lllll}\text { Prop. Heavy Vehicle0.0 } 0.0 & 0.0 & 0.0 & 0.0\end{array}$
Geometry Group 2
Adjustments Exhibit 17-33:
hLT-adj
0.2
0.2
0.5
0.2

hRT-adj	-0.6	-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

	Eastbound	Westbound	Northbound	Southbound
	L1 L2	L1 L2	L1 L2	L1 L2
Elow rate	211	206	13499	271
hd, initial value	$3.20 \quad 3.20$	$3.20 \quad 3.20$	$3.20 \quad 3.20$	$3.20 \quad 3.20$
x , initial	0.19	0.18	$0.01 \quad 0.44$	0.24
hd, final value	7.08	7.10	7.096 .58	6.72
x, final value	0.415	0.406	$0.026 \quad 0.913$	0.506
Move-up time, m	2.0	2.0	2.3	2.0
Service Time	5.1	5.1	4.8 4.3	4.7

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound		Southbound
L1 L2	L1 L2	L1	L2	L1 L2
211	206	13	499	271
5.1	5.1	4.8	4.3	4.7
0.415	0.406	0.026	0.913	0.506
7.08	7.10	7.09	6.58	6.72
502	502	433	548	531
2.1	2.0	0.1	17.9	3.0
15.1	14.9	10.0-	61.0	16.6
C	B	A	F	C

Flow Rate	211	206
Service Time	5.1	5.1
Utilization, x	0.415	0.406
Dep. headway, hd	7.08	7.10
Capacity	502	502
95\% Queue Length	2.1	2.0
Delay	15.1	14.9
LoS	C	B

Approach:
Delay 15.1
LOS C
Intersection Delay 34.4
14.9
B
59.7
F
Intersection LOS D
16.6

C

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
E-Mail:

Fax:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 8/4/2016
Analysis Time Period: 5:00 - 6:00 P.M.
Intersection: Palos Verdes North
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Via Valmonte
North/South Street: Palos Verdes North
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		LTR		L	T	LTR	
PHF	1.00		1.00		1.00	1.00	1.00	
Elow Rate	23		189		6	390	590	
\% Heavy Veh	0		0		0	0	0	
No. Lanes		1		1		2		1
Opposing-Lanes		1		1		1		2
Conflicting-lanes		2		2		1		1
Geometry group		2		2		5		4 a
Duration, T 1.00	hrs							

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rates:

Total in Lane	23	189	6	390	590
Left-Turn	0	0	6	0	0
Right-Turn	0	0	0	0	0
op. Left-Turns	0.0	0.0	1.0	0.0	0.0
op. Right-Turns	0.0	0.0	0.0	0.0	0.0
op. Heavy Vehicle0.0	2	0.0		0.0	0.0
ometry Group	2			5	0.0

Adjustments Exhibit 17-33:
$\begin{array}{lllll}\text { hLT-adj } & 0.2 & 0.2 & 0.5 & 0.2\end{array}$

hRT-adj	-0.6	-0.6	-0.7	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.0		0.0		0.5

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	23		189		6	390	590	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.02		0.17		0.01	0.35	0.52	
hd, final value	7.17		6.55		6.49	5.98	5.40	
x, final value	0.046		0.344		0.011	0.648	0.88	
Move-up time, m						3		0
Service Time	5.2		4.5		4.2	3.7	3.4	

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rate	23	189	6	390	590
Service Time	5.2	4.5	4.2	3.7	3.4
Utilization, x	0.046	0.344	0.011	0.648	0.885
Dep. headway, hd	7.17	6.55	6.49	5.98	5.40
Capacity	460	556	600	600	670
95% Queue Length	0.1	1.6	0.0	5.3	16.2
Delay	10.5	13.0	9.3	19.5	43.9
LOS	B	B	A	C	E

Approach:

Delay 10.5
LOS B
B
Intersection Delay 30.2
$13.0 \quad 19.3$
B C
Intersection LOS D

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 1.1 | 3.0 | 1.1 | 3.0 | 1.1 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 8.0 | 65.9 | 10.0 | 67.8 | 20.0 | 24.1 | 20.0 | 24.1 |
| Change Period, $(Y+R c), s$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway $(M A H), s$ | 3.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Queue Clearance Time $(g), s$ | 3.1 | | 4.5 | | 16.3 | 15.3 | 17.8 | 18.3 |
| Green Extension Time $(g e), s$ | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 2.1 | 0.0 | 1.8 |
| Phase Call Probability | 0.67 | | 0.99 | | 1.00 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.0 | | 0.00 | | 1.00 | 0.05 | 1.00 | 0.17 |

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	33	801	263	157	1190	367	258	416	151	234	499	32
Adjusted Saturation Flow Rate (s), veh/h/ln	1740	1739	1608	1689	1739	1608	1774	1773	1607	1774	1773	1573
Queue Service Time ($g s$), s	1.1	17.4	11.4	2.5	29.2	16.6	14.3	13.3	10.4	15.8	16.3	2.1
Cycle Queue Clearance Time (g_{c}), s	1.1	17.4	11.4	2.5	29.2	16.6	14.3	13.3	10.4	15.8	16.3	2.1
Green Ratio (g/C)	0.55	0.52	0.52	0.57	0.53	0.53	0.30	0.17	0.17	0.13	0.17	0.17
Capacity (c), veh/h	243	1794	830	780	1850	856	310	595	270	237	595	264
Volume-to-Capacity Ratio (X)	0.137	0.447	0.317	0.201	0.643	0.429	0.832	0.698	0.560	0.991	0.838	0.122
Back of Queue (Q), ftlln (50 th percentile)	10.2	174	104.7	23.3	292.5	152.3	189.6	149	102.1	271.1	192	20
Back of Queue (Q), veh/ln (50 th percentile)	0.4	6.7	4.2	0.9	11.3	6.1	7.3	5.8	4.1	10.5	7.4	0.8
Queue Storage Ratio ($R Q$) (50 th percentile)	0.03	0.58	0.36	0.08	0.98	0.52	0.93	0.73	0.52	0.89	0.63	0.07
Uniform Delay (d_{1}), s/veh	16.3	18.3	16.8	13.3	20.0	17.0	35.9	47.1	45.9	51.9	48.4	42.4
Incremental Delay (d_{2}), s/veh	0.1	0.8	1.0	0.0	1.7	1.6	16.3	1.1	0.7	55.8	5.2	0.1
Initial Queue Delay (d_{3}), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	16.4	19.1	17.8	13.4	21.7	18.6	52.2	48.1	46.5	107.8	53.5	42.5
Level of Service (LOS)	B	B	B	B	C	B	D	D	D	F	D	D
Approach Delay, s/veh / LOS	18.7		B	20.3		C	49.1		D	69.7		E
Intersection Delay, s/veh / LOS	33.9						C					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	2.9	C	2.9	C	3.1	C	3.0	C
Bicycle LOS Score / LOS	1.4	A	1.9	A	1.2	A	1.1	A

HCS 2010 Signalized Intersection Results Summary

Phone:
Fax:
E-Mail:

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

Volume
10 Lane

```
% Thrus Left Lane
```

Eastbound
Westbound Northbound

Southbound
L1 L2 L1 L2
L1 L2

Configuration	L	R	TR	L	T
PHE	1.00	1.00	1.00	1.00	1.00
Flow Rate	77	141	455	135	283
$\%$ Heavy Veh	0	0	0	0	0
No. Lanes		2		1	2
Opposing-Lanes	0	2	1		
Conflicting-lanes	2	2	2		
Geometry group		1	$3 b$	5	

Geometry group
Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rates:

hRT-adj
hHV-adj
hadj, computed
-0.6
$1.7 \quad-0.6$
$1.7 \quad 1.7$
$\begin{array}{lllll}0.2 & -0.6 & -0.1 & 0.5 & 0.0\end{array}$

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2
77	141	455		135	283
3.20	3.20	3.20	3.20	3.20	3.20
0.07	0.13	0.40		0.12	0.25
6.22	5.41	5.32		6.15	5.64
0.133	0.212	0.673		0.231	0.444
2.0		2.0		2.3	
4.2	3.4	3.3		3.8	3.3

Eastbound	Westbound	Northbound	Southbound				
L1	L2	L1	L2	L1	L2	L1	L2

Elow Rate
Service Time Utilization, x
Dep. headway, hd
Capacity
95\% Queue Length
Delay
LOS
Approach:
Delay
LOS

77	141	455
4.2	3.4	3.3
0.133	0.212	0.673
6.22	5.41	5.32
592	671	679
0.5	0.8	5.9
10.2	9.9	19.1
B	A	C

$\begin{array}{lllll}4.2 & 3.4 & 3.3 & 3.8 & 3.3\end{array}$
$\begin{array}{lllll}0.133 & 0.212 & 0.673 & 0.231 & 0.444\end{array}$
$\begin{array}{lllll}6.22 & 5.41 & 5.32 & 6.15 & 5.64\end{array}$

592	671	679	587

$\begin{array}{lllll}0.5 & 0.8 & 5.9 & 0.9 & 2.4\end{array}$
$\begin{array}{lllll}10.2 & 9.9 & 19.1 & 10.7 & 12.8\end{array}$
B A C
135283

Southbound L1	
	L2
135	283
3.8	3.3
0.231	0.444
6.15	5.64
587	643
0.9	2.4
10.7	12.8
B	B

 \(10.0-\quad 19.1\)
 12.1
 A
 C
 B
 Intersection Delay 14.6
Intersection LOS B

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/17
Analysis Time Period: 4:00-5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Calle Mayor
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad
 \% Thrus Left Lane

	Eastbound L1 L2	Westbound		Northbound		Southbound	
Configuration		L	R	TR		L	T
PHF		1.00	1.00	1.00		1.00	1.00
Flow Rate		63	62	361		92	337
\% Heavy Veh		0	0	0		0	0
No. Lanes							
Opposing-Lanes							
Conflicting-lanes							
Geometry group							

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Elow Rates:
Total in Lane $\begin{array}{llll}63 & 62 & 361 & 92\end{array}$
Left-Turn

63	0	0	92

Right-Turn
Prop. Left-Turns
Prop. Right-Turns
$0 \quad 62 \quad 51$
920
00
$\begin{array}{lllll}1.0 & 0.0 & 0.0 & 1.0 & 0.0\end{array}$
$\begin{array}{lllll}0.0 & 1.0 & 0.1 & 0.0 & 0.0\end{array}$
$\begin{array}{lllll}0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}$ 1

3b
5
Geometry Group
Adjustments Exhibit 17-33:
hLT-adj
0.2
0.2
0.5
hRT-adj
hHV-adj
hadj, computed
-0.6
$1.7-0.6$
1.7
-0.7
1.7
$\begin{array}{lllll}0.2 & -0.6 & -0.1 & 0.5 & 0.0\end{array}$

Worksheet 4 - Departure Headway and Service Time \qquad

	Eastbound		Westbound		Northbound		Southbound	
Elow rate			63	62	361	L2	92	12 337
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial			0.06	0.06	0.32		0.08	0.30
hd, final value			5.95	5.14	5.06		5.70	5.20
x, final value			0.104	0.088	0.508		0.146	0.487
Move-up time, m				0				3
Service Time			3.9	3.1	3.1		3.4	2.9
Worksheet 5 - Capacity and Level of Service								
	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate			63	62	361		92	337
Service Time			3.9	3.1	3.1		3.4	2.9
Utilization, x			0.104	0.088	0.508		0.146	0.487
Dep. headway, hd			5.95	5.14	5.06		5.70	5.20
Capacity			630	689	708		613	688
95\% Queue Length			0.3	0.3	3.0		0.5	2.8
Delay			9.6	8.6	13.3		9.4	12.8
LOS			A	A	B		A	B
Approach:								
Delay			9.1		13.3		12.1	
LOS			A		B		B	
Intersection Delay	12.1		Intersection LOS B					

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:
\qquad ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:30-8:30 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	1	bo			bo			thb			h	
	1 L	T	R	L	T	R	L	T	R	L	T	R
	1											
Volume	$1 \overline{79}$	145	7	4	189	149	72	179	21	65	94	

```
% Thrus Left Lane
```

	Eastbound		Westbound		Northbound L1		L2

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rates:					
Total in Lane	301	382	272	65	128
Left-Turn	79	44	72	65	0
Right-Turn	77	149	21	0	34
Prop. Left-Turns	0.3	0.1	0.3	1.0	0.0
Prop. Right-Turns	0.3	0.4		0.1	0.0
Prop. Heavy Vehicle0.0		0.0	2	0.0	0.3
Geometry Group	2			$4 a$	0.0
Adjustments Exhibit $17-33:$	0.2		0.2		0.2

hRT-adj	-0.6	-0.6		-0.6
hHV-adj	1.7	1.7	1.7	-0.7
hadj, computed	-0.1	-0.2	0.0	0.5

\qquad Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow rate	301		382		272		65	128
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.27		0.34		0.24		0.06	0.11
hd, final value	6.17		5.91		6.61		7.75	7.04
x, final value	0.516		0.627		0.500		0.140	0.250
Move-up time, m								3
Service Time	4.2		3.9		4.6		5.4	4.7

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Flow Rate	301	382	272	65	128
Service Time	4.2	3.9	4.6	5.4	4.7
Utilization, x	0.516	0.627	0.500	0.140	0.250
Dep. headway, hd	6.17	5.91	6.61	7.75	7.04
Capacity	579	606	544	464	512
95\% Queue Length	3.1	4.8	2.9	0.5	1.0
Delay	15.7	18.7	16.2	11.7	12.1
LOS	C	C	C	B	B

Approach:

Delay	15.7
LOS	C

$18.7 \quad 16.2$
C C
12.0

B
Intersection Delay 16.2
Intersection LOS C

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Eax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 4:00 - 5:00 P.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Vista Montana
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound
	L1	L2	L1	L2	L1	L2	L1

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
L1	L2	L1	L2	L1	L2	L1	L2

Elow Rates:					
Total in Lane	129	327	175	69	218
Left-Turn	40	38	10	69	0
Right-Turn	10	216	17	0	53
Prop. Left-Turns	0.3	0.1	0.1	1.0	0.0
Prop. Right-Turns	0.1	0.7	0.1	0.0	0.2
Prop. Heavy Vehicle 0.0	2	0.0		0.0	0.0
Geometry Group	2			$4 a$	0.0
Adjustments Exhibit $17-33:$	0.2		0.2		0.2

hRT-adj	-0.6	-0.6	-0.6	-0.7
hHV-adj	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.4	-0.0

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	129		327		175		69	218
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.11		0.29		0.16		0.06	0.19
hd, final value	5.77		5.06		5.72		6.53	5.85
x, final value	0.20		0.459		0.278		0.125	0.354
Move-up time, m	2.0		2.0		2.0			
Service Time	3.8		3.1		3.7		4.2	3.6

	Eastbound	Westbound	Northbound	Southbound	
	L1 L2	L1 L2	L1 L2	L1	L2
Flow Rate	129	327	175	69	218
Service Time	3.8	3.1	3.7	4.2	3.6
Utilization, x	0.207	0.459	0.278	0.125	0.354
Dep. headway, hd	5.77	5.06	5.72	6.53	5.85
Capacity	614	711	625	531	623
95\% Queue Length	0.8	2.5	1.1	0.4	1.6
Delay	10.3	12.3	10.9	10.2	11.8
LOS	B	B	B	B	B
Approach:					
Delay	10.3	12.3	10.9		. 4
LOS	B	B	B	B	
Intersection Delay	11.5	Intersect	LOS B		

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Eax:
E-Mail:
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative AM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
___ Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

\% Thrus Left Lane

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Duration, T 1.00 hrs.

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.3	-0.7	0.0	-0.7	0.3
-0.7	0.4	-0.7			

\qquad Worksheet 4 - Departure Headway and Service Time \qquad

| | Eastbound | | Westbound | | Northbound | | Southbound | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 |
| Flow rate | 194 | 5 | 133 | 107 | 23 | 14 | 15 | 41 |
| hd, initial value | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 |
| X, initial | 0.17 | 0.00 | 0.12 | 0.10 | 0.02 | 0.01 | 0.01 | 0.04 |
| hd, final value | 5.21 | 4.23 | 4.94 | 4.21 | 5.88 | 4.87 | 5.95 | 4.85 |
| x, final value | 0.281 | 0.006 | 0.182 | 0.125 | 0.038 | 0.019 | 0.025 | 0.055 |
| Move-up time, m | | 2.3 | | 2.3 | | 2.3 | 2.3 | |
| Service Time | 2.9 | 1.9 | 2.6 | 1.9 | 3.6 | 2.6 | 3.7 | 2.6 |

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow Rate	194	5	133	107	23	14	15	41
Service Time	2.9	1.9	2.6	1.9	3.6	2.6	3.7	2.6
Utilization, x	0.281	0.006	0.182	0.125	0.038	0.019	0.025	0.055
Dep. headway, hd	5.21	4.23	4.94	4.21	5.88	4.87	5.95	4.85
Capacity	693	500	739	823	575	700	750	683
95\% Queue Length	1.2	0.0	0.7	0.4	0.1	0.1	0.1	0.2
Delay	9.9	7.0	8.7	7.5	8.8	7.7	8.8	7.8
LOS	A	A	A	A	A	A	A	A
Approach:								
Delay	9.9		8.2		8.4		8.1	
LOS	A		A		A		A	
Intersection Delay	8.8		Intersection LOS A					

```
HCS+: Unsignalized Intersections Release 5.6
```

Phone:
Fax:
E-Mail:
\qquad
Analyst:
Agency/Co.: KHR Associates
Date Performed: 11/15/2017
Analysis Time Period: 7:45-8:45 A.M.
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID: Cumulative PM Peak Hour
East/West Street: Newton Street
North/South Street: Madison Street
\qquad Worksheet 2 - Volume Adjustments and Site Characteristics \qquad

	Eastbound			Westbound			Northbound			Southbound		
	1 L	T	R	L	T	R	L	T	R	L	T	R
	1											
Volume	157	123	12	8	171	28		18	2	38	16	153

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT	R	LT	R	LT	R	LT	R
PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Elow Rate	180	12	189	28	34	2	54	153
\% Heavy Veh	0	0	0	0	0	0	0	0
No. Lanes								2
Opposing-Lanes						2		2
Conflicting-lanes								2
Geometry group						5		5
Duration, T 1.00	hrs							

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound				
L1	L2	L1	L2	L1	L2	L1	L2

Elow Rates:

Total in Lane 180	12	189	28	34	2	54	153
Left-Turn 57	0	18	0	16	0	38	0
Right-Turn 0	12	0	28	0	2	0	153
op. Left-Turns 0.3	0.0	0.1	0.0	0.5	0.0	0.7	0.0
op. Right-Turns 0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0
op. Heavy Vehicle0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ometry Group	5				5		5
justments Exhibit 17-33:							
hLT-adj	0.5				0.5		0.5

hRT-adj	-0.7		-0.7	-0.7	-0.7
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	0.2	-0.7	0.0	-0.7	0.2

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad -

| | Eastbound | | Westbound | | Northbound | | Southbound | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 |
| Flow rate | 180 | 12 | 189 | 28 | 34 | 2 | 54 | 153 |
| hd, initial value | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 |
| x, initial | 0.16 | 0.01 | 0.17 | 0.02 | 0.03 | 0.00 | 0.05 | 0.14 |
| hd, final value | 5.50 | 4.65 | 5.37 | 4.63 | 6.02 | 5.09 | 5.94 | 4.89 |
| x, final value | 0.275 | 0.015 | 0.282 | 0.036 | 0.057 | 0.003 | 0.089 | 0.208 |
| Move-up time, m | | 2.3 | | 2.3 | | 2.3 | 2.3 | |
| Service Time | 3.2 | 2.3 | 3.1 | 2.3 | 3.7 | 2.8 | 3.6 | 2.6 |

\qquad Worksheet 5 - Capacity and Level of Service \qquad

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Elow Rate	180	12	189	28	34	2	54	153
Service Time	3.2	2.3	3.1	2.3	3.7	2.8	3.6	2.6
Utilization, x	0.275	0.015	0.282	0.036	0.057	0.003	0.089	0.208
Dep. headway, hd	5.50	4.65	5.37	4.63	6.02	5.09	5.94	4.89
Capacity	643	600	675	700	567	0	600	729
95\% Queue Length	1.1	0.0	1.2	0.1	0.2	0.0	0.3	0.8
Delay	10.3	7.4	10.2	7.5	9.1	7.8	9.2	8.9
LOS	B	A	B	A	A	A	A	A
Approach:								
Delay	10.1		9.8		9.0		9.0	
LOS	B		A		A		A	
Intersection Delay	9.6		Intersection LOS A					

HCS 2010 Signalized Intersection Results Summary

HCS 2010 Signalized Intersection Results Summary

[^0]: A Land Use Element, City of Torrance General Plan, City of Torrance, April 2010.

[^1]: ${ }^{\text {B }}$ City of Torrance General Plan - Circulation and Infrastructure Element, Adopted April 6, 2010.
 ${ }^{\text {c }}$ HCS+, Release 6.50, McTrans Center, University of Florida, 2010.

[^2]: ${ }^{\text {D }}$ Trip Generation, $10^{\text {th }}$ Edition, Institute of Transportation Engineers

[^3]: ${ }^{\text {E }}$ Trip Generation, Volume 2 of $3,10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017

[^4]: ${ }^{1}$ Includes Annual Growth Rate of 1 Percent per Year for 2 More Years
 ${ }_{3}^{2}$ Project Related Trips Per Trip Distribution and Turn Movement Restrictions and Opportunities
 ${ }^{3}$ Includes Planned Capital Improvements
 ${ }^{4}$ Includes Project Related Improvements

[^5]: ${ }^{F}$ Caltrans Highway Design Manual, $6{ }^{\text {th }}$ Ed., November 2017

[^6]: * Denotes Critical Movement
 ** Right Turn Volumes Added to Through Movements
 *** Left Turn Volumes Added to Through Movements

[^7]: * Denotes Critical Movement
 ** Right Turn Volumes Added to Through Movements
 *** Left Turn Volumes Added to Through Movements

[^8]: * Denotes Critical Movement
 ** Right Turn Volumes Added to Through Movements

[^9]: Copyright 02017 University of Florida, All Rights Reserved. HCS7 ${ }^{\text {th }}$ Streets Version 7.2

[^10]: Copyright 02017 University of Florida, All Rights Reserved.
 HCS7 ${ }^{\text {TW }}$ Streets Version 7.2
 Genorated. 8/23/2017 10:52:08 AM

[^11]: Copyright 2017 University of Florida, All Rights Reserved. HCS7 ${ }^{\text {mm }}$ Streets Version 7.2
 Generated. $8 / 28 / 2017$ 10.57.51 AM

[^12]: Copyright 2017 University of Florida, All Rights Reserved.

[^13]: Copyright $@ 2019$ University of Florida, All Rights Reservat. HCS 2010 ${ }^{\text {Th }}$ Streets Version 6.80

[^14]: Copyright © 2019 University of Florida, All Rights Reservert. HCS 2010 ${ }^{\text {tu }}$ Streets Version 6.80

[^15]: Copyright© 2019 University of Florida. All Rights Reserved.
 HCS 2010 ${ }^{\text {Tu }}$ Streets Version

[^16]: Copyright@ 2019 University of
 HCS 2010 ${ }^{\text {TM }}$ Streets Version 6.30

[^17]: copyrioht 2019 Univargity of Florida, All Rights Reserved
 HCS 2010 Streets Varano 680

[^18]: Copyright © 2019 University of Florida, All Rights Reserved.

[^19]: Copyright © 2019 University of Florida, All Rights Reserved. HCS 2010 ta ${ }^{\text {Th }}$ Streets Version 6.80

[^20]: Copyright © 2019 University of Florida, All Rights Reserved. HCS 2010 ${ }^{\text {TM }}$ Streets Version 6.80

[^21]: HCS 2010 ${ }^{\text {TM }}$ Streets Version 6.80

[^22]: Copyright () 2019 University of Florida, All Rights Reserved. HCS 2010 mi Streets Version 6.80

[^23]: opyright © 2019 University of Florida, All Rights Reserved. HCS 2010 ta Streets Version 6.80

[^24]: Copyright 2017 University of Florida, All Rights Reserved

[^25]: Copyright 2017 University of Florida, All Rights Reserved.

[^26]: 2018 University of Florida All Rights Reserved

