Appendix J: SWMPP

City of Escondido PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

Nutmeg Homes Resolution No. SUB18-0005 Case No. ADM XX-XXXX/ENV XX-XXXX

> 2401 NUTMEG STREET ESCONDIDO, CA 92026

ASSESSOR'S PARCEL NUMBER(S): APN 224-260-23, 224-260-46, 224-260-47

ENGINEER OF WORK:

ROBERT D. DENTINO, RCE: 45629

PREPARED FOR: Developer ADJ HOLDINGS, LLC

Owner Listed:

PDP SWQMP PREPARED BY:

EXCEL ENGINEERING

440 STATE PLACE ESCONDIDO, CA 92029 PH: 760-745-8118 FAX: 760-745-8134

DATE OF SWQMP: JUNE 15, 2018

DATE OF SWQMP REVISION: JANUARY 31, 2019

PLANS PREPARED BY: ROBERT D. DENTINO [440 STATE PLACE] ESCONDIDO, CA 92029 760-745-8118 SWQMP APPROVED BY:

APPROVAL DATE:

This page was left intentionally blank.

TABLE OF CONTENTS

TABLE OF CO	NTENTS	iv
ATTACHMENT	S	.v
ACRONYMS		.v
PDP SWQMP	PREPARER'S CERTIFICATION PAGE	vi
SUBMITTAL R	ECORD v	ίij
PROJECT VIC	INITY MAP	ix
Step 1: Proj	ect type determination (Standard or Priority Development Project) (Form I-2a)	1
Step 1.1:	Storm Water Quality Management Plan requirements	4
Step 1.2:	Exception to PDP definitions	4
Step 2: Con	struction Storm Water BMPs	5
Step 3: City	of Escondido PDP SWQMP Site Information Checklist (Form I-2a)	6
Step 3.1:	Description of Existing Site Condition	6
Step 3.2:	Description of Existing Site Drainage Patterns	7
Step 3.3:	Description of Proposed Site Development	8
Step 3.4:	Description of Proposed Site Drainage Patterns	9
Step 3.5:	Potential Pollutant Source Areas1	0
Step 3.6:	Identification and Narrative of Receiving Water and Pollutants of Concern1	1
Step 3.7:	Hydromodification Management Requirements1	2
Step 3.7.1:	Critical Coarse Sediment Yield Areas*1	3
Step 3.7.2:	Flow Control for Post-Project Runoff*1	4
Step 3.8:	Other Site Requirements and Constraints1	5
Step 4: Sou	rce Control BMP Checklist (Form I-2b)1	6
Step 5: Site	Design BMP Checklist (Form I-2c)1	8
Step 6: PDF	P Structural BMPs (Form I-3)2	20
Step 6.1:	Description of structural BMP strategy2	20
Step 6.2:	Structural BMP Checklist	22
Step 6.3:	Offsite Alternative Compliance Participation Form	27

ATTACHMENTS

Attachment 1: Backup for PDP Pollutant Control BMPs Attachment 1a: Form I-4, Storm Water Pollutant Control Worksheet Calculations Attachment 1b: Form I-5, Categorization of Infiltration Feasibility Condition Attachment 1c: Form I-6, Factor of Safety and Design Infiltration Rate Worksheet Attachment 1d: Drainage Management Area (DMA) Exhibit Attachment 1e: Individual Structural BMP DMA Mapbook Attachment 2: Backup for PDP Hydromodification Control Measures Attachment 2a: Flow Control Facility Design Attachment 2b: Hydromodification Management Exhibit Attachment 2c: Management of Critical Coarse Sediment Yield Areas Attachment 2d: Geomorphic Assessment of Receiving Channels (optional) Attachment 2e: Vector Control Plan (if applicable) Attachment 3: Structural BMP Maintenance Plan Attachment 3a: Structural BMP Maintenance Thresholds and Actions Attachment 3b: Draft Maintenance Agreements / Notifications (when applicable) Attachment 4: City of Escondido PDP Structural BMP Verification Attachment 5: Copy of Plan Sheets Showing Permanent Storm Water BMPs

ACRONYMS

ACP	Alternative Compliance Project
APN	Assessor's Parcel Number
BMP	Best Management Practice
DMA	Drainage Management Area
EOW	Engineer of Work
HMP	Hydromodification Management Plan
HSG	Hydrologic Soil Group
MS4	Municipal Separate Storm Sewer System
N/A	Not Applicable
PDP	Priority Development Project
PE	Professional Engineer
SC	Source Control
SD	Site Design
SDRWQCB	San Diego Regional Water Quality Control Board
SIC	Standard Industrial Classification
SWDM	Storm Water Design Manual
SWQMP	Storm Water Quality Management Plan
WMAA	Watershed Management Area Analysis
WQIP	Water Quality Improvement Plan

PDP SWQMP PREPARER'S CERTIFICATION PAGE

Project Name: Nutmeg Development Permit Application Number:

PREPARER'S CERTIFICATION

I hereby declare that I am the Engineer in Responsible Charge of design of storm water best management practices (BMPs) for this project, and that I have exercised responsible charge over the design of the BMPs as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the PDP requirements of the City of Escondido Storm Water Design Manual, which is a design manual for compliance with the City of Escondido Municipal Code (Chapter 22, Article 2) and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100) requirements for storm water management.

I have read and understand that the City of Escondido has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Design Manual. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by City staff is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

12-31-2020

Engineer of Work's Signature, PE Number & Expiration Date

<u>Robert D. Dentino</u> Print Name

<u>Excel Engineering</u> Company

Date

Engineer's Seal:

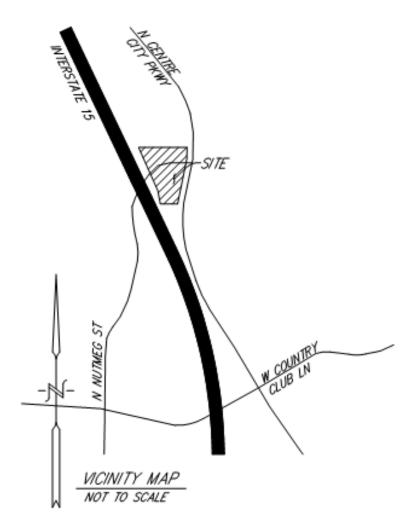
This page was left intentionally blank.

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In column 4 summarize the changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments behind this page.

Submittal Number	Date	Summary of Changes
1	06/15/18	Initial Submittal
2		Second Submittal
3		

Preliminary Design / Planning / CEQA


Final Design	Final Design				
Submittal	Date	Summary of Changes			
Number					
1		Initial Submittal			
2					
3					
4					
5					

Plan Changes

Submittal Number	Date	Summary of Changes
1		Initial Submittal
2		
3		
4		

PROJECT VICINITY MAP

Project Name: NUTMEG STREET Record ID: ADM xx-xxxx / ENV xx-xxxx

Step 1: Project type determination (Standard or Priority Development Project) (Form I-2a)

Project Summary Information				
Project Name	Nutmeg Development			
Project Address	999 N. Broadway Escondido, CA 92026			
Assessor's Parcel Number(s)	APN 224-260-23, 224-260-46, 224-60-47			
Permit Application Number				
Project Watershed (Hydrologic Unit)	Select One: ⊠Carlsbad 904 ⊡San Dieguito 905			
Parcel Area (total area of Assessor's Parcel(s) associated with the project)	7.38 Acres (321483.11 Square Feet)			
Area to be disturbed by the project (Project Area)	7.38 Acres (321483.11 Square Feet)			
Project Proposed Impervious Area (subset of Project Area)	5.69 Acres (248,070.2 Square Feet)			
Project Proposed Pervious Area (subset of Project Area) 1.69 Acres (73,402.57 Square Feet)				
Note: Proposed Impervious Area + Proposed Pervious Area = Area to be Disturbed by the Project. This may be less than the Parcel Area.				
Confirmation of Priority Development Project Determination				
The project is (select one): 🛛 New Development 🗆 Redevelopment ¹				
The total proposed newly created or replaced impervious area is: 248,070.2 ft ²				

¹ Redevelopment is defined as: The creation and/or replacement of impervious surface on an already developed site. Examples include the expansion of a building footprint, road widening, the addition to or replacement of a structure, and creation or addition of impervious surfaces. Replacement of impervious surfaces any activity that is not part of a routine maintenance activity where impervious material(s) are removed, exposing underlying soil during construction. Redevelopment does not include routine maintenance activities, such as trenching and resurfacing associated with utility work; pavement grinding; resurfacing existing roadways; new sidewalks construction; pedestrian ramps; or bike lanes on existing roads; and routine replacement of damaged pavement, such as pothole repair.

Solar energy farms that are not also one of the categories listed in Step 2b of Table 1-1. City staff must also determine that appropriate BMPs are provided to mitigate for downstream impacts due to significant changes to the existing hydrology

Is the	projec	t in ar	ny of the following categories, (a) through (f)?
Yes ⊠	No	(a)	New development projects that create 10,000 square feet or more of impervious surfaces (collectively over the entire project site). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.
Yes	No ⊠	(b)	Redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site on an existing site of 10,000 square feet or more of impervious surfaces). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.
Yes ⊠	No	(c)	 New and redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site), and support one or more of the following uses: (i) Restaurants. This category is defined as a facility that sells prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (Standard Industrial Classification (SIC) code 5812). (ii) Hillside development projects. This category includes development on any natural slope that is twenty-five percent or greater. (iii) Parking lots. This category is defined as a land area or facility for the temporary parking or storage of motor vehicles used personally, for business, or for commerce. (iv) Streets, roads, highways, freeways, and driveways. This category is defined as any paved impervious surface used for the transportation of automobiles, trucks, motorcycles, and other vehicles.
Yes	No ⊠	(d)	New or redevelopment projects that create and/or replace 2,500 square feet or more of impervious surface (collectively over the entire project site), and discharging directly to an Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is conveyed overland a distance of 200 feet or less from the project to the ESA, or conveyed in a pipe or open channel any distance as an isolated flow from the project to the ESA (i.e. not commingled with flows from adjacent lands). <i>Note: ESAs are areas that include but are not limited to all Clean Water Act Section 303(d) impaired water bodies; areas designated as Areas of Special Biological Significance by the State Water Board and San Diego Water Board; State Water Quality Protected Areas; water bodies designated with the RARE beneficial use by the State Water Board and San Diego Water Board; and any other equivalent environmentally sensitive areas which have been identified by the Co-permittees.</i>
Yes	No ⊠	(e)	 New development projects, or redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface, that support one or more of the following uses: (i) Automotive repair shops. This category is defined as a facility that is categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-7534, or 7536-7539. (ii) Retail gasoline outlets (RGOs). This category includes RGOs that meet the following criteria: (a) 5,000 square feet or more or (b) a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.

Yes No	(α)	New development projects, or redevelopment projects that create and/or replace	
	(e)	5,000 square feet or more of impervious surface, that support one or more of the	
		following uses:	
		(iii) Automotive repair shops. This category is defined as a facility that is	
		categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-	
		7534, or 7536-7539.	
		(iv) Retail gasoline outlets (RGOs). This category includes RGOs that meet the	
		following criteria: (a) 5,000 square feet or more or (b) a projected Average	
		Daily Traffic (ADT) of 100 or more vehicles per day.	
Yes No	(f)	New or redevelopment projects that result in the disturbance of one or more acres	
		of land and are expected to generate pollutants post construction.	
		Note: See Storm Water Design Manual Section 1.4.2 for additional guidance.	
 No – the project is <u>not</u> a Priority Development Project (Standard Project). Yes – the project is a Priority Development Project (PDP). Further guidance may be found in Chapter 1 and Table 1-2 of the Storm Water Design Manual.			
The following	ig is io	r redevelopment PDPs only:	
The area of existing (pre-project) impervious area at the project site is:ft² (A) The total proposed newly created or replaced impervious area isft² (B) Percent impervious surface created or replaced (B/A)*100:% The percent impervious surface created or replaced is (select one based on the above calculation): □ less than or equal to fifty percent (50%) – only newly created or replaced impervious areas are considered a PDP and subject to stormwater requirements OR ⊠ greater than fifty percent (50%) – the entire project site is considered a PDP and subject to stormwater requirements			

Step	Answer	Progression
Is the project a Standard Project,	Standard	Standard Project requirements apply, including
Priority Development Project (PDP), or	Project	Standard Project SWQMP.
exception to PDP definitions?	-	Complete Form I-1.
To answer this item, complete Step 1	🖾 PDP	Standard and PDP requirements apply,
Project Type Determination Checklist		including PDP SWQMP.
on Pages 1 and 2, and see PDP exemption information below.		Complete Form I-1.
For further guidance, see Section 1.4 of the Storm Water Design Manual <i>in</i>	□ PDP with	If participating in offsite alternative compliance, complete Step 6.3 and an ACP SWQMP.
its entirety.	ACP	complete step 0.5 and all ACF Swaller.
	D PDP	Go to Step 1.2 below.
	Exemption	

Step 1.1: Storm Water Quality Management Plan requirements

Step 1.2: Exemption to PDP definitions

Is the project exempt from PDP definitions based on either of the following:	If so:
 Projects that are only new or retrofit paved sidewalks, bicycle lanes, or trails that meet the following criteria: Designed and constructed to direct storm water runoff to adjacent vegetated areas, or other non-erodible permeable areas; OR Designed and constructed to be hydraulically disconnected from paved streets or roads [i.e., runoff from the new improvement does not drain directly onto paved streets or roads]; OR Designed and constructed with permeable pavements or surfaces in accordance with County of San Diego Green Streets Infrastructure; 	<u>Standard Project</u> requirements apply, AND <u>any additional requirements</u> <u>specific to the type of</u> <u>project. City concurrence</u> with the exemption is required. <i>Provide</i> <i>discussion and list any</i> <i>additional requirements</i> <i>below in this form.</i>
Projects that are only retrofitting or redeveloping existing paved alleys, streets or roads that are designed and constructed in accordance with the City of Escondido Guidance on Green Infrastructure.	Complete Green Streets PDP Exempt SWQMP.
Discussion / justification, and additional requirements for exceptions to PDP	definitions, if applicable:

Step 2: Construction Storm Water BMPs

Construction storm water BMPs shall be shown on the Grading Plan and (if applicable) included in the Storm Water Pollution Prevention Plan (SWPPP).

Step 3: City of Escondido PDP SWQMP Site Information Checklist (Form I-2a)

Step 3.1: Description of Existing Site Condition

Current Status of the Site (select all that apply): □ Existing development Previously graded but not built out Demolition completed without new construction Agricultural or other non-impervious use ⊠Vacant, undeveloped/natural Description / Additional Information: The project site is an existing vacant lot. There are two directions of flow for this site. The flows north of Nutmeg Street on the Easterly side of the property drain to the North through an existing channel alongside Center City Parkway. There reminder of the site drains to a locations to the southwest either though and existing pipe or as surface flow around to a natural channel. Both the pipe flow and surface flow enter the natural channel in approximately the same location. Vegetation on site is of grasses and shrubs that have grown naturally. Existing Land Cover Includes (select all that apply and provide each area on site): ⊠Vegetative Cover 1.69 Acres (73,403 Square Feet) □Non-Vegetated Pervious Areas Acres (Square Feet) ⊠Impervious Areas 5.69 Acres (248,070 Square Feet) Description / Additional Information: Shrubs and grasses are currently onsite that have grown naturally, a couple trees currently exist on site. Underlying Soil belongs to Hydrologic Soil Group (select all that apply): □NRCS Type A □NRCS Type B ⊠NRCS Type C ⊠NRCS Type D Approximate Depth to Groundwater (GW) (or N/A for no infiltration BMPs): \Box GW Depth < 5 feet \Box 5 feet < GW Depth < 10 feet \boxtimes 10 feet < GW Depth < 20 feet \Box GW Depth > 20 feet

Existing Natural Hydrologic Features (select all that apply): Watercourses Seeps Springs Wetlands None

□Other

Description / Additional Information:

Step 3.2: Description of Existing Site Drainage Patterns

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

(1) Whether existing drainage conveyance is natural or urban;

(2) Is runoff from offsite conveyed through the site? if yes, quantify all offsite drainage areas, design flows, and locations where offsite flows enter the project site, and summarize how such flows are conveyed through the site;

(3) Provide details regarding existing project site drainage conveyance network, including any existing storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels; and

(4) Identify all discharge locations from the existing project site along with a summary of conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Describe existing site drainage patterns:

The project site is an existing vacant lot. There are two directions of flow for this site. The flows north of Nutmeg Street on the Easterly side of the property drain to the North through an existing channel alongside Center City Parkway. There reminder of the site drains to a locations to the southwest either though and existing pipe or as surface flow around to a natural channel. Both the pipe flow and surface flow enter the natural channel in approximately the same location. Vegetation on site is of grasses and shrubs that have grown naturally.

Step 3.3: Description of Proposed Site Development

Project Description / Proposed Land Use and/or Activities:

The project is proposing to install a high density residential area

The Hydromodification and Water Quality system proposed for this project is a bio-filtration basin located on North side of the project adjacent to the natural drainage outflow of the site. This system detains runoff in the basin surface and also the underdrain reservoir, filters the water quality flows through plant roots and a biologically active soil mix, and then releases it into the existing stormdrain system which currently collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all continuously simulated storms based on the historical data collected from the Escondido rain gage.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

Impervious features of the project includes: buildings, asphalt parking lot, concrete sidewalks, concrete driveways, concrete ribbon gutter, concrete curbs and concrete gutters.

List/describe proposed pervious features of the project (e.g., landscape areas):

Pervious features of the project includes: landscape areas and bio-filtration basins.

Does the project include grading and changes to site topography?

⊠Yes

□No

Description / Additional Information:

The existing site is lower than the street of Nutmeg, and it is proposed to fill the area and bring the surface of the site higher than Nutmeg Street and create drainage patterns that mimick existing conditions.

The project proposes eleven drainage management areas (DMA) to two points of compliance. The total area of those DMAs are approximately 7.38 acres. Two points of compliance (POC) are analyzed for both pre-development and mitigated post-development conditions. These POCs are labeled as POC 1 and, POC 2:

- DMAs (1, 3, 5-11) drains to POC 1 (Southwest corner)
- DMA-2 and DMA 4 drain to POC-2 (Northeast corner)

Insert acreage or square feet for the different land cover types in the table below:

Change in Land Cover Type Summary				
Land Cover Type	Existing	Proposed	Percent	
	(acres or ft ²)	(acres or ft ²)	Change	
Vegetation	295,125	73,403	- 75%	
Pervious (non-vegetated)	N/A	N/A	N/A	
Impervious	26,347	248,070	+941%	

Description of Proposed Site Drainage Patterns

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)?

⊠Yes

□No

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre- and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Describe proposed site drainage patterns:

Drainage and the introduction of water quality facilities is challenging given that the site is very flat and currently all surface runoff drains overland to the street or to an offsite brow ditch. Additional challenges are present due to poor infiltration rates.

Wastes generated by impervious areas are anticipated. These include, but are not limited to the following: oil spills, nutrients, metals, oxygen demanding substances, trash, and fertilizer. Runoffs will be conveyed across the site by concrete ribbon gutters, curb and gutter or roof drains to the proposed bio-filtration facilities. The bio-filtration facilities will treat the runoff and remove pollutants. Modular Wetland is proposed to treat parts of the public street

Step 3.4: Potential Pollutant Source Areas

Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply).

- \boxtimes On-site storm drain inlets
- \Box Interior floor drains and elevator shaft sump pumps
- \Box Interior parking garages
- Need for future indoor & structural pest control
- ⊠Landscape/Outdoor Pesticide Use
- \Box Pools, spas, ponds, decorative fountains, and other water features
- □ Food service
- \boxtimes Refuse areas
- □ Industrial processes
- ⊠Outdoor storage of equipment or materials
- □Vehicle and Equipment Cleaning
- □Vehicle/Equipment Repair and Maintenance
- □Fuel Dispensing Areas
- □Loading Docks
- \boxtimes Fire Sprinkler Test Water
- □ Miscellaneous Drain or Wash Water
- \boxtimes Plazas, sidewalks, and parking lots
- \Box Other (provide description)
- Description / Additional Information:

Step 3.5: Identification and Narrative of Receiving Water and Pollutants of Concern

Describe flow path of storm water from the project site discharge location(s), through urban storm conveyance systems as applicable, to receiving creeks, rivers, and lagoons as applicable, and ultimate discharge to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable):

Low flows capture in the proposed bio-filtration facilities will drain through a pipe to the closest existing storm drain system located on the northwest side corner of the interception of North Broadway and Lincoln Avenue. Peak flow will be release to the existing street curb and gutter through under sidewalk drainage facilities for basin along Lincoln Avenue. Peak flows for Basins along south side of the property will be release as the basins over top and drain to the existing concrete ditch to the south of the property.

List any 303(d) impaired water bodies² within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

303(d) Impaired Water Body	Pollutant(s)/Stressor(s)	TMDLs / WQIP Highest Priority Pollutant
Escondido Creek	DDT, Enterococcus, Fecal Coliform, Manganese, Phosphate, Selenium,	N/A
Escondido Creek	Sulfates, Total Dissolved Solids, Total Nitrogen as N, Toxicity	N/A

Identification of Project Site Pollutants*

*Identification of project site pollutants below is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs. Note the project must also participate in an alternative compliance program (unless prior lawful approval to meet earlier PDP requirements is demonstrated).

Identify pollutants expected from the project site based on all proposed use(s) of the site (see Storm Water Design Manual Appendix B.6):

Pollutant	Not Applicable to the Project Site	Anticipated from the Project Site	Also a Receiving Water Pollutant of Concern
Sediment	Х		
Nutrients	Х		
Heavy Metals		X	
Organic Compounds		x	
Trash & Debris		x	
Oxygen Demanding			
Substances		X	
Oil & Grease		x	
Bacteria & Viruses	Х		

² The current list of Section 303(d) impaired water bodies can be found at <u>http://www.waterboards.ca.gov/water_issues/programs/water_quality_assessment/#impaired</u>

	Pesticides	x						
(Step 3.6: Hydromodification Management Requirements							
	Do hydromodification m Design Manual)?	anagement requirement	s apply (see Section 1.6	of the Storm Water				
	☑Yes, hydromodification management requirements for flow control and preservation of critical coarse sediment yield areas are applicable.							
	□No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.							
	□No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete-lined all the way from the point of discharge to water storage reservoirs, lakes,							
	 enclosed embayments, or the Pacific Ocean. No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA³ for the watershed in which the project resides. 							
	Description / Additional	Information (to be provid	ded if a 'No' answer has b	een selected above):				

³The Watershed Management Area Analysis (WMAA) is an optional element for inclusion in the Water Quality Improvement Plans (WQIPs) described in the 2013 MS4 Permit [Provision B.3.b.(4)]. It is available online at the Project Clean Water website: http://www.projectcleanwater.org/index.php?option=com_content&view=article&id=248

Step 3.6.1:	
	Section only required if hydromodification management requirements apply
	the maps provided within the WMAA, do potential critical coarse sediment yield areas the project drainage boundaries?
⊠No, no	o critical coarse sediment yield areas to be protected based on WMAA maps
lf yes, have performed	e any of the optional analyses presented in Section 6.2 of the manual been
6.2.1 Ve	rification of GLUs (classification that provides an estimate of sediment yield based of , hillslope, and land cover) Onsite
6.2.3 Op No optio	ownstream Systems Sensitivity to Coarse Sediment otional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite onal analyses performed, the project will avoid critical coarse sediment yield areas d based on WMAA maps
No critic Critical c protectic Critical c manage	analyses were performed, what is the final result? al coarse sediment yield areas to be protected based on verification of GLUs onsite. coarse sediment yield areas exist but additional analysis has determined that on is not required. Documentation attached in Attachment 8 of the SWQMP. coarse sediment yield areas exist and require protection. The project will implement ment measures described in Sections 6.2.4 and 6.2.5 as applicable, and the areas tified on the SWQMP Exhibit.
Discussior	n / Additional Information:

Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply

List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.

The project has 4 POCs: POC 1 is on the Northwest far end of the project; runoff conveys at an existing curb & gutter and continue on its existing flow path. POC 2 is on the Southeast far end of the project where runoff conveys to an existing basin located adjacent to the westbound SR-78. POC 3 is located to the Southwest corner of the project where runoff conveys to an existing concrete ditch that runs west parallel to SR-78. POC 4 is located on the Northeast corner of the project where runoff conveys at an existing curb & gutter and continue on its existing flow path.

Has a geomorphic assessment been performed for the receiving channel(s)?

 \boxtimes No, the low flow threshold is 0.1Q2 (default low flow threshold)

 \Box Yes, the result is the low flow threshold is 0.1Q2

 \Box Yes, the result is the low flow threshold is 0.3Q2

 \Box Yes, the result is the low flow threshold is 0.5Q2

If a geomorphic assessment has been performed, provide title, date, and preparer:

Discussion / Additional Information: (optional)

Step 3.7: Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

Constraints that influences storm water management designs are that there is no fall to facilities that currently accept drainage from the site. All runoff drains overland, north to Lincoln Ave or overland south to a concrete ditch located off site in Caltrans right of way. To drain directly to the ditch would require construction of drainage facilities within Caltrans right of way.

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

Step 4: Source Control BMP Checklist (Form I-2b)

Step 4. Source control BMP Checklist (Polini					
Source Control BMPs	0.4.1				
All development projects must implement source control BMPs 4. applicable and feasible. See Chapter 4.2 and Appendix E of the C Manual for information to implement source control BMPs shown checklists serve as guides only. Mark what elements are included Water Design Manual Chapter 4 and Appendix E for more information appropriate BMPs for your project.	City Storm in this che d in your p	Water De cklist. The roject. Se	sign e following ee Storm		
 Answer each category below pursuant to the following: "Yes" means the project will implement the source control 4.2 and/or Appendix E of the City Storm Water Design Ma is not required. "No" means the BMP is applicable to the project but it is not required. 	inual. Disc	ussion / jı	ustification		
 "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor 					
materials storage areas). Discussion / justification must be	e provided.		0		
Source Control Requirement SC-1 Prevention of Illicit Discharges into the MS4	⊠Yes	Applied			
	⊠ res				
 Direct irrigation water away from impervious surfaces Direct vehicle wash water away from impervious surfaces Other: 					
Discussion / justification if SC-1 not implemented:					
SC-2 Storm Drain Stenciling or Signage	⊠Yes	□No	□N/A		
 Stencil or stamp storm drains with anti-dumping message Post signs prohibiting illegal dumping Other 					
Discussion / justification if SC-2 not implemented:					
SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□Yes	□No	⊠N/A		
 Store materials inside a covered enclosure Direct runoff from downspouts and roofs away from storag Other 	ge areas				
Discussion / justification if SC-3 not implemented:					

SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□Yes	□No	⊠N/A			
 Locate work area away from storm drains or catch basins Work over impermeable surfaces where spills and pollutants can be captured and removed 						
Discussion / justification if SC-4 not implemented:						
SC-5 Protect Trash Storage Areas from Rainfall, Run-On, ⊠Yes □No □N/A Runoff, and Wind Dispersal						
Locate trash containers in a roofed, walled enclosure						
Locate trash containers away from storm drains						
Discussion / justification if SC-5 not implemented:						
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants (must answer for each source listed below):						
A. On-site storm drain inlets	⊠Yes	□No	□N/A			
□ B. Interior floor drains and elevator shaft sump pumps	□Yes	□No	⊠N/A			
□ C. Interior parking garages	□Yes	□No	⊠N/A			
D. Need for future indoor & structural pest control	⊠Yes	□No	□N/A			
E. Landscape/outdoor pesticide use	⊠Yes	□No	□N/A			
F. Pools, spas, ponds, fountains, and other water features	□Yes	□No	⊠N/A			
□ G. Food service	□Yes	□No	⊠N/A			
□ H. Refuse areas	⊠Yes	□No	□N/A			
I. Industrial processes	□Yes	□No	⊠N/A			
□ J. Outdoor storage of equipment or materials	□Yes	□No	⊠N/A			
□ K. Vehicle and equipment cleaning	□Yes	□No	⊠N/A			
□ L. Vehicle/equipment repair and maintenance	□Yes	□No	⊠N/A			
□ M. Fuel dispensing areas	□Yes	□No	⊠N/A			
N. Loading docks	□Yes	□No	⊠N/A			
O. Fire sprinkler test water	⊠Yes	□No	□N/A			
P. Miscellaneous drain or wash water	□Yes	□No	⊠N/A			
\Box Q. Plazas, sidewalks, and parking lots \Box Yes \Box No \Box N/A						
Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff						

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

Note: Show all source control measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

Step 5: Site Design BMP Checklist (Form I-2c)

Step 5. Site Design DMP Checklist (Form F2C)	/		
Site Design BMPs		<u> </u>	
All development projects must implement site design BMPs SD-A applicable and feasible. See Chapter 4.3 and Appendix E of the C Manual for information to implement site design BMPs shown in t checklists serve as guides only. Mark what elements are included Water Design Manual Chapter 4 and Appendix E for more informa appropriate BMPs for your project.	City Storm his checkli d in your p	Water Des st. The fol roject. Se	sign Iowing ee Storm
 Answer each category below pursuant to the following: "Yes" means the project will implement the site design BN and/or Appendix E of the City Storm Water Design Manua not required. 	I. Discussi	on / justifi	cation is
 "No" means the BMP is applicable to the project but it is n 	ot feasible	to implen	nent.
Discussion / justification must be provided.			
 "N/A" means the BMP is not applicable at the project site include the feature that is addressed by the BMP (e.g., the 	e project si	te has no	
natural areas to conserve). Discussion / justification must	be provide		0
Site Design Requirement SD-1 Maintain Natural Drainage Pathways and Hydrologic			
Features	□Yes	□No	⊠N/A
 Maintain existing drainage patterns 			
SD-2 Conserve Natural Areas, Soils, and Vegetation	□Yes	□No	⊠N/A
 Preserve trees (see Zoning Code Art. 55 Grading & Erosic Regulations) Avoid sensitive areas such as wetlands and waterways 			
Discussion / justification if SD-2 not implemented:			
Existing paved parking lot and structures. No natural areas, soils	or vegetat	ion.	
SD-3 Minimize Impervious Area	⊠Yes	□No	□N/A
Install parking and driving aisles to minimum width require			
Discussion / justification if SD-3 not implemented:			

			1
SD-4 Minimize Soil Compaction	□Yes	□No	⊠N/A
Avoid compaction in planned landscaped spaces			
Till and amend soil for improved infiltration capacity			
Discussion / justification if SD-4 not implemented:			
Existing paved parking lot and structures. Soil is already compa	acted.		
SD-5 Impervious Area Dispersion	⊠Yes	□No	□N/A
 Drain rooftops, roads or sidewalks into adjacent landsca 			
 Drain impervious surfaces through pervious areas 	pe areas		
Discussion / justification if SD-5 not implemented:			
SD-6 Runoff Collection		⊠Yes	
Discussion / justification if SD-6 not implemented:	⊠Yes	□No	□N/A
SD-7 Landscaping with Native or Drought Tolerant Species	1		
Discussion / justification if SD-7 not implemented:	⊠Yes	□No	□N/A
OD O Hanna attica and Halian Duraticitation			
SD-8 Harvesting and Using Precipitation			
Discussion / justification if SD-8 not implemented:	□Yes	⊠No	□N/A
Hervest and rayse is not feesible per Werksheet D.9.1			
Harvest and reuse is not feasible per Worksheet B.3-1. See Attachment 1a for calculations			
	1		

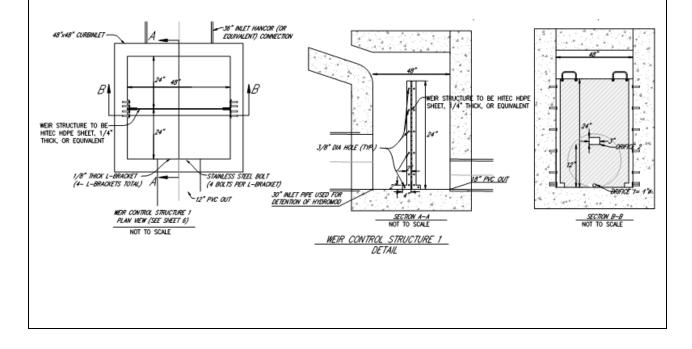
Note: Show all site design measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

Step 6: PDP Structural BMPs (Form I-3)

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the Storm Water Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the Storm Water Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the City at the completion of construction. This may include requiring the project owner or project owner's representative and engineer of record to certify construction of the structural BMPs (see Section 8.2.3.2 of the Storm Water Design Manual). PDP structural BMPs must be maintained into perpetuity, and the City must confirm the maintenance (see Section 7 of the Storm Water Design Manual).

Use this section to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (Step 6.2) for each structural BMP within the project (copy the BMP summary information sheet [Step 6.2] as many times as needed to provide summary information for each individual structural BMP).


Step 6.1: Description of structural BMP strategy

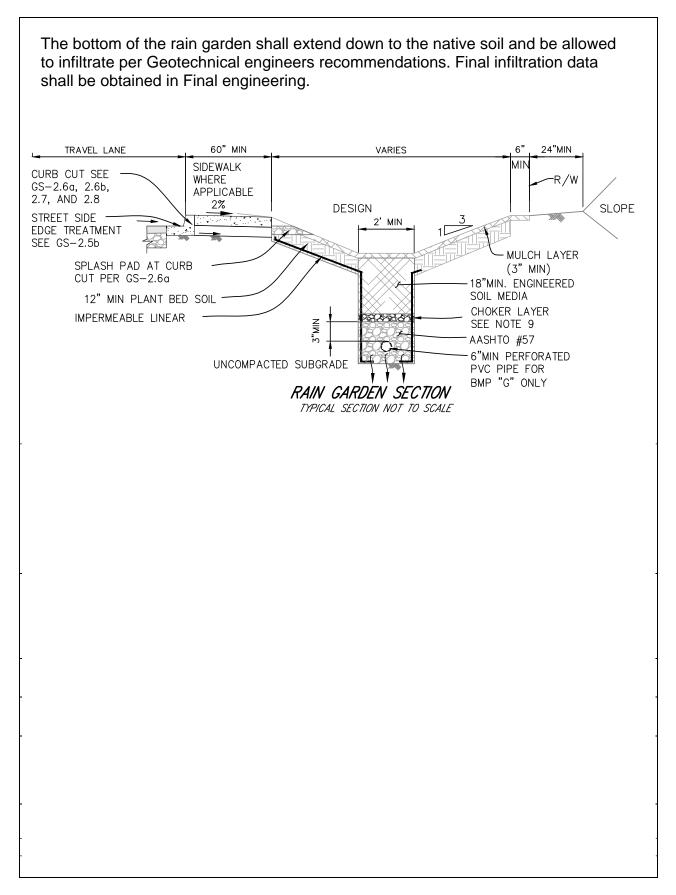
Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the Storm Water Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate. At the end of this discussion provide a summary of all the structural BMPs within the project including the type and number.

(Continue on following page as necessary.)

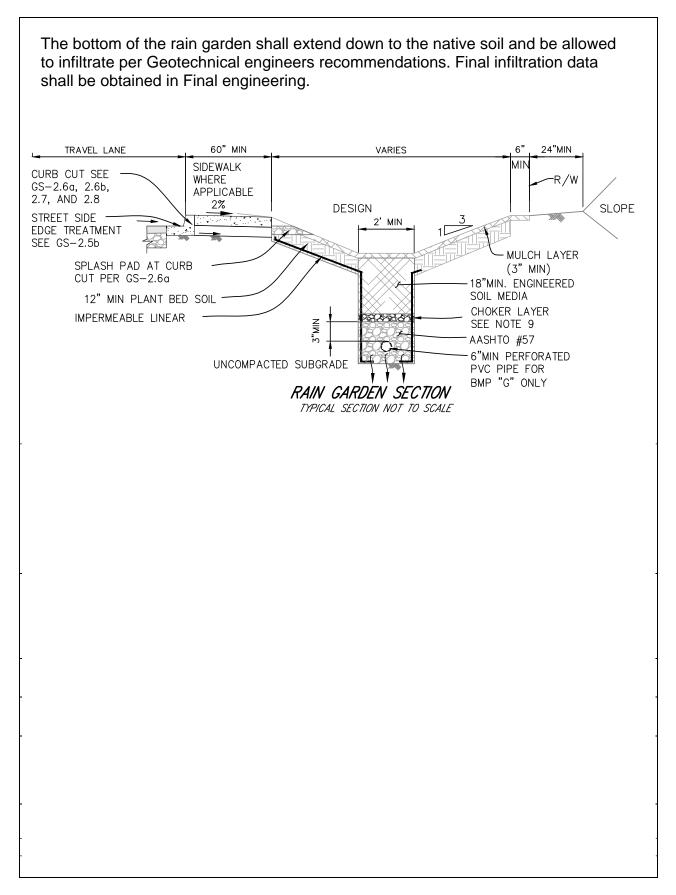
Description of structural BMP strategy continued (Page reserved for continuation of description of general strategy for structural BMP implementation at the site)

- This project is not "self-retaining" nor "self-retaining", Runoff factor was adjusted to estimate DCV
- Harvest and Use is not feasible since Reclaimed water is available near by the location and the 0.25 DCV is greater than the 36 hour demand per form I-7.
- Infiltration is not feasible due to low percolation test conducted by the soil engineer.
- Based on the locations for storm water pollutant control BMP and the DMA delineations were developed during the site planning phase. The DCV was calculated.
- Sizing requirements was computed referred to Appendix B.5
- BMP was designed for the remaining DCV, therefore design BMP for the required size, per design criteria and considerations listed in the BMP manual and comply with pollutant control BMP sizing requirements.
- Based on pollutants generated by the type of the project and the 303(d) list at the receiving body, Biofiltration is selected to treat all the pollutants in the project before releasing the storm water to the public water body.
- The calculated footprints fit the site design and the constraints.
- The selected BMPs were sized and designed accordingly using design criteria and considerations from BMP manual fact sheets in Appendix E.
- The project has met the pollutant control performance standards.
- A detention pipe will be used as part of the system for BMP-A. this detention pipe will only be used for hydromodification control purposes but will have manholes in-order to provide access for maintenance. A weir plate would be used to impede the water up to a certain point and have an overflow to allow water in flooding conditions to continue through. The control for nonflood condition water will be two orifices as detailed out as seen below with the storage curve and the detail of the wier from the DMA Exhibit.

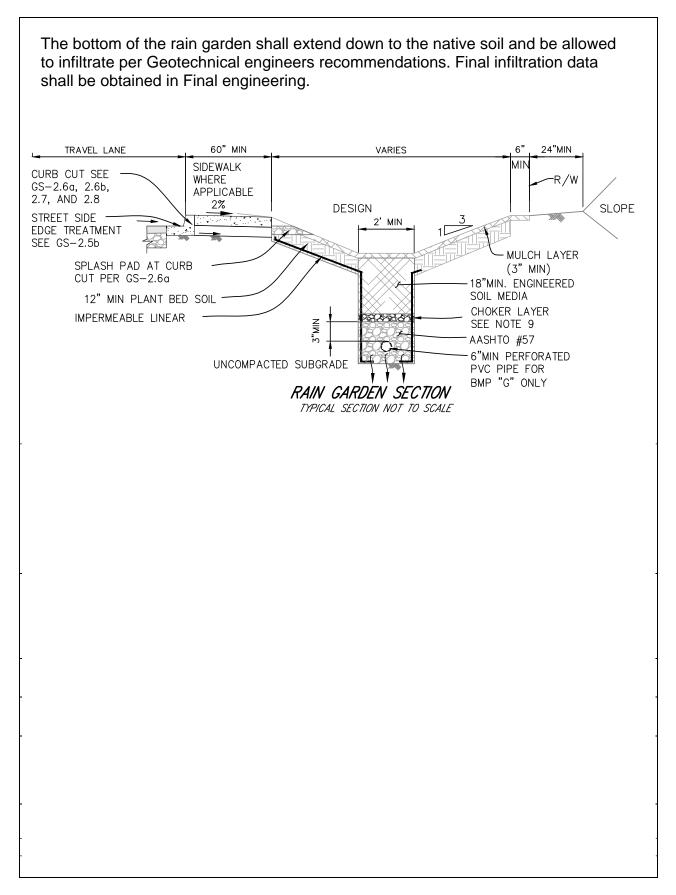
Curve	Name			
Sto-1				
Descr	iption			
2.5'D	ia-132' L			A
	Depth (ft)	Area (ft2)	^	View
1	0	0		Load
2	0.25	386.4		LOAd
3	0.5	284.8		Save
4	0.75	531.2		Save
5	1	364.8		
6	1.25	571.2		
7	1.5	364.8		ОК
8	1.75	531.2		
9	2	284.8		Cancel
10	2.25	385.6		
11	2.5	1.13687E-13	-	Help

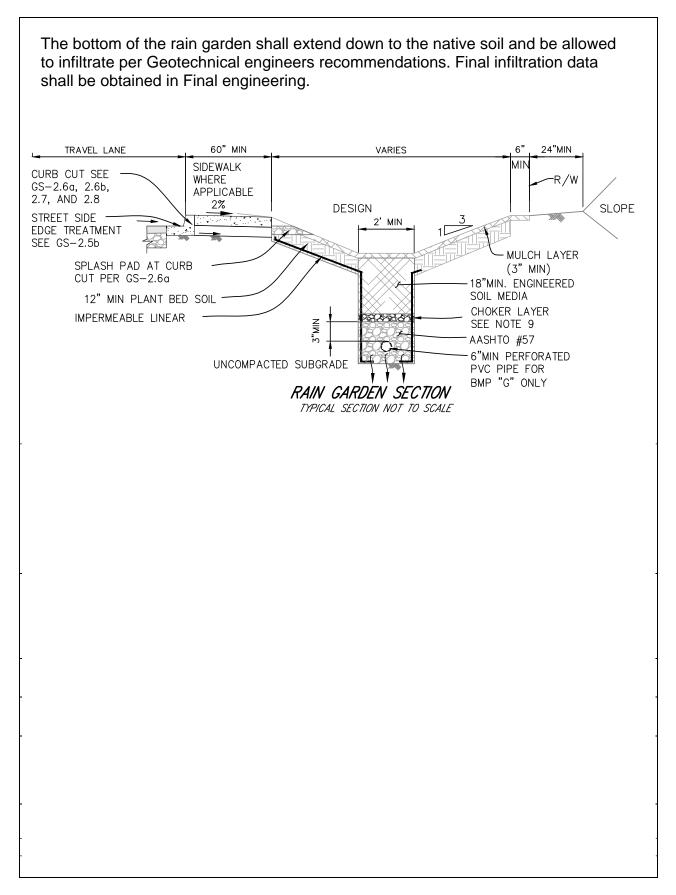

- The Rock garden will be used at the North East corner of the property. This area is one of the few areas onsite that are being allowed to infiltrate. This will take in the overflow water from the public street and from the private BMP B.1 onsite and allow the lower flows to infiltrate into the soil and the higher flows to continue downstream (as it does in the existing condition) Further explanation will be expected in final engineering as this area is worked out with construction constraints and landscape. This BMP is only to be used for hydromodification.
- The Rain Gardens will be used in the Public right of way Nutmeg Street and Centre City Parkway. The rain Gardens are one of the few areas onsite that will have natural soil and no to little fill and will be allowed to infiltrate. The raingardens will meet treatment and hydromodification purposed to treat the public street sections that are to be replaced. Gravel section will be used to allow the water to fill and infiltrate while overflow water will pond and travel down Nutmeg as it does in the existing condition. It should be noted these rain gardens are still underdevelopment in the preliminary condition and are being worked out with Landscaping to determine the best course of action. In final engineering there will need to be more details explaining of construction.

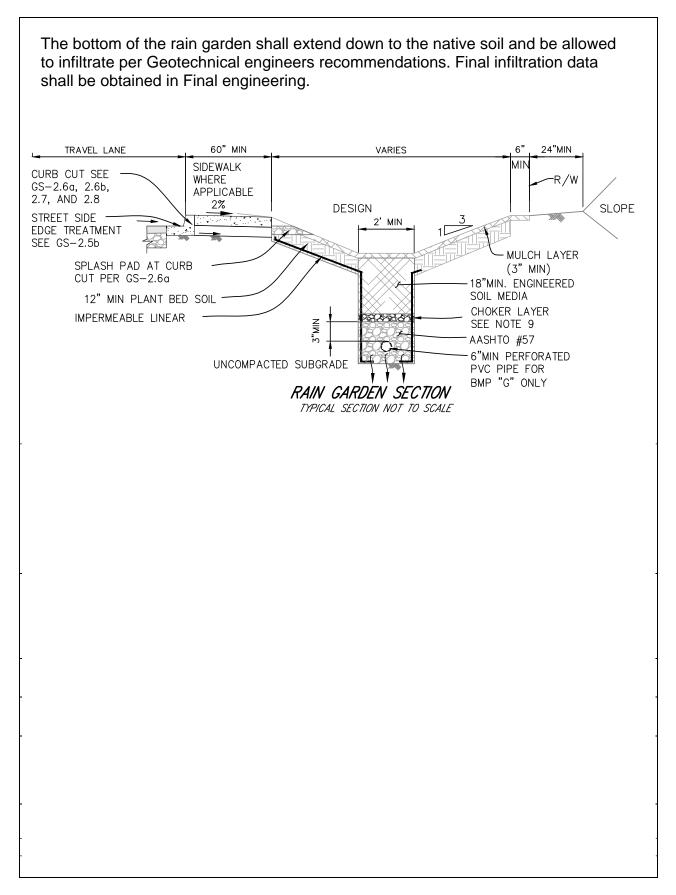
Step 6.2: Structural BMP Checklist


(Copy this page as needed to provide information for each individual proposed structural BMP)					
Structural BMP ID No. BMP A					
Construction Plan Sheet No.					
Type of structural BMP:					
Retention by harvest and use (HU-1)					
\Box Retention by infiltration basin (INF-1)					
□Retention by bioretention (INF-2)					
\Box Retention by permeable pavement (INF-3)					
\Box Partial retention by biofiltration with partial rete	ention (PR-1)				
\square Biofiltration (BF-1)					
Biofiltration with Nutrient Sensitive Media Des	ian (BE-2)				
Proprietary Biofiltration (BF-3) meeting all requ					
□ Flow-thru treatment control with prior lawful ag					
(provide BMP type/description in discussion s					
Flow-thru treatment control included as pre-tre					
biofiltration BMP (provide BMP type/description	,				
biofiltration BMP it serves in discussion section					
□Flow-thru treatment control with alternative co	mpliance (provide BMP type/description in				
discussion section below)					
Detention pond or vault for hydromodification	management				
\Box Other (describe in discussion section below)					
Purpose:					
□Pollutant control only					
□Hydromodification control only					
Combined pollutant control and hydromodification					
\Box Pre-treatment/forebay for another structural BMP					
□Other (describe in discussion section below)					
Who will certify construction of this BMP?	Robert Dentino				
Provide name and contact information for the	EXCEL ENGINEERING 440 State Place,				
party responsible to sign BMP verification forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029				
Design Manual)	ESCONDIDO, CA 92029				
Who will be the final owner of this BMP?	□HOA ⊠Property Owner □City				
	\Box Other (describe)				
Who will maintain this BMP into perpetuity?	□ HOA ⊠ Property Owner □ City				
	\Box Other (describe)				
What Category (1-4) is the Structural BMP?					
Refer to the Category definitions in Section 7.3					
of the SW DM. Attach the appropriate					
maintenance agreement in Attachment 3.					
Discussion (as needed):					
(Continue on subsequent pages as necessary)					

(Copy this page as needed to provide information for each individual proposed structural BMP)					
Structural BMP ID No. BMP B1					
Construction Plan Sheet No.					
Type of structural BMP:					
Retention by harvest and use (HU-1)					
\Box Retention by infiltration basin (INF-1)					
□ Retention by bioretention (INF-2)					
\Box Retention by permeable pavement (INF-3)					
Partial retention by biofiltration with partial rete	ention (PR-1)				
\Box Biofiltration (BF-1)					
Biofiltration with Nutrient Sensitive Media Des	ian (BF-2)				
Proprietary Biofiltration (BF-3) meeting all req					
□ Flow-thru treatment control with prior lawful a					
(provide BMP type/description in discussion s					
Flow-thru treatment control included as pre-tro	,				
biofiltration BMP (provide BMP type/description					
biofiltration BMP it serves in discussion section					
□Flow-thru treatment control with alternative co	mpliance (provide BMP type/description in				
discussion section below)					
Detention pond or vault for hydromodification	management				
□Other (describe in discussion section below)					
Purpose:					
□Pollutant control only					
Hydromodification control only					
⊠Combined pollutant control and hydromodifica	ation control				
Pre-treatment/forebay for another structural BMP					
\Box Other (describe in discussion section below)					
Who will certify construction of this BMP?	Robert Dentino				
Provide name and contact information for the	EXCEL ENGINEERING				
party responsible to sign BMP verification	440 State Place,				
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029				
Design Manual)					
Who will be the final owner of this BMP?	□HOA ⊠Property Owner □City				
	□Other (describe)				
Who will maintain this BMP into perpetuity?	□HOA ⊠Property Owner □City				
	□Other (describe)				
What Category (1-4) is the Structural BMP?					
Refer to the Category definitions in Section 7.3					
of the SW DM. Attach the appropriate					
maintenance agreement in Attachment 3.					
Discussion (as needed):					
(Continue on subsequent pages as necessary)					

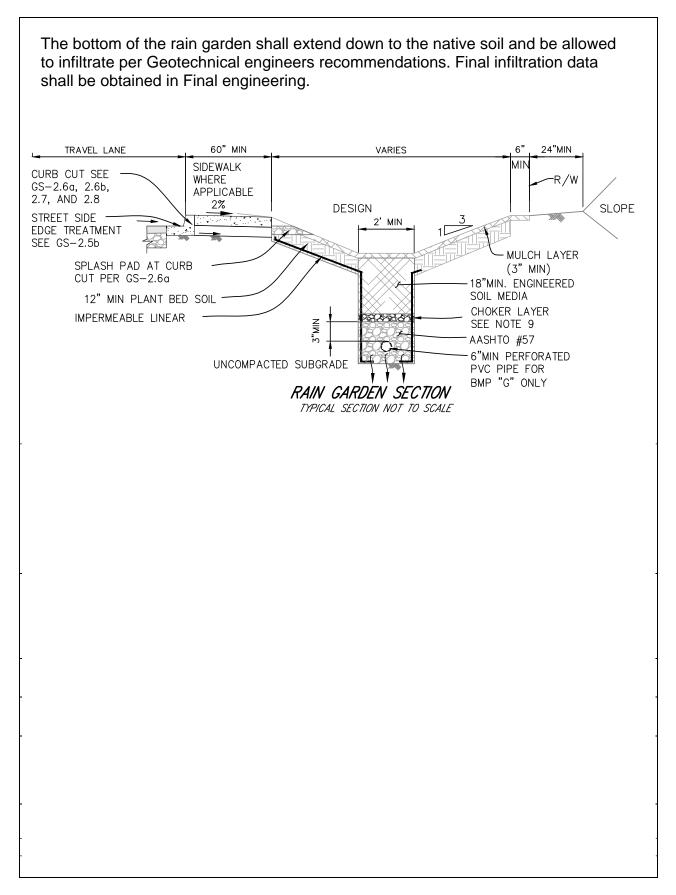

(Copy this page as needed to provide information for each individual proposed BMP)				
BMP ID No. BMP C				
Construction Plan Sheet No.				
Type of structural BMP:				
\Box Retention by harvest and use (HU-1)				
\Box Retention by infiltration basin (INF-1)				
□Retention by bioretention (INF-2)				
\Box Retention by permeable pavement (INF-3)				
\Box Partial retention by biofiltration with partial rete	ention (PR-1)			
\Box Biofiltration (BF-1)				
□Biofiltration with Nutrient Sensitive Media Des				
□ Proprietary Biofiltration (BF-3) meeting all req				
□ Flow-thru treatment control with prior lawful a	•			
(provide BMP type/description in discussion s				
Flow-thru treatment control included as pre-tre	•			
biofiltration BMP (provide BMP type/description biofiltration BMP it serves in discussion section				
□ Flow-thru treatment control with alternative co	,			
discussion section below)				
Detention pond or vault for hydromodification	management			
⊠Other (describe in discussion section below)	č			
Purpose:				
Pollutant control only				
Hydromodification control only				
Combined pollutant control and hydromodifica				
Pre-treatment/forebay for another structural B	MP			
□Other (describe in discussion section below)				
Who will certify construction of this BMP?	Robert Dentino			
Provide name and contact information for the	EXCEL ENGINEERING			
party responsible to sign BMP verification	440 State Place,			
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029			
Design Manual)				
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City			
	Other (describe)			
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City			
	□Other (describe)			
What Category (1-4) is the Structural BMP?				
Refer to the Category definitions in Section 7.3 of the SW DM. Attach the appropriate				
maintenance agreement in Attachment 3.				
Discussion (as needed):				
(Continue on subsequent pages as necessary)				
BMP-C is a Green Streets BMP and is co	nsidered a Site BMP			


(Copy this page as needed to provide information for each individual proposed structural BMP)			
Structural BMP ID No. BMP D			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
□ Retention by permeable pavement (INF-3)			
□ Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
□Biofiltration with Nutrient Sensitive Media Des	ign (BF-2)		
□ Proprietary Biofiltration (BF-3) meeting all req			
□ Flow-thru treatment control with prior lawful a			
(provide BMP type/description in discussion s	,		
□ Flow-thru treatment control included as pre-tro	•		
biofiltration BMP (provide BMP type/description and indicate which onsite retention or			
biofiltration BMP it serves in discussion section below)			
Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below)			
Detention pond or vault for hydromodification	management		
Ø Other (describe in discussion section below)	lianagement		
Purpose:			
□Pollutant control only			
□Hydromodification control only			
Combined pollutant control and hydromodification			
□ Pre-treatment/forebay for another structural BMP			
□Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)			
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed): (Continue on subsequent pages as necessary)			
BMP-D is a Green Streets BMP and is considered a Site BMP			

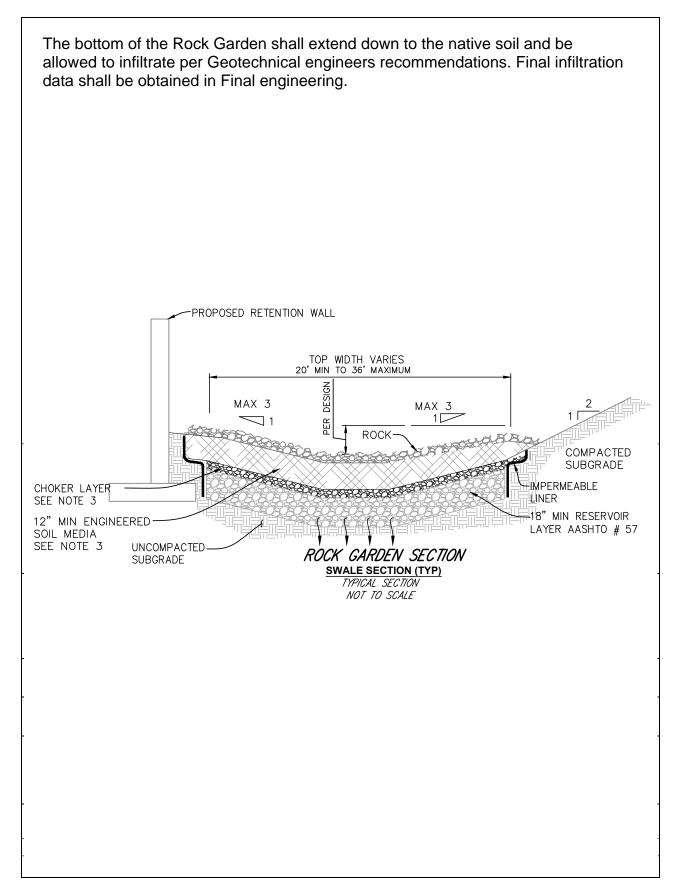

(Copy this page as needed to provide information for each individual proposed BMP)			
BMP ID No. BMP E			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
\Box Retention by bioretention (INF-2)			
\Box Retention by permeable pavement (INF-3)			
\Box Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
☐ Biofiltration with Nutrient Sensitive Media Des			
□ Proprietary Biofiltration (BF-3) meeting all req			
□ Flow-thru treatment control with prior lawful a	•		
(provide BMP type/description in discussion s	,		
Flow-thru treatment control included as pre-tre biofiltration BMP (provide BMP type/description)			
biofiltration BMP it serves in discussion section			
\Box Flow-thru treatment control with alternative co	,		
discussion section below)			
Detention pond or vault for hydromodification	management		
☑Other (describe in discussion section below)			
Purpose:			
Pollutant control only			
Hydromodification control only			
Combined pollutant control and hydromodifica			
Pre-treatment/forebay for another structural B	MP		
□Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)			
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3 of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed):	<u> </u>		
(Continue on subsequent pages as necessary)			
BMP-E is a Green Streets BMP and is con	nsidered a Site BMP		

(Copy this page as needed to provide information for each individual proposed BMP)			
BMP ID No. BMP F			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
□ Retention by permeable pavement (INF-3)			
\Box Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
□Biofiltration with Nutrient Sensitive Media Des	ign (BF-2)		
□ Proprietary Biofiltration (BF-3) meeting all req	uirements of Appendix F		
□Flow-thru treatment control with prior lawful a	oproval to meet earlier PDP requirements		
(provide BMP type/description in discussion s	,		
□Flow-thru treatment control included as pre-tre	-		
biofiltration BMP (provide BMP type/description			
biofiltration BMP it serves in discussion section	,		
Flow-thru treatment control with alternative co	mpliance (provide BIMP type/description in		
discussion section below)	managament		
Detention pond or vault for hydromodification	management		
☑ Other (describe in discussion section below)			
Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodificate Pre-treatment/forebay for another structural B Other (describe in discussion section below)			
Who will contribute on the DMD2	Dehaut Depting		
Who will certify construction of this BMP? Provide name and contact information for the	Robert Dentino EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)	,		
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed):			
(Continue on subsequent pages as necessary)			
BMP-F is a Green Streets BMP and is cor	nsidered a Site BMP		

(Copy this page as needed to provide in	nformation for each individual proposed BMP)		
BMP ID No. BMP G			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
\Box Retention by bioretention (INF-2)			
\Box Retention by permeable pavement (INF-3)			
Partial retention by biofiltration with partial rete	ention (PR-1)		
□Biofiltration (BF-1)			
□Biofiltration with Nutrient Sensitive Media Des			
Proprietary Biofiltration (BF-3) meeting all req	• •		
□ Flow-thru treatment control with prior lawful ap			
(provide BMP type/description in discussion s	,		
biofiltration BMP (provide BMP type/description	•		
biofiltration BMP it serves in discussion section			
□Flow-thru treatment control with alternative co	,		
discussion section below)			
Detention pond or vault for hydromodification	management		
⊠Other (describe in discussion section below)			
Purpose:			
Hydromodification control only			
Combined pollutant control and hydromodification	ation control		
\Box Pre-treatment/forebay for another structural B			
□ Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual) Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□HOA □Property Owner ⊠City □Other (describe)		
Who will maintain this BMP into perpetuity?			
	□HOA □Property Owner ⊠City □Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed):			
(Continue on subsequent pages as necessary)			
BMP-G is a Green Streets BMP and is co	nsidered a Site BMP		



(Copy this page as needed to provide information for each individual proposed structural BMP)			
Structural BMP ID No. BMP H			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
□ Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
□ Retention by permeable pavement (INF-3)			
Partial retention by biofiltration with partial rete	ention (PR-1)		
Biofiltration (BF-1)			
Biofiltration with Nutrient Sensitive Media Des			
□ Proprietary Biofiltration (BF-3) meeting all req			
Flow-thru treatment control with prior lawful a (provide BMP type/description in discussion s)			
□ Flow-thru treatment control included as pre-tre			
biofiltration BMP (provide BMP type/description	-		
biofiltration BMP it serves in discussion section			
□Flow-thru treatment control with alternative co			
discussion section below)			
Detention pond or vault for hydromodification	management		
\Box Other (describe in discussion section below)			
Durageou			
Purpose:			
Hydromodification control only			
Combined pollutant control and hydromodification	ation control		
Pre-treatment/forebay for another structural B			
Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual) Who will be the final owner of this BMP?	□HOA ⊠Property Owner □City		
	\Box Other (describe)		
Who will maintain this BMP into perpetuity?	□ HOA ⊠ Property Owner □ City		
Who will maintain the bin into perpetaty.	\Box Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed):			
(Continue on subsequent pages as necessary)			


(Copy this page as needed to provide information for each individual proposed structural BMP)			
Structural BMP ID No. BMP I			
Construction Plan Sheet No.			
Type of structural BMP:			
Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
□Retention by bioretention (INF-2)			
□Retention by permeable pavement (INF-3)			
□Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
Biofiltration with Nutrient Sensitive Media Des	ign (BF-2)		
□ Proprietary Biofiltration (BF-3) meeting all req	uirements of Appendix F		
□Flow-thru treatment control with prior lawful a	oproval to meet earlier PDP requirements		
(provide BMP type/description in discussion s	section below)		
□ Flow-thru treatment control included as pre-tre	eatment/forebay for an onsite retention or		
biofiltration BMP (provide BMP type/description			
biofiltration BMP it serves in discussion section	,		
□ Flow-thru treatment control with alternative co	mpliance (provide BMP type/description in		
discussion section below)			
Detention pond or vault for hydromodification	management		
\Box Other (describe in discussion section below)			
Purpose:			
Pollutant control only			
□ Hydromodification control only			
Combined pollutant control and hydromodification	ation control		
□ Pre-treatment/forebay for another structural B			
\Box Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)			
Who will be the final owner of this BMP?	\Box HOA \boxtimes Property Owner \Box City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	\Box HOA \boxtimes Property Owner \Box City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3. Discussion (as needed):			
(Continue on subsequent pages as necessary)			

(Copy this page as needed to provide information for each individual proposed structural BMP)			
Structural BMP ID No. BMP J			
Construction Plan Sheet No.			
Type of structural BMP:			
□ Retention by harvest and use (HU-1)			
Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
□ Retention by permeable pavement (INF-3)			
\Box Partial retention by biofiltration with partial rete	ention (PR-1)		
Biofiltration (BF-1)			
Biofiltration with Nutrient Sensitive Media Des			
 Proprietary Biofiltration (BF-3) meeting all req Flow-thru treatment control with prior lawful approximately approxi			
(provide BMP type/description in discussion s			
□ Flow-thru treatment control included as pre-tre	,		
biofiltration BMP (provide BMP type/description			
biofiltration BMP it serves in discussion section			
□Flow-thru treatment control with alternative co	mpliance (provide BMP type/description in		
discussion section below)			
Detention pond or vault for hydromodification	management		
□ Other (describe in discussion section below)			
Purpose:			
□ Hydromodification control only			
Combined pollutant control and hydromodifica	tion control		
Pre-treatment/forebay for another structural B			
\Box Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the			
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water Design Manual)	Escondido, CA 92029		
Who will be the final owner of this BMP?	□HOA ⊠Property Owner □City		
	\Box Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA ⊠Property Owner □City		
	\Box Other (describe)		
What Category (1-4) is the Structural BMP?	· · · · ·		
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.			
Discussion (as needed): (Continue on subsequent pages as necessary)			
(000000000000000000000000000000000000			

(Copy this page as needed to provide in	nformation for each individual proposed BMP)		
BMP ID No. BMP K			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
\Box Retention by permeable pavement (INF-3)			
\Box Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
□Biofiltration with Nutrient Sensitive Media Des			
□ Proprietary Biofiltration (BF-3) meeting all req	• •		
□Flow-thru treatment control with prior lawful a			
(provide BMP type/description in discussion s	,		
□ Flow-thru treatment control included as pre-tre	•		
biofiltration BMP (provide BMP type/description biofiltration BMP it serves in discussion section			
Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below)			
Detention pond or vault for hydromodification	management		
☑ Other (describe in discussion section below)	inanagement		
Purpose:			
□ Pollutant control only			
□Hydromodification control only			
Combined pollutant control and hydromodification	ation control		
□Pre-treatment/forebay for another structural B	MP		
\Box Other (describe in discussion section below)			
Who will certify construction of this BMP? Provide name and contact information for the	Robert Dentino		
party responsible to sign BMP verification	EXCEL ENGINEERING 440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)			
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate			
maintenance agreement in Attachment 3.	<u> </u>		
Discussion (as needed): (Continue on subsequent pages as necessary)			
BMP-K is a Green Streets BMP and is cor	nsidered a Site BMP		

(Copy this page as needed to provide in	nformation for each individual proposed BMP)		
BMP ID No. BMP B-2			
Construction Plan Sheet No.			
Type of structural BMP:			
\Box Retention by harvest and use (HU-1)			
\Box Retention by infiltration basin (INF-1)			
□ Retention by bioretention (INF-2)			
□ Retention by permeable pavement (INF-3)			
\Box Partial retention by biofiltration with partial rete	ention (PR-1)		
\Box Biofiltration (BF-1)			
□Biofiltration with Nutrient Sensitive Media Des	ign (BF-2)		
□ Proprietary Biofiltration (BF-3) meeting all req	• •		
□Flow-thru treatment control with prior lawful a			
(provide BMP type/description in discussion s			
□ Flow-thru treatment control included as pre-tre	•		
biofiltration BMP (provide BMP type/description biofiltration BMP it serves in discussion section			
Flow-thru treatment control with alternative co			
discussion section below)	inpliance (provide bivili type/description in		
Detention pond or vault for hydromodification	management		
☑ Other (describe in discussion section below)	inanagement		
Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodificate Pre-treatment/forebay for another structural B Other (describe in discussion section below)			
Who will certify construction of this BMP?	Robert Dentino		
Provide name and contact information for the	EXCEL ENGINEERING		
party responsible to sign BMP verification	440 State Place,		
forms (See Section 8.2.3.2 of the Storm Water	Escondido, CA 92029		
Design Manual)			
Who will be the final owner of this BMP?	□HOA □Property Owner ⊠City		
	□Other (describe)		
Who will maintain this BMP into perpetuity?	□HOA □Property Owner ⊠City		
	□Other (describe)		
What Category (1-4) is the Structural BMP?			
Refer to the Category definitions in Section 7.3			
of the SW DM. Attach the appropriate maintenance agreement in Attachment 3.			
Discussion (as needed):	1		
(Continue on subsequent pages as necessary)			
BMP-B-2 is a Green Streets BMP and is c	considered a Site BMP		

Step 6.3: Offsite Alternative Compliance Participation Form

THIS FORM IS NOT APPLICABLE AT THIS TIME [:] An Alternative Compliance Program is under consideration by the City of Escondido.		
PDP INFORMATION		
Record ID:		
Assessor's Parcel Number(s) [APN(s)]		
What are your PDP Pollutant Control Debits? *See Attachment 1 of the PDP SWQMP		
What are your PDP HMP Debits? (if applicable) *See Attachment 2 of the PDP SWQMP		
ACP Information		
Record ID:		
Assessor's Parcel Number(s) [APN(s)]		
Project Owner/Address		
What are your ACP Pollutant Control Credits? *See Attachment 1 of the ACP SWQMP		
What are your ACP HMP Debits? (if applicable) *See Attachment 2 of the ACP SWQMP		
Is your ACP in the same watershed as your PDP? Yes No	Will your ACP project be completed prior to the completion of the PDP?	
Does your ACP account for all Deficits generated by the PDP? Yes No (PDP and/or ACP must be redesigned to account for all deficits generated by the PDP.)	What is the difference between your PDP debits and ACP Credits? *(ACP Credits -Total PDP Debits = Total Earned Credits)	

ATTACHMENT 1

BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

Indicate which Items are Included behind this cover sheet:

Attachment	Contents	Checklist
Sequence		
Attachment 1a	Storm Water Pollutant Control	⊠Included
	Worksheet Calculations	
	-Worksheet B.2-1 (Required)	-Worksheet B.1-1 in lieu of
	-Worksheet B.3-1 (Form I-4)	Worksheet B.2-1
	-Worksheet B.4-1 (if applicable)	
	-Worksheet B.5-1 (if applicable)	
	-Worksheet B.5-2 (if applicable)	
	-Worksheet B.5-3 (if applicable)	
	-Worksheet B.6-1 (if applicable)	
	-Summary Worksheet (optional)	
Attachment 1b	Form I-5, Categorization of Infiltration	
	Feasibility Condition (Required	□Not included because the entire
	unless the project will use harvest and	project will use harvest and use
	use BMPs)	BMPs
	Refer to Appendices C and D of the	
	Storm Water Design Manual to	
	complete Form I-5.	
Attachment 1c	Form I-6, Factor of Safety and Design	⊠Included
	Infiltration Rate Worksheet (Required	□Not included because the entire
	unless the project will use harvest and	project will use harvest and use
	use BMPs)	BMPs
	Refer to Appendices C and D of the	
	Storm Water Design Manual to	
	complete Form I-6.	
Attachment 1d	DMA Exhibit (Required)	⊠Included
	See DMA Exhibit Checklist on the	
	back of this Attachment cover sheet.	
Attachment 1e	Individual Structural BMP DMA	⊠Included
	Mapbook (Required)	
	-Place each map on 8.5"x11" paper.	
	-Show at a minimum the DMA,	
	Structural BMP, and any existing	
	hydrologic features within the DMA.	
Attachment 1f	MWS documentation	⊠Included

This page was left intentionally blank.

ATTACHMENT 1A

Category	#	Description	Value	Units
	0	Design Capture Volume for Entire Project Site	1,189	cubic-feet
	1	Proposed Development Type	Residential	unitless
Capture & Use Inputs	2	Number of Residents or Employees at Proposed Development	350	#
	3	Total Planted Area within Development	142,464	sq-ft
	4	Water Use Category for Proposed Planted Areas	Low	unitless
	5	Is Average Site Design Infiltration Rate ≤0.500 Inches per Hour?	No	yes/no
Infiltration	6	Is Average Site Design Infiltration Rate ≤0.010 Inches per Hour?	No	yes/no
Inputs	7	Is Infiltration of the Full DCV Anticipated to Produce Negative Impacts?	Yes	yes/no
	8	Is Infiltration of Any Volume Anticipated to Produce Negative Impacts?	Yes	yes/no
	9	36-Hour Toilet Use Per Resident or Employee	1.86	cubic-feet
	10Subtotal: Anticipated 36 Hour Toilet Use11Anticipated 1 Acre Landscape Use Over 36 Hours		653	cubic-feet
			52.14	cubic-feet
	12	Subtotal: Anticipated Landscape Use Over 36 Hours	171	cubic-feet
Calculations	13	Total Anticipated Use Over 36 Hours	823	cubic-feet
	14	Total Anticipated Use / Design Capture Volume	0.69	cubic-feet
	15	Are Full Capture and Use Techniques Feasible for this Project?	No	unitless
	16	Is Full Retention Feasible for this Project?	No	yes/no
	17	Is Partial Retention Feasible for this Project?	No	yes/no
Result	18	Feasibility Category	5	1, 2, 3, 4, 5

Automated Worksheet B.3-1: Project-Scale BMP Feasibility Analysis (V1.3)

Worksheet B.3-1 General Notes:

A. Applicants may use this worksheet to determine the types of structural BMPs that are acceptable for implementation at their project site (as required in Section 5 of the BMPDM). User input should be provided for yellow shaded cells, values for all other cells will be automatically generated. Projects demonstrating feasibility or potential feasibility via this worksheet are encouraged to incorporate capture and use features in their project.

B. Negative impacts associated with retention may include geotechnical, groundwater, water balance, or other issues identified by a geotechnical engineer and substantiated through completion of Form I-8.

C. Feasibility Category 1: Applicant must implement capture & use, retention, and/or infiltration elements for the entire DCV.

D. Feasibility Category 2: Applicant must implement capture & use elements for the entire DCV.

E. Feasibility Category 3: Applicant must implement retention and/or infiltration elements for all DMAs with Design Infiltration Rates greater than 0.50 in/hr.

F. Feasibility Category 4: Applicant must implement standard <u>unlined</u> biofiltration BMPs sized at $\geq 3\%$ of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.011 to 0.50 in/hr. Applicants may be permitted to implement lined BMPs, reduced size BMPs, and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.

G. Feasibility Category 5: Applicant must implement standard <u>lined</u> biofiltration BMPs sized at \geq 3% of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.010 in/hr or less. Applicants may also be permitted to implement reduced size and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.

H. PDPs participating in an offsite alternative compliance program are not held to the feasibility categories presented herein.

Automated Worksheet B.1-1: Calculation of Design Capture Volume (V1.3)

0	ш	Automated work		···	0	i Supture v		,	••		•		TT •.
Category	#	Description							vii				Units
	0	Drainage Basin ID or Name	BMP-A	BMP-B1	BMP-C	BMP-D	BMP-E	BMP-F	BMP-G	BMP-H	BMP-I	BMP-J	unitless
	1	Basin Drains to the Following BMP Type	Biofiltration	Biofiltration	Retention	Retention	Retention	Retention	Retention	Biofiltration	Biofiltration	Biofiltration	unitless
	2	85th Percentile 24-hr Storm Depth	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	inches
Standard	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.000	0.000	0.280	0.980	0.280	0.280	0.980	0.000			in/hr
Drainage Basin	4	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	18,398	35,832	638	11,636	8,384	15,943	13,202	42,487	41,492	59,982	sq-ft
Inputs	5	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)	0					0					sq-ft
	6	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)	0	0	0	0	0			0			sq-ft
	7	Natural Type A Soil Not Serving as Dispersion Area (C=0.10)											sq-ft
	8	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)											sq-ft
	9	Natural Type C Soil <u>Not Serving as Dispersion Area</u> (C=0.23)	18,541	17,446	2,514	2,934	1,169	2,024	4,880	18,825	18,095	16,953	sq-ft
	10	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)	0	0							2,558	11,581	sq-ft
	11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	No	No	No	No	No	No	No	No	No	yes/no
	12	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)											sq-ft
	13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
	14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Dispersion	15	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Area, Tree Well & Rain Barrel	16	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)											sq-ft
	17	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)											sq-ft
Inputs (Optional)	18	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
(Optional)	19	Number of Tree Wells Proposed per SD-A											#
	20	Average Mature Tree Canopy Diameter											ft
	21	Number of Rain Barrels Proposed per SD-E											#
	22	Average Rain Barrel Size											gal
	23	Does BMP Overflow to Stormwater Features in Downstream Drainage?	No	No	No	No	No	No	No	No	No	No	unitless
Treatment	24	Identify Downstream Drainage Basin Providing Treatment in Series											unitless
Train Inputs &	25	Percent of Upstream Flows Directed to Downstream Dispersion Areas											percent
Calculations	26	Upstream Impervious Surfaces Directed to Dispersion Area (Ci=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	28	Total Tributary Area	36,939	53,278	3,152	14,570	9,553	17,968	18,081	61,313	62,146	88,516	sq-ft
Initial Runoff	29	Initial Runoff Factor for Standard Drainage Areas	0.56	0.68	0.37	0.77	0.82	0.82	0.72	0.69	0.68	0.69	unitless
Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Calculation	31	Initial Weighted Runoff Factor	0.56	0.68	0.37	0.77	0.82	0.82	0.72	0.69	0.68	0.69	unitless
	32	Initial Design Capture Volume	1,189	2,083	67	645	450	847	749	2,433	2,430	3,512	cubic-feet
	33	Total Impervious Area Dispersed to Pervious Surface		0	0	0	0	0	0	0	0	0	sq-ft
	34	Total Pervious Dispersion Area		0	0	0	0	0	0	0	0	0	sq-ft
Dispersion	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ratio
Area	36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
Adjustments	37	Runoff Factor After Dispersion Techniques		0.68	0.37	0.77	0.82	0.82	0.72	0.69	0.68	0.69	unitless
	38	Design Capture Volume After Dispersion Techniques		2,083	67	645	450	847	749	2,433	2,430	3,512	cubic-feet
Tree & Barrel		Total Tree Well Volume Reduction		0	0	0	0	0	0	0	0	0	cubic-feet
Adjustments	40	Total Rain Barrel Volume Reduction		0	0	0	0	0	0	0	0	0	cubic-feet
	41	Final Adjusted Runoff Factor		0.68	0.37	0.77	0.82	0.82	0.72	0.69	0.68	0.69	unitless
	42	Final Effective Tributary Area	20,686	36,229	1,166	11,219	7,833	14,734	13,018	42,306	42,259	61,076	sq-ft
Results	43	Initial Design Capture Volume Retained by Site Design Elements	0	0	0	0	0	0	0	0	0	0	cubic-feet
	44	Final Design Capture Volume Tributary to BMP		2,083	67	645	450	847	749	2,433	2,430	3,512	cubic-feet

Worksheet B.1-1 General Notes:

A. Applicants may use this worksheet to calculate design capture volumes for up to 10 drainage areas User input must be provided for yellow shaded cells, values for all other cells will be automatically generated, errors/notifications will be highlighted in red and summarized below. Upon completion of this worksheet, proceed to the appropriate BMP Sizing worksheet(s).

Automated	Worksheet	B.4-1: Size	zing Reter	ntion BMPs	(V1.3)
Indionnated	W OILOITEEt				(• 1.0)

Category	#	Description	iii	iv	v	vi	vii	Units
	0	Drainage Basin ID or Name	BMP-C	BMP-D	BMP-E	BMP-F	BMP-G	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.280	0.980	0.280	0.280	0.980	in/hr
	2	Design Capture Volume Tributary to BMP	67	645	450	847	749	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Vegetated	Vegetated	Vegetated	Vegetated	Vegetated	unitless
Dim inputs	4	Provided Surface Area	144	336	400	600	425	sq-ft
	5	Provided Surface Ponding Depth	6	6	6	6	6	inches
	6	Provided Soil Media Thickness	18	18	18	18	18	inches
	7	Provided Gravel Storage Thickness	12	18	12	48	24	inches
	8	Volume Infiltrated Over 6 Hour Storm	20	165	56	84	208	cubic-feet
	9	Soil Media Pore Space	0.25	0.25	0.25	0.25	0.25	unitless
	10	Gravel Pore Space	0.40	0.40	0.40	0.40	0.40	unitless
T (*1)	11	Effective Depth of Retention Storage	15.3	17.7	15.3	29.7	20.1	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	21	6	21	21	6	hours
	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	61	24	61	112	27	hours
	14	Volume Retained by BMP	204	660	566	1,569	920	cubic-feet
	15	Fraction of DCV Retained	3.00	1.02	1.26	1.85	1.23	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	1.00	1.00	1.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	1.00	1.00	1.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	-	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	0	0	0	cubic-feet

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

ts
et
et
et
et

Category	#	Description	i i	ii	viii	ix	X	Units
Category	0	Drainage Basin ID or Name	BMP-A	BMP-B1	BMP-H	BMP-I	BMP-J	sq-ft
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.000	0.000	0.000	0.000	0.000	in/hr
	2	Effective Tributary Area	20,686	36,229	42,306	42,259	61,076	sq-ft
	3	Minimum Biofiltration Footprint Sizing Factor	0.030	0.030	0.030	0.030	0.030	ratio
	4	Design Capture Volume Tributary to BMP	1,189	2,083	2,433	2,430	3,512	cubic-feet
	5	Is Biofiltration Basin Impermeably Lined or Unlined?	Lined	Lined	Lined	Lined	Lined	unitless
BMP Inputs	6	Provided Biofiltration BMP Surface Area	1,523	1,249	1,704	1,275	3,131	sq-ft
	7	Provided Surface Ponding Depth	6	6	6	6	6	inches
	8	Provided Soil Media Thickness	18	18	18	18	18	inches
	9	Provided Depth of Gravel Above Underdrain Invert	12	12	60	60	60	inches
	10	Diameter of Underdrain or Hydromod Orifice (Select Smallest)	0.50	1.20	0.50	0.63	0.75	inches
	11	Provided Depth of Gravel Below the Underdrain	3	3	3	3	3	inches
	12	Volume Infiltrated Over 6 Hour Storm	0	0	0	0	0	cubic-feet
	13	Soil Media Pore Space Available for Retention	0.05	0.05	0.05	0.05	0.05	unitless
	14	Gravel Pore Space Available for Retention	0.00	0.00	0.00	0.00	0.00	unitless
	15	Effective Retention Depth	0.90	0.90	0.90	0.90	0.90	inches
Retention	16	Calculated Retention Storage Drawdown (Including 6 Hr Storm)	120	120	120	120	120	hours
Calculations	17	Volume Retained by BMP	114	94	128	96	235	cubic-feet
	18	Fraction of DCV Retained	0.10	0.04	0.05	0.04	0.07	ratio
	19	Portion of Retention Performance Standard Satisfied	0.12	0.05	0.06	0.05	0.08	ratio
	20	Fraction of DCV Retained (normalized to 36-hr drawdown)	0.06	0.02	0.03	0.02	0.04	ratio
	21	Design Capture Volume Remaining for Biofiltration	1,118	2,041	2,360	2,381	3,372	cubic-feet
	22	Max Hydromod Flow Rate through Underdrain	0.0113	0.0650	0.0173	0.0271	0.0390	CFS
	23	Max Soil Filtration Rate Allowed by Underdrain Orifice	0.32	2.25	0.44	0.92	0.54	in/hr
	24	Soil Media Filtration Rate per Specifications	5.00	5.00	5.00	5.00	5.00	in/hr
	25	Soil Media Filtration Rate to be used for Sizing	0.32	2.25	0.44	0.92	0.54	in/hr
	26	Depth Biofiltered Over 6 Hour Storm	1.93	13.48	2.64	5.51	3.23	inches
	27	Soil Media Pore Space Available for Biofiltration	0.20	0.20	0.20	0.20	0.20	unitless
Biofiltration	28	Effective Depth of Biofiltration Storage	14.40	14.40	33.60	33.60	33.60	inches
Calculations	29	Drawdown Time for Surface Ponding	19	3	14	7	11	hours
Calculations	30	Drawdown Time for Effective Biofiltration Depth	45	6	76	37	62	hours
	31	Total Depth Biofiltered	16.33	27.88	36.24	39.11	36.83	inches
	32	Option 1 - Biofilter 1.50 DCV: Target Volume	1,677	3,062	3,540	3,572	5,058	cubic-feet
	33	Option 1 - Provided Biofiltration Volume	1,677	2,902	3,540	3,572	5,058	cubic-feet
	34	Option 2 - Store 0.75 DCV: Target Volume	839	1,531	1,770	1,786	2,529	cubic-feet
	35	Option 2 - Provided Storage Volume	839	1,499	1,770	1,786	2,529	cubic-feet
	36	Portion of Biofiltration Performance Standard Satisfied	1.00	0.98	1.00	1.00	1.00	ratio
	37	Do Site Design Elements and BMPs Satisfy Annual Retention Requirements?	Yes	Yes	Yes	Yes	Yes	yes/no
Result	38	Overall Portion of Performance Standard Satisfied	1.00	1.00	1.00	1.00	1.00	ratio
Result	39	This BMP Overflows to the Following Drainage Basin	-	-	-	-	-	unitless
	40	Deficit of Effectively Treated Stormwater	0	0	0	0	0	cubic-feet

Automated Worksheet B.5-1: Sizing Lined or Unlined Biofiltration BMPs (V1.3)

Worksheet B.5-1 General Notes:

A. Applicants may use this worksheet to size Lined or Unlined Biofiltration BMPs (BF-1, PR-1) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

Summary of Stormwater Pollutant Control Calculations (V1.3)

Category	#	Description	i.	ii	iii	iv iv	v	vi	vii	viii	ix	X	Units
	0	Drainage Basin ID or Name	BMP-A	BMP-B1	BMP-C	BMP-D	BMP-E	BMP-F	BMP-G	BMP-H	BMP-I	BMP-J	unitless
	1	85th Percentile Storm Depth	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.000	0.000	0.280	0.980	0.280	0.280	0.980	0.000	0.000	0.000	in/hr
	3	Total Tributary Area	36,939	53,278	3,152	14,570	9,553	17,968	18,081	61,313	62,146	88,516	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	2,124	3,063	181	838	549	1,033	1,040	3,525	3,573	5,090	cubic-feet
	5	Initial Weighted Runoff Factor	0.56	0.68	0.37	0.77	0.82	0.82	0.72	0.69	0.68	0.69	unitless
Initial DCV	6	Initial Design Capture Volume	1,189	2,083	67	645	450	847	749	2,433	2,430	3,512	cubic-feet
Site Design	7	Dispersion Area Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
Volume Reductions	8	Tree Well and Rain Barrel Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
-	9	Effective Area Tributary to BMP	20,686	36,229	1,166	11,219	7,833	14,734	13,018	42,306	42,259	61,076	square feet
	10	Final Design Capture Volume Tributary to BMP	1,189	2,083	67	645	450	847	749	2,433	2,430	3,512	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Biofiltration	Biofiltration	Retention	Retention	Retention	Retention	Retention	Biofiltration	Biofiltration	Biofiltration	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	71	42	67	645	450	847	749	73	49	140.48	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	0.06	0.02	1.00	1.00	1.00	1.00	1.00	0.03	0.02	0.04	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	9.1%	3.0%	80.4%	80.4%	80.4%	80.4%	80.4%	4.6%	3.0%	6.1%	0/0
	15	Percent of Average Annual Runoff Retention Required	1.5%	1.5%	34.1%	80.0%	34.1%	34.1%	80.0%	1.5%	1.5%	1.5%	0/0
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	%
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	0	0	0	0	0	0	0	0	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	0	0	0	0	0	0	0	0	cubic-feet

Summary Notes:

All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange and summairzed in the red text below. If all drainage basins achieve full compliance without a need for supplemental information, a green message will appear below.

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the SWQMP submittal package.

Category	#	Description	<i>i</i>	Units
Caregory	0	Drainage Basin ID or Name	BMP-K	unitless
	-			
	1	Basin Drains to the Following BMP Type	Retention	unitless
	2	85th Percentile 24-hr Storm Depth	0.69	inches
	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.280	in/hr
Standard	4	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	200	sq-ft
Drainage Basin Inputs	5	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)	0	sq-ft
mputs	6	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)	0	sq-ft
	7	Natural Type A Soil <u>Not Serving as Dispersion Area</u> (C=0.10)		sq-ft
	8	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)		sq-ft
	9	Natural Type C Soil Not Serving as Dispersion Area (C=0.23)		sq-ft
	10	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)	2,180	sq-ft
	11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	yes/no
	12	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)		sq-ft
	13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)		sq-ft
Diamatic	14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)		sq-ft
Dispersion Area, Tree Well	15	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)		sq-ft
& Rain Barrel Inputs (Optional)	16	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)		sq-ft
	17	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)		sq-ft
	18	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)		sq-ft
(19	Number of Tree Wells Proposed per SD-A		#
	20	Average Mature Tree Canopy Diameter		ft
	21	Number of Rain Barrels Proposed per SD-E		#
	22	Average Rain Barrel Size		gal
	23	Does BMP Overflow to Stormwater Features in Downstream Drainage?	No	unitless
Treatment	24	Identify Downstream Drainage Basin Providing Treatment in Series		unitless
Train Inputs &	25	Percent of Upstream Flows Directed to Downstream Dispersion Areas		percent
Calculations	26	Upstream Impervious Surfaces Directed to Dispersion Area (Ci=0.90)	0	cubic-feet
	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	cubic-feet
	28	Total Tributary Area	2,380	sq-ft
Initial Runoff	29	Initial Runoff Factor for Standard Drainage Areas	0.35	unitless
Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	unitless
Calculation	31	Initial Weighted Runoff Factor	0.35	unitless
	32	Initial Design Capture Volume	48	cubic-feet
	33	Total Impervious Area Dispersed to Pervious Surface	0	sq-ft
Dispersion	34	Total Pervious Dispersion Area	0	sq-ft
Area	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	ratio
Adjustments	36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	ratio
	37	Runoff Factor After Dispersion Techniques	0.35	unitless
	38	Design Capture Volume After Dispersion Techniques	48	cubic-feet
Tree & Barrel	39	Total Tree Well Volume Reduction	0	cubic-feet
Adjustments	40	Total Rain Barrel Volume Reduction	0	cubic-feet
	41	Final Adjusted Runoff Factor	0.35	unitless
Results	42	Final Effective Tributary Area	833	sq-ft
	43	Initial Design Capture Volume Retained by Site Design Elements	0	cubic-feet
	44	Final Design Capture Volume Tributary to BMP	48	cubic-feet

Automated Worksheet B.1-1: Calculation of Design Capture Volume (V1.3)

Worksheet B.1-1 General Notes: A. Applicants may use this worksheet to calculate design capture volumes for up to 10 dramage areas Oser input must be provided for yenow shaded cells, values for all other cells will be automatically generated, errors/notifications will be highlighted in red and summarized below.

Category	#	Description	i	iii	Units
	0	Drainage Basin ID or Name	BMP-K	BMP-B.2	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.280	0.980	in/hr
BMP Inputs	2	Design Capture Volume Tributary to BMP	48	0	cubic-feet
	3	Is Retention BMP Vegetated or Non-Vegetated?	Vegetated	Non-Vegetated	unitless
	4	Provided Surface Area	48	820	sq-ft
	5	Provided Surface Ponding Depth	4	24	inches
	6	Provided Soil Media Thickness	18	12	inches
	7	Provided Gravel Storage Thickness	12	72	inches
	8	Volume Infiltrated Over 6 Hour Storm	7	0	cubic-feet
	9	Soil Media Pore Space	0.25	0.40	unitless
	10	Gravel Pore Space	0.40	0.40	unitless
	11	Effective Depth of Retention Storage	13.3	57.6	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	14	24	hours
Guietautono	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	54	65	hours
	14	Volume Retained by BMP	60	3,936	cubic-feet
	15	Fraction of DCV Retained	1.25	0.00	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	0.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	0.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	n/a	cubic-feet

Automated Worksheet B.4-1: Sizing Retention BMPs (V1.3)

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

	Summary of Stormwater Pollutant Control Calculations (V1.3) Category # Description i Units											
Category	#	Description	1	Units								
	0	Drainage Basin ID or Name	BMP-K	unitless								
	1	85th Percentile Storm Depth	0.69	inches								
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.280	in/hr								
	3	Total Tributary Area	2,380	sq-ft								
	4	85th Percentile Storm Volume (Rainfall Volume)	137	cubic-feet								
Initial DCV	5	Initial Weighted Runoff Factor	0.35	unitless								
	6	Initial Design Capture Volume	48	cubic-feet								
Site Design Volume	7	Dispersion Area Reductions	0	cubic-feet								
Reductions	8	Tree Well and Rain Barrel Reductions	0	cubic-feet								
	9	Effective Area Tributary to BMP	833	square feet								
BMP Volume	10	Final Design Capture Volume Tributary to BMP	48	cubic-feet								
Reductions	11	Basin Drains to the Following BMP Type	Retention	unitless								
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	48	cubic-feet								
	13	Total Fraction of Initial DCV Retained within DMA	1.00	fraction								
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	%								
	15	Percent of Average Annual Runoff Retention Required	34.1%	%								
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	%								
	17	Discharges to Secondary Treatment in Drainage Basin	-	unitless								
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	square feet								
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	square feet								
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	square feet								
Result	21	Deficit of Effectively Treated Stormwater	0	cubic-feet								

Summary of Stormwater Pollutant Control Calculations (V1 3)

Summary Notes: All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the

ATTACHMENT 1B

• • •	OT 01.	T • • • • • •	0 11
Categorization	of Infiltration	Feasibility	Condition
Saugonization			0011011011

Form I-8

Part 1 - Full Infiltration Feasibility Screening Criteria

Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?

Note that it is not necessary to investigate each and every criterion in the worksheet if infiltration is precluded. Instead a letter of justification from a geotechnical professional familiar with the local conditions substantiating any geotechnical issues will be required.

Criteria	Screening Question	Yes	No
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		Х

Provide basis:

Based on review of soil survey maps, the on-site materials consist of NRCS Soil Group D and C. According to Table G.1-5 of the County of San Diego Storm Water BMP Design Manual (dated February 2016), Soil Group D has a potential infiltration rate ranging between 0 and 0.02 inches per hour. Additionally, in-situ testing indicated infiltration rates of between 0 and 0.15 inches per hour.

The Northeast corner of the Site is Soil Group "C" is not placed on any fill and is being used for infiltration for BMP, per percolation tests and geotechnical information.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.2.		Х	
---	---	--	---	--

Provide basis:

As noted above, the infiltration rate at the site is not greater than 0.5 inches per hour.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

*Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering.

Appendix I: Forms and Checklists

Form I-8 Page 2 of 4				
Criteria	Screening Question	Yes	No	
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.3.		x	
Provide I As note	pasis: ad above, the infiltration rate at the site is not greater than 0.5 inches per hour.			
	ze findings of studies; provide reference to studies, calculations, maps, on of study/data source applicability.	lata sources, et	c. Provide narrative	
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.3.		x	
Summari	pted above, the infiltration rate at the site is not greater than 0.5 inches per hour. ze findings of studies; provide reference to studies, calculations, maps, o	lata sources, et	c. Provide narrative	
discussio	n of study/data source applicability.	v feasible. The		
Part 1 Result *	Result If any answer from row 1.4 is "No" infiltration may be possible to some extent but			

the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

*Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering.

Form I-8 Page 3 of 4				
Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?				
Criteria	Screening Question	Yes	No	
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	Х		
Provide basis: Based on review of soil survey maps, the on-site materials consist of NRCS Soil Group D. According to Table G.1-5 of the County of San Diego Storm Water BMP Design Manual (dated February 2016), Soil Group D has a potential infiltration rate ranging between 0 and 0.02 inches per hour. Additionally, in-situ testing indicated infiltration rates of between 0 and 0.15 inches per hour. *Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering.				
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.				
6	6 Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.2. X			
Provide ba		According to Table (1.5 of the	
 Based on review of soil survey maps, the on-site materials consist of NRCS Soil Group D. According to Table G.1-5 of the County of San Diego Storm Water BMP Design Manual (dated February 2016), Soil Group D has a potential infiltration rate ranging between 0 and 0.02 inches per hour. Additionally, in-situ testing indicated infiltration rates of between 0 and 0.15 inches per hour. Infiltration in IT-3 could saturate the clayey on-site soils adjacent to or beneath the buildings foundation, which could result in reduction of shear strength, loss of adequate bearing capacity, and increase potential for settlement. *Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering. 				
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.				
*Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering.				

Appendix I: Forms and Checklists

Criteria	Screening Question	Yes	No	
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.3.X			
Provide b Infiltratio	isis: n in any appreciable quantity is not anticipated to pose a significant risk for ground	water related conce	erns.	
	e findings of studies; provide reference to studies, calculations, maps, da			
discussion	of study/data source applicability and why it was not feasible to mitigate l	ow infiltration rate	es.	
8	Can infiltration be allowed without violating downstream water rights ? The response to this Screening Question must be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х		
			·	
Provide b	.515.			
	n is not anticipated to violate downstream water rights.			
Provide b				
Infiltratio				
Infiltratio	n is not anticipated to violate downstream water rights. e findings of studies; provide reference to studies, calculations, maps, de	ow infiltration rate		

the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

*Infiltration will be allowed Per Geotech in the following locations that will have little to no fill DMA-3 Through DMA -7, DMA-12 12, BMP-D, and BMP-B.1. An signed letter will follow in final engineering.

Form I-5 Certification

The Geotechnical Engineer certifies they completed Form I-5 except Criteria 4 & 8 (see Appendix C.4.3).

Professional Geotechnical Engineer's Printed Name:	
Professional Geotechnical Engineer's Signed Name:	
Date:	

[SEAL]

The Project Design Engineer certifies they completed Criteria 4 & 8 (see Appendix C.4.4).

Professional Project Design Engineer's Printed Name:

Professional Project Design Engineer's Signed Name:

Date: _____

	[SEAL]	

ATTACHMENT 1C

Factor of Safety and Design Infiltration Rate Worksheet					Form I-6	
Factor Category		Factor Description	Assigned Weight (w)	Factor Value (v)	Product (p) p = w x v	
А		Soil assessment methods	0.25			
		Predominant soil texture	0.25			
	Suitability	Site soil variability	0.25			
	Assessment	Depth to groundwater / impervious layer	0.25			
		Suitability Assessment Safety Fact	or, $S_A = \Sigma p$			
		Level of pretreatment/ expected sediment loads	0.5			
В	Design	Redundancy/resiliency	0.25			
	0	Compaction during construction	0.25			
		Design Safety Factor, $S_B = \Sigma_P$				
Con	Combined Safety Factor, $S_{total} = S_A x S_B$					
Observed Infiltration Rate, inch/hr, K _{observed} (corrected for test-specific bias)						
Design Infiltration Rate, in/hr, K _{design} = K _{observed} / S _{total}						
Supporting Data						
Briefly describe infiltration test and provide reference to test forms:						

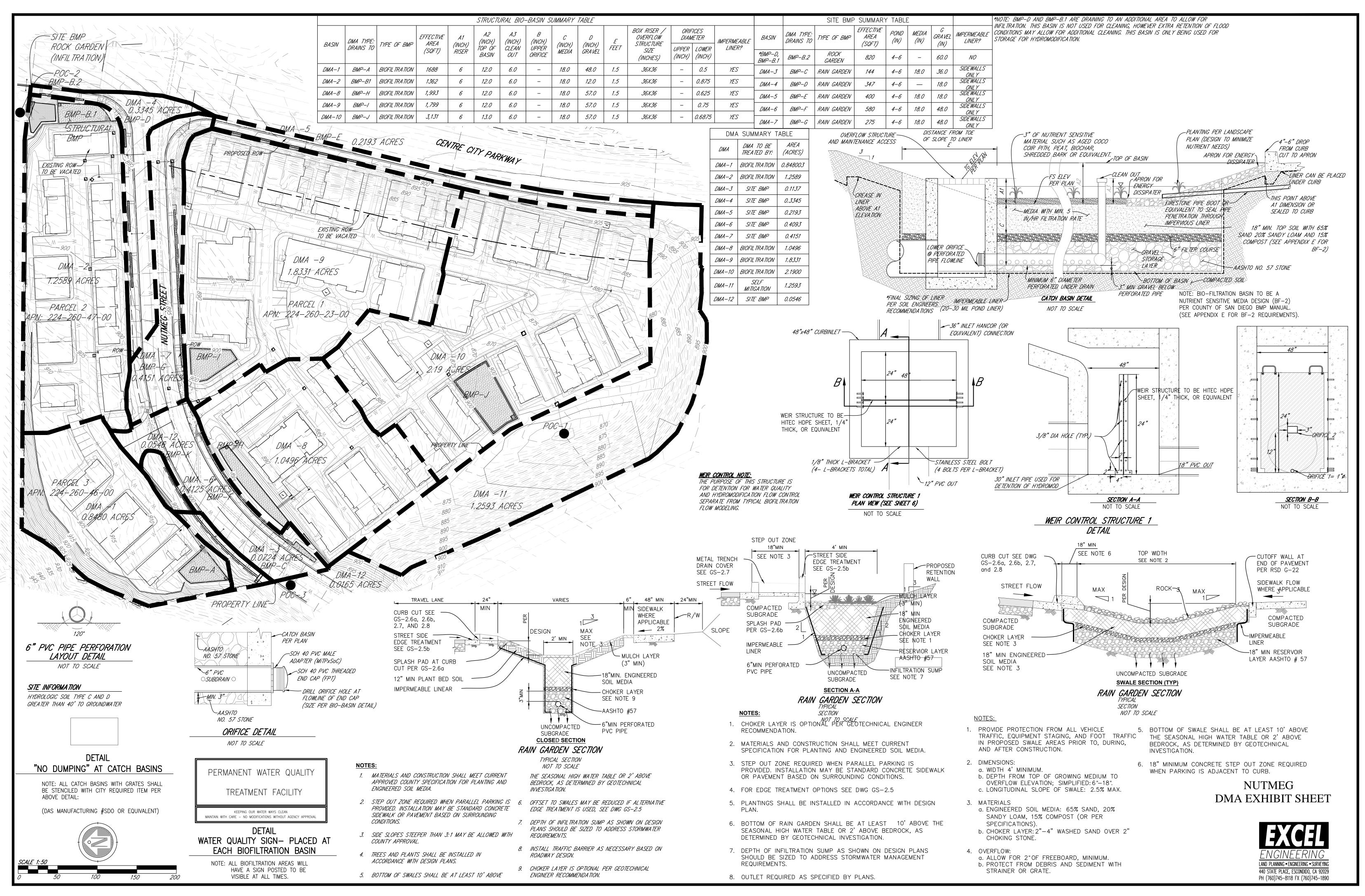
Factor of Safety and Design Infiltration Rate Worksheet	
worksneet	Certification

The Geotechnical Engineer certifies they completed Form I-6 (see Appendix C.4.3).

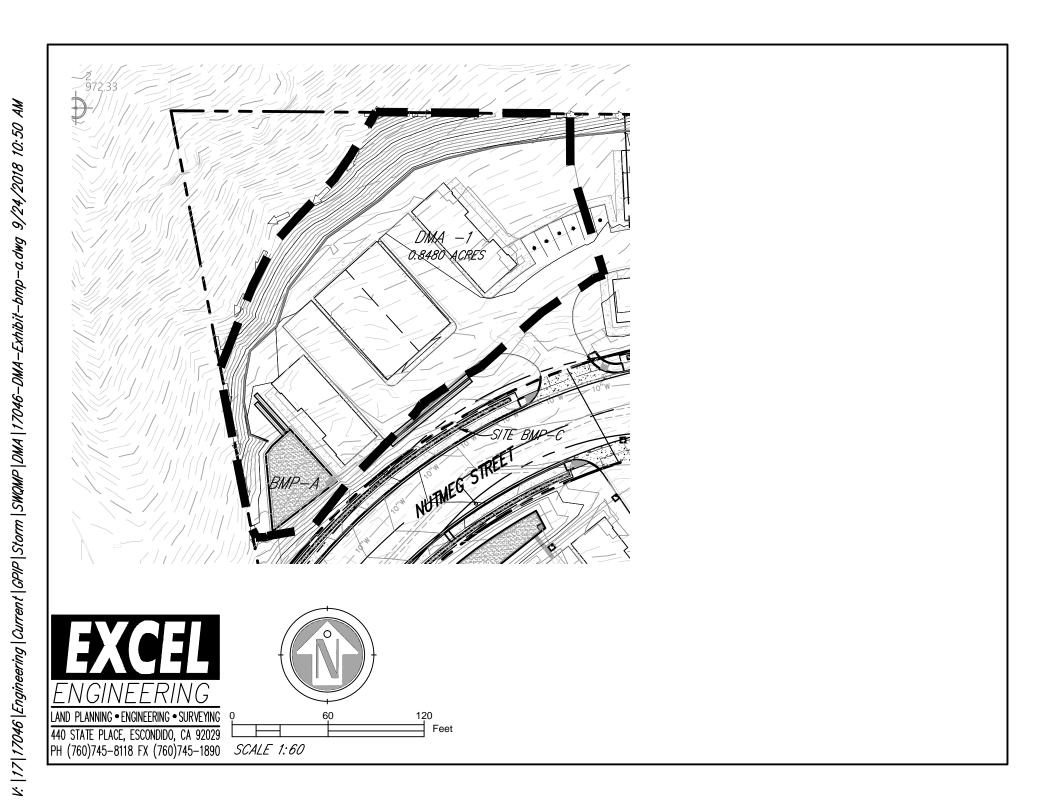
Professional Geotechnical Engineer's Printed Name:	[SEAL]
Professional Geotechnical Engineer's Signed Name:	
Date:	

ATTACHMENT 1D

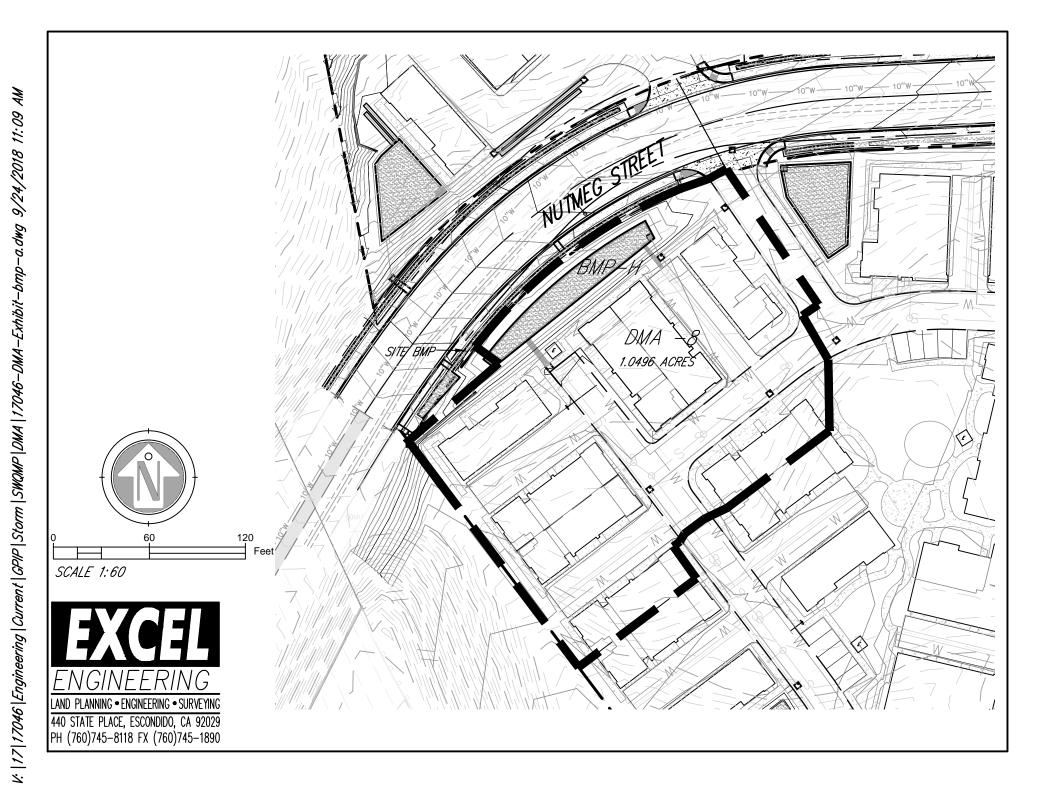
PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

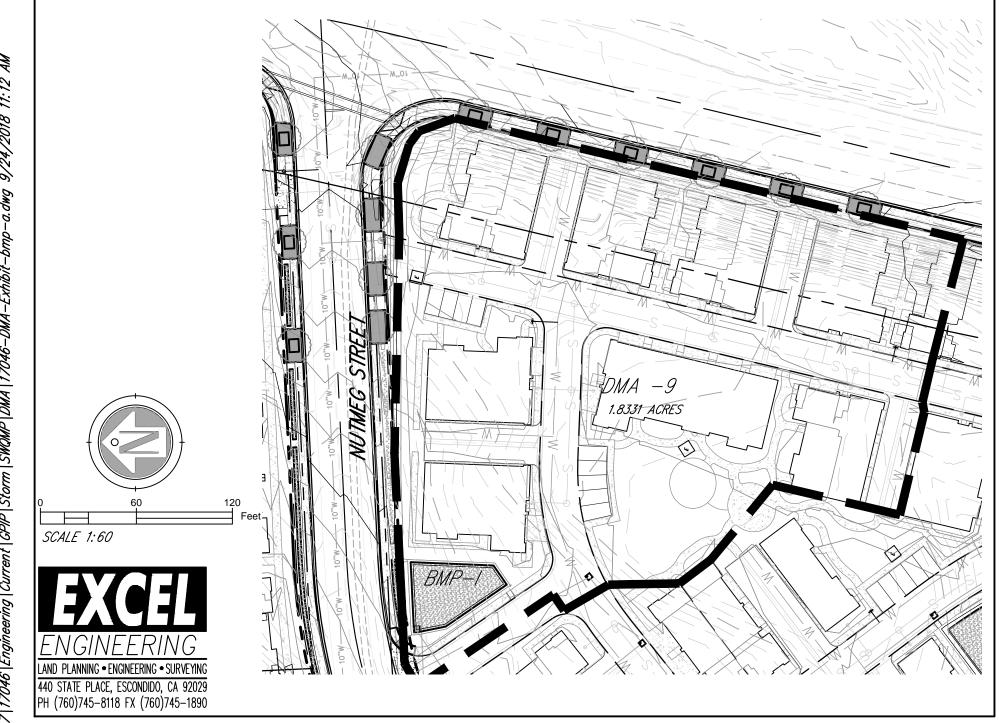

Use this checklist to ensure the required information has been included on the DMA Exhibit:

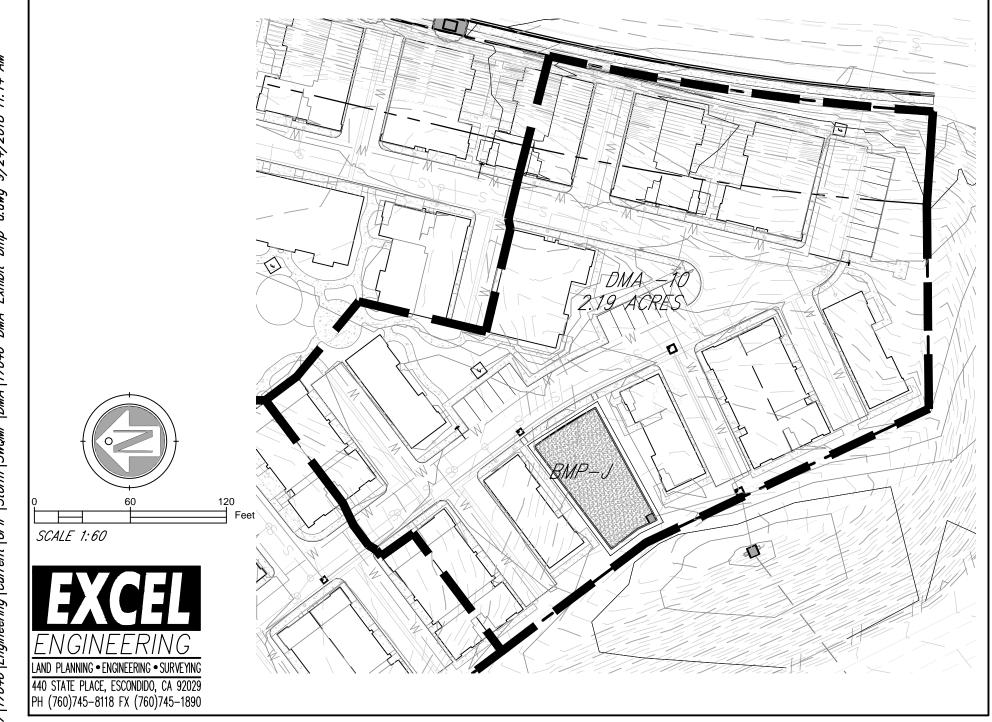
The DMA Exhibit must identify:


Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography and impervious areas
Existing and proposed site drainage network and connections to drainage offsite
Proposed demolition
Proposed grading
Proposed design features and surface treatments used to minimize imperviousness
Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
Potential pollutant source areas and corresponding required source controls (see Chapter 4,

Appendix E.1, and Step 3.5)


Structural BMPs (identify location, structural BMP ID#, type of BMP, and size/detail)




ATTACHMENT 1E

ATTACHMENT 1F

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

ATTACHMENT 2

BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

□Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Attachment Sequence	Contents	Checklist
Attachment 2a	Flow Control Facility Design, including Structural BMP Drawdown Calculations and Overflow Design Summary (Required) See Chapter 6 and Appendix G of the Storm Water Design Manual	 □Included ⊠Submitted as separate stand- alone document
Attachment 2b	Hydromodification Management Exhibit (Required)	☑ Included See Hydromodification Management Exhibit Checklist on the back of this Attachment cover sheet.
Attachment 2c	Management of Critical Coarse Sediment Yield Areas See Section 6.2 and Appendix H of the Storm Water Design Manual.	 Exhibit depicting onsite and/or upstream sources of critical coarse sediment as mapped by Regional or Jurisdictional approaches outlined in Appendix H.1 AND, Demonstration that the project effectively avoids and bypasses sources of mapped critical coarse sediment per approaches outlined in Appendix H.2 and H.3. OR, Demonstration that project does not generate a net impact on the receiving water per approaches outlined in Appendix H.4.
Attachment 2d	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the Storm Water Design Manual.	 Not performed Included Submitted as separate stand- alone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	 □Included Not required because BMPs will drain in less than 96 hours

Indicate which Items are Included behind this cover sheet:

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

This page was left intentionally blank.

ATTACHMENT 2A

SWMM MODELING TO DETERMINE LID SIZES FOR HYDROMODIFICATION COMPLIANCE

Nutmeg **Homes** Escondido

DATE: June 14, 2018

Prepared For:

ADJ Holdings, LLC

INTRODUCTION

This report provides Hydromodification and Water Quality design based on LID (Low Impact Development) principles for a proposed Residential site development located adjacent to Center City Parkway, Escondido, California

The Hydromodification and Water Quality calculations were performed utilizing continuous simulation analysis to size the storm water treatment and control facilities. Storm Water Management Model (SWMM) version 5.1 distributed by USEPA is the basis of all calculations within this report. SWMM generates peak flow recurrence frequencies and flow duration series statistics based on an assigned rain gauge for predevelopment, unmitigated post-development flows and post-development mitigated flows to determine compliance with the State Water Resources Control Board Order No.R9-2015-001 and Hydromodification Management Plan (HMP) requirements.

Total area is 7.45 acres, with the developed tributary area is approximately 10.03 acres. There are three points of compliance (POC) for the project in the analysis one at the Southwest of I-15 at a natural channel (POC-1) the at the Northeast corner of the site as it enters a natural channel (POC-2), and the Northwest corner at Nutmeg where there is (POC-3).

The Hydromodification and Water Quality system proposed for this project consists of 6 biofiltration basins with one point of compliance located at the southwest corner of the project. This system detains storm water in the basin surface and also in the underdrain reservoir. Bio-filtration filters storm water through plant roots and a biologically active soil mix, and then releases it into the existing storm drain system which currently collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all continuously simulated storms based on the historical data collected from the Escondido rain gage.

Low Flow Threshold

A downstream channel assessment has not been completed for this project and therefore the low flow threshold utilized for the system analysis is 10% of 2-year storm event (0.1Q2). This will be used as the low flow threshold to meet peak flow frequency and flow duration controls.

SECTION I. MODEL SETUP

Pre-development Model Setup

The SWMM model for this projects pre-development site is analyzed using historical rain gauge data. The Escondido gauge is utilized for this project. That data provides continuous precipitation input to a sub-catchment with its outfall based on the contributing basins imperviousness.

The imperviousness parameter in SWMM is the amount of effective or directly connected impervious area. The effective impervious area is the impervious area that drains directly to the Stormwater conveyance system. The pre-development condition is an empty lot that sits lower than existing street level all storm runoff sheet flows to either the north or south, this site was mass graded in part to accommodate Caltrans for the I-15 and Development of Centre City Parkway. The ground cover consists of grass and some shrubs with trees. All material will be removed for the post development construction purposes. For the purpose of this study, the site is assumed to have 0% of impervious surface in the existing condition. The site is currently an undeveloped area adjacent to the I-15 freeway and Center City Parkway; on the North end of Escondido. It is served by utilities (water, sewer, and storm drain (on the south westerly portion of the site connecting to an existing cal trans line).

Existing residential developments exist on the East side of Center City Parkway, and West of the I-15. This site has two POCs; the first draining a quarter of Nutmeg street and a portion of Center City Parkway to an open pervious area that flows southwesterly to an existing Caltrans pipeline. A second area north of Nutmeg Street drains south westerly along Nutmeg Street with a Half the flow of Nutmeg Street around to a natural channel to meet with the Caltrans pipeline. The second POC is the north eastern corner of the site that drains along with the remaining of Nutmeg Street and Center City Street North to enter the Escondido sub area.

After drainage leaves the site, it flows in two directions to the north where the water circles back on itself and travels through the Escondido sub Hydrologic area southward to Escondido Creek. Once in Escondido creek flows continue until they reach the Pacific Ocean at San Elijo Lagoon. The second flow travels South westerly to travel to San Marcos Creek which flows to the Pacific Ocean and discharges at Batiquitos Lagoon.

Post-Development Model Setup

For POC-1 Figure 2 illustrates each The Nutmeg Street Development project layout proposes to place multiple residential housing units in place to cover most of the site. Fill soil will be brought in to level the site and bring the current surface up to allow a gentler slope. The finish floor elevations of the building pads are relatively flat plane through the site to drain in the direction of the existing flows away from the buildings towards water quality treatment basins. Once within the water quality treatment systems, the stormwater infiltrates through the treatment medium into underdrains that route the flows to the private on site storm drainage system. The public portions of POC-1 include a portion of the Westerly side of Centre City Parkway and Portions of Nutmeg Street. This water will be treated through "Green Streets" and in the case Rain Gardens will be used. Water will be allowed to flow through the median and gravel layer before infiltrating into the native soil. Flood storms will be calculated through the separate hydrology/ hydraulics report in final engineering and will confluence with the private water as it travels to the Caltrans Pipe. This system uses new piping to direct the flows to the existing Caltrans pipe that travels under the I-15 Freeway. Once on the other side of the Freeway the water is discharged into a natural channel.

The flows for Poc-2 are as follows: The north flow sheet flows to the basin B.1 and mitigates through a water quality treatment basin then travels to an infiltration basin B.2 (rock garden) before being released back the natural channel going offsite. The higher flows will naturally top the infiltration basin and flow downstream just as in the pre-development conditions and the low flow will be allowed to infiltrate into the soil. A small portion of Nutmeg street and Centre City Parkway will be treated in Rain Gardens along the road side before infiltrating into the natural soil and the overflow will travel to the Rock garden and confluence with the private water for additional opportunity to infiltrate before discharging downstream.

The final Poc-3 will allow surface flow to travel to a curb inlet where flows will be directed by a weir to a storage pipe before discharging through an orifice in the weir thus increasing the travel time and reducing the velocity of the low flows into the basin before treatment. Higher storms will fill the pipe and in addition of going through the two orifices in the weir plate; will also convey the q100 storm event over the top of the weir as will be calculated in the final hydrology/ hydraulics engineering report. The storm water will mitigate

Table of Contents

INTRODUCTION

Section I	Pre- and Post-Development Model Setup	3
Section II	System Representation	6
Section III	Continuous Simulation Options	9
Section IV	Biofiltration As LID Control	10
Section V	Running the Simulation	16
Section VI	Result Analysis	
Section VII	Summary and Conclusion	

ATTACHEMENTS

Attachment A	SWMM Drainage Management Area Map
Attachment B	SWMM Statistics Analysis, Flow Duration Curve and Pass/Fail Table
Attachment C	SWMM Input Data Summary and Detail
Attachment D	SWMM Drawdown Calculations and Summary
Attachment E	SWMM Hydrologic Soil Classification Attachment of Web Soil Survey

The final Poc-3 will allow surface flow to travel to a curb inlet where flows will be directed by a weir to a storage pipe before discharging through an orifice in the weir thus increasing the travel time and reducing the velocity of the low flows into the basin before treatment. Higher storms will fill the pipe and in addition of going through the two orifices in the weir plate; will also convey the q100 storm event over the top of the weir as will be calculated in the final hydrology/ hydraulics engineering report. The storm water will mitigate through the soil and discharge downstream out of a d-25 that will have the velocity low enough to travel down the gutter before reaching the natural channel. The last portion of the sidewalk and areas north of Nutmeg street will be treated in another Rain garden where storm water will be given the opportunity to infiltrate through the media and gravel. Overflow water will confluence with water from the basin (bmp-A) before reaching the natural channel downstream.

Figure-1. Typical Bio-filtration Section

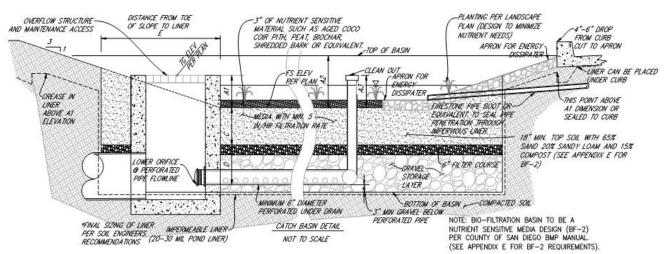


Figure-1.1. Typical Bio-filtration Sections for site

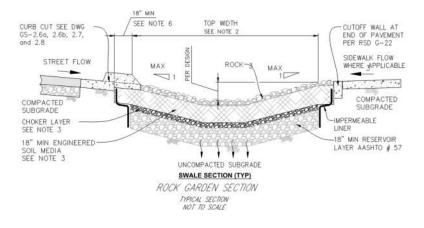


Figure-1.2. Typical Rock Garden Sections for site

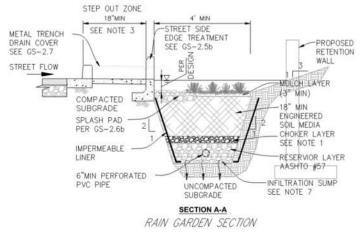
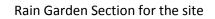



Figure-1.3. Typical

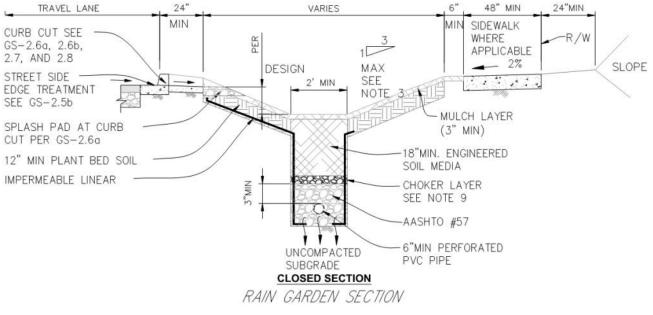


Figure-1.4. Typical

Rain Garden Section for the site

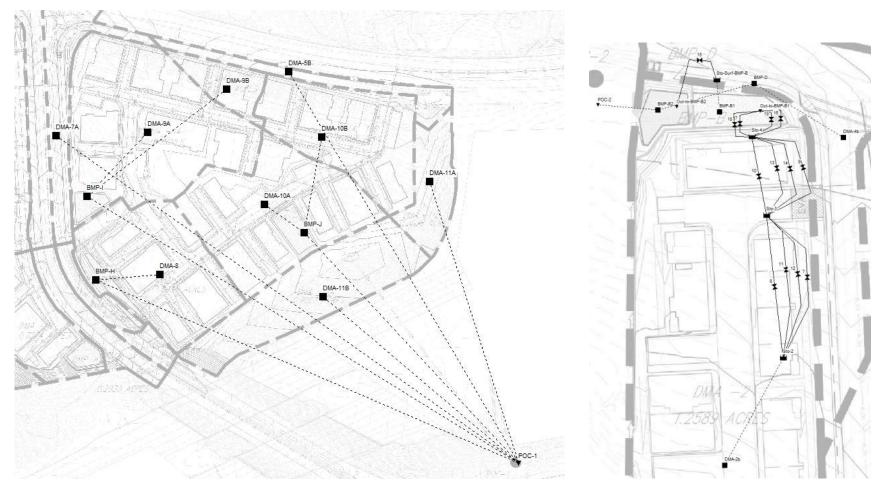


Fig.2 – SWMM Post-Development with Mitigation Model Poc1 and Poc2

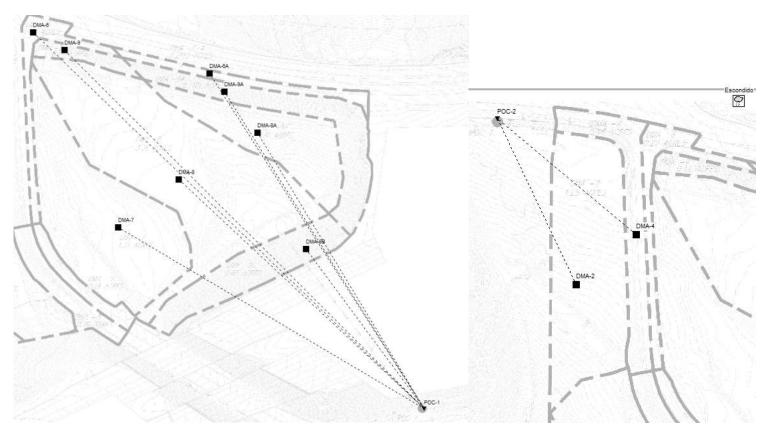


Fig.3 – SWMM Pre-Development Model POC1 and POC2

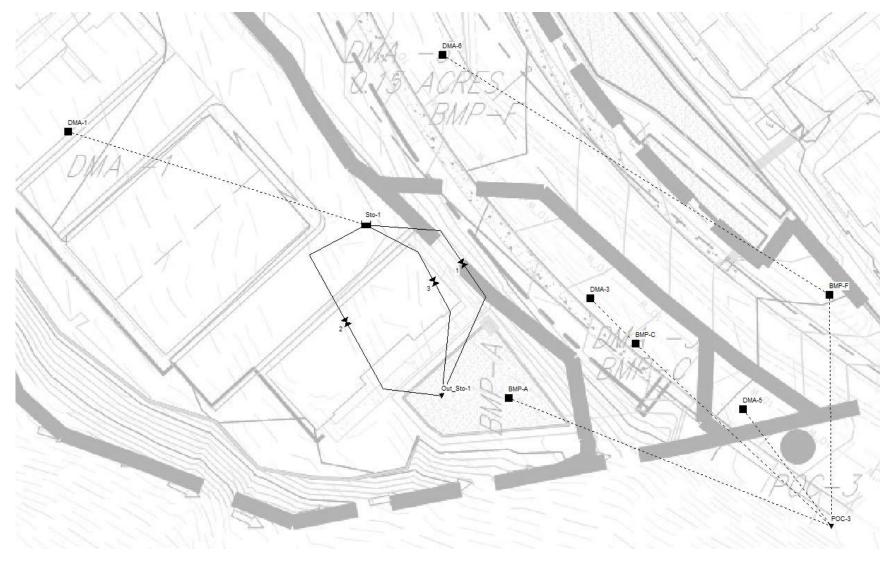


Fig.3 – SWMM Post-Development Model POC3

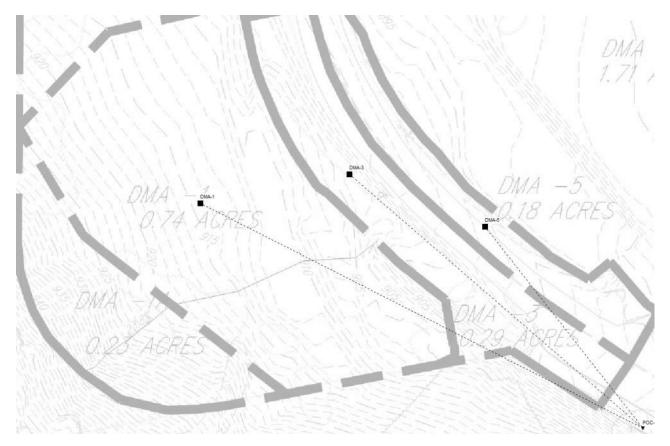


Fig.3 – SWMM Post-Development Model POC3

Post-Development Drainage Management Areas (DMAs)

The DMAs provide an important framework for feasibility screening, BMP prioritization and storm water management system configuration. DMAs are defined based on drainage patterns of the site and the BMPs to which they drain.

In this project Nutmeg Homes DMAs drain to BMPs A-I. The de-minimus was minimized as much areas are bypassed to the POC designated for the project site (see hydromodification exhibit) to keep pre development flows.

Post Development						
[SUBCATCHMENTS]				-		
Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope
DMA-7A	Escondido	POC-1	0.4894	48	45.10181	3.4
DMA-5B	Escondido	POC-1	0.2193	48	25.40226	0.2
DMA-8	Escondido	ВМР-Н	0.999843	70	300.0813	0.5
DMA-9A	Escondido	BMP-I	1.6139	67	239.1536	0.5
DMA-9B	Escondido	BMP-I	0.2571	67	8749.118	0.1
DMA-10A	Escondido	BMP-J	1.156	69	258.8174	1.4
DMA-10B	Escondido	BMP-J	0.876	69	246.2917	4
DMA-11A	Escondido	Poc-1	0.4372	0	284.1803	4
DMA-11B	Escondido	Poc-1	0.8487	0	207.7634	4.1
BMP-H	Escondido	POC-1	0.045757	0	19	0
BMP-I	Escondido	POC-1	0.0413	0	36	0
BMP-J	Escondido	POC-1	0.0719	0	40	0
DMA-2b	Escondido	Sto-2	1.142027	67	105.9345	1.9
BMP-B2	Escondido	POC-2	0.0188	0	24	0
BMP-B1	Escondido	Sto-Surf-BMP-B	0.031267	0	24	0
DMA-4b	Escondido	BMP-D	0.381315	87	46.46938	2.6
BMP-D	Escondido	Bmp-B2	0.00769	0	6	0
DMA-1	Escondido	Sto-1	0.809239	55	109.3409	1.5
DMA-3	Escondido	BMP-C	0.110394	50	44.63249	4.8
DMA-5	Escondido	POC-3	0.0165	100	15	5.1
DMA-6	Escondido	BMP-F	0.39596	78	35	2.5
BMP-A	Escondido	POC-3	0.038761	0	50	0
BMP-F	Escondido	POC-3	0.014233	0	7	0
BMP-C	Escondido	POC-3	0.003006	0	10	0
		Total Area	10.03			

DMA Table for Post-Development of POC-1

DMA Table for Pre-Development of POC-1

Pre Development						
[SUBCATCHMENTS]						
Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope
DMA-1	Escondido	POC-3	0.8358	0	145.2608	23.8
DMA-5	Escondido	POC-3	0.1649	0	35.24834	3.4
DMA-3	Escondido	POC-3	0.2564	0	48.25916	5.4
DMA-2	Escondido	POC-2	1.2514	0	121.2805	15.5
DMA-4	Escondido	POC-2	0.4678	0	42.34932	3.5
DMA-9B	Escondido	POC-1	0.645891	0	294.5029	50
DMA-6	Escondido	POC-1	0.265565	0	33.17599	3.1
DMA-7	Escondido	POC-1	1.707346	0	260.7497	3.1
DMA-8	Escondido	POC-1	2.5455	0	207.8225	4
DMA-6A	Escondido	POC-1	0.218274	0	21.87082	1.4
DMA-9A	Escondido	Poc-1	0.71607	0	283.3705	40.6
DMA-9	Escondido	POC-1	0.144766	0	94.81678	40.6
DMA-8A	Escondido	POC-1	0.813453	0	229.2475	12.1
			10.03			

SECTION II. SYSTEM REPRESENTATION

SWMM is a distributed model, which means that a study area can be subdivided into any number of irregular sub-catchments to best capture the effect that spatial variability in topography, drainage pathways, land cover, and soil characteristics have on runoff generation. For modeling of Hydromodification calculations, there are four main system representations: Rain gage, Sub-catchment (contributing basin or LID area), Nodes and Links.

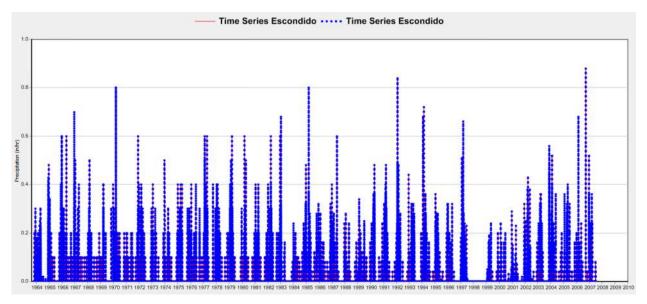


Fig. 2.1 – Time series rain data, which corresponds to runoff estimates for each of the 385,440 time steps (each date and hour) of the 44-year simulation period. (Inches/hour vs. elapsed time)

Rain Gauge

The properties of a rain gauge describe the source and format of the precipitation data that are applied to the study area. In this project, the rainfall data consist of a long-term rainfall record stored in a userdefined Time Series labeled as "Escondido" rain gauge station. The Escondido rain station was chosen due to its data quality and its location to the project site.

The rain gauge supplies precipitation data for one or more sub-catchment areas in a study region taken from the Project Clean Water website (www.projectcleanwater.org). This data file contains rainfall intensity, hourly-recorded time interval, and the dates of recorded precipitation each hour. The Escondido rain data has approximately 44 years of hourly precipitation data from 8/28/1951 to 5/23/2008 and generates 44 years of hourly runoff estimates, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 44 year simulation period. See figure 2.1 for hourly precipitation intensity graph for 44 years in inches.

Sub-catchment (contributing basin or LID area) A basin is modeled using a sub-catchment object, which contains some of the following properties:

The rate of stormwater runoff and volume depends directly on the precipitation magnitude and its spatial and temporal distribution over the catchment. Each sub-catchment in SWMM is linked to a rain gauge object that describes the format and source of the rainfall input for the sub-catchment.

Area

This area is bounded by the sub-catchment boundary. Its value is determined directly from maps or field surveys of the site or by using SWMM's Auto-length tool when the sub-catchment is drawn to scale on SWMM's study area map. This Project is divided into several sub-catchments based on its outfall.

Width

Width can be defined as the sub-catchment's area divided by the length of the longest overland flow path that water can travel. When there are several such paths, one would use an average of their lengths to compute a width. If overland flow is visualized as running down –slope off an idealized, rectangular catchment, then the width of the sub-catchment is the physical width of overland flow.

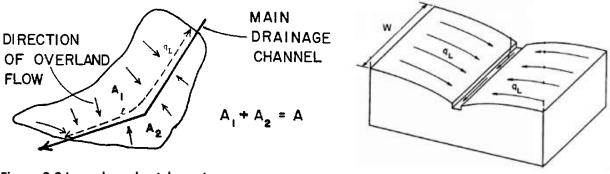


Figure-2-2 Irregular subcatchment shape for width calculations (DiGiano et al., 1977, p.165).

Figure-2-3 Idealized representation of a subcatchment.

Source: STORM WATER MANAGEMENT MODEL REFERENCE MANUAL VOLUME 1- JANUARY 2016

The method of calculations used following Figure 2-2 involves an estimitation by Guo and Urbonas (2007). As stated in the Storm Water Management Model Reference Manual Vol. 1

A more fundamental approach to estimating both subcatchment width and slope has recently been developed by Guo and Urbonas (2007). The idea is to use "shape factors" to convert a natural watershed as pictured in Figure 2-2 into the idealized overland flow plane of Figure 2-3. A shape factor is an index that reflects how overland flows are collected in a watershed. The shape factor X for the actual watershed is defined as A/L^2 where A is the watershed area and L is the length of the watershed's main drainage channel (not necessarily the length of overland flow). The shape factor Y for the idealized watershed is W/L. Requiring that the areas of the actual and idealized watersheds be the same and that the potential energy in terms of the vertical fall along the drainage channel be preserved, Guo and Urbonas (2007) derive the following expression for the shape factor Y of the idealized watershed:

 $Y = 2X(1.5 - Z)(2K - X)/(2K - 1) \quad (3-12)$

where K is an upper limit on the watershed shape factor. Guo and Urbonas (2007) recommend that K be between 4 and 6 and note that a value of 4 is used by Denver's Urban Drainage and Flood Control District.

Once Y is determined, the equivalent width W for the idealized watershed is computed as YL.

Applying this approach:

 $X = (A \cdot 43,560 \text{ ft}^2/\text{acre}) / (L^2)$

$$Z = A_m / A$$

Z = skew factor, $0.5 \le Z \le 1$,

 A_m = larger of the two areas on each side of the channel A = total area.

 $W = L \bullet Y$

This width value is considerably lower than those derived from direct estimates of either the longest flow path length or the drainage channel length. As a result, it would most likely produce a longer time to peak for the runoff hydrograph.

Slope

This is the slope of the land surface over which runoff flows and is the same for both the pervious and impervious surfaces. It is the slope of what one considers being the overland flow path or its area-weighted average if there are several paths in the sub-catchment.

Imperviousness

This is the percentage of sub-catchment area covered by impervious surfaces such as sidewalks and roadways or whatever surfaces that rainfall cannot infiltrate.

Roughness Coefficient

The roughness coefficient reflects the amount of resistance that overland flow encounters as it runs off of the sub-catchment surface. The value used for this project on both the pre and post development is an average grass (0.05) as shown in Table 3-5 below. The ground is developed but small vegetation is of average size. For this project the source provided by Yen (2001) was used. A picture of the vegetation on site is in figure 2-4

Source	Ground Cover	n	Range
	Smooth asphalt	0.01	
Crawford and Linsley	Asphalt of concrete paving	0.014	
(1966) ^a	Packed clay	0.03	
	Light turf	0.20	
	Dense turf	0.35	
	Dense shrubbery and forest litter	0.4	
	Concrete or asphalt	0.011	0.010-0.013
Engman (1986) ^b	Bare sand	0.010	0.01-0.016
	Graveled surface	0.02	0.012-0.03
	Bare clay-loam (eroded)	0.02	0.012-0.033
	Range (natural)	0.13	0.01-0.32
	Bluegrass sod	0.45	0.39-0.63
	Short grass prairie	0.15	0.10-0.20
	Bermuda grass	0.41	0.30-0.48
Yen (2001) ^c	Smooth asphalt pavement	0.012	0.010-0.015
	Smooth impervious surface	0.013	0.011-0.015
	Tar and sand pavement	0.014	0.012-0.016
	Concrete pavement	0.017	0.014-0.020
	Rough impervious surface	0.019	0.015-0.023
	Smooth bare packed soil	0.021	0.017-0.025
	Moderate bare packed soil	0.030	0.025-0.035
	Rough bare packed soil	0.038	0.032-0.045
	Gravel soil	0.032	0.025-0.045
	Mowed poor grass	0.038	0.030-0.045
	Average grass, closely clipped sod	0.050	0.040-0.060
	Pasture	0.055	0.040-0.070
	Timberland	0.090	0.060-0.120
	Dense grass	0.090	0.060-0.120
	Shrubs and bushes	0.120	0.080-0.180
	Business land use	0.022	0.014-0.035
	Semi-business land use	0.035	0.022-0.050
	Industrial land use	0.035	0.020-0.050
	Dense residential land use	0.040	0.025-0.060
	Suburban residential land use	0.055	0.030-0.080
	Parks and lawns	0.075	0.040-0.120
^a Obtained by calibration of s ^b Computed by Engman (198 rainfall-runoff data. ^c Computed on basis of kiner	6) by kinematic wave and storage ana	lysis of n	neasured

Table 3-5 Estimates of Manning's roughness coefficient for overland flow

Source: Storm Water Management Model Reference Manual Volume I – Hydrology (Revised) ~ January 2016

Infiltration Model

The pre-development condition is primarily empty land with moderate vegetation cover. In the model, clay soil was used for the post-development condition and the pre-development condition for a conservative approach (yield to a higher runoff). Infiltration of rainfall from the pervious area of a sub-catchment into the unsaturated upper soil zone can be described using three different infiltration models: Horton, Green-Ampt, and Curve Number. There is no general agreement on which method of these three is the best.

The Green-Ampt method was chosen to calculate the infiltration of the pervious areas based on the availability of data for this project. It is invoked when editing the infiltration property of a sub-catchment.

The Hydrologic Soil Class identified for this project is a rating of C and, D. This determination was from Web Soil Survey and is provided as Attachment E of this projects SWMM report.

Table 1 – Soil Infiltration Parameter

SWMM Parameter Name	Unit	Range	Use in San Diego
Infiltration	Method	HORTON GREEN_AMPT CURVE_NUMBER	GREEN_AMPT
Suction Head (Green-Ampt)	Inches	1.93 – 12.60 presented in Table A.2 of SWMM Manual	Hydrologic Soil Group A: 1.5 Hydrologic Soil Group B: 3.0 Hydrologic Soil Group C: 6.0 Hydrologic Soil Group D: 9.0
Conductivity (Green-Ampt)	Inches per hour	0.01 – 4.74 presented in Table A.2 of SWMM Manual by soil texture class 0.00 – Ç0.45 presented in Table A.3 of SWMM Manual by hydrologic soil group	Hydrologic Soil Group A: 0.3 Hydrologic Soil Group B: 0.2 Hydrologic Soil Group C: 0.1 Hydrologic Soil Group D: 0.025 Note: reduce conductivity by 25% in the post-project condition when native soils will be compacted. For fill soils in post-project condition, see Section G.1.4.3.
Initial Deficit (Green-Ampt)		The difference between soil porosity and initial moisture content. Based on the values provided in Table A.2 of SWMM Manual, the range for completely dry soil would be 0.097 to 0.375	Hydrologic Soil Group A: 0.30 Hydrologic Soil Group B: 0.31 Hydrologic Soil Group C: 0.32 Hydrologic Soil Group D: 0.33 Note: in long-term continuous simulation, this value is not important as the soil will reach equilibrium after a few storm events regardless of the initial moisture content specified.
Groundwater	yes/no	yes/no	NO
LID Controls Snow Pack Land Uses			Project Specific Not applicable to hydromodification management studies
Initial Buildup Curb Length			management studies

Source: Model BMP Design Manual San Diego Region Appendices, February 26, 2016

LID controls

Utilizing LID controls within a SWMM project is a two-step process that:

- Creates a set of scale-independent LID controls that can be deployed throughout the study area,
- Assign any desired mix and sizing of these controls to designated sub-catchments. The LID control type that was selected was a biofiltration cell that contains vegetation grown in an engineered soil mixture placed above a gravel drainage bed. Biofiltration provides storage, infiltration (depending on the soil type) and evaporation of both direct rainfall and runoff captured from surrounding areas. For this project, we do not allow infiltration to the existing/filled soil.

SECTION III. CONTINUES SIMULATION OPTIONS

Simulation Dates

These dates determine the starting and ending dates/times of a simulation and are chosen based on the rain data availability.

Start analysis on 09/24/1964 Start Reporting on 09/24/1964 End Analysis on 05/23/2008

Time Steps

The Time Steps establish the length of the time steps used for runoff computation, routing computation and results reporting. Time steps are specified in days and hours: minutes: seconds except for flow routing which is entered as decimal seconds.

Climatology

-Evaporation Data

The available evaporation data for San Diego County that is similar to the HHSA project conditions is taken Table G.1-1: Monthly Average Reference Evapotranspiration by ETO Zone for use in SWMM Models for Hydromodification Management Studies in San Diego County CIMIS Zone 4 (in/day).

January	February	March	April	May	June
0.07	0.1	0.13	0.17	0.19	0.22
July	August	September	October	November	December
0.07	0.1	0.13	0.17	0.19	0.22

SECTION IV. BIOFILTRATION AS LID CONTROL

LID controls are represented by a combination of vertical layers whose properties are defined on a perunit-area basis. This allows an LID of the same design but differing coverage area to easily be placed within different sub-catchments of a study area. During a simulation, SWMM performs a moisture balance that keeps track of how much water moves between and is stored within each LID layer. If the biofiltration basin is full and water is leaving the upper weir, the flow is divided in two flows: the lower flow discharging from the bottom orifice directly draining to the point of compliance and the upper flow is routed at the top of the biofiltration basin and after routing, discharged to the point of compliance. In this project, we used 100% of the area of this specific sub-catchment for biofiltration.

1. Surface

Storage Depth

When confining walls or berms are present, this is the maximum depth to which water can pond above the surface of the unit before overflow occurs (in inches). In this project, storage depths vary. Table 3 shows depths of surface ponding.

Vegetation Volume Fraction

It is the fraction of the volume within the storage depth that is filled with vegetation. This is the volume occupied by stems and leaves, not their surface area coverage. Normally this volume can be ignored, but may be as high as 0.1 to 0.2 for very dense vegetative growth. Based on our visual observation in the field, the average type of vegetation for this site is a low-density vegetation type. Therefore, we used 0.1 for the vegetation volume fraction assuming type of vegetation used is a low-density type.

Surface Roughness

Manning's n value for overland flow over a vegetative surface.

Surface Slope

Slope of porous pavement surface or vegetative swale (percent).

2. Soil

<u>Thickness</u>

The thickness of the soil layer in inches. We used a typical value of 18 inches soil thickness for a biofiltration.

The volume of pore space relative to total volume of soil (as a fraction). We designed it with a soil mix porosity of 0.40 maximum for a good percolation rate (Countywide Model SUSMP Table B1 – Soil Porosity Appendix A: Assumed Water Movement Hydraulics for Modeling BMPs).

Field Capacity

Volume of pore water relative to total volume after the soil has been allowed to drain fully (as a fraction). We used 0.2 for this soil. Below this level, vertical drainage of water through the soil layer does not occur. (See Table 1 – Soil Infiltration Parameter).

Wilting Point

Volume of pore water relative to total volume for a well-dried soil where only bound water remains (as a fraction). The moisture content of the soil cannot fall below this limit.

We assumed the minimum moisture content within this biofiltration soil is 0.1.

<u>Conductivity</u>

Hydraulic conductivity for the fully saturated soil is 5 inches/hour. This is a design minimum value for percolation rate.

Conductivity Slope

Slope of the curve of log (conductivity) versus soil moisture content (dimensionless). Typical values range from 5 for sands to 15 for silty clay. We designed this soil to have a very good percolation rate therefore the conductivity slope is 5.

Suction Head

The average value of soil capillary suction along the wetting front (inches). This is the same parameter as used in the Green-Ampt infiltration model. Table 1 was utilized to determine the capillary of the soil mix top layer of a biofiltration system. The suction head will be 1.5 inches.

3. Storage Layer

The Storage Layer page of the LID Control Editor describes the properties of the crushed stone or gravel layer used in biofiltration cells as a bottom storage/drainage layer. The following data fields are displayed:

<u>Height</u>

this is the thickness of a gravel layer (inches). Crushed stone and gravel layers are vary ranging from 12 to 36 inches thick. A table is provided to summarized the BMP configurations. A factor of 3 inches is accounted for dead space and is removed from measurement on grading plans. With the 3 inches subtracted the flow line out of the gavel is Total Gravel depth -3''

Void Ratio

The volume of void space relative to the volume of solids in the layer. Typical values range from 0.5 to 0.75 for gravel beds. Note that porosity = void ratio / (1 + void ratio). We designed this void ratio to have a value of 0.67.

Seepage Rate

The rate at which water infiltrates into the native soil below the layer (in inches/hour). This would typically be the Saturated Hydraulic Conductivity of the surrounding sub-catchment if Green-Ampt infiltration is used. Since the liner beneath the gravel layer is proposed, the seepage rate is assumed to be 0 in/hr.

Clogging Factor

Total volume of treated runoff it takes to completely clog the bottom of the layer divided by the void volume of the layer. For south east biofiltration, a value of 0 was used to ignore clogging since the

system does NOT consider infiltration to the native soils. Clogging progressively reduces the Infiltration Rate in direct proportion to the cumulative volume of runoff treated and may only be of concern for infiltration trenches with permeable bottoms and no under drains. We assumed zero for the clogging factor since the infiltration rate is not considered.

4. Underdrain Layer

LID storage layers can contain an optional underdrain system that collects stored water from the bottom of the layer and conveys it to a conventional storm drain. The Underdrain page of the LID Control Editor describes the properties of this system. It contains the following data entry fields:

Drain Coefficient and Drain Exponent

Coefficient *C* and exponent *n* that determines the rate of flow through the underdrain as a function of height of stored water above the drain height. The following equation is used to compute this flow rate (per unit area of the LID unit):

 $q = C(h-Hd)^n$

where q is the outflow (in/hr), h is the height of stored water (inches), and Hd is the drain height. A typical value for n would be 0.5 (making the drain act like an orifice.

Drain Offset Height

Height of any underdrain piping above the bottom of a storage layer (inches). In this project, this value was set to 0 as the underdrain piping is at the bottom of the storage layer.

LID CONTROLS		
Name	Type/Layer	Parameters
BMP-A	BC	
BMP-A	SURFACE	6
BMP-A	SOIL	18
BMP-A	STORAGE	12
BMP-A	DRAIN	0.080863226

Table 3 – Summary of LID	Drain/flow coefficient
--------------------------	------------------------

BMP-J	ВС	
BMP-J	SURFACE	6
BMP-J	SOIL	18
BMP-J	STORAGE	60
BMP-J	DRAIN	0.053537
BMP-J	STORAGE	60

BMP-F	вс	
BMP-F	SURFACE	6
BMP-F	SOIL	18
BMP-F	STORAGE	12
BMP-F	DRAIN	0.114781676

BMP-B1	BC	
BMP-B1	SURFACE	6
BMP-B1	SOIL	18
BMP-B1	STORAGE	12
BMP-B1	DRAIN	0.108261

BMP-H	вс		BMP-B2	BC	
BMP-H	SURFACE	6	BMP-B2	SURFACE	24

BMP-H	SOIL	18	BMP-B2	SOIL	12
BMP-H	STORAGE	60	BMP-B2	STORAGE	72
BMP-H	DRAIN	0.059324788	BMP-B2	DRAIN	0.246638

BMP-I	вс	
BMP-I	SURFACE	6
BMP-I	SOIL	18
BMP-I	STORAGE	60
BMP-I	DRAIN	0.059777169

BMP-D	BC	
BMP-D	SURFACE	6
BMP-D	SOIL	18
BMP-D	STORAGE	36
BMP-D	DRAIN	0

BMP-A	вс	
BMP-A	SURFACE	6
BMP-A	SOIL	18
BMP-A	STORAGE	48
BMP-A	DRAIN	0.04849246

BMP-F	BC	
BMP-F	SURFACE	6
BMP-F	SOIL	18
BMP-F	STORAGE	48
BMP-F	DRAIN	0

BMP-C	вс	
BMP-C	SURFACE	6
BMP-C	SOIL	18
BMP-C	STORAGE	48
BMP-C	DRAIN	0

Note: $q = C(h-Hd)^n$ $C = C_o A_o \frac{\sqrt{2g}}{A} \times 12^{0.5} \times 3600$

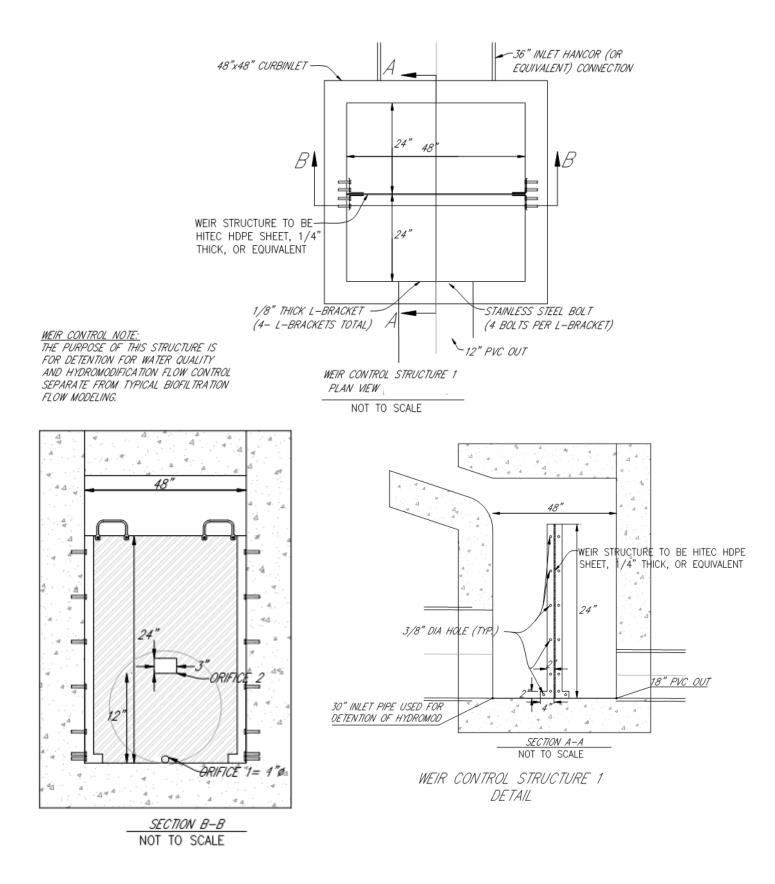
SECTION V. MODELING BIO-FILTRATIONSURFACE PONDING

The main elements used to design surface ponding in SWMM are storage units (labeled as IMP_Pond) with orifice and weir outlets.

1. Storage Units

Storage units are drainage system nodes that provide storage volume. Physically they could represent storage facilities as small as a catch basin or as large as a lake. The volumetric properties of a storage unit are described by a function or table of surface area versus height. Storage volume is described by a storage curve, an evaporation factor and a maximum depth of storage.

Curve	e Name					
	ACE-POND			1	Storage Curve SURFACE-POND	
Descr	iption			<u></u>	1.6-	
				(E)	1.4-	
	Depth (ft)	Area (ft2)	-	View	1.2	
1	0	3489			0.1	
2	1.67	3977		Load		
3					50.8-	
4				Save	0.6	
5					0.4	
6					0.2-	
7				ОК	0.2	
8					0	
9				Cancel		
10					Copy To Print	Close
11			+	Help	Copy ro	CIOSE


Figure 5 – Example Storage Curve for Storage Unit

2. Orifices

SWMM's orifice-type link can be used to represent the opening along the side or bottom of the storage unit that serves as an outlet. The upstream node of the orifice is the storage unit while its downstream node would be a junction that connects it to a downstream conduit. A circular shaped orifice was selected to drain the ponding water.

3. Weirs

A Rectangular-shaped weir was used to represent the weir at the stand box riser. See Details of weir below.

Adding a Storage Unit, orifice and weirs to the Model

The following steps are taken to define the storage unit.

- 1. A new Storage Curve object labeled as Sto-BMP# is created to represent the shape of the storage unit. A new Storage Curve object labeled Sto-1 is created to represent the water detained behind the weir in a detention pipe.
- 2. This storage unit was a part of bio-filtration model connected from a flow divider from Subcatchment which is assigned as LID. This conduit represents runoff that is not percolating into the soil and collected in the surface storage creating pond.
- 3. The two previously determined depth-area points are entered into the Curve Editor dialog for the curve SURFACE_PONDING.
- 4. The following properties are assigned to a storage unit labeled as "Surface_Pond". Storage Curve = Tabular; Curve Name =Sto-1; Invert Elevation 0 ft (assumption); Maximum Depth=2.5 ft and Initial Depth = 0 ft (the simulation starts when the pond empty).
- 5. Add weir represents the plate in the curb inlet that will allow water to back up into the detention pipe and ; Type=transverse; Height=1.5'; Crest Length=3'; inlet offset=24"; Discharge coefficient=3.33. For the weir in a detention system the height is from the flowline of the pipe to the top of the plate in the box 2'
- Add 2 orifices as the multi-stage surface pond system connecting the storage to outfall; type=sideflow; Diameter =0.0833" (1"); a second orifice at an offset of =1' with a height of 0.16667' and a length of 0.25'

Sizing Orifice and Weir

Similar to sizing the bio-filtration area, Orifices and Weir are sized based on the comparison between peak flow duration and the peak flow frequency for pre-and mitigated post-development conditions. Therefore, the entire model should be set up completely with assumed parameters. This calculation is an iterative process until those two comparisons meet the Hydromodification criteria.

The Storage Nodes used in this project are as follows:

A storage Node is used in POC 3 to represent the detention that that will be withheld and released at a slower rate to meet hydromodification compliance yet allow high flows and Q100 to continue through the system.

SECTION V. RUNNING THE SIMULATION

In general, the Run time will depend on the complexity of the watershed being modeled, the routing method used, and the size of the routing time step used. The larger the time steps, the faster the simulation, but the less detailed the results.

Model Results

SWMM's Status Report summarizes overall results for the 44-yr simulation. The runoff continuity error is -6.51 % and the flow routing continuity error is 0.03%. When a run completes successfully, the mass continuity errors for runoff, flow routing, and pollutant routing will be displayed in the Run Status window. These errors represent the percent difference between initial storage + total inflow and final storage + total outflow for the entire drainage system. If they exceed some reasonable level, such as 10 percent, then the validity of the analysis results must be questioned. The most common reasons for an excessive continuity error are computational time steps that are too long or conduits that are too short.

In addition to the system continuity error, the Status Report produced by a run will list those nodes of the drainage network that have the largest flow continuity errors. If the error for a node is excessive, then one should first consider if the node in question is of importance to the purpose of the simulation. If it is, then further study is warranted to determine how the error might be reduced.

The SWMM program ranks the partial duration series, the exceedance frequency and the return period. They are computed using the Weibull formula for plotting position. See the flow duration curve and peak flow frequency on the following pages.

SECTION VI. RESULT ANALYSIS

Development of the Flow Duration Statistics

The flow duration statistics are also developed directly from the SWMM binary output file. It should be noted right from the start that the "durations" that we are talking about in this section have nothing to do with the "storm durations" presented in the peak flow statistics section. Other than using the same sequence of letters for the word, the two concepts have nothing to do with each other and the reader is cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow rates that fall within the hydromorphologically significant range, the length of time that each of those flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing the velocity and length of time for each flow rate is very useful.

Methodology

The methodology for determining the flow duration curves comes from a document developed by the U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the USGS water site (<u>http://www.usgs.gov/water/</u>). This link is found in Appendix E (SDHMP Continuous

Simulation Modeling Primer), found in the County Hydromodification Management Plan¹. On this web site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by James K. Searcy 1959 (<u>http://pubs.er.usgs.gov/publication/wsp1542A</u>). In this publication the development of the flow duration curves is discussed in detail.

In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data used to create the flow duration plots. A completed form 9-217-c form shows the monthly tabulation of flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is tabulated and then the total number of each flow rate is totaled for the year. It should be noted that while this example is for a stream with a minimum flow rate of 100cfs, for the purposes of run-off studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once each of the year's data has been compiled the summary numbers from each year are transferred to form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of time exceeded calculated (as will be explained later under the discussion of our calculations). Once the data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be explained in the next section, the use of these curves leads to the amount of time each particular flow can be expected to occur (based on historical data).

How to Read the Graphs²

Figure 6-1 shows a flow duration curve for a hypothetical development. The three curves show what percentage of the time a range of flow rates are exceeded for three different conditions: pre-project, post-project and post-project with storm water mitigation. Under pre-project conditions the minimum geomorphically significant flow rate is 0.10cfs (assumed) and as read from the graph, flows would equal or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24 hour/day). For post-project conditions, this flow rate would occur more often – about 0.38% of the time (or about 33 hours per year) (0.0038 x 365days x 24 hour/day). This increase in the duration of the geomorphically significant flow after development illustrates why duration control is closely linked to

(http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311 SD HMP wAppendices.pdf)

¹ FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by Brown and Caldwell Engineering of San Diego.

² The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan

protecting creeks from accelerated erosion.

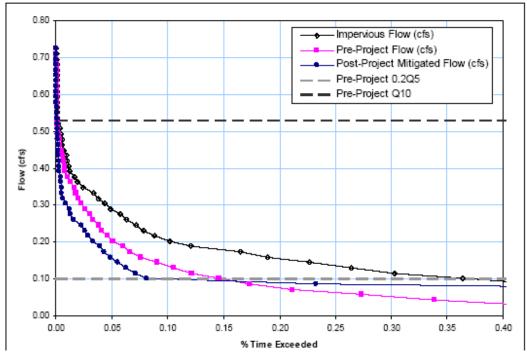


Figure 6-1. Flow Duration Series Statistics for a Hypothetical Development Scenario

Development of Flow Duration Curves

The first step in developing the flow duration curves is to count the number of occurrences of each flow rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal places (say two places). This in effect groups each flow into closely related values or "bins" as they are referred to in publication 9-217d. Then the entire runoff record is queried for each value and the number of each value counted. The next step is to enter the results of the query into a grid patterned after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is composed of four columns. They are (from left to right) Discharge Rate, Number of **Periods (count)**, Total Periods Exceeding (the total number of periods equal to or exceeding this value), and Percent Time Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the corresponding number of times that value was found. The next column is the total number of values greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are greater than or equal to this value, therefore the total number of runoff records of the rainfall record is entered here. The final column which is the percent of time exceeded is calculated by dividing the total periods exceeded by the total number of periods in the study. For the first row this number should be 100%

For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the case for line 1, the final column is calculated by dividing the total periods exceeded by the total number of periods in the study. For the second row this number should be something less than 100% and

continually decrease as we move down the chart. If all the calculations are correct, then everything should zero out on the last line of the calculations.

The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow rate is not plotted allowing the graph to be focused on the actual flow rate values.

The Flow Duration Analysis

The Peak Flow Statistics analysis is composed of the following series of files:

- 1. The Flow Duration Plot
- 2. Comparison of the Un-Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
- 3. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
- 4. The calculations for the Pre-Development flow duration curve development (USGS9217d)
- 5. The calculations for the Post-Development flow duration curve development (USGS9217d)
- 6. The calculations for the Mitigated flow duration curve development (USGS9217d)

The Flow Duration Plot

The Flow Duration Curves Plot is the plotting of all three (pre, un-mitigated and mitigated) sets of Discharge Rate vs. the Percent Time Exceeded data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q_{10} and Q_{if} (low flow threshold) values. Within the geomorphically significant range ($Q_{10} - Q_{if}$) one can see a visual representation of the relative positions of the flow duration curves. The flow duration curves are compared in an East/West (horizontal) direction to compare post development Discharge Rates to pre-development Discharge Rates. The predevelopment curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies to the left of the pre-development curve (mostly³), the project meets the peak flow hydromodification requirements.

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "Y" value (Flow Rate), and "X" value (% Time Exceeded). For each point on the post development curve, the "Y" value is used to interpolate the corresponding Percent Time Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the relative values of each point, pass/fail criteria are determined point by point.

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file (*.out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been

³ See hydromodification limits for exceedance of pre-development values

tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Q_{post} being outside of the geomorphically significant range Q_{lf} to Q_{10}
- 2. Q_{post} being less than Q pre
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_{lf} and Q_{10}

There are two ways that a point can fail. They are:

- 1. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 2. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_{lf} and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

Plan Check Suggestions

As was described under the peak flow section, is the responsibility of the reviewing agency to confirm that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

Compare the Data Stamps for Each of the Statistics Files Used In This Analysis.

As was described in the Peak Flows section, all report files should have time stamps that are nearly identical. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

Verify the Flow Rate Counts

For each of the pre, and mitigated flow duration tables, a few randomly selected flow value counts should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the SWMM table which will select the entire table. Now from the main menu select Edit>Copy To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell

A1 and paste the results from the clipboard into the spread sheet. Now sort the values based on the Total Inflow column. This will group all the flow values together enabling the number of occurrences of each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt files can be verified.

Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated

The discharge rates and counts are confirmed as was described above. The top row should be the smallest runoff value (0.00cfs usually). Total Periods Exceeding of the first line should be the total number of rainfall records in the study. The percentage of Time Exceeding should be the total periods Exceeding divided by the total number of rainfall records in the study (100% for the first line). For each successive discharge rate, the total periods exceeding for the current line should be the total periods exceeding from the line above minus the number of periods from the line above. The number of periods and the number of periods exceeding should zero out at the last line.

Compare Plotted Curves to Table Data

Randomly check a few of the plotted points against the values verified above. Verify by Observation that the plotted values of Q_{10a} nd Q_{if} are reasonable. Verify that the correct values for each of these return periods are plotted correctly on the graph.

Development of the Peak Flow Statistics

The peak flow statistics are developed directly from the binary output file produced by the SWMM program. The site is modeled three ways, Pre-Development, Post-Development-Unmitigated, and Post-Development-Mitigated. For each of these files a specific time period differentiating distinct storms is chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is read the time and flow value of that record are recorded as the beginning of an event. The first record is automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the successive flow value is compared to the peak value and the greater value is retained as the peak value of the storm. As soon as a successive number of zero values equal to the predetermined storm separation value, then the time value of the last non-zero value is recorded as the end of the storm, the duration of the storm is the difference between the end time and the start time, and the peak value is recorded as the highest flow value between the start and end times.

Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted then the relative rank of each storm is assigned with the highest ranking storm being the storm with the highest peak flow. There are several methods that can be used to determine which storm should be ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is used so that each storm has a unique rank number. Where two or more storms have equal flow values, the earlier storm is assigned the higher rank. This is done consistently throughout the storm record. Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but equal) storms is irrelevant to the calculations.

The exceedance frequency and return period are both computed using the Weibull formula for plotting position. Therefore, for a specific event the exceedance frequency F and the return period in years T are calculated using the following equations⁴:

$F=m/(n_R+1)$ and T=n+1/m

where m is the event's rank, n_R is the total number of events and n is the number of years under analysis.

Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All three conditions (pre, post and mitigated) are plotted on the same plot.

The Peak Flow Statistics Analysis

The Peak Flow Statistics analysis is composed of the following series of files:

- 1. The Peak Flow Frequency Plot
- 2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail)
- 3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail)
- 4. The Peak Flow Statistics Calculation for the Pre-Development Curve.
- 5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve.
- 6. The Peak Flow Statistics Calculation for the Mitigated Curve.

The Peak Flow Frequency Plot

The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q_{10} , Q_5 , Q_2 and Q_{if} (low flow threshold) values. Within the geomorphically significant range ($Q_{10} - Q_{if}$) one can see a visual representation of the relative positions of the peak flow curves. The peak flow curves are compared in a North/South (vertical) direction to compare post development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies below the pre-development curve (mostly⁵), the project meets the peak flow hydromodification requirements.

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on the post development curve, the "X" value is used to interpolate the corresponding peak flow value from the pre-development curve. Then the Post-development peak flow value is compared to the pre-development peak flow value. Based on the relative values of each point, pass/fail criteria are determined point by point.

⁴ Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009

⁵ See hydromodification limits for exceedance of pre-development values

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. It should be noted that the SWMM.out files will not have related time stamps since each file is developed independently.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Point is outside of the geomorphically significant range $Q_{10} Q_{lf}$
- 2. Q_{post} being less than Q pre
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_5 and Q_{10}^6

There are four ways that a point can fail. They are:

- 1. Q_{post} being greater than Q_{pre} if the point is between Q_{lf} and Q_5
- 2. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 3. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_5 and Q_{10}
- 4. If the frequency interval for points > 100% of Q_{pre} is greater than 1 year for the points between Q_5 and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

The Peak Flow Statistics Calculations

There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated, and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the file name. The first row of the data is the SWMM file name. The second row is the SWMM file time stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for Q₁₀, Q₅, and Q₂. These values are derived by linear interpolation between the nearest bounding points in the listing. While the relationship between the points in the peak flow analysis is not technically a linear relationship, the error introduced in using linear interpolation between such relatively close data points is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of pages of the data set.

⁶ See section on how a point can fail point number 3 hereon

As was previously discussed, each storm listed was determined by reading the flow values directly from the binary output file from the SWMM program. The storms were then sorted in descending order of peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in each of these lists. It should be noted that the derivation of these peak flow statistics values use full precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data values and/or the order of storms can be expected.

Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values to develop the peak flow frequency curves.

Plan Check Suggestions

As is the responsibility of the reviewing agency, any and all methods should be considered to verify that the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

Compare the Data Stamps for Each of the Statistics Files Used In This Analysis. For each set of calculations and report files, the first step of the process is to list out all the files in the report folder and delete those files. The very first step leaves the reports folder completely empty. Then as each successive step is performed, the results file is placed in the reports folder. Once all of the results files are complete, then the report file is compiled using the data directly from the files placed in the results folder. This means that the time stamps on each of the report files in the report should be within a minute or two depending on the speed of the computer. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

Verify A Few Random Storm Statistics

For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the randomly selected storm. Verify that the start date, end date, and the highest flow value between the start and end date correspond to the values shown in the statistics table. Do this for a few storm to verify that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and return period values.

Compare Plotted Curves to Table Data

Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables.

Verify by Observation that the values of Q_{10} , Q_5 , Q_2 and Q_{lf} are reasonable. For each value shown on the reports, verify that the value shown for say Q10 is in between the next higher return period and the next lower period. Also verify that the correct values for each of these return periods are plotted correctly on the peak flow frequency graph.

Manually Verify That the Pass Fail Table Is Correctly Calculated

Select at random several points on each of the pass/fail tables to verify that the values for post X/Y and interpolated Y look reasonable. Also check that the various test results are shown accurately in the chart and also the final pass/fail result looks accurate.

Drawdown Time of Bio-filtration Surface Ponding

The drawdown time for hydromodification flow control facilities was calculated by assuming a starting water surface elevation coincident with the peak operating level in the bio-filtration facility such as the elevation at the weir or the emergency spillway overflow.

The instruction from the county of San Diego Department of Environmental Health (DEH) limits the drawdown time hydromodification flow control facilities to 96 hours. This restriction was implemented as mitigation to potential vector breeding issues and the subsequent risk to human health. See Attachment C for Drawdown time of each pond and derivations of drawdown times for BMPs.

Drawdown time and Calculations are included as Attachment D of this SWMM report.

VII. SUMMARY AND CONCLUSION

Hydromodification calculations were performed utilizing continuous simulation to size storm water control facilities. SWMM (Storm Water Management Model) version 5.1 distributed by USEPA was used to generate computed peak flow recurrence and flow duration series statistics.

There are several tributary areas planned as industrial use treated by 6 biofiltration basins (labeled as BMP-# (Best Management Practices) with a total tributary area of approximately 10.03 acres. The areas were grouped based on its outfall and were analyzed for pre-development and mitigated post-development conditions; Whole Basin A drains to one point of compliance (POC).

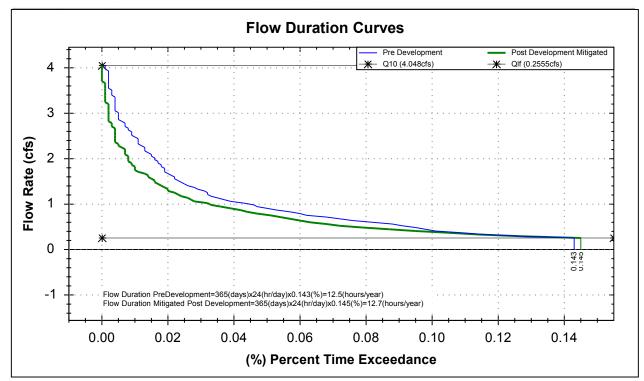
The analyzed SWMM runs attached show that the proposed biofiltration facilities provided with variety of orifice flow control at the base of the gravel storage configured as shown in Figure 6-1 is in compliance with the HMP and BMP Manual.

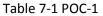
Nutmeg Homes

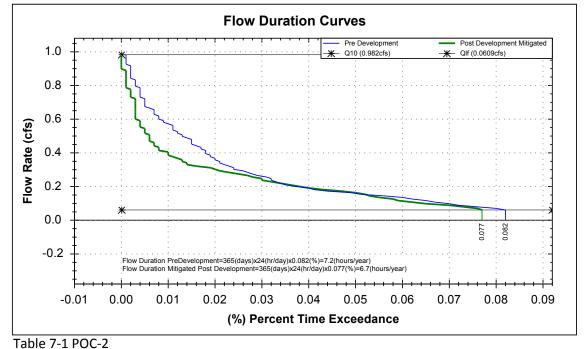
On POC-1 through POC-3, The flow duration curve on the following page shows the existing condition is as follows

POC-1 = (365(daysx24(hr/day)x0.143(%)=12.5(hours/year)

POC-2 = (365(daysx24(hr/day)x0.082(%)=7.2(hours/year)


POC-3 = (365(daysx24(hr/day)x0.083(%)=7.3(hours/year)


With the proposed square footage of LID areas and orifices acting as the low flow restrictor configured as shown in Figure 1 the duration of the flow is as follows


- POC-1 = (365(daysx24(hr/day)x0.143(%)=12.5(hours/year)
- POC-2 = (365(daysx24(hr/day)x0.077(%)=6.7(hours/year)
- POC-3 = (365(daysx24(hr/day)x0.091(%)=8.0(hours/year)

POC-1 and POC-2 as lower than the predevelopment and POC-3 although higher than the predevelopment is within the 10% allowable; therefore all POCs area within compliance

Therefore, this study has demonstrated that the proposed optimized biofiltration basin is sufficient to meet the current HMP and BMP criteria (See Table 7-1).

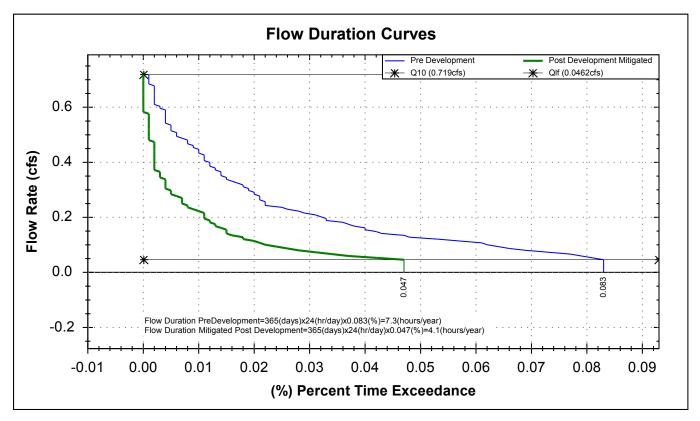


Table 7-1 POC-3

STATISTICS ANALYSIS OF THE SWMM FILES FOR:

DISCHARGE NODE: POC-1

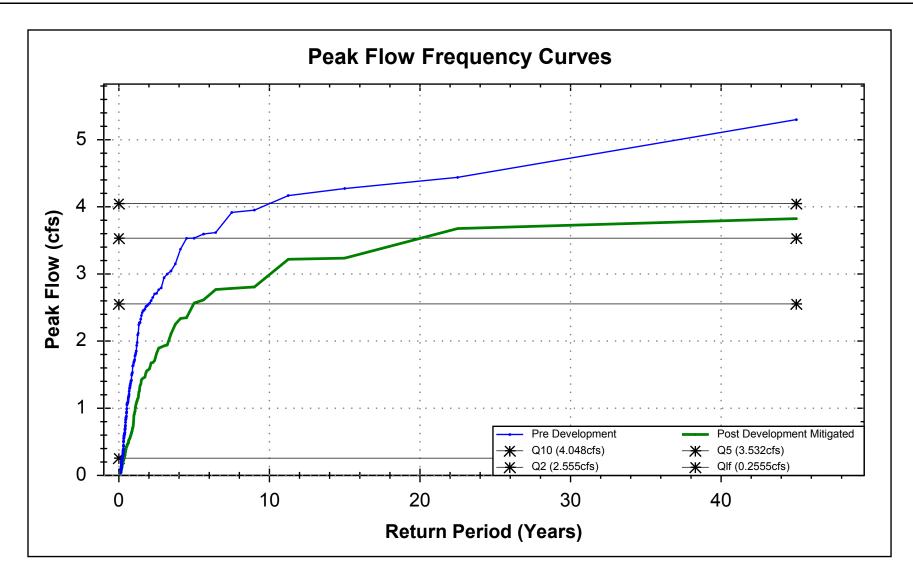
ANALYSIS DETAILS

Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2) Assumed time between storms (hours): 24

PRE-DEVELOPMENT SWMM FILE

SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Pre-Development-poc1.out SWMM file time stamp: 9/20/2018 3:25:02 PM Selected Node to Analyze: POC-1

POST-DEVELOPMENT MITIGATED SWMM FILE


SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Post-Development-poc1.out SWMM file time stamp: 1/31/2019 3:36:25 PM Selected Node to Analyze: POC-1

MITIGATED CONDITIONS RESULTS

For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS

The Mitigated Conditions peak flow frequency curve is composed of 462 points. Of the points, 0 point(s) are above the flow control upper limit (Q10), 330 point(s) are below the low flow threshold value (Qlf). Of the points within the flow control range (Qlf to Q10), 132 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met.

The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the postdevelopment flow duration curve to the pre-development curve, 98 point(s) have a lower duration than predevelopment conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met.

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Post-Development-poc1.out post-development time stamp: 1/31/2019 3:36:25 PM

Compared to:

pre-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Pre-Development-poc1.out

pre-development time stamp: 9/20/2018 3:25:02 PM

				Γ			
2051PT*	RH Prd UTS)	PostDevO	eleler O	Opost Opte	Orost 7 Opte	OPOST 1100 OPIE	Pastkail
0	45.00	3.82	5.30	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
1	22.50	3.68	4.44	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
2	15.00	3.24	4.27	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
3	11.25	3.22	4.17	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
4	9.00	2.81	3.95	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
5	7.50	2.79	3.92	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
6	6.43	2.77	3.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
7	5.63	2.61	3.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
8	5.00	2.57	3.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
9	4.50	2.35	3.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
10	4.09	2.34	3.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
11	3.75	2.25	3.15	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
12	3.46	2.11	3.04	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
13	3.21	1.94	3.00	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
14	3.00	1.93	2.94	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
15	2.81	1.91	2.79	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
16	2.65	1.90	2.77	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
17	2.50	1.81	2.71	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
18	2.37	1.71	2.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
19	2.25	1.68	2.65	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
20	2.14	1.68	2.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
21	2.05	1.59	2.56	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
22	1.96	1.57	2.55	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
23	1.88	1.56	2.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
24	1.80	1.53	2.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
25	1.73	1.46	2.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
26	1.67	1.46	2.46	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
27	1.61	1.45	2.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
28	1.55	1.43	2.42	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
29	1.50	1.42	2.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
30	1.45	1.36	2.33	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
31	1.41	1.34	2.28	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
32	1.36	1.26	2.27	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
33	1.32	1.24	2.24	TRUE	FALSE	FALSE	Pass- Qpost < Qpre

	1			1			
				_	_	OPOST 100 OPIC	
8054PT*	AIN Prod Wash	PostDevO	PreDevO	CROST_CRIE	Qie	Ox Ox	P2551F21
×Ý`	ad a	, 0 ⁶⁷	000	L L	,1 ,1	1 ⁰	site
20 ⁵¹	CHUL Y	2052	o ^{re}	-1051	-nost	27	Q25
``	* *	x	Ň	O ₄	Opte Opte	Rosi	
34	1.29	1.15	2.12	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
35	1.25	1.14	2.09	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
36	1.22	1.11	1.98	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
37	1.18	1.10	1.93	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
38	1.15	1.07	1.85	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
39	1.13	1.05	1.82	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
40	1.10	1.01	1.80	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
41	1.07	0.95	1.78	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
42	1.05	0.94	1.73	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
43	1.02	0.91	1.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
44	1.00	0.90	1.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
45	0.98	0.80	1.67	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
46	0.96	0.75	1.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
47	0.94	0.72	1.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
48	0.92	0.71	1.63	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
49	0.90	0.69	1.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
50	0.88	0.66	1.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
51	0.87	0.66	1.51	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
52	0.85	0.65	1.49	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
53	0.83	0.63	1.42	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
54	0.82	0.62	1.41	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
55	0.80	0.61	1.40	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
56	0.79	0.59	1.40	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
57	0.78	0.59	1.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
58	0.76	0.58	1.36	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
59	0.75	0.57	1.34	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
60	0.74	0.56	1.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
61	0.73	0.55	1.30	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
62	0.71	0.54	1.30	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
63	0.70	0.54	1.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
64	0.69	0.54	1.26	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
65	0.68	0.53	1.25	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
66	0.67	0.53	1.21	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
67	0.66	0.53	1.18	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
68	0.65	0.52	1.18	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
69	0.64	0.50	1.17	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
70	0.63	0.49	1.16	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
71	0.63	0.48	1.14	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
72	0.62	0.48	1.12	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
73	0.61	0.48	1.10	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
74	0.60	0.47	1.10	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
75	0.59	0.47	1.09	TRUE	FALSE	FALSE	Pass- Qpost < Qpre

-							
				_	_	0009171000000	
*	WE	, O	, O	Opte	OVE	O_{4}	al
POST PT *	Run Prod Wash	POSIDENO	PreDevO	Orost Ore	×7	1 ⁰	P2551F21
20 ⁵¹	ath	005	pre ·	anost	anost.	A7	423
•	Ŷ	X	``	Oz.	OP0 ⁶¹⁷ OP1 ⁶	Oposition of the second	
76	0.58	0.47	1.08	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
77	0.58	0.47	1.08	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
78	0.57	0.47	1.08	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
79	0.56	0.46	1.07	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
80	0.56	0.45	1.07	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
81	0.55	0.45	1.07	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
82	0.54	0.44	1.06	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
83	0.54	0.44	1.05	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
84	0.53	0.44	0.99	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
85	0.52	0.43	0.99	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
86	0.52	0.43	0.95	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
87	0.51	0.43	0.94	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
88	0.51	0.42	0.93	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
89	0.50	0.42	0.88	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
90	0.50	0.42	0.88	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
91	0.49	0.42	0.87	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
92	0.48	0.42	0.87	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
93	0.48	0.41	0.86	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
94	0.47	0.40	0.86	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
95	0.47	0.39	0.85	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
96	0.46	0.38	0.84	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
97	0.46	0.38	0.84	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
98	0.46	0.38	0.83	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
99	0.45	0.38	0.83	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
100	0.45	0.37	0.79	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
101	0.44	0.37	0.79	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
102	0.44	0.35	0.74	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
103	0.43	0.35	0.74	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
104	0.43	0.35	0.74	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
105	0.43	0.35	0.72	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
106	0.42	0.35	0.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
107	0.42	0.33	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
108	0.41	0.33	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
109	0.41	0.33	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
110	0.41	0.31	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
111	0.40	0.31	0.67	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
112	0.40	0.31	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
113	0.40	0.30	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
114	0.39	0.30	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
115	0.39	0.29	0.63	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
116	0.39	0.29	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
117	0.38	0.29	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre

				.01	.01	OPOST 100 OPIC	
Post PT*	Pin Pro Urs)	PostDevO	PreDevO	Crost_Care	OP0 ⁶⁴⁷ OP1 ⁶	000	Passifall
A. Y	RKO -	a O ^e	_0°	ġ,	\$ ⁷	110	assil
20°	PHU	<i>۲</i> 05	2 ⁴⁰	0200-	ago.	3 ⁷	\$ ^{.0}
				Ŭ	U	080	
118	0.38	0.28	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
119	0.38	0.28	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
120	0.37	0.28	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
121	0.37	0.28	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
122	0.37	0.27	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
123	0.36	0.27	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
124	0.36	0.26	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
125	0.36	0.26	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
126	0.35	0.26	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
127	0.35	0.26	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
128	0.35	0.26	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
129	0.35	0.26	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
130	0.34	0.26	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
131	0.34	0.26	0.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
132	0.34	0.25	0.58	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
133	0.34	0.25	0.57	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
134	0.33	0.25	0.57	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
135	0.33	0.25	0.57	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
136	0.33	0.24	0.56	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
137	0.33	0.24	0.55	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
138	0.32	0.24	0.55	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
139	0.32	0.24	0.54	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
140	0.32	0.23	0.51	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
141	0.32	0.23	0.51	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
142	0.32	0.23	0.51	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
143	0.31	0.23	0.50	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
144	0.31	0.23	0.50	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
145	0.31	0.23	0.45	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
146	0.31	0.23	0.45	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
147	0.30	0.23	0.44	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
148	0.30	0.23	0.43	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
149	0.30	0.23	0.39	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
150	0.30	0.23	0.38	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
151	0.30	0.22	0.38	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
152	0.29	0.22	0.38	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
153	0.29	0.22	0.38	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
154	0.29	0.22	0.37	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
155	0.29	0.22	0.37	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
156	0.29	0.21	0.37	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
157	0.29	0.21	0.36	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
158	0.28	0.21	0.35	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
159	0.28	0.21	0.34	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

	~			0	0	OPOST 1100 OPIC	
POSt PT*	AIR Prod Was	POS ^{1DEVO}	Pre DevO	OROSAL ORIE	OPOST ⁷ OPTE	000	Passikali
۲`	Drd C	x O ^e	Der	a ^L	A ⁷	10	sellt
205	atri	205°	81 ⁶	00051	apos.	ġ. ⁷	< ⁸⁵
	X.	``		Û,	Û,	CR05	
160	0.28	0.20	0.34	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
161	0.28	0.20	0.34	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
162	0.28	0.20	0.34	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
163	0.27	0.20	0.32	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
164	0.27	0.20	0.32	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
165	0.27	0.20	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
166	0.27	0.19	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
167	0.27	0.19	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
168	0.27	0.19	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
169	0.27	0.19	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
170	0.26	0.19	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
171	0.26	0.19	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
172	0.26	0.19	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
173	0.26	0.18	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
174	0.26	0.18	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
175	0.26	0.18	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
176	0.25	0.18	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
177	0.25	0.18	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
178	0.25	0.18	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
179	0.25	0.18	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
180	0.25	0.18	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
181	0.25	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
182	0.25	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
183	0.25	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
184	0.24	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
185	0.24	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
186	0.24	0.18	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
187	0.24	0.17	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
188	0.24	0.17	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
189	0.24	0.17	0.27	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
190	0.24	0.17	0.27	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
191	0.23	0.17	0.27	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
192	0.23	0.17	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
193	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
194	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
195	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
196	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
197	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
198	0.23	0.16	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
199	0.23	0.16	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
200	0.22	0.16	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
201	0.22	0.16	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0.	0	OPOST 1100 OPIC	
2051 PT*	Pin Pro Unes)	POSIDENO	Pre Dev O	Opost_Opie	OPOST ⁷ OPTE	000	Passikali
۹` ه	Drd .	, 0 ⁶	De.	a ^L	A7	~~~~~	- sellt
20 ⁵	atri	205°	8 ⁴⁰	apos.	apos.	ġ. ⁷	\$ ⁶⁵
	X.	`		Û,	Û,	CR05	
202	0.22	0.16	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
203	0.22	0.16	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
204	0.22	0.15	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
205	0.22	0.15	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
206	0.22	0.15	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
207	0.22	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
208	0.22	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
209	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
210	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
211	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
212	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
213	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
214	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
215	0.21	0.15	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
216	0.21	0.15	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
217	0.21	0.15	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
218	0.21	0.15	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
219	0.21	0.15	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
220	0.20	0.14	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
221	0.20	0.14	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
222	0.20	0.14	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
223	0.20	0.14	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
224	0.20	0.14	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
225	0.20	0.14	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
226	0.20	0.14	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
227	0.20	0.14	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
228	0.20	0.14	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
229	0.20	0.14	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
230	0.20	0.13	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
231	0.19	0.13	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
232	0.19	0.13	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
233	0.19	0.13	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
234	0.19	0.12	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
235	0.19	0.12	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
236	0.19	0.12	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
237	0.19	0.12	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
238	0.19	0.12	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
239	0.19	0.12	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
240	0.19	0.12	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
241	0.19	0.12	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
242	0.19	0.12	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
243	0.18	0.12	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	OPOST ¹⁰⁰ OPIC	
POSt PT*	Run Prod Wash	POSIDENO	PreDevO	OPOST_OPIE	Orost 7 Orle	0% Cr.	Passifall
<u>کې</u> کې	pro .	, 0 6	_ 0 € ¹	a ^L	A7	~~~~	sell
20 ⁵	atr	20 ⁵¹	2 ⁴⁶	Ros	all	\$ ⁷	80°
	`	•		G.	G.	CP0-	
244	0.18	0.11	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
245	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
246	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
247	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
248	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
249	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
250	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
251	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
252	0.18	0.11	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
253	0.18	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
254	0.18	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
255	0.18	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
256	0.18	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
257	0.17	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
258	0.17	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
259	0.17	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
260	0.17	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
261	0.17	0.10	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
262	0.17	0.10	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
263	0.17	0.10	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
264	0.17	0.10	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
265	0.17	0.10	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
266	0.17	0.09	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
267	0.17	0.09	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
268	0.17	0.09	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
269	0.17	0.09	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
270	0.17	0.09	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
271	0.17	0.09	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
272	0.17	0.09	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
273	0.16	0.09	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
274	0.16	0.09	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
275	0.16	0.09	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
276	0.16	0.09	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
277	0.16	0.09	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
278	0.16	0.09	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
279	0.16	0.09	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
280	0.16	0.09	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
281	0.16	0.09	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
282	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
283	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
284	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
285	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

	~			0	0	Opre	
POSt PT*	AIR Prod Was	POS ^{1DEVO}	Pre Dev O	OROSAL ORIE	OPOST ⁷ OPIE	000	Passifal
29	ord V	, 0 ^{0°}	Qex	a ^L	×7	10	Estr
805.	ant	00 ⁵¹	Pre.	005	005	\$ ⁷	\$ ³⁵
	X.	`		Û,	Û,	OPOST 1100 OPIC	
286	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
287	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
288	0.16	0.08	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
289	0.16	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
290	0.16	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
291	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
292	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
293	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
294	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
295	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
296	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
297	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
298	0.15	0.08	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
299	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
300	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
301	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
302	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
303	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
304	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
305	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
306	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
307	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
308	0.15	0.08	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
309	0.15	0.08	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
310	0.15	0.08	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
311	0.14	0.08	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
312	0.14	0.07	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
313	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
314	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
315	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
316	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
317	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
318	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
319	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
320	0.14	0.07	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
321	0.14	0.07	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
322	0.14	0.07	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
323	0.14	0.07	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
324	0.14	0.07	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
325	0.14	0.07	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
326	0.14	0.07	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
327	0.13	0.07	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

	~			0	0	OPOST 100 OPIC	
Post PT*	AIR Prod Was	POS ¹ DENO	Pre Dev O	OROSAL ORIE	OPOST ⁷ OPIE	000	Passikali
۲`	Drd C	, 0 0'	Der.	a ^L	A ⁷	10	sellt
20 ⁵	Oth '	205°	2 ⁴⁶	000	Opos	\$ ⁷	20°
				Ģ.	G.	020-	
328	0.13	0.07	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
329	0.13	0.07	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
330	0.13	0.07	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
331	0.13	0.07	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
332	0.13	0.07	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
333	0.13	0.07	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
334	0.13	0.07	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
335	0.13	0.07	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
336	0.13	0.07	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
337	0.13	0.07	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
338	0.13	0.07	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
339	0.13	0.07	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
340	0.13	0.07	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
341	0.13	0.07	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
342	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
343	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
344	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
345	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
346	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
347	0.13	0.07	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
348	0.12	0.07	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
349	0.12	0.07	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
350	0.12	0.07	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
351	0.12	0.07	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
352	0.12	0.06	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
353	0.12	0.06	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
354	0.12	0.06	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
355	0.12	0.06	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
356	0.12	0.06	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
357	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
358	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
359	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
360	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
361	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
362	0.12	0.06	-0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
363	0.12	0.06	-0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
364	0.12	0.06	-0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
365	0.12	0.06	-0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
366	0.12	0.06	-0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
367	0.12	0.06	-0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
368	0.12	0.06	-0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
369	0.12	0.06	-0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	OPOST ⁷ 100 OPIC	
P051P1*	AIN Prod Wash	POS ^{1DEVO}	Pre Dev O	OROSI CORE	OPOST ⁷ OPIE	000	Passfall
29	ord C	, 0 ⁰¹	Der	AL.	27	10	Estt
20 ⁵	atri	0 ⁰⁵¹	Pre	00051	00051	ä ⁷	\$ ³⁵
	×.	``		Û,	Û,	apos	
370	0.12	0.06	-0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
371	0.12	0.06	-0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
372	0.12	0.06	-0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
373	0.11	0.06	-0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
374	0.11	0.06	-0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
375	0.11	0.06	-0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
376	0.11	0.06	-0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
377	0.11	0.06	-0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
378	0.11	0.06	-0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
379	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
380	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
381	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
382	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
383	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
384	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
385	0.11	0.05	-0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
386	0.11	0.05	-0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
387	0.11	0.05	-0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
388	0.11	0.05	-0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
389	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
390	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
391	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
392	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
393	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
394	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
395	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
396	0.11	0.05	-0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
397	0.11	0.05	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
398	0.11	0.05	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
399	0.11	0.05	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
400	0.11	0.04	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
401	0.11	0.04	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
402	0.11	0.04	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
403	0.11	0.04	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
404	0.11	0.04	-0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
405	0.11	0.04	-0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
406	0.11	0.04	-0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
407	0.11	0.04	-0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
408	0.11	0.04	-0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
409	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
410	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
411	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

	~			0	0	OPOST 1100 OPIC	
POSTPT*	Run Prod Wash	POS ^{1DEVO}	Pre Dev O	OROSAL ORIE	OPOST ⁷ OPIE	000	Passikali
<u>ک</u> ۲`	pro .	x O ^e	Der.	a ^L	A ⁷	10	sellt
805	atri	205°	8 ¹⁰	00051	apos.	ġ. ⁷	< ⁸⁵
	X.	``		Û,	Û,	apos	
412	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
413	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
414	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
415	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
416	0.10	0.04	-0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
417	0.10	0.04	-0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
418	0.10	0.04	-0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
419	0.10	0.04	-0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
420	0.10	0.04	-0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
421	0.10	0.04	-0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
422	0.10	0.04	-0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
423	0.10	0.04	-0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
424	0.10	0.04	-0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
425	0.10	0.04	-0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
426	0.10	0.04	-0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
427	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
428	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
429	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
430	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
431	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
432	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
433	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
434	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
435	0.10	0.04	-0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
436	0.10	0.04	-0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
437	0.10	0.04	-0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
438	0.10	0.04	-0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
439	0.10	0.04	-0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
440	0.10	0.04	-0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
441	0.10	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
442	0.10	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
443	0.10	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
444	0.10	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
445	0.10	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
446	0.09	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
447	0.09	0.04	-0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
448	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
449	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
450	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
451	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
452	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
453	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

Post Pr.*	RIG PRO UNE	Post Devo	PreDend	OPOST COPIE	Opost ⁷ Opte	Oposi7 10% Ope	Passifall
454	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
455	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
456	0.09	0.04	-0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
457	0.09	0.04	-0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
458	0.09	0.04	-0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
459	0.09	0.04	-0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
460	0.09	0.04	-0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
461	0.09	0.04	-0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

SWMM.out file n	name: V:\17\17046\Engineering\C	urrent\GPIP\Storm\SWMM\curre	nt Itteration\POC-1\	17046-Pre-Developm	nent-poc1.out	
SWMM.out time	stamp: 9/20/2018 3:25:02 PM			· · · · ·		
	· · · ·					
Q10: 4.048						
Q5: 3.532						
Q2: 2.555						
Peak Flow Statis	stics Table Values				-	
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1993/01/06 16:00:00	1993/01/10 18:00:00	99	5.299	0.30%	45
2	1971/02/23 05:00:00	1971/02/23 12:00:00	8	4.439	0.60%	22.5
3	1995/01/04 15:00:00	1995/01/05 02:00:00	12	4.273	0.91%	15
4	1995/01/25 08:00:00	1995/01/25 22:00:00	15	4.168	1.21%	11.25
5	1998/02/14 13:00:00	1998/02/14 22:00:00	10	3.951	1.51%	9
6	1986/02/15 01:00:00	1986/02/15 08:00:00	8	3.916	1.81%	7.5
7	1966/12/05 01:00:00	1966/12/06 23:00:00	47	3.616	2.11%	6.43
8	1978/03/16 22:00:00	1978/03/18 14:00:00	41	3.595	2.42%	5.63
9	1983/03/01 14:00:00	1983/03/03 08:00:00	43	3.532	2.72%	5
10	1978/01/16 06:00:00	1978/01/16 13:00:00	8	3.531	3.02%	4.5
11	1967/11/19 06:00:00	1967/11/20 03:00:00	22	3.369	3.32%	4.09
12	1988/04/20 07:00:00	1988/04/21 22:00:00	40	3.151	3.63%	3.75
13	1983/12/25 06:00:00	1983/12/25 19:00:00	14	3.044	3.93%	3.46
14	2004/10/18 09:00:00	2004/10/18 11:00:00	3	2.999	4.23%	3.21
15	1969/01/24 07:00:00	1969/01/25 17:00:00	35	2.944	4.53%	3
16	1998/01/09 15:00:00	1998/01/10 17:00:00	27	2.793	4.83%	2.81
17	1980/01/28 07:00:00	1980/01/30 19:00:00	61	2.766	5.14%	2.65
18	1981/02/08 23:00:00	1981/02/09 08:00:00	10	2.711	5.44%	2.5
19	2005/01/09 04:00:00	2005/01/09 22:00:00	19	2.702	5.74%	2.37
20	1972/11/14 13:00:00	1972/11/14 15:00:00	3	2.649	6.04%	2.25
21	1983/11/25 00:00:00	1983/11/25 03:00:00	4	2.603	6.34%	2.14
22	1992/02/15 13:00:00	1992/02/15 18:00:00	6	2.564	6.65%	2.05
23	2007/01/31 00:00:00	2007/01/31 01:00:00	2	2.546	6.95%	1.96
24	2007/08/26 07:00:00	2007/08/26 09:00:00	3	2.527	7.25%	1.88
25	1980/02/16 18:00:00	1980/02/21 00:00:00	103	2.515	7.55%	1.8
26	1965/11/22 04:00:00	1965/11/23 05:00:00	26	2.478	7.85%	1.73
27	1998/02/03 16:00:00	1998/02/03 19:00:00	4	2.459	8.16%	1.67
28	2005/01/11 02:00:00	2005/01/11 08:00:00	7	2.452	8.46%	1.61
29	1991/03/20 07:00:00	1991/03/21 02:00:00	20	2.423	8.76%	1.55
30	1993/01/12 22:00:00	1993/01/14 05:00:00	32	2.382	9.06%	1.5
31	2004/10/19 16:00:00	2004/10/20 16:00:00	25	2.327	9.37%	1.45
32	1967/04/11 09:00:00	1967/04/12 05:00:00	21	2.276	9.67%	1.41
33	1967/12/18 15:00:00	1967/12/19 15:00:00	25	2.273	9.97%	1.36
34	2007/11/30 10:00:00	2007/11/30 23:00:00	14	2.244	10.27%	1.32
35	2003/02/25 17:00:00	2003/02/25 19:00:00	3	2.116	10.57%	1.29
36	1993/02/08 01:00:00	1993/02/08 11:00:00	11	2.092	10.88%	1.25
37	2004/02/26 06:00:00	2004/02/26 09:00:00	4	1.978	11.18%	1.22
38	1979/01/05 07:00:00	1979/01/06 07:00:00	25	1.935	11.48%	1.18
39	1982/01/01 09:00:00	1982/01/01 12:00:00	4	1.853	11.78%	1.15

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1995/03/05 08:00:00	1995/03/06 01:00:00	18	1.823	12.08%	1.13
41	1980/01/10 23:00:00	1980/01/12 08:00:00	34	1.8	12.39%	1.1
42	1970/03/04 22:00:00	1970/03/05 01:00:00	4	1.777	12.69%	1.07
43	2004/10/27 04:00:00	2004/10/27 09:00:00	6	1.725	12.99%	1.05
44	2003/02/12 17:00:00	2003/02/13 17:00:00	25	1.704	13.29%	1.02
45	1982/03/18 02:00:00	1982/03/19 17:00:00	40	1.693	13.60%	1
46	1969/02/06 08:00:00	1969/02/06 11:00:00	4	1.672	13.90%	0.98
47	1985/11/25 00:00:00	1985/11/25 06:00:00	7	1.642	14.20%	0.96
48	1983/02/27 17:00:00	1983/02/27 21:00:00	5	1.635	14.50%	0.94
49	2003/04/14 17:00:00	2003/04/14 18:00:00	2	1.628	14.80%	0.92
50	1985/11/29 08:00:00	1985/11/29 17:00:00	10	1.534	15.11%	0.9
51	2006/01/02 14:00:00	2006/01/02 15:00:00	2	1.52	15.41%	0.88
52	1978/02/05 20:00:00	1978/02/06 22:00:00	27	1.513	15.71%	0.87
53	1978/01/14 16:00:00	1978/01/15 05:00:00	14	1.492	16.01%	0.85
54	1965/04/08 14:00:00	1965/04/10 00:00:00	35	1.419	16.31%	0.83
55	1979/01/17 12:00:00	1979/01/18 16:00:00	29	1.414	16.62%	0.82
56	1980/03/02 21:00:00	1980/03/03 03:00:00	7	1.399	16.92%	0.8
57	1974/12/04 09:00:00	1974/12/04 10:00:00	2	1.395	17.22%	0.79
58	1976/02/08 15:00:00	1976/02/09 03:00:00	13	1.369	17.52%	0.78
59	1974/03/07 18:00:00	1974/03/08 14:00:00	21	1.359	17.82%	0.76
60	1978/12/17 19:00:00	1978/12/18 13:00:00	19	1.339	18.13%	0.75
61	1967/01/24 18:00:00	1967/01/25 00:00:00	7	1.325	18.43%	0.74
62	1970/11/29 14:00:00	1970/11/29 23:00:00	10	1.303	18.73%	0.73
63	2006/04/04 23:00:00	2006/04/05 09:00:00	11	1.3	19.03%	0.71
64	1991/02/27 18:00:00	1991/03/01 12:00:00	43	1.288	19.34%	0.7
65	1991/03/19 00:00:00	1991/03/19 04:00:00	5	1.256	19.64%	0.69
66	2004/02/22 14:00:00	2004/02/23 03:00:00	14	1.248	19.94%	0.68
67	1965/11/16 17:00:00	1965/11/16 23:00:00	7	1.21	20.24%	0.67
68	1991/03/25 07:00:00	1991/03/27 10:00:00	52	1.183	20.54%	0.66
69	1998/02/08 16:00:00	1998/02/08 18:00:00	3	1.178	20.85%	0.65
70	2003/03/15 17:00:00	2003/03/16 17:00:00	25	1.168	21.15%	0.64
71	1994/02/07 15:00:00	1994/02/07 21:00:00	7	1.164	21.45%	0.63
72	1992/02/06 11:00:00	1992/02/07 00:00:00	14	1.141	21.75%	0.63
73	1976/03/03 00:00:00	1976/03/03 02:00:00	3	1.121	22.05%	0.62
74	2002/11/08 17:00:00	2002/11/09 17:00:00	25	1.099	22.36%	0.61
75	1966/12/03 13:00:00	1966/12/03 20:00:00	8	1.096	22.66%	0.6
76	1970/12/21 03:00:00	1970/12/21 10:00:00	8	1.088	22.96%	0.59
77	1965/12/13 01:00:00	1965/12/13 01:00:00	1	1.081	23.26%	0.58
78	1970/02/28 16:00:00	1970/03/02 07:00:00	40	1.079	23.56%	0.58
79	1992/01/05 15:00:00	1992/01/06 03:00:00	13	1.078	23.87%	0.57
80	1993/11/14 17:00:00	1993/11/14 17:00:00	1	1.072	24.17%	0.56
81	2005/02/21 03:00:00	2005/02/21 14:00:00	12	1.07	24.47%	0.56
82	1987/01/07 00:00:00	1987/01/07 08:00:00	9	1.07	24.77%	0.55
83	1967/11/21 13:00:00	1967/11/21 14:00:00	2	1.055	25.08%	0.54
84	1965/12/29 20:00:00	1965/12/29 21:00:00	2	1.049	25.38%	0.54
85	1981/03/01 05:00:00	1981/03/01 16:00:00	12	0.993	25.68%	0.53
86	1983/03/23 18:00:00	1983/03/23 22:00:00	5	0.99	25.98%	0.52

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1973/02/11 05:00:00	1973/02/13 01:00:00	45	0.95	26.28%	0.52
88	1976/04/14 11:00:00	1976/04/14 11:00:00	1	0.935	26.59%	0.51
89	1998/02/22 17:00:00	1998/02/24 17:00:00	49	0.927	26.89%	0.51
90	1977/05/08 18:00:00	1977/05/08 22:00:00	5	0.883	27.19%	0.5
91	1993/01/15 13:00:00	1993/01/18 16:00:00	76	0.88	27.49%	0.5
92	2001/11/24 17:00:00	2001/11/24 18:00:00	2	0.87	27.79%	0.49
93	1986/03/10 16:00:00	1986/03/10 20:00:00	5	0.868	28.10%	0.48
94	1994/03/24 23:00:00	1994/03/25 15:00:00	17	0.864	28.40%	0.48
95	1998/02/17 16:00:00	1998/02/17 18:00:00	3	0.857	28.70%	0.47
96	1986/09/25 03:00:00	1986/09/25 07:00:00	5	0.851	29.00%	0.47
97	1987/11/04 17:00:00	1987/11/04 23:00:00	7	0.84	29.31%	0.46
98	1969/02/23 23:00:00	1969/02/25 23:00:00	49	0.835	29.61%	0.46
99	1988/12/24 23:00:00	1988/12/25 01:00:00	3	0.827	29.91%	0.46
100	1990/01/17 03:00:00	1990/01/17 04:00:00	2	0.826	30.21%	0.45
101	1991/12/29 16:00:00	1991/12/29 17:00:00	2	0.79	30.51%	0.45
102	1974/01/04 19:00:00	1974/01/05 03:00:00	9	0.789	30.82%	0.44
103	2005/01/03 08:00:00	2005/01/04 10:00:00	27	0.744	31.12%	0.44
104	1996/11/21 20:00:00	1996/11/22 03:00:00	8	0.743	31.42%	0.43
105	1974/01/06 13:00:00	1974/01/08 04:00:00	40	0.742	31.72%	0.43
106	1996/01/31 18:00:00	1996/02/01 04:00:00	11	0.725	32.02%	0.43
107	1971/12/24 22:00:00	1971/12/25 23:00:00	26	0.7	32.33%	0.42
108	2002/12/20 17:00:00	2002/12/20 18:00:00	2	0.693	32.63%	0.42
109	2003/12/25 18:00:00	2003/12/25 20:00:00	3	0.688	32.93%	0.41
110	1976/12/31 09:00:00	1976/12/31 12:00:00	4	0.688	33.23%	0.41
111	1995/02/14 01:00:00	1995/02/14 10:00:00	10	0.686	33.53%	0.41
112	1969/01/20 09:00:00	1969/01/21 16:00:00	32	0.674	33.84%	0.4
113	1983/02/08 04:00:00	1983/02/08 06:00:00	3	0.641	34.14%	0.4
114	1998/03/28 17:00:00	1998/03/29 17:00:00	25	0.637	34.44%	0.4
115	1998/02/06 17:00:00	1998/02/06 18:00:00	2	0.636	34.74%	0.39
116	2003/02/11 17:00:00	2003/02/11 17:00:00	1	0.632	35.05%	0.39
117	1981/03/19 21:00:00	1981/03/19 22:00:00	2	0.621	35.35%	0.39
118	1980/03/06 01:00:00	1980/03/06 14:00:00	14	0.621	35.65%	0.38
119	1982/12/22 23:00:00	1982/12/23 00:00:00	2	0.619	35.95%	0.38
120	1978/03/11 21:00:00	1978/03/15 08:00:00	84	0.616	36.25%	0.38
121	1995/04/18 10:00:00	1995/04/18 11:00:00	2	0.615	36.56%	0.37
122	2005/02/22 18:00:00	2005/02/23 11:00:00	18	0.613	36.86%	0.37
123	1996/12/09 18:00:00	1996/12/09 20:00:00	3	0.607	37.16%	0.37
124	1978/11/13 23:00:00	1978/11/13 23:00:00	1	0.604	37.46%	0.36
125	1992/02/12 18:00:00	1992/02/13 06:00:00	13	0.603	37.76%	0.36
126	1992/12/29 14:00:00	1992/12/29 20:00:00	7	0.602	38.07%	0.36
127	1975/03/08 09:00:00	1975/03/08 13:00:00	5	0.597	38.37%	0.35
128	1995/01/07 19:00:00	1995/01/08 02:00:00	8	0.594	38.67%	0.35
129	1976/02/05 06:00:00	1976/02/06 07:00:00	26	0.592	38.97%	0.35
130	1967/01/22 19:00:00	1967/01/23 01:00:00	7	0.589	39.27%	0.35
131	1994/02/20 16:00:00	1994/02/20 16:00:00	1	0.585	39.58%	0.34
132	2008/02/22 04:00:00	2008/02/22 09:00:00	6	0.585	39.88%	0.34
133	1983/01/27 08:00:00	1983/01/27 14:00:00	7	0.577	40.18%	0.34

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1979/03/01 13:00:00	1979/03/01 20:00:00	8	0.574	40.48%	0.34
135	1986/03/15 22:00:00	1986/03/16 18:00:00	21	0.568	40.79%	0.33
136	1970/03/08 12:00:00	1970/03/08 19:00:00	8	0.567	41.09%	0.33
137	1973/03/08 13:00:00	1973/03/08 20:00:00	8	0.564	41.39%	0.33
138	2001/01/11 04:00:00	2001/01/12 09:00:00	30	0.551	41.69%	0.33
139	2004/03/02 03:00:00	2004/03/02 04:00:00	2	0.549	41.99%	0.32
140	1980/01/09 05:00:00	1980/01/09 19:00:00	15	0.545	42.30%	0.32
141	2006/03/10 17:00:00	2006/03/11 03:00:00	11	0.514	42.60%	0.32
142	1995/03/11 02:00:00	1995/03/12 01:00:00	24	0.509	42.90%	0.32
143	1995/03/23 12:00:00	1995/03/23 13:00:00	2	0.507	43.20%	0.32
144	1973/01/16 20:00:00	1973/01/16 22:00:00	3	0.501	43.50%	0.31
145	1998/05/12 17:00:00	1998/05/12 17:00:00	1	0.5	43.81%	0.31
146	1986/11/17 22:00:00	1986/11/18 02:00:00	5	0.45	44.11%	0.31
147	1969/01/14 07:00:00	1969/01/14 12:00:00	6	0.446	44.41%	0.31
148	1965/12/09 06:00:00	1965/12/10 09:00:00	28	0.435	44.71%	0.3
149	1972/12/04 15:00:00	1972/12/04 19:00:00	5	0.434	45.02%	0.3
150	1972/11/16 13:00:00	1972/11/17 11:00:00	23	0.395	45.32%	0.3
151	1994/02/17 12:00:00	1994/02/17 13:00:00	2	0.382	45.62%	0.3
152	1980/02/14 01:00:00	1980/02/15 11:00:00	35	0.381	45.92%	0.3
153	1982/03/15 13:00:00	1982/03/16 00:00:00	12	0.38	46.22%	0.29
154	1994/04/28 00:00:00	1994/04/28 01:00:00	2	0.377	46.53%	0.29
155	2002/12/16 17:00:00	2002/12/16 17:00:00	1	0.375	46.83%	0.29
156	1983/11/20 12:00:00	1983/11/21 10:00:00	23	0.372	47.13%	0.29
157	2004/02/03 00:00:00	2004/02/03 01:00:00	2	0.372	47.43%	0.29
158	1966/11/07 16:00:00	1966/11/07 18:00:00	3	0.365	47.73%	0.29
159	1964/11/17 18:00:00	1964/11/17 23:00:00	6	0.353	48.04%	0.28
160	1973/03/11 13:00:00	1973/03/11 17:00:00	5	0.344	48.34%	0.28
161	1986/03/12 14:00:00	1986/03/12 14:00:00	1	0.343	48.64%	0.28
162	1988/01/17 11:00:00	1988/01/17 21:00:00	11	0.343	48.94%	0.28
163	1965/03/31 18:00:00	1965/04/02 02:00:00	33	0.34	49.24%	0.28
164	1985/11/11 10:00:00	1985/11/11 16:00:00	7	0.317	49.55%	0.27
165	1992/01/07 20:00:00	1992/01/07 21:00:00	2	0.315	49.85%	0.27
166	1990/01/14 04:00:00	1990/01/14 05:00:00	2	0.315	50.15%	0.27
167	2004/12/29 02:00:00	2004/12/29 04:00:00	3	0.313	50.45%	0.27
168	1972/11/11 08:00:00	1972/11/11 09:00:00	2	0.31	50.76%	0.27
169	2000/02/21 17:00:00	2000/02/21 17:00:00	1	0.306	51.06%	0.27
170	1975/04/08 03:00:00	1975/04/09 01:00:00	23	0.304	51.36%	0.27
171	1968/03/08 10:00:00	1968/03/08 13:00:00	4	0.303	51.66%	0.26
172	1997/01/12 16:00:00	1997/01/13 12:00:00	21	0.303	51.96%	0.26
173	1987/01/04 17:00:00	1987/01/04 23:00:00	7	0.301	52.27%	0.26
174	1998/04/11 17:00:00	1998/04/11 17:00:00	1	0.3	52.57%	0.26
175	1983/03/18 04:00:00	1983/03/18 19:00:00	16	0.299	52.87%	0.26
176	1985/12/02 23:00:00	1985/12/03 02:00:00	4	0.296	53.17%	0.26
177	1973/11/22 23:00:00	1973/11/23 02:00:00	4	0.295	53.47%	0.25
178	1976/09/10 06:00:00	1976/09/10 21:00:00	16	0.294	53.78%	0.25
179	1986/02/08 05:00:00	1986/02/08 18:00:00	14	0.292	54.08%	0.25
180	1993/03/28 03:00:00	1993/03/28 03:00:00	1	0.291	54.38%	0.25

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
181	1968/04/01 20:00:00	1968/04/01 20:00:00	1	0.289	54.68%	0.25
182	2008/02/03 11:00:00	2008/02/03 15:00:00	5	0.285	54.98%	0.25
183	1977/08/17 01:00:00	1977/08/17 10:00:00	10	0.284	55.29%	0.25
184	1976/03/01 17:00:00	1976/03/01 19:00:00	3	0.284	55.59%	0.25
185	1992/03/02 11:00:00	1992/03/02 11:00:00	1	0.284	55.89%	0.24
186	2005/01/07 15:00:00	2005/01/07 16:00:00	2	0.283	56.19%	0.24
187	1987/12/16 17:00:00	1987/12/16 22:00:00	6	0.282	56.50%	0.24
188	1976/11/12 01:00:00	1976/11/12 09:00:00	9	0.279	56.80%	0.24
189	1983/03/20 20:00:00	1983/03/21 03:00:00	8	0.275	57.10%	0.24
190	1996/02/25 10:00:00	1996/02/26 00:00:00	15	0.269	57.40%	0.24
191	1971/12/27 14:00:00	1971/12/28 15:00:00	26	0.267	57.70%	0.24
192	1988/12/21 06:00:00	1988/12/21 07:00:00	2	0.267	58.01%	0.23
193	1993/02/19 18:00:00	1993/02/19 23:00:00	6	0.265	58.31%	0.23
194	2008/01/05 04:00:00	2008/01/07 05:00:00	50	0.263	58.61%	0.23
195	1996/01/21 19:00:00	1996/01/21 19:00:00	1	0.261	58.91%	0.23
196	1975/03/10 11:00:00	1975/03/11 14:00:00	28	0.259	59.21%	0.23
197	1988/11/25 10:00:00	1988/11/25 14:00:00	5	0.259	59.52%	0.23
198	1982/02/10 10:00:00	1982/02/10 21:00:00	12	0.256	59.82%	0.23
199	2006/02/28 00:00:00	2006/02/28 07:00:00	8	0.255	60.12%	0.23
200	1992/12/07 10:00:00	1992/12/07 16:00:00	7	0.255	60.42%	0.23
201	1967/03/13 15:00:00	1967/03/13 22:00:00	8	0.255	60.73%	0.22
202	1983/01/29 02:00:00	1983/01/29 04:00:00	3	0.253	61.03%	0.22
203	1965/12/14 15:00:00	1965/12/14 16:00:00	2	0.251	61.33%	0.22
204	1970/12/19 02:00:00	1970/12/19 06:00:00	5	0.249	61.63%	0.22
205	1980/01/18 18:00:00	1980/01/19 00:00:00	7	0.247	61.93%	0.22
206	1983/10/01 04:00:00	1983/10/01 18:00:00	15	0.245	62.24%	0.22
207	1975/04/05 21:00:00	1975/04/06 16:00:00	20	0.245	62.54%	0.22
208	1969/02/22 03:00:00	1969/02/22 07:00:00	5	0.244	62.84%	0.22
209	1997/01/25 23:00:00	1997/01/26 05:00:00	7	0.244	63.14%	0.22
210	1979/01/31 07:00:00	1979/02/01 11:00:00	29	0.244	63.44%	0.21
211	1979/03/27 10:00:00	1979/03/28 03:00:00	18	0.244	63.75%	0.21
212	1980/03/26 00:00:00	1980/03/26 01:00:00	2	0.238	64.05%	0.21
213	1971/05/07 20:00:00	1971/05/07 21:00:00	2	0.238	64.35%	0.21
214	1980/03/10 18:00:00	1980/03/10 20:00:00	3	0.237	64.65%	0.21
215	1982/03/28 18:00:00	1982/03/28 18:00:00	1	0.236	64.95%	0.21
216	1969/02/18 15:00:00	1969/02/18 19:00:00	5	0.236	65.26%	0.21
217	1995/12/20 17:00:00	1995/12/20 17:00:00	1	0.234	65.56%	0.21
218	1973/01/18 21:00:00	1973/01/19 02:00:00	6	0.234	65.86%	0.21
219	1979/03/17 05:00:00	1979/03/17 08:00:00	4	0.231	66.16%	0.21
220	1982/11/30 12:00:00	1982/11/30 19:00:00	8	0.23	66.47%	0.21
221	1983/04/30 04:00:00	1983/04/30 05:00:00	2	0.229	66.77%	0.2
222	1993/01/31 02:00:00	1993/01/31 02:00:00	1	0.228	67.07%	0.2
223	1994/04/25 18:00:00	1994/04/26 21:00:00	28	0.228	67.37%	0.2
224	1982/11/10 04:00:00	1982/11/11 01:00:00	22	0.227	67.67%	0.2
225	1978/11/21 19:00:00	1978/11/21 19:00:00	1	0.226	67.98%	0.2
226	1983/11/12 02:00:00	1983/11/12 21:00:00	20	0.224	68.28%	0.2
227	1973/03/22 00:00:00	1973/03/22 02:00:00	3	0.223	68.58%	0.2

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
228	1969/03/13 14:00:00	1969/03/13 18:00:00	5	0.222	68.88%	0.2
229	1976/04/12 22:00:00	1976/04/13 04:00:00	7	0.222	69.18%	0.2
230	1993/02/23 20:00:00	1993/02/24 05:00:00	10	0.221	69.49%	0.2
231	2000/10/29 23:00:00	2000/10/30 00:00:00	2	0.219	69.79%	0.2
232	2002/03/17 23:00:00	2002/03/17 23:00:00	1	0.219	70.09%	0.19
233	1981/03/05 08:00:00	1981/03/05 15:00:00	8	0.218	70.39%	0.19
234	1990/06/10 04:00:00	1990/06/10 05:00:00	2	0.218	70.69%	0.19
235	1967/04/22 03:00:00	1967/04/22 05:00:00	3	0.216	71.00%	0.19
236	1978/01/30 12:00:00	1978/01/30 13:00:00	2	0.206	71.30%	0.19
237	1982/01/20 23:00:00	1982/01/21 01:00:00	3	0.206	71.60%	0.19
238	1965/12/16 06:00:00	1965/12/16 08:00:00	3	0.206	71.90%	0.19
239	1979/02/21 05:00:00	1979/02/21 22:00:00	18	0.206	72.21%	0.19
240	1977/12/26 04:00:00	1977/12/26 18:00:00	15	0.204	72.51%	0.19
241	1995/01/12 09:00:00	1995/01/12 14:00:00	6	0.202	72.81%	0.19
242	1969/03/21 19:00:00	1969/03/21 20:00:00	2	0.2	73.11%	0.19
243	2008/02/14 12:00:00	2008/02/14 13:00:00	2	0.2	73.41%	0.19
244	1995/03/21 11:00:00	1995/03/21 15:00:00	5	0.195	73.72%	0.18
245	1983/05/01 07:00:00	1983/05/01 08:00:00	2	0.195	74.02%	0.18
246	1978/03/31 03:00:00	1978/03/31 03:00:00	1	0.185	74.32%	0.18
247	2005/04/28 09:00:00	2005/04/28 09:00:00	1	0.183	74.62%	0.18
248	1978/04/07 01:00:00	1978/04/07 02:00:00	2	0.182	74.92%	0.18
249	1973/02/28 05:00:00	1973/02/28 06:00:00	2	0.182	75.23%	0.18
250	2006/03/28 22:00:00	2006/03/29 01:00:00	4	0.179	75.53%	0.18
251	2000/02/13 17:00:00	2000/02/13 17:00:00	1	0.179	75.83%	0.18
252	2005/02/11 12:00:00	2005/02/12 12:00:00	25	0.178	76.13%	0.18
253	1989/03/25 17:00:00	1989/03/25 17:00:00	1	0.177	76.44%	0.18
254	1983/02/25 00:00:00	1983/02/25 00:00:00	1	0.175	76.74%	0.18
255	2006/03/21 02:00:00	2006/03/21 02:00:00	1	0.174	77.04%	0.18
256	1981/11/28 09:00:00	1981/11/28 23:00:00	15	0.174	77.34%	0.18
257	1970/03/11 12:00:00	1970/03/11 16:00:00	5	0.173	77.64%	0.18
258	1979/10/20 14:00:00	1979/10/20 15:00:00	2	0.172	77.95%	0.17
259	1965/02/06 18:00:00	1965/02/06 18:00:00	1	0.17	78.25%	0.17
260	2005/03/22 22:00:00	2005/03/22 23:00:00	2	0.168	78.55%	0.17
261	1975/12/11 23:00:00	1975/12/12 07:00:00	9	0.168	78.85%	0.17
262	1986/12/06 17:00:00	1986/12/06 18:00:00	2	0.167	79.15%	0.17
263	2001/12/21 17:00:00	2001/12/21 17:00:00	1	0.163	79.46%	0.17
264	1981/02/25 21:00:00	1981/02/25 22:00:00	2	0.161	79.76%	0.17
265	1973/03/20 08:00:00	1973/03/20 11:00:00	4	0.161	80.06%	0.17
266	1974/04/02 05:00:00	1974/04/02 07:00:00	3	0.157	80.36%	0.17
267	1965/11/25 11:00:00	1965/11/25 12:00:00	2	0.157	80.66%	0.17
268	1983/12/03 17:00:00	1983/12/03 17:00:00	1	0.157	80.97%	0.17
269	1992/03/23 04:00:00	1992/03/23 04:00:00	1	0.149	81.27%	0.17
270	1986/03/08 19:00:00	1986/03/08 19:00:00	1	0.143	81.57%	0.17
271	1978/09/05 18:00:00	1978/09/05 18:00:00	1	0.141	81.87%	0.17
272	1987/12/04 21:00:00	1987/12/04 21:00:00	1	0.14	82.18%	0.17
273	2007/12/08 07:00:00	2007/12/08 07:00:00	1	0.14	82.48%	0.17
274	1996/12/11 10:00:00	1996/12/11 16:00:00	7	0.138	82.78%	0.16

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
275	1983/10/07 08:00:00	1983/10/07 10:00:00	3	0.133	83.08%	0.16
276	1996/02/27 21:00:00	1996/02/27 22:00:00	2	0.132	83.38%	0.16
277	1974/10/29 05:00:00	1974/10/29 08:00:00	4	0.129	83.69%	0.16
278	1998/03/25 17:00:00	1998/03/25 17:00:00	1	0.12	83.99%	0.16
279	1995/01/10 22:00:00	1995/01/10 22:00:00	1	0.12	84.29%	0.16
280	2003/05/03 17:00:00	2003/05/03 17:00:00	1	0.117	84.59%	0.16
281	1987/11/02 03:00:00	1987/11/02 03:00:00	1	0.116	84.89%	0.16
282	1969/01/26 19:00:00	1969/01/26 20:00:00	2	0.114	85.20%	0.16
283	1998/01/29 17:00:00	1998/01/29 17:00:00	1	0.114	85.50%	0.16
284	1982/03/27 01:00:00	1982/03/27 06:00:00	6	0.113	85.80%	0.16
285	1969/01/28 20:00:00	1969/01/28 20:00:00	1	0.111	86.10%	0.16
286	1991/01/09 14:00:00	1991/01/09 14:00:00	1	0.109	86.40%	0.16
287	2000/02/17 17:00:00	2000/02/17 17:00:00	1	0.108	86.71%	0.16
288	2008/01/23 21:00:00	2008/01/23 22:00:00	2	0.107	87.01%	0.16
289	1972/12/08 13:00:00	1972/12/08 14:00:00	2	0.105	87.31%	0.16
290	1979/03/19 01:00:00	1979/03/20 03:00:00	27	0.103	87.61%	0.16
291	1971/03/13 06:00:00	1971/03/13 07:00:00	2	0.102	87.92%	0.16
292	1979/02/02 16:00:00	1979/02/02 16:00:00	1	0.101	88.22%	0.15
293	1973/03/06 23:00:00	1973/03/07 01:00:00	3	0.099	88.52%	0.15
294	1983/03/22 13:00:00	1983/03/22 15:00:00	3	0.098	88.82%	0.15
295	2005/02/18 05:00:00	2005/02/19 00:00:00	20	0.097	89.12%	0.15
296	1982/12/09 19:00:00	1982/12/09 19:00:00	1	0.097	89.43%	0.15
297	1977/01/03 23:00:00	1977/01/04 00:00:00	2	0.097	89.73%	0.15
298	2004/12/31 16:00:00	2004/12/31 17:00:00	2	0.096	90.03%	0.15
299	1994/03/19 03:00:00	1994/03/19 08:00:00	6	0.096	90.33%	0.15
300	1965/04/03 08:00:00	1965/04/03 09:00:00	2	0.095	90.63%	0.15
301	1982/04/02 12:00:00	1982/04/02 16:00:00	5	0.094	90.94%	0.15
302	1977/03/25 02:00:00	1977/03/25 03:00:00	2	0.094	91.24%	0.15
303	1975/02/10 02:00:00	1975/02/10 03:00:00	2	0.093	91.54%	0.15
304	1998/03/26 17:00:00	1998/03/26 17:00:00	1	0.092	91.84%	0.15
305	1976/04/15 16:00:00	1976/04/15 17:00:00	2	0.09	92.15%	0.15
306	1971/02/16 22:00:00	1971/02/16 22:00:00	1	0.086	92.45%	0.15
307	1992/03/26 19:00:00	1992/03/26 19:00:00	1	0.086	92.75%	0.15
308	1983/04/21 01:00:00	1983/04/21 03:00:00	3	0.085	93.05%	0.15
309	1970/03/06 23:00:00	1970/03/07 01:00:00	3	0.084	93.35%	0.15
310	1971/12/31 06:00:00	1971/12/31 06:00:00	1	0.082	93.66%	0.15
311	1976/02/07 07:00:00	1976/02/07 09:00:00	3	0.08	93.96%	0.15
312	1987/02/25 02:00:00	1987/02/25 02:00:00	1	0.079	94.26%	0.14
313	1964/12/27 15:00:00	1964/12/27 16:00:00	2	0.075	94.56%	0.14
314	1978/03/22 05:00:00	1978/03/22 05:00:00	1	0.073	94.86%	0.14
315	1994/12/25 03:00:00	1994/12/25 03:00:00	1	0.072	95.17%	0.14
316	1975/11/28 16:00:00	1975/11/28 17:00:00	2	0.072	95.47%	0.14
317	1996/03/13 07:00:00	1996/03/13 09:00:00	3	0.071	95.77%	0.14
318	1975/02/03 14:00:00	1975/02/03 14:00:00	1	0.071	96.07%	0.14
319	1986/03/13 17:00:00	1986/03/13 19:00:00	3	0.069	96.37%	0.14
320	1990/02/17 19:00:00	1990/02/17 19:00:00	1	0.067	96.68%	0.14
321	1978/11/23 13:00:00	1978/11/23 13:00:00	1	0.067	96.98%	0.14

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
322	1968/02/13 22:00:00	1968/02/13 23:00:00	2	0.066	97.28%	0.14
323	1995/12/23 10:00:00	1995/12/23 10:00:00	1	0.064	97.58%	0.14
324	1966/10/04 14:00:00	1966/10/04 14:00:00	1	0.058	97.89%	0.14
325	1995/04/16 09:00:00	1995/04/16 09:00:00	1	0.053	98.19%	0.14
326	1983/02/02 16:00:00	1983/02/02 16:00:00	1	0.049	98.49%	0.14
327	1979/11/07 20:00:00	1979/11/07 22:00:00	3	0.049	98.79%	0.14
328	1995/01/03 14:00:00	1995/01/03 14:00:00	1	0.047	99.09%	0.14
329	1983/02/26 14:00:00	1983/02/26 14:00:00	1	0.045	99.40%	0.14
330	2007/02/19 11:00:00	2007/02/19 16:00:00	6	0.039	99.70%	0.14
-End of Data						

SWMM.out file r	ame: V:\17\17046\Engineering\C	urrent\GPIP\Storm\SWMM\curre	nt Itteration\POC-1\1	7046-Post-Develor	ment-poc1.out	
	stamp: 1/31/2019 3:36:25 PM					
	· · · · · · · · · · · · · · · · · · ·					
10: 0.000						
5: 0.000						
2: 0.000						
eak Flow Statis	tics Table Values					
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1993/01/06 16:00:00	1993/01/11 14:00:00	119	3.824	0.20%	45
2	1966/12/03 07:00:00	1966/12/08 06:00:00	120	3.676	0.40%	22.5
3	1986/02/14 23:00:00	1986/02/16 17:00:00	43	3.235	0.60%	15
4	1995/01/04 14:00:00	1995/01/06 07:00:00	42	3.219	0.80%	11.25
5	1978/01/14 15:00:00	1978/01/17 20:00:00	78	2.806	1.00%	9
6	1980/01/28 06:00:00	1980/01/31 19:00:00	86	2.785	1.20%	7.5
7	2007/08/26 07:00:00	2007/08/26 18:00:00	12	2.769	1.41%	6.43
8	1978/03/12 01:00:00	1978/03/18 23:00:00	167	2.614	1.61%	5.63
9	1983/03/01 14:00:00	1983/03/04 18:00:00	77	2.567	1.81%	5
10	1965/11/22 03:00:00	1965/11/25 12:00:00	82	2.348	2.01%	4.5
11	1971/02/23 04:00:00	1971/02/24 06:00:00	27	2.337	2.21%	4.09
12	1969/01/24 07:00:00	1969/01/27 06:00:00	72	2.252	2.41%	3.75
13	1998/02/14 10:00:00	1998/02/16 01:00:00	40	2.109	2.61%	3.46
14	1995/01/24 18:00:00	1995/01/26 13:00:00	44	1.942	2.81%	3.21
15	1979/01/05 07:00:00	1979/01/07 14:00:00	56	1.928	3.01%	3
16	1995/03/05 06:00:00	1995/03/07 11:00:00	54	1.91	3.21%	2.81
17	1980/02/13 13:00:00	1980/02/22 11:00:00	215	1.897	3.41%	2.65
18	2004/10/17 08:00:00	2004/10/21 12:00:00	101	1.812	3.61%	2.5
19	1967/11/19 06:00:00	1967/11/22 15:00:00	82	1.709	3.82%	2.37
20	2007/11/30 07:00:00	2007/12/02 08:00:00	50	1.68	4.02%	2.25
21	2005/01/07 14:00:00	2005/01/12 17:00:00	124	1.677	4.22%	2.14
22	1983/12/24 19:00:00	1983/12/27 10:00:00	64	1.592	4.42%	2.05
23	2004/10/27 03:00:00	2004/10/28 18:00:00	40	1.57	4.62%	1.96
24	1980/03/02 21:00:00	1980/03/04 06:00:00	34	1.562	4.82%	1.88
25	1993/02/08 00:00:00	1993/02/09 22:00:00	47	1.53	5.02%	1.8
26	1980/01/09 03:00:00	1980/01/13 07:00:00	101	1.463	5.22%	1.73
27	1972/11/14 13:00:00	1972/11/15 04:00:00	16	1.455	5.42%	1.67
28	1981/02/08 21:00:00	1981/02/10 11:00:00	39	1.448	5.62%	1.61
29	2007/01/30 15:00:00	2007/01/31 13:00:00	23	1.435	5.82%	1.55
30	1967/04/11 08:00:00	1967/04/12 16:00:00	33	1.423	6.02%	1.5
31	1983/11/25 00:00:00	1983/11/25 15:00:00	16	1.356	6.22%	1.45
32	1988/04/20 04:00:00	1988/04/22 14:00:00	59	1.337	6.43%	1.41
33	1991/02/27 15:00:00	1991/03/02 20:00:00	78	1.257	6.63%	1.36
34	1967/12/18 15:00:00	1967/12/20 17:00:00	51	1.241	6.83%	1.32
35	2004/02/26 05:00:00	2004/02/27 14:00:00	34	1.151	7.03%	1.29
36	1993/01/12 22:00:00	1993/01/19 16:00:00	163	1.143	7.23%	1.25
37	1991/03/19 00:00:00	1991/03/22 00:00:00	73	1.112	7.43%	1.22
38	1985/11/24 15:00:00	1985/11/26 15:00:00	49	1.095	7.63%	1.18
39	1974/12/04 05:00:00	1974/12/05 07:00:00	27	1.071	7.83%	1.15

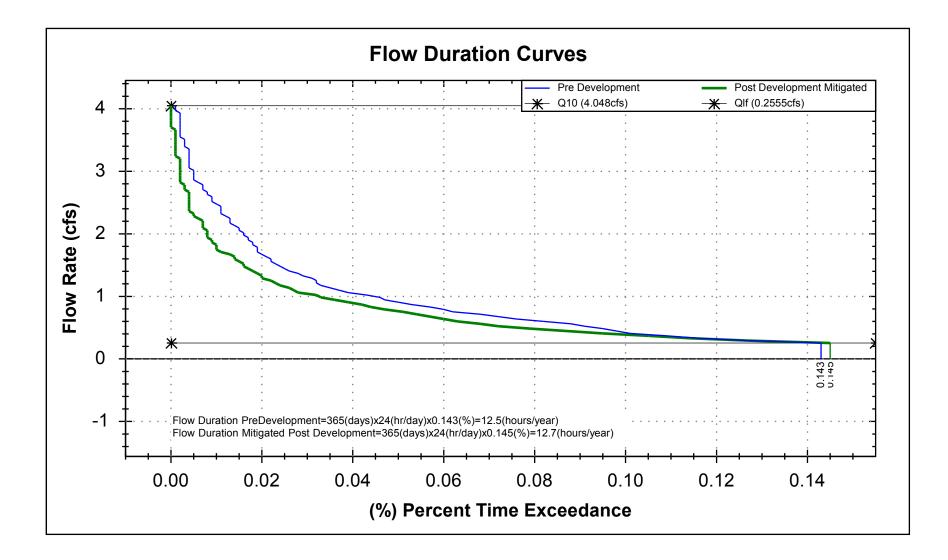
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1998/01/09 13:00:00	1998/01/11 10:00:00	46	1.049	8.03%	1.13
41	1970/02/28 15:00:00	1970/03/03 12:00:00	70	1.01	8.23%	1.1
42	1970/03/04 21:00:00	1970/03/05 17:00:00	21	0.955	8.43%	1.07
43	1992/02/15 13:00:00	1992/02/16 11:00:00	23	0.935	8.63%	1.05
44	1969/02/06 08:00:00	1969/02/07 09:00:00	26	0.909	8.84%	1.02
45	1985/11/29 07:00:00	1985/11/30 21:00:00	39	0.899	9.04%	1
46	1998/02/03 15:00:00	1998/02/04 20:00:00	30	0.802	9.24%	0.98
47	1977/05/08 13:00:00	1977/05/10 09:00:00	45	0.746	9.44%	0.96
48	1974/03/07 17:00:00	1974/03/09 18:00:00	50	0.716	9.64%	0.94
49	1978/12/16 23:00:00	1978/12/19 18:00:00	68	0.713	9.84%	0.92
50	2003/02/25 15:00:00	2003/02/26 17:00:00	27	0.695	10.04%	0.9
51	1976/02/04 09:00:00	1976/02/10 15:00:00	151	0.663	10.24%	0.88
52	1982/03/18 02:00:00	1982/03/20 17:00:00	64	0.655	10.44%	0.87
53	1981/12/30 08:00:00	1982/01/02 09:00:00	74	0.646	10.64%	0.85
54	2005/02/21 03:00:00	2005/02/24 07:00:00	77	0.629	10.84%	0.83
55	1966/11/07 15:00:00	1966/11/08 12:00:00	22	0.615	11.04%	0.82
56	2003/02/11 17:00:00	2003/02/14 18:00:00	74	0.608	11.24%	0.8
57	1978/02/05 01:00:00	1978/02/07 12:00:00	60	0.595	11.45%	0.79
58	1991/03/25 07:00:00	1991/03/28 14:00:00	80	0.588	11.65%	0.78
59	1983/02/26 13:00:00	1983/02/28 13:00:00	49	0.581	11.85%	0.76
60	1981/03/19 20:00:00	1981/03/20 13:00:00	18	0.567	12.05%	0.75
61	2003/04/14 16:00:00	2003/04/15 17:00:00	26	0.557	12.25%	0.74
62	2006/04/04 18:00:00	2006/04/06 02:00:00	33	0.553	12.45%	0.73
63	1965/12/09 06:00:00	1965/12/11 06:00:00	49	0.542	12.65%	0.71
64	1996/11/21 16:00:00	1996/11/23 11:00:00	44	0.541	12.85%	0.7
65	1979/01/17 10:00:00	1979/01/18 16:00:00	31	0.537	13.05%	0.69
66	1969/02/22 02:00:00	1969/02/27 02:00:00	121	0.53	13.25%	0.68
67	1970/11/28 23:00:00	1970/12/01 00:00:00	50	0.53	13.45%	0.67
68	1973/01/16 18:00:00	1973/01/17 13:00:00	20	0.527	13.65%	0.66
69	2006/01/02 13:00:00	2006/01/03 04:00:00	16	0.516	13.86%	0.65
70	1996/01/31 17:00:00	1996/02/02 07:00:00	39	0.498	14.06%	0.64
71	1967/01/22 16:00:00	1967/01/26 02:00:00	83	0.494	14.26%	0.63
72	1981/02/28 16:00:00	1981/03/03 00:00:00	57	0.482	14.46%	0.63
73	1965/04/08 14:00:00	1965/04/10 17:00:00	52	0.48	14.66%	0.62
74	2004/02/22 14:00:00	2004/02/24 04:00:00	39	0.475	14.86%	0.61
75	1976/03/01 15:00:00	1976/03/03 20:00:00	54	0.472	15.06%	0.6
76	1992/02/06 11:00:00	1992/02/07 21:00:00	35	0.471	15.26%	0.59
77	1993/11/14 17:00:00	1993/11/14 22:00:00	6	0.469	15.46%	0.58
78	1994/02/17 11:00:00	1994/02/18 02:00:00	16	0.468	15.66%	0.58
79	1965/11/14 19:00:00	1965/11/17 20:00:00	74	0.468	15.86%	0.57
80	1986/11/17 19:00:00	1986/11/19 00:00:00	30	0.459	16.06%	0.56
81	1986/09/25 01:00:00	1986/09/25 23:00:00	23	0.452	16.27%	0.56
82	1998/02/06 17:00:00	1998/02/09 07:00:00	63	0.452	16.47%	0.55
83	1994/02/07 15:00:00	1994/02/08 17:00:00	27	0.44	16.67%	0.54
84	1974/01/04 19:00:00	1974/01/09 16:00:00	118	0.439	16.87%	0.54
85	2003/03/15 16:00:00	2003/03/16 23:00:00	32	0.435	17.07%	0.53
86	1965/12/13 01:00:00	1965/12/13 08:00:00	8	0.43	17.27%	0.52

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1970/12/19 02:00:00	1970/12/22 08:00:00	79	0.427	17.47%	0.52
88	1976/04/12 21:00:00	1976/04/14 16:00:00	44	0.425	17.67%	0.51
89	1982/12/22 19:00:00	1982/12/23 17:00:00	23	0.424	17.87%	0.51
90	1973/02/11 05:00:00	1973/02/13 04:00:00	48	0.423	18.07%	0.5
91	1992/01/05 11:00:00	1992/01/08 04:00:00	66	0.421	18.27%	0.5
92	1965/12/29 19:00:00	1965/12/30 08:00:00	14	0.418	18.47%	0.49
93	1987/01/04 13:00:00	1987/01/07 18:00:00	78	0.417	18.67%	0.48
94	2002/11/08 16:00:00	2002/11/10 01:00:00	34	0.411	18.88%	0.48
95	1995/03/11 02:00:00	1995/03/12 19:00:00	42	0.403	19.08%	0.47
96	1983/03/23 18:00:00	1983/03/24 17:00:00	24	0.395	19.28%	0.47
97	1986/03/10 08:00:00	1986/03/12 14:00:00	55	0.384	19.48%	0.46
98	1972/12/04 13:00:00	1972/12/05 13:00:00	25	0.383	19.68%	0.46
99	1998/02/22 17:00:00	1998/02/25 00:00:00	56	0.381	19.88%	0.46
100	1994/03/24 22:00:00	1994/03/25 22:00:00	25	0.376	20.08%	0.45
101	1983/01/27 08:00:00	1983/01/29 09:00:00	50	0.369	20.28%	0.45
102	1988/12/24 22:00:00	1988/12/26 00:00:00	27	0.365	20.48%	0.44
103	1998/02/17 16:00:00	1998/02/18 04:00:00	13	0.352	20.68%	0.44
104	1976/12/30 15:00:00	1977/01/01 01:00:00	35	0.351	20.88%	0.43
105	1991/12/29 15:00:00	1991/12/30 07:00:00	17	0.35	21.08%	0.43
106	1995/02/13 23:00:00	1995/02/15 06:00:00	32	0.349	21.29%	0.43
107	2001/11/24 17:00:00	2001/11/25 05:00:00	13	0.346	21.49%	0.42
108	1987/11/04 17:00:00	1987/11/05 16:00:00	24	0.333	21.69%	0.42
109	1990/01/17 03:00:00	1990/01/17 09:00:00	7	0.332	21.89%	0.41
110	2005/01/03 07:00:00	2005/01/04 19:00:00	37	0.33	22.09%	0.41
111	1979/03/01 12:00:00	1979/03/02 12:00:00	25	0.312	22.29%	0.41
112	1992/02/12 18:00:00	1992/02/14 01:00:00	32	0.309	22.49%	0.4
113	1976/11/11 22:00:00	1976/11/13 04:00:00	31	0.306	22.69%	0.4
114	1968/03/08 04:00:00	1968/03/09 07:00:00	28	0.297	22.89%	0.4
115	1969/01/14 02:00:00	1969/01/15 08:00:00	31	0.296	23.09%	0.39
116	1980/03/06 00:00:00	1980/03/07 01:00:00	26	0.292	23.29%	0.39
117	2002/12/20 17:00:00	2002/12/21 01:00:00	9	0.292	23.49%	0.39
118	1971/12/24 16:00:00	1971/12/26 11:00:00	44	0.291	23.69%	0.38
119	1975/03/08 08:00:00	1975/03/09 07:00:00	24	0.284	23.90%	0.38
120	1978/11/13 22:00:00	1978/11/14 12:00:00	15	0.283	24.10%	0.38
121	1992/12/29 13:00:00	1992/12/30 06:00:00	18	0.283	24.30%	0.37
122	1996/12/09 18:00:00	1996/12/10 09:00:00	16	0.283	24.50%	0.37
123	1998/03/28 17:00:00	1998/03/29 17:00:00	25	0.269	24.70%	0.37
124	2006/03/10 17:00:00	2006/03/11 18:00:00	26	0.268	24.90%	0.36
125	2008/02/22 03:00:00	2008/02/23 03:00:00	25	0.265	25.10%	0.36
126	1973/11/22 23:00:00	1973/11/23 13:00:00	15	0.265	25.30%	0.36
127	1988/01/17 11:00:00	1988/01/18 15:00:00	29	0.262	25.50%	0.35
128	2008/01/05 02:00:00	2008/01/07 20:00:00	67	0.261	25.70%	0.35
129	1969/01/20 04:00:00	1969/01/22 03:00:00	48	0.261	25.90%	0.35
130	1982/03/15 13:00:00	1982/03/16 13:00:00	25	0.257	26.10%	0.35
131	1997/01/12 14:00:00	1997/01/14 13:00:00	48	0.257	26.31%	0.34
132	1983/02/07 05:00:00	1983/02/08 16:00:00	36	0.256	26.51%	0.34
133	1994/02/20 16:00:00	1994/02/20 21:00:00	6	0.255	26.71%	0.34

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1995/01/07 19:00:00	1995/01/08 22:00:00	28	0.252	26.91%	0.34
135	2003/12/25 18:00:00	2003/12/26 02:00:00	9	0.248	27.11%	0.33
136	2001/01/11 04:00:00	2001/01/12 17:00:00	38	0.247	27.31%	0.33
137	1985/11/11 05:00:00	1985/11/12 18:00:00	38	0.241	27.51%	0.33
138	1995/04/18 10:00:00	1995/04/19 00:00:00	15	0.237	27.71%	0.33
139	1970/03/08 12:00:00	1970/03/09 06:00:00	19	0.237	27.91%	0.32
140	1973/03/08 13:00:00	1973/03/09 07:00:00	19	0.236	28.11%	0.32
141	1992/03/02 09:00:00	1992/03/03 06:00:00	22	0.233	28.31%	0.32
142	2004/02/02 23:00:00	2004/02/03 07:00:00	9	0.232	28.51%	0.32
143	1986/03/15 22:00:00	1986/03/17 05:00:00	32	0.232	28.71%	0.32
144	1968/04/01 20:00:00	1968/04/02 11:00:00	16	0.231	28.92%	0.31
145	1973/03/11 13:00:00	1973/03/12 05:00:00	17	0.231	29.12%	0.31
146	2004/12/28 08:00:00	2004/12/30 12:00:00	53	0.23	29.32%	0.31
147	1983/11/20 12:00:00	1983/11/21 10:00:00	23	0.23	29.52%	0.31
148	1964/11/17 16:00:00	1964/11/18 13:00:00	22	0.229	29.72%	0.3
149	1995/03/23 10:00:00	1995/03/23 18:00:00	9	0.228	29.92%	0.3
150	1987/12/16 13:00:00	1987/12/17 22:00:00	34	0.227	30.12%	0.3
151	2004/03/02 02:00:00	2004/03/02 11:00:00	10	0.226	30.32%	0.3
152	1976/09/10 02:00:00	1976/09/11 17:00:00	40	0.223	30.52%	0.3
153	1990/01/14 04:00:00	1990/01/15 06:00:00	27	0.219	30.72%	0.29
154	1994/04/28 00:00:00	1994/04/28 01:00:00	2	0.219	30.92%	0.29
155	1998/05/12 17:00:00	1998/05/12 23:00:00	7	0.217	31.12%	0.29
156	1986/02/07 20:00:00	1986/02/09 04:00:00	33	0.215	31.33%	0.29
157	1975/04/08 03:00:00	1975/04/09 22:00:00	44	0.213	31.53%	0.29
158	1972/11/16 11:00:00	1972/11/17 11:00:00	25	0.212	31.73%	0.29
159	1972/11/11 08:00:00	1972/11/11 16:00:00	9	0.209	31.93%	0.28
160	1992/12/07 08:00:00	1992/12/08 13:00:00	30	0.208	32.13%	0.28
161	1995/12/20 17:00:00	1995/12/20 18:00:00	2	0.2	32.33%	0.28
162	1982/11/29 20:00:00	1982/12/01 13:00:00	42	0.199	32.53%	0.28
163	1983/03/20 20:00:00	1983/03/21 06:00:00	11	0.198	32.73%	0.28
164	1967/03/13 14:00:00	1967/03/14 13:00:00	24	0.198	32.93%	0.27
165	1979/03/27 10:00:00	1979/03/29 09:00:00	48	0.197	33.13%	0.27
166	1977/08/17 00:00:00	1977/08/18 10:00:00	35	0.197	33.33%	0.27
167	1983/03/17 06:00:00	1983/03/19 08:00:00	51	0.194	33.53%	0.27
168	1975/12/11 23:00:00	1975/12/12 19:00:00	21	0.193	33.73%	0.27
169	1982/02/10 10:00:00	1982/02/11 12:00:00	27	0.192	33.94%	0.27
170	1975/03/10 11:00:00	1975/03/11 21:00:00	35	0.191	34.14%	0.27
171	1979/03/17 05:00:00	1979/03/17 17:00:00	13	0.189	34.34%	0.26
172	2008/02/14 12:00:00	2008/02/14 23:00:00	12	0.187	34.54%	0.26
173	1965/03/31 15:00:00	1965/04/03 20:00:00	78	0.187	34.74%	0.26
174	1988/11/25 09:00:00	1988/11/26 01:00:00	17	0.185	34.94%	0.26
175	1980/03/10 17:00:00	1980/03/11 08:00:00	16	0.184	35.14%	0.26
176	1987/12/04 21:00:00	1987/12/05 04:00:00	8	0.184	35.34%	0.26
177	1993/03/28 03:00:00	1993/03/28 03:00:00	1	0.183	35.54%	0.25
178	2008/02/03 09:00:00	2008/02/04 10:00:00	26	0.182	35.74%	0.25
179	1978/09/05 18:00:00	1978/09/06 03:00:00	10	0.182	35.94%	0.25
180	1996/02/25 10:00:00	1996/02/26 03:00:00	18	0.182	36.14%	0.25

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
181	2005/04/28 08:00:00	2005/04/29 01:00:00	18	0.182	36.35%	0.25
182	1996/01/21 18:00:00	1996/01/22 11:00:00	18	0.18	36.55%	0.25
183	2002/12/16 17:00:00	2002/12/17 00:00:00	8	0.178	36.75%	0.25
184	2006/02/28 00:00:00	2006/03/01 01:00:00	26	0.177	36.95%	0.25
185	1988/12/21 03:00:00	1988/12/21 12:00:00	10	0.176	37.15%	0.24
186	1979/01/31 05:00:00	1979/02/02 16:00:00	60	0.176	37.35%	0.24
187	1969/02/18 10:00:00	1969/02/20 04:00:00	43	0.176	37.55%	0.24
188	1978/11/21 19:00:00	1978/11/22 01:00:00	7	0.175	37.75%	0.24
189	1993/01/31 01:00:00	1993/01/31 08:00:00	8	0.173	37.95%	0.24
190	1982/11/09 17:00:00	1982/11/11 08:00:00	40	0.172	38.15%	0.24
191	1993/02/18 15:00:00	1993/02/20 20:00:00	54	0.17	38.35%	0.24
192	1971/12/27 14:00:00	1971/12/28 18:00:00	29	0.168	38.55%	0.23
193	1989/03/25 11:00:00	1989/03/26 11:00:00	25	0.165	38.76%	0.23
194	1993/02/23 19:00:00	1993/02/24 05:00:00	11	0.164	38.96%	0.23
195	2005/02/11 03:00:00	2005/02/13 03:00:00	49	0.164	39.16%	0.23
196	1979/02/21 02:00:00	1979/02/22 04:00:00	27	0.163	39.36%	0.23
197	1969/03/13 14:00:00	1969/03/13 18:00:00	5	0.163	39.56%	0.23
198	1974/04/02 02:00:00	1974/04/02 16:00:00	15	0.158	39.76%	0.23
199	1980/01/18 04:00:00	1980/01/19 00:00:00	21	0.157	39.96%	0.23
200	1979/10/20 02:00:00	1979/10/21 11:00:00	34	0.156	40.16%	0.23
201	1971/05/07 20:00:00	1971/05/08 07:00:00	12	0.156	40.36%	0.22
202	1965/02/06 03:00:00	1965/02/07 05:00:00	27	0.156	40.56%	0.22
203	1997/01/25 23:00:00	1997/01/26 20:00:00	22	0.156	40.76%	0.22
204	1965/12/14 15:00:00	1965/12/14 20:00:00	6	0.155	40.96%	0.22
205	2000/02/21 17:00:00	2000/02/21 17:00:00	1	0.155	41.16%	0.22
206	1990/06/09 10:00:00	1990/06/10 09:00:00	24	0.154	41.37%	0.22
207	1978/04/07 01:00:00	1978/04/07 07:00:00	7	0.154	41.57%	0.22
208	1983/10/01 04:00:00	1983/10/01 18:00:00	15	0.154	41.77%	0.22
209	1981/03/05 07:00:00	1981/03/05 15:00:00	9	0.154	41.97%	0.22
210	1981/02/25 21:00:00	1981/02/26 08:00:00	12	0.153	42.17%	0.21
211	1983/04/29 09:00:00	1983/05/01 08:00:00	48	0.153	42.37%	0.21
212	1986/03/08 15:00:00	1986/03/08 19:00:00	5	0.152	42.57%	0.21
213	1975/04/05 21:00:00	1975/04/06 21:00:00	25	0.152	42.77%	0.21
214	1998/04/11 17:00:00	1998/04/11 17:00:00	1	0.151	42.97%	0.21
215	1967/04/21 15:00:00	1967/04/22 05:00:00	15	0.151	43.17%	0.21
216	1973/01/18 21:00:00	1973/01/19 12:00:00	16	0.151	43.37%	0.21
217	1980/03/25 23:00:00	1980/03/26 05:00:00	7	0.148	43.57%	0.21
218	1973/02/27 23:00:00	1973/02/28 12:00:00	14	0.146	43.78%	0.21
219	2002/03/17 23:00:00	2002/03/18 03:00:00	5	0.146	43.98%	0.21
220	1995/01/10 19:00:00	1995/01/13 00:00:00	54	0.145	44.18%	0.21
221	2000/10/29 23:00:00	2000/10/30 05:00:00	7	0.144	44.38%	0.2
222	1982/01/20 07:00:00	1982/01/21 21:00:00	39	0.144	44.58%	0.2
223	1983/02/24 09:00:00	1983/02/25 06:00:00	22	0.142	44.78%	0.2
224	1982/03/28 18:00:00	1982/03/28 18:00:00	1	0.142	44.98%	0.2
225	1994/04/25 18:00:00	1994/04/26 21:00:00	28	0.141	45.18%	0.2
226	1981/11/28 06:00:00	1981/11/29 10:00:00	29	0.141	45.38%	0.2
227	1973/03/20 08:00:00	1973/03/22 06:00:00	47	0.141	45.58%	0.2

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
228	1965/12/16 06:00:00	1965/12/16 11:00:00	6	0.139	45.78%	0.2
229	1986/12/06 03:00:00	1986/12/07 12:00:00	34	0.138	45.98%	0.2
230	1978/01/30 10:00:00	1978/01/31 03:00:00	18	0.136	46.18%	0.2
231	1974/10/28 12:00:00	1974/10/29 23:00:00	36	0.133	46.39%	0.2
232	1985/12/02 23:00:00	1985/12/03 13:00:00	15	0.132	46.59%	0.19
233	1978/03/31 02:00:00	1978/03/31 23:00:00	22	0.131	46.79%	0.19
234	1977/12/25 17:00:00	1977/12/27 06:00:00	38	0.131	46.99%	0.19
235	1983/12/03 15:00:00	1983/12/04 02:00:00	12	0.121	47.19%	0.19
236	2006/03/21 02:00:00	2006/03/21 06:00:00	5	0.121	47.39%	0.19
237	1969/03/21 19:00:00	1969/03/21 20:00:00	2	0.119	47.59%	0.19
238	1987/10/22 16:00:00	1987/10/23 04:00:00	13	0.117	47.79%	0.19
239	1996/12/11 10:00:00	1996/12/11 23:00:00	14	0.117	47.99%	0.19
240	1995/03/21 11:00:00	1995/03/21 18:00:00	8	0.117	48.19%	0.19
241	1997/04/04 10:00:00	1997/04/04 10:00:00	1	0.116	48.39%	0.19
242	2006/05/22 04:00:00	2006/05/22 12:00:00	9	0.116	48.59%	0.19
243	2006/03/28 22:00:00	2006/03/29 08:00:00	11	0.116	48.80%	0.19
244	1991/01/09 14:00:00	1991/01/09 14:00:00	1	0.115	49.00%	0.18
245	2005/03/22 21:00:00	2005/03/23 04:00:00	8	0.114	49.20%	0.18
246	1994/03/19 02:00:00	1994/03/20 09:00:00	32	0.112	49.40%	0.18
247	1964/12/27 11:00:00	1964/12/28 09:00:00	23	0.111	49.60%	0.18
248	1975/11/27 18:00:00	1975/11/28 22:00:00	29	0.11	49.80%	0.18
249	2000/02/13 17:00:00	2000/02/13 17:00:00	1	0.11	50.00%	0.18
250	1976/10/22 20:00:00	1976/10/22 20:00:00	1	0.109	50.20%	0.18
251	1980/12/04 13:00:00	1980/12/05 04:00:00	16	0.109	50.40%	0.18
252	1970/10/03 14:00:00	1970/10/03 15:00:00	2	0.108	50.60%	0.18
253	1970/03/11 12:00:00	1970/03/12 04:00:00	17	0.105	50.80%	0.18
254	1992/03/23 03:00:00	1992/03/23 04:00:00	2	0.105	51.00%	0.18
255	1995/12/23 10:00:00	1995/12/23 10:00:00	1	0.103	51.20%	0.18
256	1978/11/11 03:00:00	1978/11/12 09:00:00	31	0.103	51.41%	0.18
257	1982/03/27 01:00:00	1982/03/27 10:00:00	10	0.102	51.61%	0.18
258	2001/12/21 17:00:00	2001/12/21 17:00:00	1	0.102	51.81%	0.17
259	2000/04/17 18:00:00	2000/04/18 09:00:00	16	0.1	52.01%	0.17
260	1986/09/24 00:00:00	1986/09/24 00:00:00	1	0.099	52.21%	0.17
261	2007/12/07 04:00:00	2007/12/08 07:00:00	28	0.098	52.41%	0.17
262	2005/02/18 04:00:00	2005/02/19 16:00:00	37	0.098	52.61%	0.17
263	1982/12/09 19:00:00	1982/12/09 21:00:00	3	0.097	52.81%	0.17
264	1985/09/18 09:00:00	1985/09/18 12:00:00	4	0.096	53.01%	0.17
265	1977/03/25 02:00:00	1977/03/25 15:00:00	14	0.096	53.21%	0.17
266	1998/03/25 17:00:00	1998/03/25 17:00:00	1	0.096	53.41%	0.17
267	1985/02/02 05:00:00	1985/02/02 16:00:00	12	0.094	53.61%	0.17
268	1971/02/16 22:00:00	1971/02/17 10:00:00	13	0.093	53.82%	0.17
269	1990/02/17 11:00:00	1990/02/18 09:00:00	23	0.093	54.02%	0.17
270	1982/04/02 12:00:00	1982/04/03 09:00:00	22	0.09	54.22%	0.17
271	1978/03/22 05:00:00	1978/03/22 13:00:00	9	0.089	54.42%	0.17
272	1988/04/14 21:00:00	1988/04/15 07:00:00	11	0.089	54.62%	0.17
273	1979/03/19 01:00:00	1979/03/20 03:00:00	27	0.088	54.82%	0.17
274	1987/11/02 03:00:00	1987/11/02 03:00:00	1	0.088	55.02%	0.16


Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
275	1968/02/13 22:00:00	1968/02/13 23:00:00	2	0.087	55.22%	0.16
276	2004/04/01 22:00:00	2004/04/01 22:00:00	1	0.087	55.42%	0.16
277	1984/12/08 01:00:00	1984/12/08 01:00:00	1	0.086	55.62%	0.16
278	1966/10/04 14:00:00	1966/10/04 14:00:00	1	0.086	55.82%	0.16
279	2004/02/18 17:00:00	2004/02/18 17:00:00	1	0.086	56.02%	0.16
280	1996/02/27 21:00:00	1996/02/27 22:00:00	2	0.086	56.22%	0.16
281	1991/10/26 22:00:00	1991/10/26 23:00:00	2	0.086	56.43%	0.16
282	2007/04/20 15:00:00	2007/04/20 16:00:00	2	0.086	56.63%	0.16
283	2008/01/23 20:00:00	2008/01/23 22:00:00	3	0.085	56.83%	0.16
284	1970/03/06 22:00:00	1970/03/07 01:00:00	4	0.085	57.03%	0.16
285	1971/12/22 06:00:00	1971/12/23 11:00:00	30	0.085	57.23%	0.16
286	1995/04/16 07:00:00	1995/04/16 23:00:00	17	0.084	57.43%	0.16
287	1982/01/28 20:00:00	1982/01/28 23:00:00	4	0.084	57.63%	0.16
288	1973/03/06 06:00:00	1973/03/07 01:00:00	20	0.083	57.83%	0.16
289	1996/03/12 17:00:00	1996/03/13 15:00:00	23	0.083	58.03%	0.16
290	1990/01/31 01:00:00	1990/01/31 01:00:00	1	0.082	58.23%	0.16
291	1965/03/11 14:00:00	1965/03/11 14:00:00	1	0.082	58.43%	0.16
292	1977/01/03 13:00:00	1977/01/04 00:00:00	12	0.082	58.63%	0.15
293	1988/02/02 08:00:00	1988/02/03 02:00:00	19	0.082	58.84%	0.15
294	1986/04/06 07:00:00	1986/04/06 20:00:00	14	0.081	59.04%	0.15
295	1975/02/09 20:00:00	1975/02/10 06:00:00	11	0.081	59.24%	0.15
296	2003/05/03 17:00:00	2003/05/03 17:00:00	1	0.081	59.44%	0.15
297	1978/11/23 08:00:00	1978/11/23 13:00:00	6	0.079	59.64%	0.15
298	2001/01/26 12:00:00	2001/01/27 02:00:00	15	0.079	59.84%	0.15
299	1994/12/25 02:00:00	1994/12/25 07:00:00	6	0.079	60.04%	0.15
300	1969/11/06 19:00:00	1969/11/07 02:00:00	8	0.078	60.24%	0.15
301	1972/12/08 10:00:00	1972/12/09 02:00:00	17	0.078	60.44%	0.15
302	1998/01/29 17:00:00	1998/01/29 17:00:00	1	0.078	60.64%	0.15
303	1977/03/16 13:00:00	1977/03/17 03:00:00	15	0.078	60.84%	0.15
304	1987/02/25 02:00:00	1987/02/25 02:00:00	1	0.078	61.04%	0.15
305	1967/08/31 02:00:00	1967/08/31 07:00:00	6	0.078	61.24%	0.15
306	1986/01/30 04:00:00	1986/01/30 15:00:00	12	0.077	61.45%	0.15
307	1983/11/12 03:00:00	1983/11/13 04:00:00	26	0.077	61.65%	0.15
308	1998/03/26 17:00:00	1998/03/26 17:00:00	1	0.077	61.85%	0.15
309	1966/02/06 11:00:00	1966/02/08 00:00:00	38	0.077	62.05%	0.15
310	1971/05/28 12:00:00	1971/05/29 02:00:00	15	0.076	62.25%	0.15
311	1975/03/06 06:00:00	1975/03/06 15:00:00	10	0.076	62.45%	0.15
312	2000/02/17 17:00:00	2000/02/17 17:00:00	1	0.076	62.65%	0.14
313	1986/03/13 17:00:00	1986/03/14 02:00:00	10	0.074	62.85%	0.14
314	1969/01/28 19:00:00	1969/01/28 20:00:00	2	0.074	63.05%	0.14
315	1977/12/18 05:00:00	1977/12/18 12:00:00	8	0.073	63.25%	0.14
316	1972/05/20 04:00:00	1972/05/20 13:00:00	10	0.072	63.45%	0.14
317	1968/12/25 19:00:00	1968/12/26 10:00:00	16	0.072	63.65%	0.14
318	1974/01/01 05:00:00	1974/01/01 21:00:00	17	0.072	63.86%	0.14
319	2004/12/31 15:00:00	2004/12/31 17:00:00	3	0.072	64.06%	0.14
320	1971/01/02 05:00:00	1971/01/02 18:00:00	14	0.072	64.26%	0.14
321	1981/01/28 07:00:00	1981/01/28 14:00:00	8	0.072	64.46%	0.14

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
322	1981/01/29 18:00:00	1981/01/30 09:00:00	16	0.072	64.66%	0.14
323	1992/02/10 00:00:00	1992/02/10 00:00:00	1	0.072	64.86%	0.14
324	1964/09/24 14:00:00	1964/09/24 14:00:00	1	0.072	65.06%	0.14
325	1966/10/10 12:00:00	1966/10/10 13:00:00	2	0.072	65.26%	0.14
326	1970/04/30 09:00:00	1970/04/30 09:00:00	1	0.072	65.46%	0.14
327	1971/03/13 06:00:00	1971/03/13 07:00:00	2	0.072	65.66%	0.14
328	1972/04/30 04:00:00	1972/04/30 10:00:00	7	0.072	65.86%	0.14
329	1972/10/19 03:00:00	1972/10/19 03:00:00	1	0.072	66.06%	0.14
330	1973/03/04 00:00:00	1973/03/04 00:00:00	1	0.072	66.27%	0.14
331	1973/04/30 05:00:00	1973/04/30 11:00:00	7	0.072	66.47%	0.14
332	1973/12/01 15:00:00	1973/12/01 15:00:00	1	0.072	66.67%	0.14
333	1976/04/11 19:00:00	1976/04/11 19:00:00	1	0.072	66.87%	0.14
334	1976/11/27 04:00:00	1976/11/27 06:00:00	3	0.072	67.07%	0.14
335	1979/02/14 03:00:00	1979/02/14 05:00:00	3	0.072	67.27%	0.13
336	1979/11/07 19:00:00	1979/11/09 01:00:00	31	0.072	67.47%	0.13
337	1980/03/21 19:00:00	1980/03/22 00:00:00	6	0.072	67.67%	0.13
338	1983/08/16 15:00:00	1983/08/16 15:00:00	1	0.072	67.87%	0.13
339	1985/10/07 14:00:00	1985/10/07 14:00:00	1	0.072	68.07%	0.13
340	1985/10/09 12:00:00	1985/10/09 12:00:00	1	0.072	68.27%	0.13
341	1992/03/20 16:00:00	1992/03/21 08:00:00	17	0.072	68.47%	0.13
342	2001/05/29 15:00:00	2001/05/29 15:00:00	1	0.072	68.67%	0.13
343	1981/11/27 01:00:00	1981/11/27 02:00:00	2	0.072	68.88%	0.13
344	1964/11/09 13:00:00	1964/11/09 16:00:00	4	0.072	69.08%	0.13
345	1964/11/10 17:00:00	1964/11/10 18:00:00	2	0.072	69.28%	0.13
346	1995/01/03 13:00:00	1995/01/03 14:00:00	2	0.072	69.48%	0.13
347	2006/12/10 00:00:00	2006/12/10 06:00:00	7	0.072	69.68%	0.13
348	1968/12/20 09:00:00	1968/12/20 10:00:00	2	0.071	69.88%	0.13
349	1996/10/30 14:00:00	1996/10/30 21:00:00	8	0.071	70.08%	0.13
350	1964/10/15 10:00:00	1964/10/15 14:00:00	5	0.071	70.28%	0.13
351	1971/10/16 05:00:00	1971/10/17 11:00:00	31	0.071	70.48%	0.13
352	1981/03/26 23:00:00	1981/03/26 23:00:00	1	0.071	70.68%	0.13
353	1983/10/07 08:00:00	1983/10/07 13:00:00	6	0.071	70.88%	0.13
354	1983/04/21 00:00:00	1983/04/21 09:00:00	10	0.071	71.08%	0.13
355	1994/11/10 12:00:00	1994/11/10 12:00:00	1	0.071	71.29%	0.13
356	1969/03/10 05:00:00	1969/03/10 11:00:00	7	0.071	71.49%	0.13
357	1971/04/14 12:00:00	1971/04/14 15:00:00	4	0.071	71.69%	0.13
358	2005/10/16 17:00:00	2005/10/16 17:00:00	1	0.071	71.89%	0.13
359	2007/02/19 08:00:00	2007/02/19 16:00:00	9	0.07	72.09%	0.13
360	1983/03/22 13:00:00	1983/03/22 15:00:00	3	0.07	72.29%	0.13
361	1975/02/03 10:00:00	1975/02/04 15:00:00	30	0.069	72.49%	0.13
362	1992/03/26 18:00:00	1992/03/26 19:00:00	2	0.069	72.69%	0.12
363	1994/02/03 20:00:00	1994/02/04 11:00:00	16	0.068	72.89%	0.12
364	2002/11/29 17:00:00	2002/11/29 17:00:00	1	0.068	73.09%	0.12
365	1973/11/18 01:00:00	1973/11/18 15:00:00	15	0.067	73.29%	0.12
366	1997/12/06 17:00:00	1997/12/06 17:00:00	1	0.065	73.49%	0.12
367	2004/12/05 12:00:00	2004/12/05 17:00:00	6	0.064	73.69%	0.12
368	2005/03/05 00:00:00	2005/03/05 04:00:00	5	0.063	73.90%	0.12

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
369	1976/04/15 16:00:00	1976/04/15 21:00:00	6	0.063	74.10%	0.12
370	1986/10/09 18:00:00	1986/10/10 11:00:00	18	0.062	74.30%	0.12
371	1990/01/02 03:00:00	1990/01/02 07:00:00	5	0.062	74.50%	0.12
372	1979/01/15 15:00:00	1979/01/15 22:00:00	8	0.061	74.70%	0.12
373	2007/02/12 22:00:00	2007/02/13 02:00:00	5	0.061	74.90%	0.12
374	1994/03/06 23:00:00	1994/03/07 10:00:00	12	0.061	75.10%	0.12
375	1988/01/05 17:00:00	1988/01/05 17:00:00	1	0.061	75.30%	0.12
376	1982/11/19 03:00:00	1982/11/19 13:00:00	11	0.061	75.50%	0.12
377	1974/03/27 10:00:00	1974/03/27 10:00:00	1	0.06	75.70%	0.12
378	2001/04/21 04:00:00	2001/04/21 13:00:00	10	0.058	75.90%	0.12
379	2003/11/12 06:00:00	2003/11/12 12:00:00	7	0.057	76.10%	0.12
380	2005/10/18 01:00:00	2005/10/18 10:00:00	10	0.057	76.31%	0.12
381	1991/12/28 01:00:00	1991/12/28 01:00:00	1	0.057	76.51%	0.12
382	1992/12/17 23:00:00	1992/12/18 05:00:00	7	0.057	76.71%	0.12
383	2006/12/16 21:00:00	2006/12/16 21:00:00	1	0.057	76.91%	0.12
384	1983/12/09 18:00:00	1983/12/09 19:00:00	2	0.057	77.11%	0.12
385	1984/04/06 06:00:00	1984/04/06 06:00:00	1	0.057	77.31%	0.12
386	1984/12/14 14:00:00	1984/12/14 14:00:00	1	0.057	77.51%	0.12
387	1988/02/29 22:00:00	1988/02/29 22:00:00	1	0.057	77.71%	0.12
388	1990/02/04 11:00:00	1990/02/04 11:00:00	1	0.057	77.91%	0.12
389	1995/06/17 00:00:00	1995/06/17 00:00:00	1	0.057	78.11%	0.12
390	2004/11/29 12:00:00	2004/11/29 12:00:00	1	0.057	78.31%	0.12
391	2006/03/17 20:00:00	2006/03/17 20:00:00	1	0.057	78.51%	0.12
392	2007/02/28 05:00:00	2007/02/28 05:00:00	1	0.057	78.71%	0.12
393	1994/01/25 01:00:00	1994/01/25 08:00:00	8	0.057	78.92%	0.12
394	2004/01/28 06:00:00	2004/01/28 06:00:00	1	0.057	79.12%	0.11
395	2005/01/28 16:00:00	2005/01/28 16:00:00	1	0.057	79.32%	0.11
396	1997/02/27 21:00:00	1997/02/27 21:00:00	1	0.057	79.52%	0.11
397	1990/11/26 03:00:00	1990/11/26 03:00:00	1	0.057	79.72%	0.11
398	2006/10/14 12:00:00	2006/10/14 12:00:00	1	0.056	79.92%	0.11
399	1989/10/22 00:00:00	1989/10/22 00:00:00	1	0.056	80.12%	0.11
400	1987/04/03 23:00:00	1987/04/04 00:00:00	2	0.056	80.32%	0.11
401	1985/12/11 03:00:00	1985/12/11 07:00:00	5	0.055	80.52%	0.11
402	1970/11/26 02:00:00	1970/11/26 11:00:00	10	0.054	80.72%	0.11
403	1967/04/18 20:00:00	1967/04/19 20:00:00	25	0.053	80.92%	0.11
404	1996/04/18 01:00:00	1996/04/18 07:00:00	7	0.052	81.12%	0.11
405	1992/12/27 21:00:00	1992/12/28 04:00:00	8	0.051	81.33%	0.11
406	1983/02/02 20:00:00	1983/02/02 20:00:00	1	0.049	81.53%	0.11
407	1968/11/15 12:00:00	1968/11/15 19:00:00	8	0.049	81.73%	0.11
408	1965/04/07 04:00:00	1965/04/07 06:00:00	3	0.049	81.93%	0.11
409	1982/09/26 09:00:00	1982/09/26 17:00:00	9	0.049	82.13%	0.11
410	2001/12/09 17:00:00	2001/12/09 17:00:00	1	0.048	82.33%	0.11
411	1970/02/10 02:00:00	1970/02/11 06:00:00	29	0.048	82.53%	0.11
412	1985/03/27 14:00:00	1985/03/28 09:00:00	20	0.048	82.73%	0.11
413	1979/01/09 10:00:00	1979/01/09 13:00:00	4	0.048	82.93%	0.11
414	1971/01/12 20:00:00	1971/01/12 23:00:00	4	0.048	83.13%	0.11
415	1967/11/30 17:00:00	1967/11/30 21:00:00	5	0.048	83.33%	0.11

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
416	1973/03/13 21:00:00	1973/03/13 21:00:00	1	0.047	83.53%	0.11
417	1985/02/09 12:00:00	1985/02/09 15:00:00	4	0.047	83.73%	0.11
418	1967/12/16 20:00:00	1967/12/17 02:00:00	7	0.047	83.94%	0.11
419	1965/01/24 08:00:00	1965/01/24 08:00:00	1	0.047	84.14%	0.11
420	2007/12/20 22:00:00	2007/12/21 03:00:00	6	0.046	84.34%	0.11
421	2008/01/27 09:00:00	2008/01/27 09:00:00	1	0.046	84.54%	0.11
422	1998/03/31 17:00:00	1998/03/31 17:00:00	1	0.045	84.74%	0.11
423	1970/01/16 18:00:00	1970/01/16 19:00:00	2	0.044	84.94%	0.11
424	2004/11/21 06:00:00	2004/11/21 08:00:00	3	0.043	85.14%	0.11
425	1997/01/23 07:00:00	1997/01/23 07:00:00	1	0.043	85.34%	0.11
426	1986/01/31 18:00:00	1986/01/31 18:00:00	1	0.043	85.54%	0.11
427	1987/10/31 04:00:00	1987/10/31 22:00:00	19	0.043	85.74%	0.11
428	1997/01/05 11:00:00	1997/01/05 15:00:00	5	0.043	85.94%	0.11
429	1988/11/14 07:00:00	1988/11/14 09:00:00	3	0.043	86.14%	0.11
430	1997/01/15 20:00:00	1997/01/15 20:00:00	1	0.043	86.35%	0.11
431	2005/12/31 19:00:00	2005/12/31 19:00:00	1	0.043	86.55%	0.1
432	1994/01/27 12:00:00	1994/01/27 12:00:00	1	0.042	86.75%	0.1
433	1989/01/06 00:00:00	1989/01/06 00:00:00	1	0.042	86.95%	0.1
434	1993/11/23 03:00:00	1993/11/23 03:00:00	1	0.042	87.15%	0.1
435	1993/12/11 17:00:00	1993/12/11 17:00:00	1	0.042	87.35%	0.1
436	1993/12/14 18:00:00	1993/12/14 18:00:00	1	0.042	87.55%	0.1
437	1990/11/19 22:00:00	1990/11/20 05:00:00	8	0.042	87.75%	0.1
438	1992/01/03 16:00:00	1992/01/03 16:00:00	1	0.042	87.95%	0.1
439	1990/04/04 09:00:00	1990/04/04 10:00:00	2	0.042	88.15%	0.1
440	1991/03/13 22:00:00	1991/03/14 01:00:00	4	0.042	88.35%	0.1
441	1990/03/11 03:00:00	1990/03/11 03:00:00	1	0.042	88.55%	0.1
442	1993/03/26 18:00:00	1993/03/26 18:00:00	1	0.042	88.76%	0.1
443	1996/03/04 23:00:00	1996/03/04 23:00:00	1	0.042	88.96%	0.1
444	1994/04/09 14:00:00	1994/04/09 14:00:00	1	0.041	89.16%	0.1
445	1984/03/24 13:00:00	1984/03/24 13:00:00	1	0.041	89.36%	0.1
446	1984/12/16 04:00:00	1984/12/16 04:00:00	1	0.041	89.56%	0.1
447	1985/08/10 14:00:00	1985/08/10 14:00:00	1	0.041	89.76%	0.1
448	1986/01/02 15:00:00	1986/01/02 15:00:00	1	0.041	89.96%	0.1
449	1986/09/18 11:00:00	1986/09/18 11:00:00	1	0.041	90.16%	0.1
450	1986/12/20 06:00:00	1986/12/20 06:00:00	1	0.041	90.36%	0.1
451	1992/03/31 16:00:00	1992/03/31 16:00:00	1	0.041	90.56%	0.1
452	2000/10/21 18:00:00	2000/10/21 18:00:00	1	0.041	90.76%	0.1
453	2006/03/12 21:00:00	2006/03/12 21:00:00	1	0.041	90.96%	0.1
454	2007/02/22 21:00:00	2007/02/22 21:00:00	1	0.041	91.16%	0.1
455	1987/10/12 19:00:00	1987/10/12 19:00:00	1	0.041	91.37%	0.1
456	2004/04/17 15:00:00	2004/04/17 15:00:00	1	0.041	91.57%	0.1
457	2006/04/14 22:00:00	2006/04/14 22:00:00	1	0.041	91.77%	0.1
458	1974/12/28 07:00:00	1974/12/29 10:00:00	28	0.041	91.97%	0.1
459	1986/07/19 14:00:00	1986/07/19 14:00:00	1	0.04	92.17%	0.1
460	1990/05/28 05:00:00	1990/05/28 05:00:00	1	0.04	92.37%	0.1
461	2005/09/20 03:00:00	2005/09/20 03:00:00	1	0.04	92.57%	0.1
462	1977/01/06 21:00:00	1977/01/07 07:00:00	11	0.04	92.77%	0.1

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
463	1995/06/15 22:00:00	1995/06/15 22:00:00	1	0.04	92.97%	0.1
464	1985/02/20 21:00:00	1985/02/20 21:00:00	1	0.039	93.17%	0.1
465	1982/01/05 14:00:00	1982/01/05 14:00:00	1	0.039	93.37%	0.1
466	1972/01/09 12:00:00	1972/01/10 00:00:00	13	0.039	93.57%	0.1
467	1973/01/09 13:00:00	1973/01/10 01:00:00	13	0.039	93.78%	0.1
468	1972/12/07 07:00:00	1972/12/07 09:00:00	3	0.039	93.98%	0.1
469	1977/12/23 06:00:00	1977/12/23 06:00:00	1	0.039	94.18%	0.1
470	1982/01/10 19:00:00	1982/01/10 21:00:00	3	0.039	94.38%	0.1
471	1967/12/13 13:00:00	1967/12/13 13:00:00	1	0.039	94.58%	0.1
472	1970/12/17 02:00:00	1970/12/17 19:00:00	18	0.038	94.78%	0.1
473	1975/04/01 05:00:00	1975/04/01 05:00:00	1	0.038	94.98%	0.1
474	2002/03/07 15:00:00	2002/03/07 15:00:00	1	0.038	95.18%	0.1
475	1975/03/14 11:00:00	1975/03/14 11:00:00	1	0.037	95.38%	0.1
476	1967/04/04 19:00:00	1967/04/04 19:00:00	1	0.037	95.58%	0.1
477	1971/12/04 01:00:00	1971/12/04 01:00:00	1	0.036	95.78%	0.09
478	1971/12/07 02:00:00	1971/12/07 02:00:00	1	0.036	95.98%	0.09
479	1980/12/07 12:00:00	1980/12/07 12:00:00	1	0.036	96.18%	0.09
480	1982/12/08 00:00:00	1982/12/08 00:00:00	1	0.036	96.39%	0.09
481	1978/01/10 18:00:00	1978/01/10 20:00:00	3	0.036	96.59%	0.09
482	1983/01/19 06:00:00	1983/01/19 07:00:00	2	0.036	96.79%	0.09
483	1975/01/30 19:00:00	1975/01/30 21:00:00	3	0.036	96.99%	0.09
484	1983/01/24 19:00:00	1983/01/24 19:00:00	1	0.036	97.19%	0.09
485	1969/11/10 01:00:00	1969/11/10 02:00:00	2	0.036	97.39%	0.09
486	1973/02/03 21:00:00	1973/02/03 21:00:00	1	0.035	97.59%	0.09
487	1977/02/22 02:00:00	1977/02/22 02:00:00	1	0.035	97.79%	0.09
488	1971/12/31 06:00:00	1971/12/31 06:00:00	1	0.035	97.99%	0.09
489	1969/12/09 00:00:00	1969/12/09 00:00:00	1	0.035	98.19%	0.09
490	1970/01/11 18:00:00	1970/01/11 18:00:00	1	0.035	98.39%	0.09
491	1983/01/23 04:00:00	1983/01/23 04:00:00	1	0.035	98.59%	0.09
492	1970/12/09 11:00:00	1970/12/09 11:00:00	1	0.035	98.80%	0.09
493	1973/01/04 04:00:00	1973/01/04 17:00:00	14	0.035	99.00%	0.09
494	1968/01/27 23:00:00	1968/01/27 23:00:00	1	0.035	99.20%	0.09
495	1969/01/19 00:00:00	1969/01/19 00:00:00	1	0.035	99.40%	0.09
496	1977/01/28 19:00:00	1977/01/28 19:00:00	1	0.035	99.60%	0.09
497	1974/01/20 22:00:00	1974/01/20 22:00:00	1	0.035	99.80%	0.09
-End of Data						

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Post-Development-poc1.out post-development time stamp: 1/31/2019 3:36:25 PM

Compared to:

pre-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Pre-Development-poc1.out pre-development time stamp: 9/20/2018 3:25:02 PM

pre-development	ume stamp. 9/20	U/2010 3.23.02 P	IVI				
PostPT*	for Pate	Post Devolo Exceed	PreDeveletreed	olet post olet pe	016 ^{ET} POST 7016 ^{ET} PIE	015t7 P0517 1000 015t7 P16	Passfall
0	0.26	0.15	0.14	FALSE	INUE	FALSE	Pass- Qpost Below Flow Control Threshold
1	0.29	0.13	0.13	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
2	0.33	0.11	0.12	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
3	0.37	0.11	0.11	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
4	0.41	0.10	0.10	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
5	0.45	0.09	0.10	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
6	0.49	0.08	0.10	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
7	0.52	0.07	0.09	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
8	0.56	0.07	0.09	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
9	0.60	0.06	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
10	0.64	0.06	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
11	0.68	0.06	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
12	0.72	0.05	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
13	0.75	0.05	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
14	0.79	0.05	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
15	0.83	0.04	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
16	0.87	0.04	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
17	0.91	0.04	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
18	0.95	0.04	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
19	0.98	0.03	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
20	1.02	0.03	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
21	1.06	0.03	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
22	1.10	0.03	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
23	1.14	0.03	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
24	1.18	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
25	1.21	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
26	1.25	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
27	1.29	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
28	1.33	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
29	1.37	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
30	1.41	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
31	1.44	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

POSITI *	FION Rate	Post Devolo Excession	Pre Devolotiveed	olst post clatt pre	015+0051-015+018	olst post 1000 01st pre	Passfall
6 ₀₂	¢10m	POSTDEN	Pre Den	0/5E+ POSt	0/5F+ POSt	.18t post 7	48 ⁵
32	1.48	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
33	1.52	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
34	1.56	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
35	1.60	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
36	1.63	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
37	1.67	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
38	1.71	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
39	1.75	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
40	1.79	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
41	1.83	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
42	1.86	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
43	1.90	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
44	1.94	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
45	1.98	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
46	2.02	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
47	2.06	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
48	2.09	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
49	2.13	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
50	2.17	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
51	2.21	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
52	2.25	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
53	2.29	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
54	2.32	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
55	2.36	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
56	2.40	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
57	2.44	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
58	2.48	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
59	2.52	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
60	2.55	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
61	2.59	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
62	2.63	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
63	2.67	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
64	2.71	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
65	2.75	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
66	2.78	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
67	2.82	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
68	2.86	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
69	2.90	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
70	2.94	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
71	2.98	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

20 ⁶ 21 [*] *	fion Rate	Post Devolo Excession	Pro ^{Devoloticeed}	olst post olst pre	015+1005-715+P ¹⁶	0154405171100101540	Passfrail
72	3.01	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
73	3.05	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
74	3.09	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
75	3.13	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
76	3.17	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
77	3.21	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
78	3.24	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
79	3.28	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
80	3.32	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
81	3.36	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
82	3.40	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
83	3.44	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
84	3.47	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
85	3.51	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
86	3.55	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
87	3.59	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
88	3.63	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
89	3.67	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
90	3.70	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
91	3.74	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
92	3.78	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
93	3.82	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
94	3.86	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
95	3.89	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
96	3.93	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
97	3.97	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
98	4.01	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
99	4.05	0.00	0.00	TRUE	FALSE	FALSE	Pass- Qpost Above Flow Control Upper Limit

Duration Table Summary at Project Discharge Point

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Pre-Development-poc1.out time stamp: 9/20/2018 3:25:02 PM

DISC	HARGE	Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line					
Bin Number	Discharge Rate	humber of Periods	Tota Peirods Exceeding	percent ine Exceeded			
1	0.26	61	546	0.143			
2	0.29	40	485	0.127			
3	0.33	29	445	0.116			
4	0.37	29	416	0.109			
5	0.41	12	387	0.101			
6	0.45	11	375	0.098			
7	0.49	16	364	0.095			
8	0.52	13	348	0.091			
9	0.56	21	335	0.088			
10	0.60	25	314	0.082			
11	0.64	13	289	0.076			
12	0.68	17	276	0.072			
13	0.72	20	259	0.068			
14	0.75	10	239	0.062			
15	0.79	10	229	0.060			
16	0.83	18	219	0.057			
17	0.87	11	201	0.053			
18	0.91	10	190	0.050			
19	0.94	5	180	0.047			
20	0.98	11	175	0.046			
21	1.02	13	164	0.043			
22	1.06	11	151	0.039			
23	1.10	6	140	0.037			
24	1.14	6	134	0.035			
25	1.17	4	128	0.033			
26	1.21	2	124	0.032			
27	1.25	5	122	0.032			
28	1.29	5	117	0.031			
29	1.33	6	112	0.029			
30	1.37	5	106	0.028			
31	1.40	6	101	0.026			
<u>32</u> 33	1.44	4 4	95	0.025			
33 34	<u>1.48</u> 1.52	4 4	91 87	0.024			
35	1.52	0	83	0.023			
<u> </u>	1.60	1	83	0.022			
37	1.63	5	82	0.022			
38	1.67	3	77	0.021			
39	1.71	1	74	0.020			
40	1.75	1	73	0.019			
41	1.79	3	72	0.019			
42	1.83	2	69	0.018			
43	1.86	1	67	0.018			
44	1.90	1	66	0.017			
45	1.94	4	65	0.017			
46	1.98	1	61	0.016			
47	2.02	1	60	0.016			
48	2.06	3	59	0.015			
49	2.09	1	56	0.015			
50	2.13	4	55	0.014			
51	2.17	0	51	0.013			

			Total Pairods Excepting	Parcent Time Ercaeded
4	Discharge Rate	:005	e ^g di'	- SEOC
a bei	R.o.	Pert	<7CC	EXC
Bir Number	, all of	a di	odst	TIME
Bir	CIECT	mbe	Polic	antil
	\checkmark	NUMBER OF PERIODS	LOtal.	0 et Ce
52	2.21	3		
53	2.25	3	48	0.013
54	2.29	1	45	0.012
55	2.32	1	44	0.011
56	2.36	1	43	0.011
57	2.40	1	42	0.011
58	2.44	2	41	0.011
59	2.48	3	39	0.010
60	2.52	2	36	0.009
61	2.55	1	34	0.009
62	2.59	2	33	0.009
63	2.63	1	31	0.008
64	2.67	3	30	0.008
65	2.71	1	27	0.007
66	2.75	1	26	0.007
67 68	2.78	2	25 23	0.007
	2.82	2		0.006
69 70	2.86 2.90	0	21 21	0.005 0.005
70	2.90		21	0.005
71	2.94	1 2	20	0.005
72	3.01	1	18	0.005
73	3.05	0	17	0.003
75	3.09	0	17	0.004
76	3.13	2	17	0.004
77	3.17	0	15	0.004
78	3.20	0	15	0.004
79	3.24	1	15	0.004
80	3.28	0	14	0.004
81	3.32	0	14	0.004
82	3.36	1	14	0.004
83	3.40	1	13	0.003
84	3.43	0	12	0.003
85	3.47	0	12	0.003
86	3.51	3	12	0.003
87	3.55	0	9	0.002
88	3.59	2	9	0.002
89	3.63	0	7	0.002
90	3.66	0	7	0.002
91	3.70	0	7	0.002
92	3.74	0	7	0.002
93	3.78	0	7	0.002
94	3.82	0	7	0.002
95	3.86	0	7	0.002
96	3.89	1	7	0.002
97	3.93	1	6	0.002
98	3.97	1	5	0.001
99	4.01	0	4	0.001
100	4.05	0	4	0.001
End of Data				

Duration Table Summary at Project Discharge Point

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\POC-1\17046-Post-Development-poc1.out time stamp: 1/31/2019 3:36:25 PM

DISCH	ARGE	Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line					
Binwinter	Discharge Rase	Number of Pariods	Tota Pations Exception	Percentine Erceeded			
1	0.26	68	554	0.145			
2	0.29	48	486	0.127			
3	0.33	35	438	0.114			
4	0.37	39	403	0.105			
5	0.41	31	364	0.095			
6	0.45	30	333	0.087			
7	0.49	26	303	0.079			
8	0.52	17	277	0.072			
9	0.56	20	260	0.068			
10	0.60	9	240	0.063			
11	0.64	13	231	0.060			
12	0.68	11	218	0.057			
13	0.72	13	207	0.054			
14	0.75	14	194	0.051			
15	0.79	11	180	0.047			
16	0.83	9	169	0.044			
17	0.87	11	160	0.042			
18	0.91	12	149	0.039			
19	0.94	9	137	0.036			
20	0.98	7	128	0.033			
21	1.02	14	121	0.032			
22	1.06	4	107	0.028			
23	1.10	5	103	0.027			
24	1.14	5	98	0.026			
25	1.17	6	93	0.024			
26	1.21	4	87	0.023			
27	1.25	6	83	0.022			
28	1.29	2	77	0.020			
29	1.33	3	75	0.020			
30	1.37	4	72	0.019			
31	1.40	3	68	0.018			
32 33	<u>1.44</u> 1.48	4	65 61	0.017 0.016			
33 34	1.48	0 5	61	0.016			
34 35	1.52	3	56	0.016			
36	1.60	1	53	0.015			
37	1.63	2	52	0.014			
38	1.67	7	50	0.014			
39	1.71	3	43	0.013			
40	1.75	2	40	0.010			
41	1.79	1	38	0.010			
42	1.83	1	37	0.010			
43	1.86	1	36	0.009			
44	1.90	4	35	0.009			
45	1.94	1	31	0.008			
46	1.98	0	30	0.008			
47	2.02	0	30	0.008			
48	2.06	2	30	0.008			
49	2.09	1	28	0.007			
50	2.13	1	27	0.007			
51	2.17	1	26	0.007			

[1			
		Number of Periods	0 _{nii}	^{oo}
Bir Humber	×0	:005	ego.	eeu
The	R.o.	(2 ⁰¹)	Kt C	Et C
Hull.	and the second sec	10 ^x	. de	ine
Bill	is cite	n bei	perio	A. C.
Ŷ	Discharge Rate	HUIT	NO.	atcer.
			Tota Pairos Excepting	Parcent Time Exceeded
52	2.21	1		
53	2.25	3	24	0.006
54	2.29	1	21	0.005
55	2.32	3	20	0.005
56	2.36	1	17	0.004
57	2.40	0	16	0.004
58	2.44	0	16	0.004
59	2.48	0	16	0.004
60	2.52	0	16	0.004
61	2.55	1	16	0.004
62	2.59	1	15	0.004
63	2.63	0	14	0.004
64	2.67	1	14	0.004
65	2.71	1	13	0.003
66	2.75	1	12	0.003
67	2.78	2	11	0.003
68	2.82	0	9	0.002
69	2.86	0	9	0.002
70	2.90	1	9	0.002
71	2.94	0	8	0.002
72	2.98	0	8	0.002
73	3.01	0	8	0.002
74	3.05	1	8	0.002
75	3.09	0	7	0.002
76	3.13	1	7	0.002
77	3.17	0	6	0.002
78	3.20	2	6	0.002
79	3.24	0	4	0.001
80	3.28	0	4	0.001
81	3.32	1	4	0.001
82	3.36	0	3	0.001
83	3.40	0	3	0.001
84	3.43	0	3	0.001
85	3.47	0	3	0.001
86	3.51	0	3	0.001
87	3.55	0	3	0.001
88	3.59	1	3	0.001
89	3.63	0	2	0.001
90	3.66	1	2	0.001
90	3.70	0	1	0.000
91	3.74	0	1	0.000
92	3.74	0	1	0.000
93	3.78	1	1	0.000
94 95	3.82	0	0	0.000
95	3.89			0.000
96 97	3.89	0	0	0.000
98 99	3.97	0	0	0.000 0.000
	4.01	0	0	
100	4.05	0	0	0.000
End of Data				

END OF STATISTICS ANALYSIS

STATISTICS ANALYSIS OF THE SWMM FILES FOR:

DISCHARGE NODE: POC-2

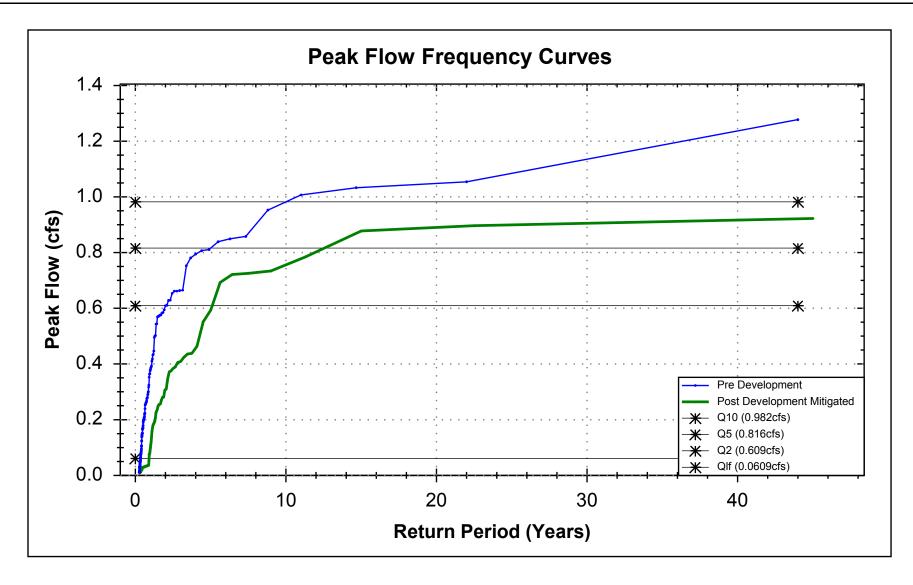
ANALYSIS DETAILS

Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2) Assumed time between storms (hours): 24

PRE-DEVELOPMENT SWMM FILE

SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Pre-Development-poc2.out SWMM file time stamp: 9/19/2018 3:42:17 PM Selected Node to Analyze: POC-2

POST-DEVELOPMENT MITIGATED SWMM FILE


SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-poc2.out SWMM file time stamp: 9/19/2018 3:39:32 PM Selected Node to Analyze: POC-2

MITIGATED CONDITIONS RESULTS

For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS

The Mitigated Conditions peak flow frequency curve is composed of 156 points. Of the points, 0 point(s) are above the flow control upper limit (Q10), 107 point(s) are below the low flow threshold value (Qlf). Of the points within the flow control range (Qlf to Q10), 49 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met.

The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the post-development flow duration curve to the pre-development curve, 94 point(s) have a lower duration than pre-development conditions, and 6 point(s) have a duration that exceeds the pre-development by less than 10%, and for less than 10% of the curve length. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met.

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-poc2.out post-development time stamp: 9/19/2018 3:39:32 PM

Compared to:

pre-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Pre-Development-poc2.out

pre-development time stamp: 12/31/1600 4:00:00 PM

	•				-	-	
2051PT1*	Ruprd Wish	POS ^{LDENO}	Prefero	OROSI COPIE	Opost 7 Opte	0005171000000	Pastral
0	45.00	0.92	1.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
1	22.50	0.90	1.06	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
2	15.00	0.88	1.03	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
3	11.25	0.78	1.01	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
4	9.00	0.73	0.96	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
5	7.50	0.73	0.87	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
6	6.43	0.72	0.85	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
7	5.63	0.69	0.84	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
8	5.00	0.59	0.82	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
9	4.50	0.55	0.81	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
10	4.09	0.46	0.80	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
11	3.75	0.44	0.78	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
12	3.46	0.44	0.76	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
13	3.21	0.42	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
14	3.00	0.41	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
15	2.81	0.41	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
16	2.65	0.39	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
17	2.50	0.38	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
18	2.37	0.38	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
19	2.25	0.37	0.63	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
20	2.14	0.35	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
21	2.05	0.31	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
22	1.96	0.31	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
23	1.88	0.28	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
24	1.80	0.28	0.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
25	1.73	0.27	0.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
26	1.67	0.26	0.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
27	1.61	0.25	0.57	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
28	1.55	0.25	0.57	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
29	1.50	0.25	0.57	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
30	1.45	0.24	0.56	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
31	1.41	0.23	0.54	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
32	1.36	0.23	0.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
33	1.32	0.20	0.50	TRUE	FALSE	FALSE	Pass- Qpost < Qpre

				0	0	opre	
P051P1*	AIN Prod Wash	POSIDENO	PreDevO	Crost_Core	Qte	-0/0	Paselfall
, Q``	10°	, 0°°	Oex	× L	x7	1 ⁰	Left'
20 ⁵¹	ALL Y	005	o ^{to}	nost	most .	27	2 ²⁵
,	×.	X	Ň	O ₄	Opost ⁷ Opte	OROST ⁷ 10 ⁰ OR ¹⁰	
34	1.29	0.19	0.50	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
35	1.25	0.19	0.49	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
36	1.22	0.19	0.44	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
37	1.18	0.18	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
38	1.15	0.18	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
39	1.13	0.17	0.42	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
40	1.10	0.16	0.41	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
41	1.07	0.14	0.39	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
42	1.05	0.12	0.39	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
43	1.02	0.11	0.39	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
44	1.00	0.10	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
45	0.98	0.09	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
46	0.96	0.08	0.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
47	0.94	0.08	0.36	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
48	0.92	0.08	0.35	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
49	0.90	0.05	0.33	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
50	0.88	0.04	0.32	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
51	0.87	0.04	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
52	0.85	0.04	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
53	0.83	0.04	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
54	0.82	0.04	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
55	0.80	0.04	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
56	0.79	0.03	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
57	0.78	0.03	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
58	0.76	0.03	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
59	0.75	0.03	0.27	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
60	0.74	0.03	0.27	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
61	0.73	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
62	0.71	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
63	0.70	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
64	0.69	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
65	0.68	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
66	0.67	0.03	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
67	0.66	0.03	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
68	0.65	0.03	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
69	0.64	0.03	0.25	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
70	0.63	0.03	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
71	0.63	0.03	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
72	0.62	0.03	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
73	0.61	0.03	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
74	0.60	0.03	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
75	0.59	0.03	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	opre	
×*	WE	<i>`</i> O	, O	apre	agre	-0/0 ()	
POST PT *	An Pro Visi	POS ^{t DEVO}	PreDevO	Orost Ore	Orost ⁷ Or ^{ie}	10	Passikali
20 ⁵¹	atri	0051	ere.	005	00051	\$ ⁷	2 ⁰²
	ו	``	•	Û,	Qr.	OPOST 100 OPIC	
76	0.58	0.03	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
77	0.58	0.03	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
78	0.57	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
79	0.56	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
80	0.56	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
81	0.55	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
82	0.54	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
83	0.54	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
84	0.53	0.03	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
85	0.52	0.03	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
86	0.52	0.03	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
87	0.51	0.03	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
88	0.51	0.03	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
89	0.50	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
90	0.50	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
91	0.49	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
92	0.48	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
93	0.48	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
94	0.47	0.03	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
95	0.47	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
96	0.46	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
97	0.46	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
98	0.46	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
99	0.45	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
100	0.45	0.03	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
101	0.44	0.02	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
102	0.44	0.02	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
103	0.43	0.02	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
104	0.43	0.02	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
105	0.43	0.02	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
106	0.42	0.02	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
107	0.42	0.02	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
108	0.41	0.02	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
109	0.41	0.02	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
110	0.41	0.02	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
111	0.40	0.02	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
112	0.40	0.02	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
113	0.40	0.02	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
114	0.39	0.02	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
115	0.39	0.02	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
116	0.39	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
117	0.38	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

P051PT*	RHn Prod West	PostDevO	Pre Dev O	OROSAL ORIS	Opte Opte	OPOST 1100 OPIC	7.955Kall
्रे	~ ⁶ 0	002	0er	L	.1	1010	stra
0 ⁰⁵¹	an Pr	20 ⁵¹	ore V	10 ⁵¹	JOS ¹	*7	Q.055
``	6	×	X	Ox.	0×	005	· ·
110	0.00	0.00	0.00				David Original Dalam Flam Original Threads and
118	0.38	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
119	0.38	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
120	0.37	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
121	0.37	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
122	0.37	0.02	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
123	0.36	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
124	0.36	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
125	0.36	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
126	0.35	0.01	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
127	0.35	0.01	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
128	0.35	0.01	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
129	0.35	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
130	0.34	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
131	0.34	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
132	0.34	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
133	0.34	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
134	0.33	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
135	0.33	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
136	0.33	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
137	0.33	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
138	0.32	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
139	0.32	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
140	0.32	0.01	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
141	0.32	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
142	0.32	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
143	0.31	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
144	0.31	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
145	0.31	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
146	0.31	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
147	0.30	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
148	0.30	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
149	0.30	0.01	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
150	0.30	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
151	0.30	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
152	0.29	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
153	0.29	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
154	0.29	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
155	0.29	0.01	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

SWMM.out file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Pre-Development-poc2.out SWMM.out time stamp: 12/31/1600 4:00:00 PM

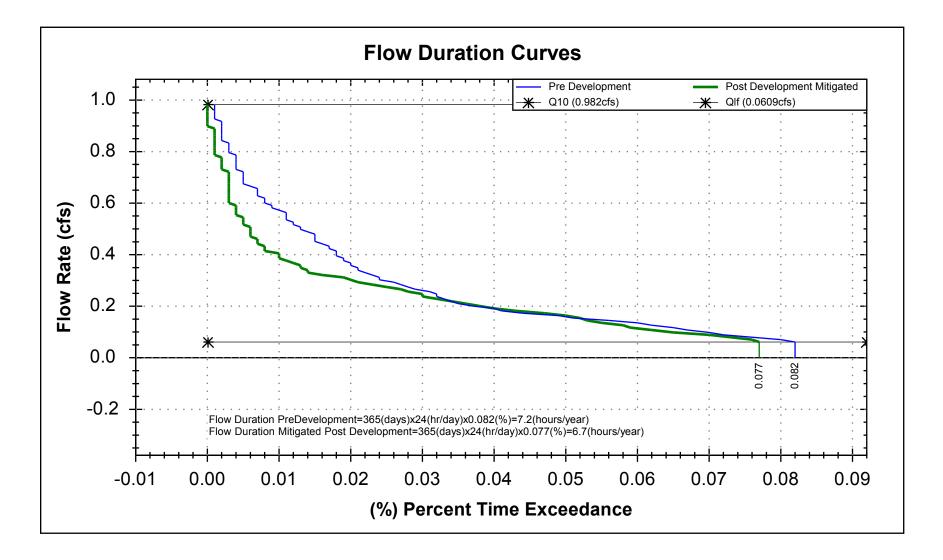
Q10: 0.982 Q5: 0.816 Q2: 0.609

Peak Flow Statistics Table Values

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1993/01/06 17:00:00	1993/01/08 17:00:00	49	1.277	0.58%	44
2	1971/02/23 05:00:00	1971/02/23 11:00:00	7	1.054	1.16%	22
3	1995/01/25 20:00:00	1995/01/25 22:00:00	3	1.033	1.74%	14.67
4	1995/01/04 17:00:00	1995/01/04 22:00:00	6	1.007	2.33%	11
5	1998/02/14 16:00:00	1998/02/14 19:00:00	4	0.953	2.91%	8.8
6	1966/12/05 03:00:00	1966/12/06 23:00:00	45	0.858	3.49%	7.33
7	1986/02/15 02:00:00	1986/02/15 08:00:00	7	0.849	4.07%	6.29
8	1978/01/16 06:00:00	1978/01/16 11:00:00	6	0.839	4.65%	5.5
9	1978/03/17 04:00:00	1978/03/17 10:00:00	7	0.811	5.23%	4.89
10	1983/03/01 15:00:00	1983/03/01 17:00:00	3	0.807	5.81%	4.4
11	1988/04/21 21:00:00	1988/04/21 21:00:00	1	0.795	6.40%	4
12	1967/11/19 08:00:00	1967/11/19 12:00:00	5	0.781	6.98%	3.67
13	2004/10/18 09:00:00	2004/10/18 11:00:00	3	0.753	7.56%	3.39
14	1998/01/09 17:00:00	1998/01/10 17:00:00	25	0.665	8.14%	3.14
15	1969/01/25 10:00:00	1969/01/25 14:00:00	5	0.664	8.72%	2.93
16	2005/01/09 04:00:00	2005/01/09 22:00:00	19	0.662	9.30%	2.75
17	2005/01/11 02:00:00	2005/01/11 07:00:00	6	0.662	9.88%	2.59
18	1983/12/25 10:00:00	1983/12/25 10:00:00	1	0.654	10.47%	2.44
19	2007/01/31 00:00:00	2007/01/31 00:00:00	1	0.629	11.05%	2.32
20	1993/01/09 17:00:00	1993/01/09 18:00:00	2	0.628	11.63%	2.2
21	1980/02/18 04:00:00	1980/02/20 23:00:00	68	0.611	12.21%	2.1
22	1993/02/08 01:00:00	1993/02/08 03:00:00	3	0.609	12.79%	2
23	1980/01/29 02:00:00	1980/01/30 19:00:00	42	0.594	13.37%	1.91
24	1993/01/12 23:00:00	1993/01/14 05:00:00	31	0.585	13.95%	1.83
25	1998/02/03 17:00:00	1998/02/03 18:00:00	2	0.583	14.53%	1.76
26	2004/10/20 11:00:00	2004/10/20 16:00:00	6	0.576	15.12%	1.69
27	1991/03/20 07:00:00	1991/03/20 09:00:00	3	0.575	15.70%	1.63
28	1972/11/14 14:00:00	1972/11/14 14:00:00	1	0.572	16.28%	1.57
29	1992/02/15 14:00:00	1992/02/15 16:00:00	3	0.571	16.86%	1.52
30	1981/02/09 06:00:00	1981/02/09 06:00:00	1	0.569	17.44%	1.47
31	1983/11/25 01:00:00	1983/11/25 01:00:00	1	0.544	18.02%	1.42
32	1965/11/22 15:00:00	1965/11/23 05:00:00	15	0.543	18.60%	1.38
33	2007/11/30 15:00:00	2007/11/30 22:00:00	8	0.502	19.19%	1.33
34	2003/02/25 17:00:00	2003/02/25 18:00:00	2	0.501	19.77%	1.29
35	1967/12/18 16:00:00	1967/12/18 19:00:00	4	0.496	20.35%	1.26
36	2004/02/26 07:00:00	2004/02/26 09:00:00	3	0.446	20.93%	1.22
37	2007/08/26 07:00:00	2007/08/26 08:00:00	2	0.435	21.51%	1.19
38	1995/03/05 09:00:00	1995/03/06 00:00:00	16	0.432	22.09%	1.16
39	1967/04/11 10:00:00	1967/04/11 10:00:00	1	0.418	22.67%	1.13

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1970/03/04 23:00:00	1970/03/05 00:00:00	2	0.41	23.26%	1.1
41	2003/02/12 17:00:00	2003/02/12 17:00:00	1	0.393	23.84%	1.07
42	1979/01/06 00:00:00	1979/01/06 05:00:00	6	0.389	24.42%	1.05
43	2003/04/14 17:00:00	2003/04/14 17:00:00	1	0.386	25.00%	1.02
44	1982/01/01 11:00:00	1982/01/01 11:00:00	1	0.38	25.58%	1
45	1982/03/18 12:00:00	1982/03/18 20:00:00	9	0.376	26.16%	0.98
46	2006/01/02 14:00:00	2006/01/02 15:00:00	2	0.365	26.74%	0.96
47	1980/01/11 00:00:00	1980/01/11 12:00:00	13	0.364	27.33%	0.94
48	1983/02/27 17:00:00	1983/02/27 18:00:00	2	0.353	27.91%	0.92
49	1980/02/16 18:00:00	1980/02/16 20:00:00	3	0.324	28.49%	0.9
50	1983/03/02 17:00:00	1983/03/02 20:00:00	4	0.317	29.07%	0.88
51	1978/01/14 23:00:00	1978/01/15 05:00:00	7	0.301	29.65%	0.86
52	1965/04/09 20:00:00	1965/04/09 23:00:00	4	0.299	30.23%	0.85
53	1978/02/05 20:00:00	1978/02/06 10:00:00	15	0.291	30.81%	0.83
54	1985/11/25 04:00:00	1985/11/25 05:00:00	2	0.29	31.40%	0.82
55	2004/10/27 04:00:00	2004/10/27 08:00:00	5	0.28	31.98%	0.8
56	1970/12/21 08:00:00	1970/12/21 08:00:00	1	0.278	32.56%	0.79
57	1985/11/29 10:00:00	1985/11/29 14:00:00	5	0.277	33.14%	0.77
58	1991/03/27 03:00:00	1991/03/27 06:00:00	4	0.275	33.72%	0.76
59	1991/02/28 16:00:00	1991/03/01 12:00:00	21	0.267	34.30%	0.75
60	1965/11/16 18:00:00	1965/11/16 22:00:00	5	0.264	34.88%	0.73
61	2004/02/22 14:00:00	2004/02/23 00:00:00	11	0.262	35.47%	0.72
62	2002/11/08 17:00:00	2002/11/08 17:00:00	1	0.261	36.05%	0.71
63	1979/01/17 12:00:00	1979/01/17 12:00:00	1	0.261	36.63%	0.7
64	2003/03/15 17:00:00	2003/03/15 17:00:00	1	0.259	37.21%	0.69
65	2005/01/03 09:00:00	2005/01/03 10:00:00	2	0.255	37.79%	0.68
66	1994/02/07 15:00:00	1994/02/07 16:00:00	2	0.255	38.37%	0.67
67	1967/01/24 19:00:00	1967/01/25 00:00:00	6	0.254	38.95%	0.66
68	1976/03/03 00:00:00	1976/03/03 02:00:00	3	0.252	39.53%	0.65
69	1998/02/08 17:00:00	1998/02/08 17:00:00	1	0.239	40.12%	0.64
70	1988/12/24 23:00:00	1988/12/25 01:00:00	3	0.223	40.70%	0.63
71	1976/02/08 15:00:00	1976/02/08 20:00:00	6	0.223	41.28%	0.62
72	1980/03/02 21:00:00	1980/03/03 03:00:00	7	0.219	41.86%	0.61
73	1969/02/06 08:00:00	1969/02/06 09:00:00	2	0.212	42.44%	0.6
74	2005/02/21 08:00:00	2005/02/21 14:00:00	7	0.209	43.02%	0.6
75	1978/12/17 20:00:00	1978/12/18 12:00:00	17	0.207	43.60%	0.59
76	1987/01/07 08:00:00	1987/01/07 08:00:00	1	0.206	44.19%	0.58
70	1995/02/14 09:00:00	1995/02/14 10:00:00	2	0.202	44.77%	0.57
78	1996/01/31 20:00:00	1996/02/01 04:00:00	9	0.201	45.35%	0.56
79	1965/12/13 01:00:00	1965/12/13 01:00:00	1	0.2	45.93%	0.56
80	1992/01/05 16:00:00	1992/01/06 03:00:00	12	0.199	46.51%	0.55
81	1970/11/29 14:00:00	1970/11/29 17:00:00	4	0.199	47.09%	0.54
82	1974/12/04 09:00:00	1974/12/04 09:00:00	1	0.195	47.67%	0.54
83	1974/03/08 03:00:00	1974/03/08 14:00:00	12	0.197	48.26%	0.53
84	2001/11/24 17:00:00	2001/11/24 17:00:00	12	0.190	48.84%	0.52
85	2006/04/05 06:00:00	2006/04/05 06:00:00	1	0.189	49.42%	0.52
86	1991/03/19 01:00:00	1991/03/19 03:00:00	3	0.18	50.00%	0.52
00	1331/03/13 01.00.00	1991/03/19 03.00.00	3	0.10	50.00%	0.01

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1966/12/03 16:00:00	1966/12/03 18:00:00	3	0.177	50.58%	0.51
88	1998/02/23 17:00:00	1998/02/23 17:00:00	1	0.171	51.16%	0.5
89	1986/09/25 03:00:00	1986/09/25 06:00:00	4	0.17	51.74%	0.49
90	1986/03/10 16:00:00	1986/03/10 20:00:00	5	0.169	52.33%	0.49
91	1967/11/21 14:00:00	1967/11/21 14:00:00	1	0.169	52.91%	0.48
92	1993/01/15 14:00:00	1993/01/16 14:00:00	25	0.166	53.49%	0.48
93	1970/03/01 00:00:00	1970/03/01 02:00:00	3	0.165	54.07%	0.47
94	1965/04/08 15:00:00	1965/04/08 18:00:00	4	0.152	54.65%	0.47
95	1981/03/01 12:00:00	1981/03/01 16:00:00	5	0.151	55.23%	0.46
96	1990/01/17 03:00:00	1990/01/17 03:00:00	1	0.151	55.81%	0.46
97	1998/02/17 17:00:00	1998/02/17 17:00:00	1	0.149	56.40%	0.45
98	2003/02/11 17:00:00	2003/02/11 17:00:00	1	0.149	56.98%	0.45
99	2001/01/11 05:00:00	2001/01/11 08:00:00	4	0.149	57.56%	0.44
100	1983/03/23 18:00:00	1983/03/23 20:00:00	3	0.145	58.14%	0.44
101	1969/02/24 01:00:00	1969/02/24 04:00:00	4	0.143	58.72%	0.44
102	1986/03/15 22:00:00	1986/03/16 18:00:00	21	0.14	59.30%	0.43
103	1970/03/02 05:00:00	1970/03/02 07:00:00	3	0.139	59.88%	0.43
104	2003/12/25 18:00:00	2003/12/25 19:00:00	2	0.137	60.47%	0.42
105	1969/02/25 17:00:00	1969/02/25 21:00:00	5	0.125	61.05%	0.42
106	1992/02/06 23:00:00	1992/02/06 23:00:00	1	0.123	61.63%	0.42
107	2002/12/20 17:00:00	2002/12/20 17:00:00	1	0.106	62.21%	0.41
108	1974/01/07 14:00:00	1974/01/08 02:00:00	13	0.106	62.79%	0.41
109	1995/01/07 19:00:00	1995/01/07 23:00:00	5	0.103	63.37%	0.4
110	1971/12/25 21:00:00	1971/12/25 21:00:00	1	0.095	63.95%	0.4
111	1993/03/28 03:00:00	1993/03/28 03:00:00	1	0.095	64.53%	0.4
112	1965/12/29 20:00:00	1965/12/29 20:00:00	1	0.089	65.12%	0.39
113	1969/01/21 09:00:00	1969/01/21 09:00:00	1	0.087	65.70%	0.39
114	1993/11/14 17:00:00	1993/11/14 17:00:00	1	0.086	66.28%	0.39
115	1998/02/06 17:00:00	1998/02/06 17:00:00	1	0.083	66.86%	0.38
116	1994/04/28 00:00:00	1994/04/28 00:00:00	1	0.081	67.44%	0.38
117	1998/03/28 17:00:00	1998/03/28 17:00:00	1	0.081	68.02%	0.38
118	1976/04/14 11:00:00	1976/04/14 11:00:00	1	0.08	68.60%	0.37
119	1994/03/25 15:00:00	1994/03/25 15:00:00	1	0.08	69.19%	0.37
120	1993/01/18 05:00:00	1993/01/18 11:00:00	7	0.079	69.77%	0.37
121	2005/02/23 00:00:00	2005/02/23 00:00:00	1	0.078	70.35%	0.36
122	1987/11/04 17:00:00	1987/11/04 20:00:00	4	0.077	70.93%	0.36
123	1994/02/20 16:00:00	1994/02/20 16:00:00	1	0.077	71.51%	0.36
124	1983/02/08 05:00:00	1983/02/08 05:00:00	1	0.076	72.09%	0.36
125	1973/02/11 05:00:00	1973/02/11 05:00:00	1	0.07	72.67%	0.35
126	2008/02/22 04:00:00	2008/02/22 09:00:00	6	0.067	73.26%	0.35
127	1992/12/29 14:00:00	1992/12/29 20:00:00	7	0.064	73.84%	0.35
128	1977/05/08 19:00:00	1977/05/08 20:00:00	2	0.062	74.42%	0.34
129	2003/02/13 17:00:00	2003/02/13 17:00:00	1	0.062	75.00%	0.34
130	1991/12/29 16:00:00	1991/12/29 16:00:00	1	0.06	75.58%	0.34
131	1998/05/12 17:00:00	1998/05/12 17:00:00	1	0.058	76.16%	0.34
132	1996/11/22 02:00:00	1996/11/22 02:00:00	1	0.053	76.74%	0.33
133	1970/03/08 13:00:00	1970/03/08 14:00:00	2	0.051	77.33%	0.33


Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1973/03/08 14:00:00	1973/03/08 15:00:00	2	0.051	77.91%	0.33
135	1995/04/18 11:00:00	1995/04/18 11:00:00	1	0.05	78.49%	0.33
136	1974/01/04 19:00:00	1974/01/04 22:00:00	4	0.048	79.07%	0.32
137	1970/12/19 04:00:00	1970/12/19 04:00:00	1	0.048	79.65%	0.32
138	1993/02/19 19:00:00	1993/02/19 21:00:00	3	0.046	80.23%	0.32
139	2004/03/02 04:00:00	2004/03/02 04:00:00	1	0.042	80.81%	0.32
140	1965/12/14 16:00:00	1965/12/14 16:00:00	1	0.041	81.40%	0.31
141	2002/12/16 17:00:00	2002/12/16 17:00:00	1	0.041	81.98%	0.31
142	1996/12/09 18:00:00	1996/12/09 20:00:00	3	0.041	82.56%	0.31
143	2008/01/06 07:00:00	2008/01/06 07:00:00	1	0.039	83.14%	0.31
144	1972/11/16 15:00:00	1972/11/16 15:00:00	1	0.037	83.72%	0.31
145	1992/02/12 21:00:00	1992/02/13 06:00:00	10	0.037	84.30%	0.3
146	1967/01/23 01:00:00	1967/01/23 01:00:00	1	0.036	84.88%	0.3
147	1980/03/06 02:00:00	1980/03/06 02:00:00	1	0.035	85.47%	0.3
148	1976/12/31 09:00:00	1976/12/31 09:00:00	1	0.034	86.05%	0.3
149	1975/03/08 09:00:00	1975/03/08 12:00:00	4	0.033	86.63%	0.3
150	1978/11/13 23:00:00	1978/11/13 23:00:00	1	0.033	87.21%	0.29
151	1971/12/27 16:00:00	1971/12/27 16:00:00	1	0.032	87.79%	0.29
152	1978/03/13 14:00:00	1978/03/13 17:00:00	4	0.032	88.37%	0.29
153	1976/02/06 05:00:00	1976/02/06 05:00:00	1	0.032	88.95%	0.29
154	1980/01/09 12:00:00	1980/01/09 12:00:00	1	0.031	89.53%	0.29
155	1983/01/27 09:00:00	1983/01/27 10:00:00	2	0.031	90.12%	0.28
156	1995/03/23 12:00:00	1995/03/23 12:00:00	1	0.03	90.70%	0.28
157	2006/03/11 03:00:00	2006/03/11 03:00:00	1	0.03	91.28%	0.28
158	1973/01/18 22:00:00	1973/01/18 22:00:00	1	0.026	91.86%	0.28
159	1979/03/01 18:00:00	1979/03/01 18:00:00	1	0.026	92.44%	0.28
160	1985/12/03 00:00:00	1985/12/03 01:00:00	2	0.019	93.02%	0.28
161	1973/01/16 21:00:00	1973/01/16 22:00:00	2	0.019	93.60%	0.27
162	1995/03/11 06:00:00	1995/03/11 06:00:00	1	0.019	94.19%	0.27
163	1982/12/22 23:00:00	1982/12/22 23:00:00	1	0.017	94.77%	0.27
164	1992/01/07 21:00:00	1992/01/07 21:00:00	1	0.016	95.35%	0.27
165	1997/01/26 03:00:00	1997/01/26 03:00:00	1	0.016	95.93%	0.27
166	1986/03/12 14:00:00	1986/03/12 14:00:00	1	0.013	96.51%	0.27
167	2005/01/07 15:00:00	2005/01/07 15:00:00	1	0.012	97.09%	0.26
168	1980/03/10 20:00:00	1980/03/10 20:00:00	1	0.012	97.67%	0.26
169	1965/04/01 22:00:00	1965/04/01 22:00:00	1	0.012	98.26%	0.26
170	1986/11/18 01:00:00	1986/11/18 01:00:00	1	0.012	98.84%	0.26
171	1969/01/14 12:00:00	1969/01/14 12:00:00	1	0.01	99.42%	0.26
-End of Data						

SWMM.out file name: V:\17\17\46\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-poc2.out								
	stamp: 9/19/2018 3:39:32 PM				0021041			
Q10: 0.000								
Q5: 0.000								
Q2: 0.000								
QL: 0.000								
Peak Flow Statis	stics Table Values							
		End Data	Dunation	Deals	F	Datum Daviad		
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period		
1	1993/01/06 23:00:00	1993/01/11 12:00:00	110	0.922	0.64%	45		
2	1966/12/03 17:00:00	1966/12/08 05:00:00	109	0.896	1.27%	22.5		
3	1995/01/04 20:00:00	1995/01/06 09:00:00	38	0.878	1.91%	15		
4	1978/03/12 20:00:00	1978/03/19 04:00:00	153	0.784	2.55%	11.25		
5	1986/02/15 04:00:00	1986/02/16 19:00:00	40	0.734	3.18%	9		
6	1978/01/15 01:00:00	1978/01/17 19:00:00	67	0.726	3.82%	7.5		
7	1980/01/29 02:00:00	1980/01/31 20:00:00	67	0.721	4.46%	6.43		
8	1969/01/24 23:00:00	1969/01/27 04:00:00	54	0.693	5.10%	5.63		
9	1965/11/22 18:00:00	1965/11/24 11:00:00	42	0.593	5.73%	5		
10	1979/01/05 23:00:00	1979/01/07 13:00:00	39	0.551	6.37%	4.5		
11	1967/11/19 10:00:00	1967/11/22 21:00:00	84	0.464	7.01%	4.09		
12	1971/02/23 07:00:00	1971/02/24 20:00:00	38	0.438	7.64%	3.75		
13	2005/01/09 07:00:00	2005/01/12 17:00:00	83	0.436	8.28%	3.46		
14	1980/02/14 08:00:00	1980/02/22 10:00:00	195	0.424	8.92%	3.21		
15	1993/01/13 18:00:00	1993/01/19 21:00:00	148	0.409	9.55%	3		
16	1980/01/09 16:00:00	1980/01/13 02:00:00	83	0.406	10.19%	2.81		
17	1995/03/05 15:00:00	1995/03/07 09:00:00	43	0.389	10.83%	2.65		
18	2007/11/30 16:00:00	2007/12/02 07:00:00	40	0.384	11.46%	2.5		
19	1970/02/28 23:00:00	1970/03/03 13:00:00	63	0.375	12.10%	2.37		
20	1983/02/27 21:00:00	1983/03/04 20:00:00	120	0.372	12.74%	2.25		
21	1998/02/14 18:00:00	1998/02/16 06:00:00	37	0.347	13.38%	2.14		
22	1985/11/25 06:00:00	1985/11/26 17:00:00	36	0.31	14.01%	2.05		
23	1991/02/28 00:00:00	1991/03/02 19:00:00	68	0.306	14.65%	1.96		
24	1983/12/25 12:00:00	1983/12/27 02:00:00	39	0.281	15.29%	1.88		
25	2007/08/26 09:00:00	2007/08/27 11:00:00	27	0.28	15.92%	1.8		
26	1991/03/27 03:00:00	1991/03/28 20:00:00	42	0.271	16.56%	1.73		
27	1993/02/08 04:00:00	1993/02/09 19:00:00	40	0.257	17.20%	1.67		
28	1991/03/19 08:00:00	1991/03/22 10:00:00	75	0.255	17.83%	1.61		
29	1981/02/09 08:00:00	1981/02/10 15:00:00	32	0.254	18.47%	1.55		
30	1996/11/22 02:00:00	1996/11/23 13:00:00	36	0.247	19.11%	1.5		
31	2005/02/21 11:00:00	2005/02/24 11:00:00	73	0.236	19.75%	1.45		
32	1982/03/18 15:00:00	1982/03/20 18:00:00	52	0.231	20.38%	1.41		
33	2004/10/27 08:00:00	2004/10/28 22:00:00	39	0.225	21.02%	1.36		
34	1985/11/29 15:00:00	1985/12/01 00:00:00	34	0.205	21.66%	1.32		
35	1995/01/25 22:00:00	1995/01/27 03:00:00	30	0.195	22.29%	1.29		
36	1969/02/24 04:00:00	1969/02/27 07:00:00	76	0.189	22.93%	1.25		
37	1967/01/23 02:00:00	1967/01/26 07:00:00	78	0.187	23.57%	1.22		
38	1980/03/03 00:00:00	1980/03/04 15:00:00	40	0.181	24.20%	1.18		
39	1974/03/08 09:00:00	1974/03/09 20:00:00	36	0.178	24.84%	1.15		

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1977/05/08 22:00:00	1977/05/10 11:00:00	38	0.167	25.48%	1.13
41	1988/04/20 16:00:00	1988/04/23 04:00:00	61	0.158	26.11%	1.1
42	1967/12/18 21:00:00	1967/12/20 21:00:00	49	0.138	26.75%	1.07
43	1974/01/05 04:00:00	1974/01/09 12:00:00	105	0.12	27.39%	1.05
44	1978/12/17 16:00:00	1978/12/20 02:00:00	59	0.11	28.03%	1.02
45	1976/02/06 04:00:00	1976/02/10 17:00:00	110	0.099	28.66%	1
46	1998/01/09 19:00:00	1998/01/11 19:00:00	49	0.089	29.30%	0.98
47	1974/12/04 12:00:00	1974/12/05 15:00:00	28	0.08	29.94%	0.96
48	2004/10/18 13:00:00	2004/10/21 23:00:00	83	0.077	30.57%	0.94
49	2004/02/26 11:00:00	2004/02/27 15:00:00	29	0.077	31.21%	0.92
50	1965/11/16 21:00:00	1965/11/18 07:00:00	35	0.052	31.85%	0.9
51	2003/02/12 18:00:00	2003/02/15 04:00:00	59	0.036	32.48%	0.88
52	1996/02/01 03:00:00	1996/02/02 13:00:00	35	0.036	33.12%	0.87
53	1970/11/29 21:00:00	1970/12/01 07:00:00	35	0.036	33.76%	0.85
54	1981/03/01 16:00:00	1981/03/03 05:00:00	38	0.036	34.39%	0.83
55	1997/01/13 01:00:00	1997/01/14 21:00:00	45	0.035	35.03%	0.82
56	1976/09/10 16:00:00	1976/09/12 02:00:00	35	0.035	35.67%	0.8
57	1965/12/09 13:00:00	1965/12/11 12:00:00	48	0.035	36.31%	0.79
58	2004/02/23 01:00:00	2004/02/24 10:00:00	34	0.034	36.94%	0.78
59	1965/04/09 06:00:00	1965/04/11 03:00:00	46	0.034	37.58%	0.76
60	1992/02/07 02:00:00	1992/02/08 05:00:00	28	0.034	38.22%	0.75
61	1995/03/11 10:00:00	1995/03/13 01:00:00	40	0.034	38.85%	0.74
62	1986/11/18 05:00:00	1986/11/19 07:00:00	27	0.033	39.49%	0.73
63	1992/01/05 23:00:00	1992/01/08 10:00:00	60	0.033	40.13%	0.71
64	1998/02/03 22:00:00	1998/02/05 04:00:00	31	0.033	40.76%	0.7
65	1977/08/17 10:00:00	1977/08/18 15:00:00	30	0.032	41.40%	0.69
66	1969/01/14 14:00:00	1969/01/15 15:00:00	26	0.032	42.04%	0.68
67	2004/12/29 06:00:00	2004/12/30 15:00:00	34	0.032	42.68%	0.67
68	2008/01/05 12:00:00	2008/01/08 05:00:00	66	0.032	43.31%	0.66
69	1970/03/05 04:00:00	1970/03/06 03:00:00	24	0.032	43.95%	0.65
70	1987/01/05 00:00:00	1987/01/06 08:00:00	33	0.031	44.59%	0.64
71	1971/12/25 09:00:00	1971/12/27 00:00:00	40	0.031	45.22%	0.63
72	1988/01/17 23:00:00	1988/01/18 22:00:00	24	0.031	45.86%	0.63
73	1992/02/15 18:00:00	1992/02/16 20:00:00	27	0.031	46.50%	0.62
74	1985/11/11 17:00:00	1985/11/13 00:00:00	32	0.031	47.13%	0.61
75	1976/03/01 23:00:00	1976/03/04 06:00:00	56	0.031	47.77%	0.6
76	1975/04/08 20:00:00	1975/04/10 04:00:00	33	0.03	48.41%	0.59
77	1982/11/30 20:00:00	1982/12/01 19:00:00	24	0.03	49.04%	0.58
78	2006/04/05 11:00:00	2006/04/06 09:00:00	23	0.03	49.68%	0.58
79	1968/03/08 16:00:00	1968/03/09 13:00:00	22	0.03	50.32%	0.57
80	1987/12/17 00:00:00	1987/12/18 04:00:00	29	0.03	50.96%	0.56
81	1992/02/13 03:00:00	1992/02/14 06:00:00	28	0.03	51.59%	0.56
82	2003/02/25 23:00:00	2003/02/27 01:00:00	27	0.03	52.23%	0.55
83	1967/04/11 16:00:00	1967/04/13 00:00:00	33	0.03	52.87%	0.54
84	1995/02/14 14:00:00	1995/02/15 13:00:00	24	0.03	53.50%	0.54
85	1995/01/08 02:00:00	1995/01/09 05:00:00	28	0.029	54.14%	0.53
86	1978/02/06 02:00:00	1978/02/07 20:00:00	43	0.029	54.78%	0.52

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1976/11/12 08:00:00	1976/11/13 09:00:00	26	0.029	55.41%	0.52
88	1970/12/21 10:00:00	1970/12/22 15:00:00	30	0.029	56.05%	0.51
89	2005/02/12 08:00:00	2005/02/13 14:00:00	31	0.029	56.69%	0.51
90	1972/12/04 22:00:00	1972/12/05 17:00:00	20	0.029	57.32%	0.5
91	2007/01/31 06:00:00	2007/02/01 04:00:00	23	0.029	57.96%	0.5
92	1966/11/07 23:00:00	1966/11/08 18:00:00	20	0.029	58.60%	0.49
93	1972/11/14 20:00:00	1972/11/15 14:00:00	19	0.028	59.24%	0.48
94	1982/12/23 05:00:00	1982/12/23 23:00:00	19	0.028	59.87%	0.48
95	1982/01/01 15:00:00	1982/01/02 10:00:00	20	0.028	60.51%	0.47
96	1983/11/25 07:00:00	1983/11/26 01:00:00	19	0.028	61.15%	0.47
97	1969/02/06 15:00:00	1969/02/07 15:00:00	25	0.028	61.78%	0.46
98	1992/12/07 20:00:00	1992/12/08 17:00:00	22	0.027	62.42%	0.46
99	1998/02/08 19:00:00	1998/02/09 19:00:00	25	0.027	63.06%	0.46
100	1979/03/01 23:00:00	1979/03/02 18:00:00	20	0.026	63.69%	0.45
101	1986/09/25 11:00:00	1986/09/26 04:00:00	18	0.026	64.33%	0.45
102	1979/03/28 05:00:00	1979/03/29 05:00:00	25	0.025	64.97%	0.44
103	2001/01/11 12:00:00	2001/01/12 22:00:00	35	0.022	65.61%	0.44
104	1982/02/10 21:00:00	1982/02/11 17:00:00	21	0.021	66.24%	0.43
105	2006/02/28 09:00:00	2006/03/01 06:00:00	22	0.021	66.88%	0.43
106	1987/01/07 10:00:00	1987/01/08 04:00:00	19	0.02	67.52%	0.43
107	1976/12/31 15:00:00	1977/01/01 08:00:00	18	0.02	68.15%	0.42
108	1973/01/17 03:00:00	1973/01/17 18:00:00	16	0.02	68.79%	0.42
109	1993/02/20 01:00:00	1993/02/20 23:00:00	23	0.02	69.43%	0.41
110	1986/03/16 10:00:00	1986/03/17 15:00:00	30	0.019	70.06%	0.41
111	1982/01/21 14:00:00	1982/01/22 09:00:00	20	0.019	70.70%	0.41
112	1980/03/06 12:00:00	1980/03/07 09:00:00	22	0.019	71.34%	0.4
113	1970/03/08 19:00:00	1970/03/09 14:00:00	20	0.018	71.97%	0.4
114	1967/03/14 02:00:00	1967/03/14 17:00:00	16	0.018	72.61%	0.4
115	1995/01/12 16:00:00	1995/01/13 10:00:00	19	0.017	73.25%	0.39
116	1974/10/29 10:00:00	1974/10/30 08:00:00	23	0.017	73.89%	0.39
117	1975/03/11 00:00:00	1975/03/12 08:00:00	33	0.017	74.52%	0.39
118	1983/03/24 00:00:00	1983/03/24 16:00:00	17	0.017	75.16%	0.38
119	2005/01/04 02:00:00	2005/01/05 06:00:00	29	0.017	75.80%	0.38
120	2008/02/22 13:00:00	2008/02/23 06:00:00	18	0.017	76.43%	0.38
121	1965/04/02 03:00:00	1965/04/02 20:00:00	18	0.017	77.07%	0.37
122	1971/12/22 23:00:00	1971/12/23 19:00:00	21	0.016	77.71%	0.37
123	1994/02/08 00:00:00	1994/02/09 01:00:00	26	0.016	78.34%	0.37
124	1982/11/10 17:00:00	1982/11/11 19:00:00	27	0.015	78.98%	0.36
125	1972/11/16 19:00:00	1972/11/17 20:00:00	26	0.015	79.62%	0.36
126	1979/10/20 19:00:00	1979/10/21 09:00:00	15	0.014	80.25%	0.36
127	1982/03/16 02:00:00	1982/03/16 17:00:00	16	0.014	80.89%	0.35
128	1986/02/08 12:00:00	1986/02/09 11:00:00	24	0.013	81.53%	0.35
129	1975/03/08 17:00:00	1975/03/09 06:00:00	14	0.013	82.17%	0.35
130	1998/02/24 06:00:00	1998/02/25 13:00:00	32	0.012	82.80%	0.35
131	2003/04/14 23:00:00	2003/04/16 03:00:00	29	0.012	83.44%	0.34
132	2002/11/09 17:00:00	2002/11/10 14:00:00	22	0.012	84.08%	0.34
133	1964/11/18 03:00:00	1964/11/18 16:00:00	14	0.012	84.71%	0.34

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1978/11/12 02:00:00	1978/11/12 19:00:00	18	0.012	85.35%	0.34
135	1988/12/25 06:00:00	1988/12/25 18:00:00	13	0.011	85.99%	0.33
136	2003/03/16 18:00:00	2003/03/17 12:00:00	19	0.011	86.62%	0.33
137	1986/03/11 05:00:00	1986/03/11 20:00:00	16	0.011	87.26%	0.33
138	2008/02/03 23:00:00	2008/02/04 15:00:00	17	0.011	87.90%	0.33
139	1973/02/12 08:00:00	1973/02/13 12:00:00	29	0.011	88.54%	0.32
140	1986/12/07 09:00:00	1986/12/07 23:00:00	15	0.011	89.17%	0.32
141	1994/03/19 14:00:00	1994/03/20 04:00:00	15	0.011	89.81%	0.32
142	1983/03/19 02:00:00	1983/03/19 14:00:00	13	0.011	90.45%	0.32
143	1998/02/18 03:00:00	1998/02/18 15:00:00	13	0.011	91.08%	0.32
144	1983/01/27 19:00:00	1983/01/28 06:00:00	12	0.01	91.72%	0.31
145	1997/01/26 15:00:00	1997/01/27 01:00:00	11	0.01	92.36%	0.31
146	1996/12/12 01:00:00	1996/12/12 10:00:00	10	0.01	92.99%	0.31
147	1964/12/28 09:00:00	1964/12/28 18:00:00	10	0.01	93.63%	0.31
148	1965/02/07 04:00:00	1965/02/07 13:00:00	10	0.01	94.27%	0.3
149	1969/01/22 04:00:00	1969/01/22 11:00:00	8	0.01	94.90%	0.3
150	2006/01/03 03:00:00	2006/01/03 10:00:00	8	0.01	95.54%	0.3
151	1994/02/17 23:00:00	1994/02/18 05:00:00	7	0.01	96.18%	0.3
152	1971/12/28 06:00:00	1971/12/29 02:00:00	21	0.01	96.82%	0.3
153	1973/01/19 12:00:00	1973/01/19 17:00:00	6	0.01	97.45%	0.29
154	1976/04/13 15:00:00	1976/04/13 19:00:00	5	0.009	98.09%	0.29
155	1979/01/19 00:00:00	1979/01/19 03:00:00	4	0.009	98.73%	0.29
156	1976/04/14 20:00:00	1976/04/14 21:00:00	2	0.009	99.36%	0.29
-End of Data						

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-poc2.out post-development time stamp: 9/19/2018 3:39:32 PM

Compared to:

pre-development SWMM file: V:\17\17\46\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Pre-Development-poc2.out

pre-development time stamp: 12/31/1600 4:00:00 PM								
		1						
P051P1*	fon Fate	Post Devolo Excess	Pre Developticeed	olet post olet pie	0,6EX POST 7,6EX PIE	018t post 10% 015t pie	Passfrail	
0	0.06	0.08	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
1	0.07	0.08	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
2	0.08	0.07	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
3	0.09	0.07	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
4	0.10	0.07	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
5	0.11	0.06	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
6	0.12	0.06	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
7	0.13	0.06	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
8	0.14	0.06	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
9	0.15	0.05	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
10	0.15	0.05	0.05	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
11	0.16	0.05	0.05	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
12	0.17	0.05	0.04	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
13	0.18	0.04	0.04	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
14	0.19	0.04	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
15	0.20	0.04	0.04	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
16	0.21	0.04	0.04	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration	
17	0.22	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
18	0.23	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
19	0.24	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
20	0.25	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
21	0.26	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
22	0.27	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
23	0.28	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
24	0.28	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
25	0.29	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
26	0.30	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
27	0.31	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
28	0.32	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
29	0.33	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
30	0.34	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	
31	0.35	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration	

POSE PT*	flon Rate	PostDevolo Etresol	Pro Devolo Excess	0,6240032,0,624018	olet post olet pre	018 ⁴⁷ 00 ⁶¹⁷ 10 ¹⁰ 018 ⁴ 01 ⁶	Pastral
						0/0*	
32	0.36	0.01	0.02	TRUE	TALOL	IALOL	1 ass. 1 ost Duration < The Duration
33	0.37	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
34	0.38	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
35	0.39	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
36	0.40	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
37	0.41	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
38	0.42	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
39	0.42	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
40 41	0.43	0.01	0.02	TRUE TRUE	FALSE FALSE	FALSE FALSE	Pass: Post Duration < Pre Duration
	0.44	0.01	0.02			-	Pass: Post Duration < Pre Duration
42	0.45	0.01	0.02	TRUE	FALSE FALSE	FALSE	Pass: Post Duration < Pre Duration
43	0.46	0.01	0.02	TRUE		FALSE	Pass: Post Duration < Pre Duration
44 45	0.47	0.01	0.02	TRUE	FALSE FALSE	FALSE	Pass: Post Duration < Pre Duration
	0.48	0.01	0.02	TRUE		FALSE	Pass: Post Duration < Pre Duration
46	0.49	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
47	0.50	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
48	0.51	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
49	0.52	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
50	0.53	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
51	0.54	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
52	0.55	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
53	0.55	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
54	0.56	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
55	0.57	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
56	0.58	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
57	0.59	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
58	0.60	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
59	0.61	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
60	0.62	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
61	0.63	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
62	0.64	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
63	0.65	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
64	0.66	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
65	0.67	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
66	0.68	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
67	0.68	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
68	0.69	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
69	0.70	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
70	0.71	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
71	0.72	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

20 ⁵ 21 [*]	fion Rate	Post Devolo Excession	Pro ^{Devol} ticeed	olst post olst pre	015+1005-715+10 ¹⁶	016H POST 7 10010 016H POST	Passfrail
72	0.73	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
73	0.74	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
74	0.75	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
75	0.76	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
76	0.77	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
77	0.78	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
78	0.79	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
79	0.80	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
80	0.81	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
81	0.82	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
82	0.82	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
83	0.83	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
84	0.84	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
85	0.85	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
86	0.86	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
87	0.87	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
88	0.88	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
89	0.89	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
90	0.90	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
91	0.91	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
92	0.92	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
93	0.93	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
94	0.94	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
95	0.95	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
96	0.95	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
97	0.96	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
98	0.97	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
99	0.98	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Pre-Development-poc2.out time stamp: 12/31/1600 4:00:00 PM

DISC	HARGE		n discharge was equal to or g out less than that shown on th	e next line
Bin Number	Discharge Pate	humber of Periods	Tota Pairods Exceeding	Percentinettceeded
1	0.06	9	315	0.082
2	0.07	15	306	0.080
3	0.08	14	291	0.076
4	0.09	8	277	0.072
5	0.10	12	269	0.070
6	0.11	10	257	0.067
7	0.12	9	247	0.065
8	0.13	10	238	0.062
9	0.14	14	228	0.060
10	0.14	18	214	0.056
11	0.15	9	196	0.051
12	0.16	20	187	0.049
<u>13</u> 14	0.17	<u> </u>	167 157	0.044 0.041
14	0.18	11	157	0.041
16	0.19	9	143	0.040
17	0.20	4	134	0.035
18	0.22	2	130	0.034
19	0.23	4	128	0.033
20	0.24	2	124	0.032
21	0.25	5	122	0.032
22	0.26	6	117	0.031
23	0.27	4	111	0.029
24	0.27	4	107	0.028
25	0.28	5	103	0.027
26	0.29	5	98	0.026
27	0.30	2	93	0.024
28	0.31	3	91	0.024
29	0.32	4	88	0.023
<u> </u>	0.33	2 2	84	0.022
32	0.35	2	80	0.021
33	0.36	3	78	0.021
34	0.37	2	75	0.020
35	0.38	2	73	0.019
36	0.39	2	71	0.019
37	0.40	0	69	0.018
38	0.41	2	69	0.018
39	0.41	2	67	0.018
40	0.42	1	65	0.017
41	0.43	3	64	0.017
42	0.44	2	61	0.016
43	0.45	1	59	0.015
44 45	0.46	1	58 57	0.015
45 46	0.47	1 2	57	0.015
40 47	0.48	3	56	0.015
48	0.49	3	54	0.014
49	0.50	1	48	0.013
50	0.52	1	40	0.012
51	0.53	2	46	0.012

Binhumber	Discharge Rate	NUMBER OF Pariods	Total Painds Excepting	Percentimetriceded
Inde	. Cefte	¹ P ^O	EFT	Lt -
in Nub	chars	net .	ailoos	TIME
\$ [*]	Dies	NUM	A Co	Cent
		~	10to	2 ⁰⁵
52	0.54	2	44	
53	0.54	0	42	0.011
54	0.55	0	42	0.011
55	0.56	4	42	0.011
56	0.57	2	38	0.010
57 58	0.58	3	36 33	0.009
	0.59	1		0.009
59 60	0.60	2	32 30	0.008
61	0.62	1	29	0.008
62	0.63	1	29	0.008
63	0.64	0	27	0.007
64	0.65	1	27	0.007
65	0.66	4	26	0.007
66	0.67	3	22	0.006
67	0.68	0	19	0.005
68	0.68	0	19	0.005
69	0.69	0	19	0.005
70	0.70	0	19	0.005
71	0.71	1	19	0.005
72	0.72	1	18	0.005
73	0.73	0	17	0.004
74	0.74	0	17	0.004
75	0.75	2	17	0.004
76	0.76	0	15	0.004
77	0.77	0	15	0.004
78	0.78	1	15	0.004
79	0.79	1	14	0.004
80	0.80	0	13	0.003
81	0.81	2	13	0.003
82	0.81	0	11	0.003
83	0.82	1	11	0.003
<u> </u>	0.83	2	10 8	0.003 0.002
86	0.85	1	7	0.002
86	0.85	0	6	0.002
88	0.87	0	6	0.002
89	0.88	0	6	0.002
90	0.89	0	6	0.002
91	0.90	0	6	0.002
92	0.91	0	6	0.002
93	0.92	1	6	0.002
94	0.93	0	5	0.001
95	0.94	0	5	0.001
96	0.95	1	5	0.001
97	0.95	0	4	0.001
98	0.96	0	4	0.001
99	0.97	0	4	0.001
100	0.98	0	4	0.001
End of Data				

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-poc2.out time stamp: 9/19/2018 3:39:32 PM

DISCH	IARGE	Number of periods whe column b	n discharge was equal to or gr but less than that shown on the	reater than DISCHARGE
Bin Number	Discharge Rate	Number of Periods	Tota Pariods Exceptions	Percent Ime Etceeded
			10 ¹	2 ⁶
1	0.06	7		
2 3	0.07	9 13	289	0.076 0.073
4	0.08	13	280 267	0.073
5	0.10	14	250	0.070
6	0.10	9	236	0.062
7	0.12	6	227	0.059
8	0.12	10	221	0.058
9	0.14	7	211	0.055
10	0.14	4	204	0.053
11	0.15	8	200	0.052
12	0.16	14	192	0.050
13	0.17	13	178	0.047
14	0.18	12	165	0.043
15	0.19	8	153	0.040
16	0.20	9	145	0.038
17	0.21	5	136	0.036
18	0.22	9	131	0.034
19	0.23	6	122	0.032
<u>20</u> 21	0.24 0.25	1 7	116 115	0.030 0.030
21	0.25	4	108	0.030
23	0.20	10	100	0.020
24	0.27	6	94	0.025
25	0.28	6	88	0.023
26	0.29	7	82	0.021
27	0.30	3	75	0.020
28	0.31	9	72	0.019
29	0.32	8	63	0.016
30	0.33	2	55	0.014
31	0.34	4	53	0.014
32	0.35	1	49	0.013
33	0.36	3	48	0.013
34	0.37	4	45	0.012
35	0.38	3	41	0.011
36 37	0.39 0.40	0	38 37	0.010 0.010
37	0.40	5	37 37	0.010
38 39	0.41	3	37 32	0.010
40	0.41	0	29	0.008
40	0.42	2	29	0.008
42	0.44	1	27	0.007
43	0.45	0	26	0.007
44	0.46	2	26	0.007
45	0.47	0	24	0.006
46	0.48	0	24	0.006
47	0.49	1	24	0.006
48	0.50	1	23	0.006
49	0.51	1	22	0.006
50	0.52	1	21	0.005
51	0.53	0	20	0.005

			Tota Periods Exceeding	Parcent Time Etcaeded
*	Discharge Rate	:0 ⁰⁵	eedi'i	age of the second secon
ni ^{ber}	e P'a	. 2 ⁰¹	€ ^t ^c	EtC
Bir Number	, alor	10 N		TIME
Bill	CIECT.	intipe	Pert	ant
	\checkmark	humber of Periods	x otal	001CD
52	0.54	0		
53	0.54	3	20	0.005
54	0.55	0	17	0.004
55	0.56	1	17	0.004
56	0.57	0	16	0.004
57	0.58	1	16	0.004
58	0.59	2	15	0.004
59	0.60	0	13	0.003
60	0.61	0	13	0.003
61	0.62	0	13	0.003
62 63	0.63	0	13 13	0.003
63	0.64 0.65	0	13	0.003 0.003
65	0.65	1	13	0.003
66	0.67	0	12	0.003
67	0.68	0	12	0.003
68	0.68	1	12	0.003
69	0.69	0	11	0.003
70	0.70	0	11	0.003
71	0.71	1	11	0.003
72	0.72	1	10	0.003
73	0.73	2	9	0.002
74	0.74	0	7	0.002
75	0.75	0	7	0.002
76	0.76	0	7	0.002
77	0.77	0	7	0.002
78	0.78	2	7	0.002
79	0.79	0	5	0.001
80	0.80	0	5	0.001
81	0.81	1	5	0.001
82	0.81	0	4	0.001
83	0.82	0	4	0.001
84	0.83	0	4	0.001
85	0.84	1	4	0.001
86	0.85	0	3	0.001
87 88	0.86 0.87	0	3	0.001 0.001
88	0.87	0	2	0.001
90	0.88	1	2	0.001
90	0.89	0	1	0.000
92	0.90	0	1	0.000
93	0.92	1	1	0.000
94	0.93	0	0	0.000
95	0.94	0	0	0.000
96	0.95	0	0	0.000
97	0.95	0	0	0.000
98	0.96	0	0	0.000
99	0.97	0	0	0.000
100	0.98	0	0	0.000
End of Data				

END OF STATISTICS ANALYSIS

STATISTICS ANALYSIS OF THE SWMM FILES FOR:

DISCHARGE NODE: POC-3

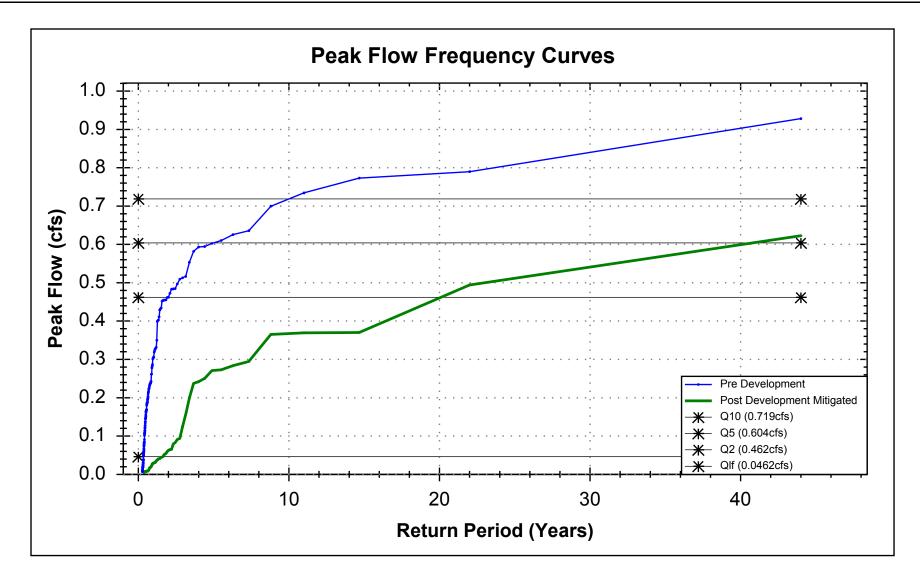
ANALYSIS DETAILS

Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2) Assumed time between storms (hours): 24

PRE-DEVELOPMENT SWMM FILE

SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Pre-Development-poc3.out SWMM file time stamp: 1/31/2019 6:13:00 PM Selected Node to Analyze: POC-3

POST-DEVELOPMENT MITIGATED SWMM FILE


SWMM file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Post-Development-poc3-1224.out SWMM file time stamp: 1/31/2019 6:39:03 PM Selected Node to Analyze: POC-3

MITIGATED CONDITIONS RESULTS

For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS

The Mitigated Conditions peak flow frequency curve is composed of 122 points. Of the points, 0 point(s) are above the flow control upper limit (Q10), 96 point(s) are below the low flow threshold value (QIf). Of the points within the flow control range (Qlf to Q10), 26 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met.

The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the postdevelopment flow duration curve to the pre-development curve, 98 point(s) have a lower duration than predevelopment conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met.

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Post-Development-poc3-1224.out post-development time stamp: 1/31/2019 6:39:03 PM

Compared to:

pre-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Pre-Development-poc3.out

pre-development time stamp: 1/31/2019 6:13:00 PM

		I			Γ		1
ROST RIT	AM Prd WIS	POST DEVO	ere de	Opost Opie	Opost 7 Opte	0005171000000	Pastrail
0	44.00	0.62	0.93	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
1	22.00	0.49	0.79	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
2	14.67	0.37	0.77	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
3	11.00	0.37	0.73	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
4	8.80	0.36	0.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
5	7.33	0.29	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
6	6.29	0.28	0.63	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
7	5.50	0.27	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
8	4.89	0.27	0.60	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
9	4.40	0.25	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
10	4.00	0.24	0.59	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
11	3.67	0.24	0.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
12	3.39	0.20	0.55	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
13	3.14	0.16	0.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
14	2.93	0.12	0.51	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
15	2.75	0.09	0.51	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
16	2.59	0.09	0.50	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
17	2.44	0.08	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
18	2.32	0.08	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
19	2.20	0.07	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
20	2.10	0.06	0.47	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
21	2.00	0.06	0.46	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
22	1.91	0.06	0.46	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
23	1.83	0.05	0.46	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
24	1.76	0.05	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
25	1.69	0.05	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
26	1.63	0.05	0.45	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
27	1.57	0.04	0.45	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
28	1.52	0.04	0.43	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
29	1.47	0.04	0.43	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
30	1.42	0.04	0.43	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
31	1.38	0.04	0.41	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
32	1.33	0.04	0.40	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
33	1.29	0.04	0.40	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

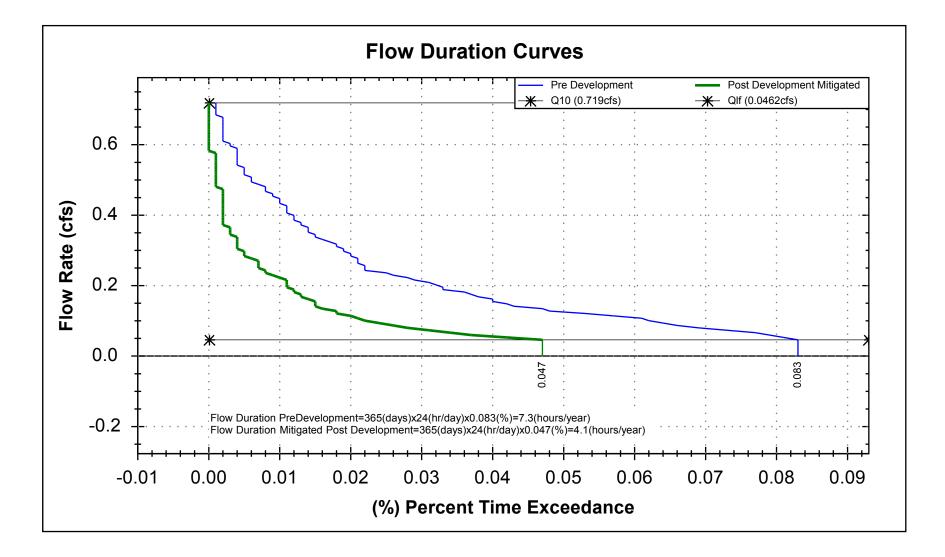
				0	0	opre	
×*	WE	<i>`</i> 0	,O	april	Q ² ¹	000	a la
Post PT*	AIR Prod Wash	POSIDENO	PreDevO	Opost_Opte	Orost 7 Orte	10	Passkall
805	atri	\$05°	8 ⁴⁰	apos.	apos.	\$ ⁷	< ²⁰
	X.	`		<u>G</u>	Gr.	OPOST 100 OPIC	
34	1.26	0.04	0.40	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
35	1.22	0.04	0.35	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
36	1.19	0.04	0.33	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
37	1.16	0.03	0.33	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
38	1.13	0.03	0.33	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
39	1.10	0.03	0.33	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
40	1.07	0.03	0.32	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
41	1.05	0.03	0.32	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
42	1.02	0.03	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
43	1.00	0.03	0.31	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
44	0.98	0.03	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
45	0.96	0.03	0.30	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
46	0.94	0.03	0.29	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
47	0.92	0.03	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
48	0.90	0.02	0.28	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
49	0.88	0.02	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
50	0.86	0.02	0.26	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
51	0.85	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
52	0.83	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
53	0.82	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
54	0.80	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
55	0.79	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
56	0.77	0.02	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
57	0.76	0.02	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
58	0.75	0.02	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
59	0.73	0.02	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
60	0.72	0.01	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
61	0.71	0.01	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
62	0.70	0.01	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
63	0.69	0.01	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
64	0.68	0.01	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
65	0.67	0.01	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
66	0.66	0.01	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
67	0.65	0.01	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
68	0.64	0.01	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
69	0.63	0.01	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
70	0.62	0.01	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
71	0.61	0.01	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
72	0.60	0.01	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
73	0.60	0.01	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
74	0.59	0.01	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
75	0.58	0.01	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	opre	
×*	WE	<i>^</i> O	,O	agis	Q ^e t [®]	000	
Post PT*	RIN Prod Wash	PostDevQ	PreDevO	OPOST_OPIE	Orost ⁷ Or ^{ie}	10	Passifall
20 ⁵	atri	20 ⁵¹	2 ⁴⁰	CPOS.	apos.	\$ ⁷	\$ ⁰⁵
	X.	``		Gr.	Û,	OPOST 100 OPIC	
76	0.57	0.01	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
77	0.56	0.01	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
78	0.56	0.01	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
79	0.55	0.01	0.18	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
80	0.54	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
81	0.54	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
82	0.53	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
83	0.52	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
84	0.52	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
85	0.51	0.01	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
86	0.51	0.01	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
87	0.50	0.01	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
88	0.49	0.01	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
89	0.49	0.01	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
90	0.48	0.01	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
91	0.48	0.01	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
92	0.47	0.01	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
93	0.47	0.01	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
94	0.46	0.01	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
95	0.46	0.01	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
96	0.45	0.01	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
97	0.45	0.01	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
98	0.44	0.01	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
99	0.44	0.01	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
100	0.44	0.01	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
101	0.43	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
102	0.43	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
103	0.42	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
104	0.42	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
105	0.42	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
106	0.41	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
107	0.41	0.01	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
108	0.40	0.01	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
109	0.40	0.01	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
110	0.40	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
111	0.39	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
112	0.39	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
113	0.39	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
114	0.38	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
115	0.38	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
116	0.38	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
117	0.37	0.01	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

20 ⁵² P1*	RID Prob UNS)	POSTORNO	Pre Devo	CROST CORIS	OROSE 7 ORIS	0400 ⁴⁷ 10 ⁰ 00 ¹⁶	Passfal
118	0.37	0.01	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
119	0.37	0.01	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
120	0.36	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
121	0.36	0.01	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

	WMM.out file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Pre-Development-poc3.out								
	stamp: 1/31/2019 6:13:00 PM			•	-				
	·								
Q10: 0.719									
Q5: 0.604									
Q2: 0.462									
Peak Flow Statis	tics Table Values		1						
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period			
1	1993/01/06 17:00:00	1993/01/08 17:00:00	49	0.928	0.60%	44			
2	1971/02/23 05:00:00	1971/02/23 12:00:00	8	0.79	1.20%	22			
3	1995/01/25 20:00:00	1995/01/25 22:00:00	3	0.773	1.81%	14.67			
4	1995/01/04 17:00:00	1995/01/04 22:00:00	6	0.734	2.41%	11			
5	1998/02/14 16:00:00	1998/02/14 19:00:00	4	0.7	3.01%	8.8			
6	1986/02/15 02:00:00	1986/02/15 08:00:00	7	0.636	3.61%	7.33			
7	1966/12/05 03:00:00	1966/12/06 23:00:00	45	0.625	4.22%	6.29			
8	1988/04/21 21:00:00	1988/04/21 22:00:00	2	0.61	4.82%	5.5			
9	1967/11/19 08:00:00	1967/11/19 15:00:00	8	0.603	5.42%	4.89			
10	1978/01/16 06:00:00	1978/01/16 11:00:00	6	0.594	6.02%	4.4			
11	1978/03/17 04:00:00	1978/03/17 10:00:00	7	0.593	6.63%	4			
12	1983/03/01 15:00:00	1983/03/01 17:00:00	3	0.582	7.23%	3.67			
13	2004/10/18 09:00:00	2004/10/18 11:00:00	3	0.553	7.83%	3.39			
14	2005/01/09 04:00:00	2005/01/09 22:00:00	19	0.517	8.43%	3.14			
15	1983/12/25 10:00:00	1983/12/25 11:00:00	2	0.513	9.04%	2.93			
16	1998/01/09 17:00:00	1998/01/10 17:00:00	25	0.509	9.64%	2.75			
17	2005/01/11 02:00:00	2005/01/11 07:00:00	6	0.497	10.24%	2.59			
18	1969/01/25 10:00:00	1969/01/25 14:00:00	5	0.485	10.84%	2.44			
19	1993/01/09 17:00:00	1993/01/09 18:00:00	2	0.484	11.45%	2.32			
20	1980/02/18 04:00:00	1980/02/21 00:00:00	69	0.483	12.05%	2.2			
21	2007/01/31 00:00:00	2007/01/31 01:00:00	2	0.472	12.65%	2.1			
22	1993/01/13 21:00:00	1993/01/14 05:00:00	9	0.462	13.25%	2			
23	2004/10/20 11:00:00	2004/10/20 16:00:00	6	0.462	13.86%	1.91			
24	1981/02/09 06:00:00	1981/02/09 07:00:00	2	0.455	14.46%	1.83			
25	1998/02/03 17:00:00	1998/02/03 18:00:00	2	0.455	15.06%	1.76			
26	1991/03/20 07:00:00	1991/03/20 09:00:00	3	0.455	15.66%	1.69			
27	1992/02/15 14:00:00	1992/02/15 16:00:00	3	0.454	16.27%	1.63			
28	1972/11/14 14:00:00	1972/11/14 15:00:00	2	0.452	16.87%	1.57			
29	1993/02/08 01:00:00	1993/02/08 03:00:00	3	0.434	17.47%	1.52			
30	1983/11/25 01:00:00	1983/11/25 02:00:00	2	0.432	18.07%	1.47			
31	1980/01/29 03:00:00	1980/01/30 19:00:00	41	0.429	18.67%	1.42			
32	2007/11/30 15:00:00	2007/11/30 22:00:00	8	0.411	19.28%	1.38			
33	1967/12/18 16:00:00	1967/12/18 19:00:00	4	0.403	19.88%	1.33			
34	2003/02/25 17:00:00	2003/02/25 18:00:00	2	0.401	20.48%	1.29			
35	1965/11/22 15:00:00	1965/11/23 05:00:00	15	0.399	21.08%	1.26			
36	1967/04/11 10:00:00	1967/04/11 10:00:00	1	0.35	21.69%	1.22			
37	2004/02/26 07:00:00	2004/02/26 09:00:00	3	0.332	22.29%	1.19			
38	2003/02/12 17:00:00	2003/02/13 17:00:00	25	0.33	22.89%	1.16			
39	1982/01/01 11:00:00	1982/01/01 11:00:00	1	0.328	23.49%	1.13			

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	2003/04/14 17:00:00	2003/04/14 18:00:00	2	0.326	24.10%	1.1
41	1982/03/18 12:00:00	1982/03/18 20:00:00	9	0.322	24.70%	1.07
42	1995/03/05 08:00:00	1995/03/06 00:00:00	17	0.319	25.30%	1.05
43	2006/01/02 14:00:00	2006/01/02 15:00:00	2	0.306	25.90%	1.02
44	1983/02/27 17:00:00	1983/02/27 18:00:00	2	0.306	26.51%	1
45	1980/01/11 00:00:00	1980/01/11 13:00:00	14	0.303	27.11%	0.98
46	2007/08/26 07:00:00	2007/08/26 08:00:00	2	0.301	27.71%	0.96
47	1979/01/06 00:00:00	1979/01/06 05:00:00	6	0.287	28.31%	0.94
48	1980/02/16 18:00:00	1980/02/16 20:00:00	3	0.283	28.92%	0.92
49	1970/03/04 23:00:00	1970/03/05 01:00:00	3	0.278	29.52%	0.9
50	1985/11/25 04:00:00	1985/11/25 05:00:00	2	0.262	30.12%	0.88
51	1978/02/05 20:00:00	1978/02/06 10:00:00	15	0.261	30.72%	0.86
52	1965/04/09 20:00:00	1965/04/09 23:00:00	4	0.243	31.33%	0.85
53	2004/10/27 04:00:00	2004/10/27 09:00:00	6	0.242	31.93%	0.83
54	2002/11/08 17:00:00	2002/11/08 18:00:00	2	0.238	32.53%	0.82
55	1991/02/28 16:00:00	1991/03/01 12:00:00	21	0.238	33.13%	0.8
56	2003/03/15 17:00:00	2003/03/15 18:00:00	2	0.237	33.73%	0.79
57	1985/11/29 10:00:00	1985/11/29 15:00:00	6	0.236	34.34%	0.77
58	1979/01/17 12:00:00	1979/01/17 12:00:00	1	0.235	34.94%	0.76
59	1994/02/07 15:00:00	1994/02/07 16:00:00	2	0.232	35.54%	0.75
60	2004/02/22 14:00:00	2004/02/23 02:00:00	13	0.229	36.14%	0.73
61	1983/03/02 17:00:00	1983/03/02 20:00:00	4	0.225	36.75%	0.72
62	1978/01/14 23:00:00	1978/01/15 05:00:00	7	0.225	37.35%	0.71
63	1976/03/03 00:00:00	1976/03/03 02:00:00	3	0.224	37.95%	0.7
64	1998/02/08 17:00:00	1998/02/08 17:00:00	1	0.222	38.55%	0.69
65	1970/12/21 08:00:00	1970/12/21 08:00:00	1	0.217	39.16%	0.68
66	1967/01/24 19:00:00	1967/01/25 00:00:00	6	0.214	39.76%	0.67
67	1991/03/27 03:00:00	1991/03/27 06:00:00	4	0.214	40.36%	0.66
68	1976/02/08 15:00:00	1976/02/08 22:00:00	8	0.21	40.96%	0.65
69	1965/11/16 18:00:00	1965/11/16 22:00:00	5	0.203	41.57%	0.64
70	1978/12/17 20:00:00	1978/12/18 12:00:00	17	0.199	42.17%	0.63
71	1969/02/06 09:00:00	1969/02/06 10:00:00	2	0.196	42.77%	0.62
72	1974/03/08 03:00:00	1974/03/08 14:00:00	12	0.196	43.37%	0.61
73	1987/01/07 08:00:00	1987/01/07 08:00:00	1	0.191	43.98%	0.6
74	1992/01/05 16:00:00	1992/01/06 03:00:00	12	0.188	44.58%	0.6
75	1970/11/29 14:00:00	1970/11/29 17:00:00	4	0.187	45.18%	0.59
76	2006/04/05 06:00:00	2006/04/05 06:00:00	1	0.186	45.78%	0.58
77	1974/12/04 09:00:00	1974/12/04 10:00:00	2	0.185	46.39%	0.57
78	2001/11/24 17:00:00	2001/11/24 17:00:00	1	0.184	46.99%	0.56
79	2005/01/03 08:00:00	2005/01/03 10:00:00	3	0.183	47.59%	0.56
80	1965/12/13 01:00:00	1965/12/13 01:00:00	1	0.18	48.19%	0.55
81	1980/03/02 21:00:00	1980/03/03 03:00:00	7	0.169	48.80%	0.54
82	1991/03/19 01:00:00	1991/03/19 03:00:00	3	0.169	49.40%	0.54
83	1986/03/10 16:00:00	1986/03/10 20:00:00	5	0.166	50.00%	0.53
84	1998/02/23 17:00:00	1998/02/23 17:00:00	1	0.166	50.60%	0.52
85	1996/01/31 20:00:00	1996/02/01 04:00:00	9	0.166	51.20%	0.52
86	1995/02/14 09:00:00	1995/02/14 10:00:00	2	0.165	51.81%	0.51


Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	2005/02/21 08:00:00	2005/02/21 14:00:00	7	0.164	52.41%	0.51
88	1988/12/24 23:00:00	1988/12/25 01:00:00	3	0.161	53.01%	0.5
89	1967/11/21 14:00:00	1967/11/21 14:00:00	1	0.155	53.61%	0.49
90	1981/03/01 12:00:00	1981/03/01 16:00:00	5	0.151	54.22%	0.49
91	1990/01/17 03:00:00	1990/01/17 03:00:00	1	0.147	54.82%	0.48
92	1998/02/17 17:00:00	1998/02/17 17:00:00	1	0.147	55.42%	0.48
93	2003/02/11 17:00:00	2003/02/11 17:00:00	1	0.147	56.02%	0.47
94	1965/04/08 15:00:00	1965/04/08 19:00:00	5	0.144	56.63%	0.47
95	1966/12/03 16:00:00	1966/12/03 18:00:00	3	0.138	57.23%	0.46
96	1970/03/02 05:00:00	1970/03/02 07:00:00	3	0.137	57.83%	0.46
97	1970/03/01 00:00:00	1970/03/01 02:00:00	3	0.133	58.43%	0.45
98	1993/01/15 14:00:00	1993/01/16 14:00:00	25	0.128	59.04%	0.45
99	1986/09/25 03:00:00	1986/09/25 06:00:00	4	0.127	59.64%	0.44
100	1992/02/06 23:00:00	1992/02/06 23:00:00	1	0.122	60.24%	0.44
101	1983/03/23 19:00:00	1983/03/23 20:00:00	2	0.12	60.84%	0.44
102	2003/12/25 18:00:00	2003/12/25 19:00:00	2	0.115	61.45%	0.43
103	1993/03/28 03:00:00	1993/03/28 03:00:00	1	0.113	62.05%	0.43
104	1969/02/25 17:00:00	1969/02/25 21:00:00	5	0.113	62.65%	0.42
105	1969/02/24 01:00:00	1969/02/24 04:00:00	4	0.109	63.25%	0.42
106	2001/01/11 05:00:00	2001/01/11 08:00:00	4	0.108	63.86%	0.42
107	1986/03/15 23:00:00	1986/03/15 23:00:00	1	0.106	64.46%	0.41
108	2002/12/20 17:00:00	2002/12/20 17:00:00	1	0.106	65.06%	0.41
109	1974/01/07 14:00:00	1974/01/08 04:00:00	15	0.102	65.66%	0.4
110	1971/12/25 21:00:00	1971/12/25 21:00:00	1	0.091	66.27%	0.4
111	1995/01/07 19:00:00	1995/01/07 23:00:00	5	0.085	66.87%	0.4
112	1969/01/21 09:00:00	1969/01/21 10:00:00	2	0.084	67.47%	0.39
113	1998/02/06 17:00:00	1998/02/06 17:00:00	1	0.084	68.07%	0.39
114	1998/03/28 17:00:00	1998/03/28 17:00:00	1	0.084	68.67%	0.39
115	2005/02/23 00:00:00	2005/02/23 02:00:00	3	0.08	69.28%	0.38
116	1994/02/20 16:00:00	1994/02/20 16:00:00	1	0.08	69.88%	0.38
117	1993/01/18 05:00:00	1993/01/18 11:00:00	7	0.077	70.48%	0.38
118	1983/02/08 05:00:00	1983/02/08 06:00:00	2	0.075	71.08%	0.37
119	1994/03/25 15:00:00	1994/03/25 15:00:00	1	0.073	71.69%	0.37
120	1976/04/14 11:00:00	1976/04/14 11:00:00	1	0.067	72.29%	0.37
121	1965/12/29 20:00:00	1965/12/29 21:00:00	2	0.063	72.89%	0.36
122	1998/05/12 17:00:00	1998/05/12 17:00:00	1	0.062	73.49%	0.36
123	1977/05/08 19:00:00	1977/05/08 20:00:00	2	0.06	74.10%	0.36
124	2008/02/22 04:00:00	2008/02/22 09:00:00	6	0.059	74.70%	0.36
125	1992/12/29 14:00:00	1992/12/29 20:00:00	7	0.057	75.30%	0.35
126	1987/11/04 17:00:00	1987/11/04 20:00:00	4	0.054	75.90%	0.35
127	1965/12/14 16:00:00	1965/12/14 16:00:00	1	0.051	76.51%	0.35
128	1993/11/14 17:00:00	1993/11/14 17:00:00	1	0.05	77.11%	0.34
129	1973/02/11 05:00:00	1973/02/11 05:00:00	1	0.049	77.71%	0.34
130	1970/12/19 04:00:00	1970/12/19 04:00:00	1	0.049	78.31%	0.34
131	1995/04/18 11:00:00	1995/04/18 11:00:00	1	0.039	78.92%	0.34
132	1996/11/22 02:00:00	1996/11/22 03:00:00	2	0.038	79.52%	0.33
133	1991/12/29 16:00:00	1991/12/29 16:00:00	1	0.037	80.12%	0.33

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1993/02/19 19:00:00	1993/02/19 21:00:00	3	0.037	80.72%	0.33
135	2008/01/06 07:00:00	2008/01/06 07:00:00	1	0.036	81.33%	0.33
136	2004/03/02 04:00:00	2004/03/02 04:00:00	1	0.031	81.93%	0.32
137	1970/03/08 14:00:00	1970/03/08 14:00:00	1	0.029	82.53%	0.32
138	1973/03/08 15:00:00	1973/03/08 15:00:00	1	0.029	83.13%	0.32
139	1974/01/04 19:00:00	1974/01/04 22:00:00	4	0.027	83.73%	0.32
140	1983/01/27 09:00:00	1983/01/27 10:00:00	2	0.025	84.34%	0.31
141	2002/12/16 17:00:00	2002/12/16 17:00:00	1	0.025	84.94%	0.31
142	1992/02/12 21:00:00	1992/02/13 06:00:00	10	0.023	85.54%	0.31
143	1975/03/08 09:00:00	1975/03/08 12:00:00	4	0.023	86.14%	0.31
144	1996/12/09 18:00:00	1996/12/09 20:00:00	3	0.022	86.75%	0.31
145	1967/01/23 01:00:00	1967/01/23 01:00:00	1	0.022	87.35%	0.3
146	1980/03/06 02:00:00	1980/03/06 02:00:00	1	0.022	87.95%	0.3
147	1978/03/13 14:00:00	1978/03/13 17:00:00	4	0.02	88.55%	0.3
148	1976/12/31 09:00:00	1976/12/31 09:00:00	1	0.02	89.16%	0.3
149	1978/11/13 23:00:00	1978/11/13 23:00:00	1	0.019	89.76%	0.3
150	1976/02/06 05:00:00	1976/02/06 05:00:00	1	0.019	90.36%	0.29
151	2005/01/07 15:00:00	2005/01/07 15:00:00	1	0.018	90.96%	0.29
152	1995/03/23 12:00:00	1995/03/23 12:00:00	1	0.018	91.57%	0.29
153	1980/01/09 12:00:00	1980/01/09 12:00:00	1	0.018	92.17%	0.29
154	2006/03/11 03:00:00	2006/03/11 03:00:00	1	0.018	92.77%	0.29
155	1985/12/03 00:00:00	1985/12/03 01:00:00	2	0.016	93.37%	0.28
156	1979/03/01 18:00:00	1979/03/01 18:00:00	1	0.016	93.98%	0.28
157	1995/03/11 06:00:00	1995/03/11 06:00:00	1	0.012	94.58%	0.28
158	1972/11/16 15:00:00	1972/11/16 15:00:00	1	0.011	95.18%	0.28
159	1973/01/16 21:00:00	1973/01/16 22:00:00	2	0.011	95.78%	0.28
160	1997/01/26 03:00:00	1997/01/26 03:00:00	1	0.011	96.39%	0.28
161	1982/12/22 23:00:00	1982/12/22 23:00:00	1	0.01	96.99%	0.27
162	1992/01/07 21:00:00	1992/01/07 21:00:00	1	0.009	97.59%	0.27
163	1986/03/12 14:00:00	1986/03/12 14:00:00	1	0.008	98.19%	0.27
164	1965/04/01 22:00:00	1965/04/01 22:00:00	1	0.007	98.80%	0.27
165	1986/11/18 01:00:00	1986/11/18 01:00:00	1	0.007	99.40%	0.27
End of Data						

SWMM.out file n	ame: V:\17\17046\Engineering\C	urrent\GPIP\Storm\SWMM\currer	nt Itteration\Poc-3\17	7046-Post-Developr	ment-poc3-1224.ou	t
SWMM.out time	stamp: 1/31/2019 6:39:03 PM			· · · ·	•	
Q10: 0.000						
Q5: 0.000						
Q2: 0.000						
Peak Flow Statis	tics Table Values					
Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1966/12/03 17:00:00	1966/12/08 10:00:00	114	0.623	0.81%	44
2	1995/01/04 19:00:00	1995/01/06 10:00:00	40	0.494	1.63%	22
3	1993/01/06 22:00:00	1993/01/11 11:00:00	110	0.37	2.44%	14.67
4	1978/01/15 00:00:00	1978/01/17 23:00:00	72	0.369	3.25%	11
5	1965/11/22 19:00:00	1965/11/24 16:00:00	46	0.365	4.07%	8.8
6	1978/03/17 05:00:00	1978/03/18 21:00:00	41	0.295	4.88%	7.33
7	1980/01/29 04:00:00	1980/01/31 20:00:00	65	0.284	5.69%	6.29
8	1986/02/15 03:00:00	1986/02/16 20:00:00	42	0.273	6.50%	5.5
9	1995/03/05 14:00:00	1995/03/07 13:00:00	48	0.271	7.32%	4.89
10	1969/01/25 12:00:00	1969/01/27 03:00:00	40	0.25	8.13%	4.4
11	1980/02/16 20:00:00	1980/02/22 13:00:00	138	0.242	8.94%	4
12	1983/03/01 16:00:00	1983/03/04 10:00:00	67	0.237	9.76%	3.67
13	2007/08/26 08:00:00	2007/08/27 04:00:00	21	0.199	10.57%	3.39
14	1979/01/05 14:00:00	1979/01/07 16:00:00	51	0.156	11.38%	3.14
15	2005/01/09 19:00:00	2005/01/12 20:00:00	74	0.124	12.20%	2.93
16	2007/11/30 14:00:00	2007/12/02 09:00:00	44	0.094	13.01%	2.75
17	1980/01/09 17:00:00	1980/01/13 06:00:00	86	0.091	13.82%	2.59
18	1993/01/13 23:00:00	1993/01/19 02:00:00	124	0.083	14.63%	2.44
19	1991/02/27 23:00:00	1991/03/02 23:00:00	73	0.079	15.45%	2.32
20	1980/03/02 22:00:00	1980/03/04 07:00:00	34	0.065	16.26%	2.2
21	1976/02/08 19:00:00	1976/02/09 23:00:00	29	0.065	17.07%	2.1
22	1970/02/28 18:00:00	1970/03/03 05:00:00	60	0.063	17.89%	2
23	1971/02/23 06:00:00	1971/02/24 20:00:00	39	0.06	18.70%	1.91
24	1998/02/14 18:00:00	1998/02/16 00:00:00	31	0.054	19.51%	1.83
25	1967/11/19 08:00:00	1967/11/21 21:00:00	62	0.053	20.33%	1.76
26	1991/03/19 03:00:00	1991/03/21 20:00:00	66	0.05	21.14%	1.69
27	1969/02/24 06:00:00	1969/02/26 15:00:00	58	0.046	21.95%	1.63
28	2005/02/21 12:00:00	2005/02/23 16:00:00	53	0.045	22.76%	1.57
29	2004/10/27 06:00:00	2004/10/28 18:00:00	37	0.044	23.58%	1.52
30	1967/01/24 22:00:00	1967/01/25 18:00:00	21	0.044	24.39%	1.47
31	1991/03/27 06:00:00	1991/03/28 06:00:00	25	0.041	25.20%	1.42
32	1988/04/21 22:00:00	1988/04/22 11:00:00	14	0.041	26.02%	1.38
33	1995/01/25 21:00:00	1995/01/26 16:00:00	20	0.04	26.83%	1.33
34	1982/03/18 19:00:00	1982/03/20 05:00:00	35	0.04	27.64%	1.29
35	1974/03/08 11:00:00	1974/03/09 11:00:00	25	0.037	28.46%	1.26
36	1974/01/07 19:00:00	1974/01/08 19:00:00	25	0.036	29.27%	1.22
37	1981/02/09 07:00:00	1981/02/10 03:00:00	21	0.036	30.08%	1.19
38	2004/10/20 13:00:00	2004/10/21 08:00:00	20	0.034	30.89%	1.16
39	2004/10/18 11:00:00	2004/10/19 09:00:00	23	0.031	31.71%	1.13

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1978/12/17 21:00:00	1978/12/19 02:00:00	30	0.031	32.52%	1.1
41	1993/02/08 03:00:00	1993/02/09 06:00:00	28	0.031	33.33%	1.07
42	1967/04/11 11:00:00	1967/04/12 12:00:00	26	0.03	34.15%	1.05
43	1972/11/14 15:00:00	1972/11/15 06:00:00	16	0.029	34.96%	1.02
44	1996/11/22 00:00:00	1996/11/23 01:00:00	26	0.029	35.77%	1
45	1983/11/25 02:00:00	1983/11/25 17:00:00	16	0.029	36.59%	0.98
46	1985/11/29 15:00:00	1985/11/30 16:00:00	26	0.029	37.40%	0.96
47	1978/03/13 19:00:00	1978/03/15 12:00:00	42	0.027	38.21%	0.94
48	1985/11/25 05:00:00	1985/11/26 08:00:00	28	0.027	39.02%	0.92
49	1983/12/25 11:00:00	1983/12/26 12:00:00	26	0.024	39.84%	0.9
50	2007/01/31 01:00:00	2007/01/31 15:00:00	15	0.022	40.65%	0.88
51	2008/01/07 02:00:00	2008/01/07 03:00:00	2	0.021	41.46%	0.86
52	2003/02/12 22:00:00	2003/02/13 20:00:00	23	0.02	42.28%	0.85
53	1967/12/18 17:00:00	1967/12/20 06:00:00	38	0.02	43.09%	0.83
54	1986/11/18 02:00:00	1986/11/18 17:00:00	16	0.019	43.90%	0.82
55	1969/02/06 10:00:00	1969/02/07 04:00:00	19	0.018	44.72%	0.8
56	1994/02/17 14:00:00	1994/02/17 22:00:00	9	0.018	45.53%	0.79
57	2004/02/26 09:00:00	2004/02/27 03:00:00	19	0.017	46.34%	0.77
58	1965/12/09 08:00:00	1965/12/10 18:00:00	35	0.017	47.15%	0.76
59	1970/03/05 01:00:00	1970/03/05 15:00:00	15	0.017	47.97%	0.75
60	1967/01/23 01:00:00	1967/01/23 20:00:00	20	0.016	48.78%	0.73
61	1998/01/09 18:00:00	1998/01/11 01:00:00	32	0.015	49.59%	0.72
62	1974/12/04 10:00:00	1974/12/05 03:00:00	18	0.013	50.41%	0.71
63	1973/01/16 23:00:00	1973/01/17 08:00:00	10	0.013	51.22%	0.7
64	1977/05/08 21:00:00	1977/05/09 22:00:00	26	0.012	52.03%	0.69
65	1966/11/07 18:00:00	1966/11/08 07:00:00	14	0.011	52.85%	0.68
66	1970/11/29 16:00:00	1970/11/30 17:00:00	26	0.01	53.66%	0.67
67	1982/12/23 00:00:00	1982/12/23 11:00:00	12	0.01	54.47%	0.66
68	1996/02/01 04:00:00	1996/02/01 21:00:00	18	0.009	55.28%	0.65
69	1992/02/15 15:00:00	1992/02/16 09:00:00	19	0.009	56.10%	0.64
70	1981/03/01 16:00:00	1981/03/02 12:00:00	21	0.009	56.91%	0.63
71	2004/02/22 20:00:00	2004/02/23 19:00:00	24	0.009	57.72%	0.62
72	1995/03/11 05:00:00	1995/03/12 09:00:00	29	0.009	58.54%	0.61
73	1965/11/16 23:00:00	1965/11/17 14:00:00	16	0.009	59.35%	0.6
74	1998/02/03 21:00:00	1998/02/04 11:00:00	15	0.009	60.16%	0.6
75	1992/02/07 00:00:00	1992/02/07 13:00:00	14	0.009	60.98%	0.59
76	1980/02/14 08:00:00	1980/02/14 23:00:00	16	0.008	61.79%	0.58
77	1992/01/05 22:00:00	1992/01/06 16:00:00	19	0.008	62.60%	0.57
78	1986/09/25 09:00:00	1986/09/25 19:00:00	11	0.008	63.41%	0.56
79	2008/01/05 10:00:00	2008/01/06 00:00:00	15	0.008	64.23%	0.56
80	1987/01/04 23:00:00	1987/01/05 15:00:00	17	0.008	65.04%	0.55
81	2003/02/25 22:00:00	2003/02/26 09:00:00	12	0.008	65.85%	0.54
82	1997/01/13 01:00:00	1997/01/14 01:00:00	25	0.008	66.67%	0.54
83	1977/08/17 10:00:00	1977/08/17 23:00:00	14	0.008	67.48%	0.53
84	1969/01/14 14:00:00	1969/01/14 23:00:00	10	0.008	68.29%	0.52
85	1972/12/04 20:00:00	1972/12/05 06:00:00	11	0.008	69.11%	0.52
86	1995/01/08 02:00:00	1995/01/08 15:00:00	14	0.008	69.92%	0.51

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1965/04/10 02:00:00	1965/04/10 10:00:00	9	0.008	70.73%	0.51
88	1987/12/17 00:00:00	1987/12/17 12:00:00	13	0.008	71.54%	0.5
89	1982/01/01 15:00:00	1982/01/01 22:00:00	8	0.008	72.36%	0.49
90	1976/09/10 22:00:00	1976/09/11 07:00:00	10	0.008	73.17%	0.49
91	1985/11/11 16:00:00	1985/11/12 06:00:00	15	0.007	73.98%	0.48
92	2006/04/05 10:00:00	2006/04/05 19:00:00	10	0.007	74.80%	0.48
93	1988/01/17 23:00:00	1988/01/18 07:00:00	9	0.007	75.61%	0.47
94	2008/02/22 10:00:00	2008/02/22 20:00:00	11	0.007	76.42%	0.47
95	1992/12/07 19:00:00	1992/12/08 04:00:00	10	0.007	77.24%	0.46
96	1976/03/03 05:00:00	1976/03/03 15:00:00	11	0.007	78.05%	0.46
97	1988/12/25 04:00:00	1988/12/25 11:00:00	8	0.007	78.86%	0.45
98	1992/02/13 01:00:00	1992/02/13 16:00:00	16	0.007	79.67%	0.45
99	1976/11/12 07:00:00	1976/11/12 19:00:00	13	0.007	80.49%	0.44
100	1982/11/30 21:00:00	1982/12/01 04:00:00	8	0.007	81.30%	0.44
101	1968/03/08 15:00:00	1968/03/08 22:00:00	8	0.007	82.11%	0.44
102	1974/01/05 02:00:00	1974/01/05 12:00:00	11	0.007	82.93%	0.43
103	1975/03/08 16:00:00	1975/03/08 22:00:00	7	0.007	83.74%	0.43
104	1976/03/01 22:00:00	1976/03/02 04:00:00	7	0.007	84.55%	0.42
105	1995/02/14 14:00:00	1995/02/14 19:00:00	6	0.007	85.37%	0.42
106	2001/01/11 11:00:00	2001/01/11 20:00:00	10	0.007	86.18%	0.42
107	2003/04/14 22:00:00	2003/04/15 06:00:00	9	0.007	86.99%	0.41
108	1983/02/27 22:00:00	1983/02/28 06:00:00	9	0.007	87.80%	0.41
109	1983/01/27 14:00:00	1983/01/27 21:00:00	8	0.007	88.62%	0.4
110	1994/02/07 20:00:00	1994/02/08 07:00:00	12	0.007	89.43%	0.4
111	1983/03/24 00:00:00	1983/03/24 06:00:00	7	0.007	90.24%	0.4
112	1978/02/06 02:00:00	1978/02/07 00:00:00	23	0.007	91.06%	0.39
113	1979/03/02 00:00:00	1979/03/02 04:00:00	5	0.007	91.87%	0.39
114	1981/03/19 22:00:00	1981/03/19 22:00:00	1	0.006	92.68%	0.39
115	2006/02/28 11:00:00	2006/02/28 17:00:00	7	0.006	93.50%	0.38
116	1982/02/10 22:00:00	1982/02/11 03:00:00	6	0.006	94.31%	0.38
117	2006/01/02 19:00:00	2006/01/03 00:00:00	6	0.006	95.12%	0.38
118	1975/04/09 02:00:00	1975/04/09 07:00:00	6	0.006	95.93%	0.37
119	1965/04/08 23:00:00	1965/04/09 02:00:00	4	0.006	96.75%	0.37
120	1967/03/14 02:00:00	1967/03/14 05:00:00	4	0.006	97.56%	0.37
121	2005/01/03 14:00:00	2005/01/03 17:00:00	4	0.006	98.37%	0.36
122	2008/02/03 20:00:00	2008/02/03 21:00:00	2	0.006	99.19%	0.36
-End of Data						

Compare Post-Development Curve to Pre-Development Curve

post-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Post-Development-poc3-1224.out post-development time stamp: 1/31/2019 6:39:03 PM

Compared to:

pre-development SWMM file: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Pre-Development-poc3.out pre-development time stamp: 1/31/2019 6:13:00 PM

pro development	une stamp. 1/5	1/2019 6:13:00 P	111				
2053.PT	for Pate	Post Devolo Exceed	Pre Develoticed	olet post olet pre	0/6 ^{E1} 00 ⁵⁷⁷ / ₀ ,6 ^{E1} 0 ⁹	0184 P0847 1100 0164 P16	Passfrail
0	0.05	0.05	0.08	TRUE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
1	0.05	0.04	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
2	0.06	0.04	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
3	0.07	0.03	0.08	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
4	0.07	0.03	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
5	0.08	0.03	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
6	0.09	0.03	0.07	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
7	0.09	0.02	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
8	0.10	0.02	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
9	0.11	0.02	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
10	0.11	0.02	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
11	0.12	0.02	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
12	0.13	0.02	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
13	0.14	0.02	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
14	0.14	0.02	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
15	0.15	0.02	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
16	0.16	0.02	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
17	0.16	0.01	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
18	0.17	0.01	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
19	0.18	0.01	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
20	0.18	0.01	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
21	0.19	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
22	0.20	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
23	0.20	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
24	0.21	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
25	0.22	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
26	0.22	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
27	0.23	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
28	0.24	0.01	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
29	0.24	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
30	0.25	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
31	0.26	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

POS ^E PT*	FlowRate	Post Devolution Exceed	Pro Devolo Excess	olst post clatt pre	015H00517015H018	olst post 1000 01st pre	Passfall
	`	9051	9 ¹⁰	0/6ET *	0/6ET *	0/6E7 P05	
32	0.26	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
33	0.27	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
34	0.28	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
35	0.28	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
36	0.29	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
37	0.30	0.01	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
38	0.30	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
39	0.31	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
40	0.32	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
41	0.33	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
42	0.33	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
43	0.34	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
44	0.35	0.00	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
45	0.35	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
46	0.36	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
47	0.37	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
48	0.37	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
49	0.38	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
50	0.39	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
51	0.39	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
52	0.40	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
53	0.41	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
54	0.41	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
55	0.42	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
56	0.43	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
57	0.43	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
58	0.44	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
59	0.45	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
60	0.45	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
61	0.46	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
62	0.47	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
63	0.47	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
64	0.48	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
65	0.49	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
66	0.50	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
67	0.50	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
68	0.51	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
69	0.52	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
70	0.52	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
71	0.53	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

POS ^{PT*}					015H P05 7015H P18	o, Et POST 71000 SET PE	pastral
72	0.54	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
73	0.54	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
74	0.55	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
75	0.56	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
76	0.56	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
77	0.57	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
78	0.58	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
79	0.58	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
80	0.59	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
81	0.60	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
82	0.60	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
83	0.61	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
84	0.62	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
85	0.62	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
86	0.63	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
87	0.64	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
88	0.64	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
89	0.65	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
90	0.66	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
91	0.66	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
92	0.67	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
93	0.68	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
94	0.69	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
95	0.69	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
96	0.70	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
97	0.71	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
98	0.71	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
99	0.72	0.00	0.00	TRUE	FALSE	FALSE	Pass- Qpost Above Flow Control Upper Limit

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Pre-Development-poc3.out time stamp: 1/31/2019 6:13:00 PM

DISCH	IARGE	Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line					
BirNumber	Discharge Page	humber of Periods	Tota Periods Exceeding	Percent ime Exceeded			
Birt	Dischie	Number	Total Perior	percent TIL			
1	0.05	7	316	0.083			
2	0.05	5	309	0.081			
3	0.06	8	304	0.079			
4	0.07	17	296	0.077			
5	0.07	15	279	0.073			
6	0.08	12	264	0.069			
7	0.09	6 7	252	0.066			
8	0.09	5	246 239	0.064 0.062			
10	0.10	16	239	0.062			
11	0.11	15	218	0.057			
12	0.12	21	203	0.053			
13	0.13	4	182	0.048			
14	0.13	13	178	0.047			
15	0.14	6	165	0.043			
16	0.15	4	159	0.042			
17	0.15	1	155	0.040			
18	0.16	9	154	0.040			
19	0.17	5	145	0.038			
20	0.18	3	140	0.037			
21 22	0.18	9	137 128	0.036			
22	0.19	4	120	0.033			
23	0.20	5	120	0.032			
25	0.20	5	117	0.031			
26	0.22	5	112	0.029			
27	0.22	6	107	0.028			
28	0.23	6	101	0.026			
29	0.24	10	95	0.025			
30	0.24	1	85	0.022			
31	0.25	0	84	0.022			
32	0.26	3	84	0.022			
33 34	0.26	0	81	0.021			
34 35	0.27	1 2	81 80	0.021			
35	0.28	3	78	0.021			
37	0.20	1	75	0.020			
38	0.30	2	74	0.019			
39	0.30	3	72	0.019			
40	0.31	2	69	0.018			
41	0.32	3	67	0.018			
42	0.32	4	64	0.017			
43	0.33	1	60	0.016			
44	0.34	2	59	0.015			
45	0.35	3	57 54	0.015			
46 47	0.35	2	54	0.014 0.014			
47	0.36	0 2	52	0.014			
48 49	0.37	2	52 50	0.014			
50	0.37	2	48	0.013			
51	0.39	0	46	0.013			
	0.09	U	+0	0.012			

BIRNUNDES	Discharge Rate	NUMBER OF Pailods	Total Pairos Exceating	Parcent Time Etcaeded
NUMU	auge	10 ¹	NOS FL	met
Bin	dische	iniper	Perio	ant
		40.	10tal	0 et Ce
52	0.39	1		0.012
53	0.40	2	45	0.012
54	0.41	1	43	0.011
55	0.41	1	42	0.011
56	0.42	0	41	0.011
57	0.43	2	41	0.011
58	0.43	1	39	0.010
59	0.44	0	38	0.010
60	0.45	2	38	0.010
<u>61</u> 62	0.45	3	36 33	0.009 0.009
63	0.46	2	33	0.009
64	0.47	1	30	0.008
65	0.48	4	29	0.008
66	0.49	2	25	0.000
67	0.49	1	23	0.006
68	0.50	0	20	0.006
69	0.51	2	22	0.006
70	0.51	1	20	0.005
71	0.52	0	19	0.005
72	0.53	1	19	0.005
73	0.54	1	18	0.005
74	0.54	0	17	0.004
75	0.55	1	17	0.004
76	0.56	0	16	0.004
77	0.56	0	16	0.004
78	0.57	1	16	0.004
79	0.58	1	15	0.004
80	0.58	0	14	0.004
81	0.59	2	14	0.004
82	0.60	2	12	0.003
83	0.60	1	10	0.003
84	0.61	1	9	0.002
85	0.62	0	8	0.002
86	0.62	1	8	0.002
87	0.63	1	7	0.002
88	0.64	0	6	0.002
89	0.64 0.65	0	6	0.002
90			6	0.002 0.002
91 92	0.66	0	6 6	0.002
92	0.67	0	6	0.002
93	0.68	1	6	0.002
95	0.68	0	5	0.002
96	0.69	0	5	0.001
97	0.70	1	5	0.001
98	0.71	0	4	0.001
99	0.71	0	4	0.001
100	0.72	0	4	0.001
End of Data				

file name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\Poc-3\17046-Post-Development-poc3-1224.out time stamp: 1/31/2019 6:39:03 PM

DISC	HARGE	Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line					
			Kota Periods Exceeding	Percent ime Etceeded			
,	Dischauge Rate	Number of Pariods	eeding	Redec			
Bir Number	P P P	Pert	Exce	EtCo			
Ann.	nator	a d'	:005	TIME			
Bill	0 ^{isci}	umbe	, 9 ⁰	ent			
	· ·	120	10 ¹⁰¹	peru			
1	0.05	17	179	0.047			
2	0.05	22	162	0.042			
3	0.06	11	140	0.037			
4	0.07	9	129	0.034			
5	0.07	13 9	120 107	0.031 0.028			
7	0.08	5	98	0.028			
8	0.09	9	93	0.020			
9	0.10	5	84	0.024			
10	0.11	2	79	0.021			
11	0.11	7	77	0.020			
12	0.12	3	70	0.018			
13	0.13	5	67	0.018			
<u> </u>	0.13 0.14	3 0	62 59	0.016 0.015			
16	0.14	2	59	0.015			
17	0.15	4	57	0.015			
18	0.16	2	53	0.014			
19	0.17	1	51	0.013			
20	0.18	3	50	0.013			
21	0.18	2	47	0.012			
22	0.19	1	45	0.012			
23 24	0.20	2 0	44 42	0.011 0.011			
25	0.20	1	42	0.011			
26	0.22	4	41	0.011			
27	0.22	3	37	0.010			
28	0.23	2	34	0.009			
29	0.24	2	32	0.008			
30	0.24	2	30	0.008			
31 32	0.25	1	28 27	0.007 0.007			
33	0.26	2 0	25	0.007			
34	0.20	3	25	0.007			
35	0.28	1	22	0.006			
36	0.28	1	21	0.005			
37	0.29	2	20	0.005			
38	0.30	1	18	0.005			
39	0.30	1	17	0.004			
40 41	0.31 0.32	<u> </u>	16 15	0.004 0.004			
41 42	0.32	0	15	0.004			
43	0.33	1	15	0.004			
44	0.34	1	14	0.004			
45	0.35	0	13	0.003			
46	0.35	1	13	0.003			
47	0.36	1	12	0.003			
48 49	0.37 0.37	3	11 8	0.003 0.002			
50	0.37	0	8	0.002			
51	0.39	0	8	0.002			
	0.00	0	5	0.002			

		Number of Periods	Total Pairods Excepting	Parcent Time Exceeded
Bin Number	Discharge Rate	:005	e ^{go} C'	Loool -
Nei	Ro	, Per	<***CC	6tu
NUIT	and a start a s	10	NOS T	in ^e
BIN	isch	Noe.	perio	AN INCOMENT
Ŷ	Qu	NUIT	Jan Y	rcel.
		`	101	୧ ^୦ .
52	0.39	0		
53	0.40	0	8	0.002
54	0.41	0	8	0.002
55	0.41	0	8	0.002
56	0.42	0	8	0.002
57	0.43	1	8	0.002
58	0.43	0	7	0.002
59	0.44	0	7	0.002
60	0.45	0	7	0.002
61	0.45	0	7	0.002
62	0.46	1	7	0.002
63	0.47	0	6	0.002
64	0.47	1	6	0.002
65	0.48	0	5	0.001
66	0.49	1	5	0.001
67	0.49	0	4	0.001
68	0.50	0	4	0.001
69	0.51	0	4	0.001
70	0.51	0	4	0.001
71	0.52	0	4	0.001
72	0.53	0	4	0.001
73	0.54	0	4	0.001
74	0.54	1	4	0.001
75	0.55	0	3	0.001
76	0.56	0	3	0.001
77	0.56	0	3	0.001
78	0.57	0	3	0.001
79	0.58	2	3	0.001
80	0.58	0	1	0.000
81	0.59	0	1	0.000
82	0.60	0	1	0.000
83	0.60	0	1	0.000
84	0.61	0	1	0.000
85	0.62	1	1	0.000
86	0.62	0	0	0.000
87	0.63	0	0	0.000
88	0.64	0	0	0.000
89	0.64	0	0	0.000
90	0.65	0	0	0.000
91	0.66	0	0	0.000
92	0.66	0	0	0.000
93	0.67	0	0	0.000
94	0.68	0	0	0.000
95	0.68	0	0	0.000
96	0.69	0	0	0.000
97	0.70	0	0	0.000
98	0.71	0	0	0.000
99	0.71	0	0	0.000
100	0.72	0	0	0.000
End of Data		6	0	0.000
			1	

END OF STATISTICS ANALYSIS

Underdrain and Drawdown Results

The following table summarizes the underdrain coefficients used for each of the BMP units and translates the C factor coefficient to an equivalent round orifice diameter based on 1/16th inch increments. The drawdown equations are based on standard falling head drawdown theory. The primary drawdown number of interest is the surface drawdown based on vector concerns. The various soil and gravel storage layer calculations consider the void ratio and porosity of the respective layer. It should be noted that these drawdown calculations only consider the volume of water within the bioretention units. If the bioretention unit utilizes any storage above the berm height, then that storage drawdown is in addition to the values shown in the table below. Those calculations, if present, are shown elsewhere in the report. The derivation and explanation of the equations used to determine the values displayed in the chart are discussed in the following two sections of this portion of the report.

Sub Cat Name*	LID Process*	LID Area (sf)*	Orifice D (1/16in)	Orifice D (in)	UD C factor*	T surf (in)*	T soil (in)*	T store (in)*	n (soil)*	e (store)*	Drawdown surface (hr)	Drawdown Soil (hr)	Drawdown Storage (hr)	Drawdown total (hr)
BMP-H	BMP-H	1993.16	10	0.625	0.0593247883218596	6	18	60	0.4	0.67	11.5	15.0	102.1	128.6
BMP-A	BMP-A	1688.42	8	0.5	0.0484924601857531	6	18	48	0.4	0.67	15.2	20.3	111.0	146.5
BMP-B1	BMP-B1	1362	11	0.6875	0.108261220456644	6	18	12	0.4	0.67	10.1	16.2	22.2	48.5
BMP-B2	BMP-B2	818.93	13	0.8125	0.246638443787257	24	12	72	0.4	0.67	14	N/A	N/A	N/A
BMP-C	BMP-C	144.01	0	0	0	6	18	48	0.4	0.67	21	N/A	N/A	N/A
BMP-D	BMP-D	334.98	0	0	0	6	18	36	0.4	0.67	21	N/A	N/A	N/A
BMP-F	BMP-F	620	0	0	0	6	18	48	0.4	0.67	21	N/A	N/A	N/A
BMP-I	BMP-I	1799.03	9	0.5625	0.059777168819766	6	18	60	0.4	0.67	11.4	14.9	101.3	127.6
BMP-J	BMP-J	3131.96	11	0.6875	0.0535369598639641	6	18	60	0.4	0.67	12.7	16.6	113.2	142.5

The character * in the column heading indicates that the values was read directly from the SWMM inp file. Assume: orifice coefficient $C_{\circ} = 0.61$, void ratio for surface = 1.0, centroid of underdrain orifice is located at h=0

Inp File Name: V:\17\17046\Engineering\Current\GPIP\Storm\SWMM\current Itteration\17046-Post-Development-pocl.inp
File Date:

Underdrain C Factor Equations

Based on the slotted drain example in the SWMM Drain Advisor (EPA SWMM 5.1 Help/Contents/Reference/Special Dialog Forms/LID Editors/LID Control Editor/LID Drain System/Drain Advisor) the underdrain coefficient C is the ratio of the orifice area (total slot area) to the LID area times a constant (60,000).

SWMM Ex: If the drain consists of slotted pipes where the slots act as orifices, then the drain exponent would be 0.5 and the drain coefficient would be 60,000 times the ratio of total slot area to LID area. For example, drain pipe with five 1/4" diameter holes per foot spaced 50 feet apart would have an area ratio of 0.000035 and a drain coefficient of 2.

The 60,000 constant in the above example corresponds to the combined constants in the standard orifice equation:

(Standard Orifice Equation)

$$q = C_o A_o \sqrt{2g} \sqrt{h}$$
 (cfs)

and

(SWMM Underdrain Equation (per unit area))

 $q = q/A_{LID}$

or

$q = C_o A_o / A_{LID} \sqrt{2g} \sqrt{h} (cfs/sf)$

With a Co=0.6 and converting $\sqrt{2g}$ to units of inches and hours the constant becomes 60,046.

So the underdrain C factor per unit area of the LID becomes:

$C=60,046 A_o/A_{LID} (in^{1/2}/hr)$

and

 $q = C^* h^{1/2}$

Drawdown Equations

The drawdown equations presented in the chart are the drawdown times for the respective layers within the bioretention unit (only). If the bioretention unit includes storage ponding above the berm height, then the drawdown time for the storage portion is in addition to the values shown in the chart. Those calculations (if present) are shown elsewhere in the report. For most cases the storage drawdown time will be comparatively short as compared to the bioretention drawdown times.

To derive a general formula that relates drawdown time for each layer of the bioretention unit in terms of the SWMM C factor, we set the change in water volume with respect to time equal to the standard orifice equation (found in the County Hydraulics manual):

$$q = \frac{dh}{dt} nAp = CoAo\sqrt{2gh}$$

Where n = porosity of the layer, A_P = area of the BMP unit, Co = orifice coefficient, Ao = area of the orifice, and g = gravity constant. The porosity n for the surface layer is 1.0, and the values for the soil and storage layers read from the SWMM LID definitions.

Solving the definite integral from h1 to h2

$$\int_{h=h1}^{h=h2} h^{-0.5} dh = \int_{t=0}^{t=T} \frac{CoAo\sqrt{2g}}{nAp} dt$$
$$2(\sqrt{h2} - \sqrt{h1}) = \frac{CoAo\sqrt{2g}}{nAp} (T)$$
$$Or$$
$$2n(\sqrt{h2} - \sqrt{h1}) = C (T)$$

where:
$$C = \frac{CoAo\sqrt{2g}}{Ap}$$
 (in^{^1/2}/hr)

Solving for T:

$$T = \frac{2n(\sqrt{h2} - \sqrt{h1})}{c} (hr)$$

Where h2(in) is the total beginning head above the underdrain orifice at t=0 and h1(in) is the total ending head above the orifice at t=T. Ex: h2 for surface = depth of gravel storage plus depth of soil layer plus berm height, and h1 for surface = depth of gravel storage plus depth of soil layer.

2 EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) 3 _____ 4 5 6 ****** 7 Rainfall File Summary 8 StationFirstLastRecordingPeriodsPeriodsIDDateDateFrequencyw/PrecipMissingMalfunc. Station First 9 10 11 _____ Escondido 09/24/1964 05/23/2008 60 min 7025 0 0 12 13 14 15 16 NOTE: The summary statistics displayed in this report are 17 based on results found at every computational time step, 18 not just on results from each reporting time step. 19 20 21 ***** 22 Analysis Options 23 ***** Flow Units CFS 2.4 25 Process Models: 26 Rainfall/Runoff YES RDII NO 27 2.8 Snowmelt NO 29 Groundwater NO 30 Flow Routing NO 31 Water Quality NO 32 Infiltration Method GREEN_AMPT Starting Date 09/24/1964 13:00:00 33 Ending Date 05/23/2008 22:00:00 34 Antecedent Dry Days 0.0 35 Report Time Step 01:00:00 36 37 Wet Time Step 01:00:00 38 Dry Time Step 01:00:00 39 $4 \cap$ 41 Volume Depth Runoff Quantity Continuity 42 acre-feet inches _____ 43 _____ 359.383 44 Total Precipitation 611.120 45 6.237 10.605 Evaporation Loss 46 Infiltration Loss 310.275 527.615 47 54.145 92.072 Surface Runoff 0.000 0.000 48 Final Storage -3.137 49 Continuity Error (%) 50 51 52 Volume Volume Flow Routing Continuity acre-feet 53 10^6 gal 54 _____ 55 Dry Weather Inflow 0.000 0.000 56 Wet Weather Inflow 54.145 17.644 0.000 57 Groundwater Inflow 0.000 0.000 58 0.000 RDII Inflow 0.000 59 0.000 External Inflow External Outflow 54.145 17.644 60 0.000 0.000 0.000 0.000 61 Flooding Loss 0.000 Evaporation Loss 0.000 62 63 0.000 Exfiltration Loss 64 Initial Stored Volume 0.000 65 Final Stored Volume 0.000 0.000 66 0.000 Continuity Error (%) 67 68 ***** 69

1

 Subcatchment Runoff Summary

			Total Total	Total Peak Ru	Total noff	Total	Total	
			Precip Runoff	Runon Runoff C	Evap oeff	Infil	Runoff	
Subcatch gal			in	in	in	in	in	10^
DMA-9B 1.33	0.50	0.125	611.12	0.00	6.23	549.48	76.08	
DMA-6			611.12	0.00	6.66	557.56	59.50	
0.43 DMA-7	0.20	0.097	611.12	0.00	6.61	556.67	61.45	
2.85 DMA-8	1.29	0.101	611.12	0.00	6.75	558.94	56.39	
3.90	1.86	0.092						
DMA-6A 0.35	0.15	0.098	611.12	0.00	8.01	553.98	59.65	
DMA-9A 4.06	0.61	0.341	611.12	0.00	24.52	421.38	208.68	
DMA-9			611.12	0.00	6.23	549.11	76.73	
0.30 DMA-8A	0.11	0.126	611.12	0.00	25.05	424.09	200.10	
4.42	0.69	0.327						

1								
1 2	[TITLE] ;;Project Title/Not	es						
3								
4 5	[OPTIONS] ;;Option	Value						
6	FLOW_UNITS	CFS						
7 8	INFILTRATION FLOW_ROUTING	GREEN_AME KINWAVE	РΤ					
9	LINK_OFFSETS	DEPTH						
10	MIN_SLOPE	0						
11 12	ALLOW_PONDING SKIP_STEADY_STATE	NO NO						
13		NO						
14	START_DATE	09/24/196	54					
15 16	START_TIME REPORT_START_DATE	13:00:00 09/24/196	54					
17	REPORT_START_TIME	13:00:00						
18 19	END_DATE END TIME	05/23/200 22:00:00	8					
20	SWEEP START	01/01						
21	SWEEP_END	12/31						
22 23	DRY_DAYS REPORT STEP	0 01:00:00						
24	WET_STEP	01:00:00						
25	DRY_STEP	01:00:00						
26 27	ROUTING_STEP	0:01:00						
28	INERTIAL_DAMPING	PARTIAL						
29 30	NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION							
31	VARIABLE_STEP	0.75						
32 33	LENGTHENING_STEP MIN SURFAREA	0 12.557						
34	MAX_TRIALS	8						
35	HEAD_TOLERANCE	0.005						
36 37	SYS_FLOW_TOL LAT_FLOW_TOL	5 5						
38	MINIMUM_STEP	0.5						
39 40	THREADS	1						
41	[EVAPORATION]							
42 43	;;Data Source ;;	Parameters						
44	MONTHLY	0.07 0.1	0.13	0.17	0.19	0.22	0.24 0.22	
45	0.19 0.13 0.0 DRY_ONLY							
46								
47 48	[RAINGAGES] ;;Name	Format T	ntariol	40P	Cor	urce		
49	;;							
50	Escondido dat\Escondido ALERT					LE	"R:\Rain gage	ż
51	uat Esconatão ALERI	station.dat"	ESCONATA(U TN				
52	[SUBCATCHMENTS]		<u> </u>	1.1		7	o -	
53	;;Name Width %Slope	Rain Gage CurbLen	SnowPa	clet ck		Area	%Imperv	
54	;;							
55	 DMA-7A					0.4151	63	
	45.10181306 3.4	0						
56	DMA-5B 25.40225944 0.2	Escondido 0	POC	C-1		0.2193	48	
57	DMA-8	Escondido	BMI	P-H		0.99984	3 70	
58	300.0812733 0.5 DMA-9A		RMI	P−I		1.6139	67	
	239.1535544 0.5	0						
59	DMA-9B 8749.11781 0.1	Escondido 0	BMI	P-I		0.2571	67	
60	DMA-10A	U Escondido	BMI	P−J		1.156	69	

	258.8174468 1.4	0				
61	DMA-10B 246.2917284 4	Escondido 0	BME	P-J	0.876	69
62	DMA-11A 284.1802622 4	Escondido O	Poc	2-1	0.4372	0
63	DMA-11B 207.7634342 4.1	Escondido 0	Poc	2-1	0.8487	0
64	BMP-H	Escondido	POC	2-1	0.04575	56657 0
65	19 O BMP-I	0 Escondido	POC	2-1	0.0413	0
66	36 O BMP-J	0 Escondido	POC	2-1	0.0719	0
67	40 0	0		_		-
68	[SUBAREAS]					
69	;;Subcatchment RouteTo PctRout	ted		S-Imperv	S-Perv	PctZero
70	;;					
71	DMA-7A OUTLET	0.012	0.1	0.05	0.1	25
72	DMA-5B OUTLET	0.012	0.1	0.05	0.1	25
73	DMA-8	0.012	0.1	0.05	0.1	25
74	OUTLET DMA-9A	0.012	0.1	0.05	0.1	25
75	OUTLET DMA-9B	0.012	0.1	0.05	0.1	25
76	OUTLET DMA-10A	0.012	0.1	0.05	0.1	25
77	OUTLET DMA-10B	0.012	0.1	0.05	0.1	25
78	OUTLET DMA-11A	0.012	0.1	0.05		25
79	OUTLET	0.012		0.05		25
	DMA-11B OUTLET					
80	BMP-H OUTLET	0.012		0.05		25
81	BMP-I OUTLET	0.012	0.1	0.05	0.1	25
82	BMP-J OUTLET	0.012	0.1	0.05	0.1	25
83 84	[INFILTRATION]					
85 86	;;Subcatchment;;	Suction	Ksat 	IMD		
87	DMA-7A	6	0.075	0.32		
88 89	DMA-5B DMA-8	9 6	0.01875 0.075	0.33 0.32		
90 91	DMA-9A DMA-9B	6 9	0.075 0.01875	0.32 0.33		
92	DMA-10A	6	0.075			
93	DMA-10B	9	0.01875	0.33		
94	DMA-11A	9 6	0.01875	0.33		
95 96	DMA-11B BMP-H	6	0.075 0.1	0.32		
97	BMP-I	6	0.1	0.32		
98	BMP-J	6	0.1	0.32		
99						
100	[LID_CONTROLS]					
101	;;Name		Parameters			
102	;;					
103 104	BMP-A BMP-A	BC SURFACE	6	0.01	0	0
104	5 BMP-A	SOIL	18	0.4	0.2	0.1
105	5 5 BMP-A	1.5 STORAGE	12	0.4		0
TUO	DME -A	JUKAGL		0.07	0.0	U

107	BMP-A		DRAIN	0.080863225	8168262	0.5		3		6
108 109	BMP-F		BC							
110	BMP-F 5		SURFACE	6	0.01		0		0	
111	BMP-F 5	5	SOIL 1.5	18	0.4		0.2		0.1	
112 113 114	BMP-F BMP-F	5	STORAGE DRAIN	12 0.114781675				3	0	6
115 116	BMP-H BMP-H 5		BC SURFACE	6	0.01		0		0	
117	BMP-H 5	5	SOIL 1.5	18	0.4		0.2		0.1	
118 119 120	BMP-H BMP-H		STORAGE DRAIN	60 0.059324788				3	0	6
121 122	BMP-I BMP-I 5		BC SURFACE	6	0.01		0		0	
123	BMP-I 5	5	SOIL 1.5	18	0.4		0.2		0.1	
124 125 126	BMP-I BMP-I		STORAGE DRAIN	60 0.059777168					0	6
127 128	BMP-J BMP-J 5		BC SURFACE		0.01		0		0	
129	BMP-J 5	5	SOIL 1.5	18			0.2		0.1	
130 131 132	BMP-J BMP-J		STORAGE DRAIN	60 0.053536959	0.67 8639641	0.5	0.5	3	0	6
133 134 135	[LID_USAGE] ;;Subcatchm FromImp ;;	lent	LID Process RptFile	Num.	ber Area	a Dra:	Wic inTo 	dth 		InitSat
136			 ВМР-Н							0
137	0 BMP-I	0		17046\Engine 1				Storm	ı∖SWMM	1\BMP-H.txt" 0
138	0 BMP-J	0	BMP-J	17046\Engine 1	3131	L.96	0			0
139	0	0	"V:\17\	17046\Engine	ering\Cur	rrent	t\GPIP\\$	Storm	ı∖SWMM	I\BMP-J.txt"
140 141	[OUTFALLS] ;;Name To			Туре				Gat	ed	Route
142 143	 POC-1		0							-
144	NO									
145 146	[CURVES] ;;Name			X-Value						
147 148 149 150	;; Sto-BMP-C Sto-BMP-C Sto-BMP-C		Storage		147 147 147 147					
151 152 153 154 155	; STO-BMP-E STO-BMP-E STO-BMP-E ;		Storage	0 1.5 272	272 272 3					
155 156 157 158 159	, Sto-BMP-G Sto-BMP-G Sto-BMP-G		Storage	0 1.5 3	356 356 356					

ONTROLS NO UBCATCHMENTS A	LL	
ODES ALL		
INKS ALL		
TAGS]		
MAP]		
	000 0 000 12	2500.000 10000.000
nits None		
COORDINATES]		
;Node	X-Coord	Y-Coord
;		
OC-1	9268.891	2463.199
VEDTICE		
VERTICES]	V_Coord	V-Coord
, LILIIK	X-Coord	1-COOLU
/		
Polygons]		
;Subcatchment	X-Coord	Y-Coord
;		
MA-7A	2674.190	7144.259
MA-5B	5991.168	8056.919
MA-5B	5991.168 5991.168	8056.919
MA-5B	5991.168	8056.919
	5991.168	
	4156.035	
MA-9A		7193.327
DMA-9A DMA-9B	5107.949	7193.327 7801 766
MA-10A	5647.694	7801.766 6162.905
MA-10B	6462.218	7124.632
	8002.944	
	6481.845	
BMP-H	3243.376	5083.415
3MP-I	3115.800	6270.854
MP-J	6216.879	5750.736
[SYMBOLS]		
;Gage	X-Coord	Y-Coord
; lscondido	3901 291	9418.665
ISCONULIO	2201.221	2410.000

```
[POC-2 Pre-Development]
 1
 2
     ;;Project Title/Notes
 3
 4
    [OPTIONS]
    ;;Option
 5
                          Value
    FLOW_UNITS
 6
                          CFS
                        GREEN_AMPT
   INFILTRATION
FLOW_ROUTING
 7
                         KINWAVE
 8
                         DEPTH
 9 LINK OFFSETS
10 MIN_SLOPE
                          0
11ALLOW_PONDINGNO12SKIP_STEADY_STATENO
13

      14
      START_DATE
      09/24/1964

      15
      START_TIME
      13:00:00

      16
      REPORT_START_DATE
      09/24/1964

      17
      REPORT_START_TIME
      13:00:00

      18
      END_DATE
      05/23/2008

      10
      END_TIME
      22:00:00

      18
      END_DATE
      05/23/2008

      19
      END_TIME
      22:00:00

      20
      SWEEP_START
      01/01

      21
      SWEEP_END
      12/31

      22
      DBX_DAXC
      1

22 DRY DAYS
                          0
                         01:00:00
23 REPORT STEP
24 WET_STEP
25 DRY_STEP
                         00:30:00
                          24:00:00
26 ROUTING_STEP
                          0:00:30
27
28 INERTIAL_DAMPING
                          PARTIAL
29 NORMAL_FLOW_LIMITED BOTH
30 FORCE_MAIN_EQUATION H-W
31VARIABLE_STEP0.7532LENGTHENING_STEP033MIN_SURFAREA12.55734MAX_TRIALS8
34MAX_TRIALS35HEAD_TOLERANCE0.00535TOL5
36 SYS_FLOW_TOL
37 LAT_FLOW_TOL
                          5
38 MINIMUM_STEP
                         0.5
39 THREADS
                           1
40
41 [EVAPORATION]
42 ;;Data Source Parameters
43 ;;-----
44 MONTHLY 0.07 0.1 0.13 0.17 0.19 0.22 0.24 0.22 0.19 0.13
    0.09 0.06
45 DRY_ONLY
                     NO
46
47
    [RAINGAGES]
48 ;;Name Format Interval SCF Source
    ;;----- ----- ------ ------
49
50 Escondido INTENSITY 1:00 1.0 FILE "R:\Rain gage dat\Escondido
    ALERT Station.dat" Escondido IN
51
52 [SUBCATCHMENTS]
53 ;;Name Rain Gage Outlet Area %Imperv Width %Slope
    CurbLen SnowPack
     54
     _____
55 DMA-2
15.5 0
56 DMA-4
3.5 0
                     Escondido
                                  POC-2 1.2514 0 121.2805182
                  Escondido POC-2 0.4678 0 42.34931602
57
58 [SUBAREAS]
59 ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo
    PctRouted
60 ;;-----
     _____
                     0.012 0.12 0.05 0.1
                                                                   25
61 DMA-2
                                                                               OUTLET
```

;;Subcatchment;;	Suction	Ksat	IMD			
DMA-2	6	0.1	0.32			
DMA-4	6	0.075	0.32			
[OUTFALLS] ;;Name ;;	Elevation	Туре	Stage Dat	ta	Gated	Route To
;; POC-2					 NO	
;;Reporting Opt: INPUT NO CONTROLS NO SUBCATCHMENTS AI NODES ALL LINKS ALL						
[MAP] DIMENSIONS -2500 Units None	0.000 0.000	12500.000) 10000.000			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node	X-Coord		Y-Coord			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;;	X-Coord		Y-Coord			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;; POC-2 [VERTICES] ;;Link	X-Coord 436.703 X-Coord		Y-Coord 9175.662 Y-Coord			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;; POC-2 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment	X-Coord 436.703 X-Coord X-Coord		Y-Coord 9175.662 Y-Coord 			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;; POC-2 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-2	X-Coord 436.703 X-Coord X-Coord		Y-Coord 9175.662 Y-Coord 			
[MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;; POC-2 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-2 DMA-4 [SYMBOLS] ;;Gage	X-Coord 436.703 X-Coord X-Coord 1565.260 2419.038 X-Coord		Y-Coord 9175.662 Y-Coord 6800.785 7517.174 Y-Coord			
<pre>[TAGS] [MAP] DIMENSIONS -2500 Units None [COORDINATES] ;;Node ;;</pre>	X-Coord 436.703 X-Coord X-Coord 1565.260 2419.038 X-Coord		Y-Coord 9175.662 Y-Coord 6800.785 7517.174 Y-Coord			

1 2	[TITLE] ;;Project Ti	itle/Note	es						
3 4 5	[OPTIONS]		Value						
6	FLOW_UNITS		CFS						
7	INFILTRATION		GREEN_A						
8 9	FLOW_ROUTING		KINWAVE DEPTH						
10	MIN_SLOPE		0						
11	ALLOW_PONDIN		NO						
12 13	SKIP_STEADY_	_STATE	NO						
13 14	START_DATE		09/24/1	964					
15	START_TIME		13:00:0						
16	REPORT_START		09/24/1						
17	REPORT_START	[_TIME	13:00:0						
18 19	END_DATE END TIME		05/23/2 22:00:0						
20	SWEEP_START		01/01	0					
21	SWEEP_END		12/31						
22	DRY_DAYS		0	0					
23 24	REPORT_STEP WET_STEP		01:00:0 00:30:0						
25	DRY_STEP		24:00:0						
26	ROUTING_STEE	2	0:00:30						
27	דאובטיידאו האו	(DTNC	זגדייסגם						
28 29	INERTIAL_DAN NORMAL FLOW		PARTIAL BOTH						
30	FORCE_MAIN_E		H-W						
31	VARIABLE_STE		0.75						
32 33	LENGTHENING_		0 12.557						
34	MIN_SURFAREA MAX TRIALS	1	8						
35	HEAD_TOLERAN	ICE	0.005						
36	SYS_FLOW_TOI		5						
37	LAT_FLOW_TOI		5						
38 39	MINIMUM_STEE THREADS		0.5 1						
40	1111121120		-						
41	[EVAPORATION	-							
42 43	;;Data Sourc	ce	Parameters						
43	MONTHLY				0.17	0.19	0.22	0.24	0.22
	0.19 0.13	3 0.0	9 0.06						
45	DRY_ONLY		NO						
46 47	[RAINGAGES]								
48	;;Name		Format	Interval	SCF	S	ource		
49	;;								
50	Escondido		INTENSITY Station.dat			E'.	ILE	"R:\R	ain gage
51		IO ADDRI	Station.dat	ESCONAL					
52	[SUBCATCHMEN	NTS]							
53	;;Name Width	0.01	Rain Gage	0	Dutlet		Area	010	Imperv
54	width ••	%Slope	CurbLen	Snowe	Раск 				
ΓU									
55	DMA-2b		Escondido	ç	Sto-2		1.17302	27365 6	7
56	105.9345399 BMP-B2		0 Escondido	E	POC-2		0.0188	0	
	BMP-B2 24	0	0						
57	BMP-B1	0	Escondido	0	Sto-Surf-B	MP-B	0.03120	57218 0	
58	24 DMA-4b		0 Escondido	Т	3MP-D		0.3345	7	5
0.0	46.46938481		0	Ľ			0.0040		<u> </u>
59	BMP-D		Escondido	E	3mp-B2		0.00769	9 0	
60	6	0	0						

[SUBAREAS] ;;Subcatchmer RouteTo I ;;	PctRout	ed					Zero
					0 1	0 5	
DMA-2b OUTLET		0.017	0.04	0.05	0.1	25	
BMP-B2		0.012	0.09	0.05	0.1	25	
OUTLET		0.012	0.05	0.00	0.1	20	
BMP-B1		0.012	0.09	0.05	0.1	25	
OUTLET							
DMA-4b		0.012	0.1	0.05	0.1	25	
OUTLET							
BMP-D OUTLET		0.01	0.09	0.1	0.05	25	
[INFILTRATIO	τl						
;;Subcatchme		Suction	Ksat	IMD			
;;							
DMA-2b		6	0.075	0.32			
BMP-B2		6	0.1				
BMP-B1		6	0.1	0.32			
DMA-4b		6	0.075	0.32			
BMP-D		6	0.1	0.32			
[LID_CONTROLS	5]						
;;Name		Type/Layer	Parameters				
;;							
BMP-B1		BC					
BMP-B1		SURFACE	6	0.01	0	0	
5							
BMP-B1		SOIL	18	0.4	0.2	0.1	-
5 !	5	1.5					
BMP-B1		STORAGE	12	0.67	0.0	0	
BMP-B1		DRAIN	0.10826122	0456644 0	.5	3	6
BMP-B2		BC					
BMP-B2		SURFACE	24	0.01	0	0	
5							
BMP-B2		SOIL	12	0.4	0.2	0.1	-
	5	1.5					
BMP-B2		STORAGE	72	0.67	0.373	0	
BMP-B2		DRAIN	0.24663844	3787257 0	.5	48	6
BMP-D		BC					
BMP-D		SURFACE	6	0.01	0	0	
5							
BMP-D	_	SOIL	18	0.4	0.2	0.1	-
	5	1.5	2.6	0 65	0.07	_	
BMP-D		STORAGE	36		0.98	0	
BMP-D		DRAIN	0	0.5	0	6	
[LID_USAGE]			-		• -		- ··-
;;Subcatchme	lt D	LID Process	Nu	mber Area	Wid	lth	InitSat
FromImp 7	LoPerv	RptFile		I 			
;;							
 BMP-B2		 BMP-B2	1	818.9	3 0		0
	L			olo.s eering\Curr.		torm\ CMM	
UBMP-B1	L			1362.			
)			.eering\Curr			
U U BMP-B2	j	V • \ ⊥ / \.	TIOHO/EIIGTU	eer riig (cuff	EIIC (GEIE (S		חאוזמ / חויד – אוז
			1	334.9	0		0
BMP-D)	BMP-D	Ţ	334.9	0 U		U
0 (J						
[OUTFALLS]							
;;Name		Elevation	Twpe	Stade Dat	a	Gatod	Pou
		LICVALION	TAPE	staye Dal	a	Galeu	ROU
Го							

POC-2		0	FREE						
NO Out-to-BMP-I	В1	0	NORM	AL			NC)	
BMP-B1 Out-to-BMP-B	В2	0	NORM	AL			NO)	
BMP-B2									
[STORAGE]			Maar		T !	Derth		0	_
;;Name Name/Params		N/A		Fevap		Psi	Shape Ksat	2	IMD
								-	
Sto-2 Sto-2		0	2.5 0		0 0		TABULAR		
Sto-3 Sto-3		0	2.5 0		0 0		TABULAR		
Sto-Surf-BM	P-B	0	0.5		0		TABULAR		
Storage-B Sto-4		0	0 2.5		1 0		TABULAR		
Sto-4			0		0				
[ORIFICES]									
		From Node CloseTin		To N	Iode		Туре		Offset
;;									
10		Sto-3		Sto-	- 4		SIDE		0
0.61 8	NO	0 Sto-2		Sto-	-3		SIDE		0
0.61 11	NO	0 Sto-2		Sto-	-3		SIDE		0.5
0.61	NO	0							
13 0.61	NO	Sto-3 0		Sto-	- 4		SIDE		1.5
17	NO	Sto-4 0		Out-	-to-E	MP-B1	SIDE		0
0.61 18	NO	Sto-4		Out-	to-E	MP-B1	SIDE		1.75
0.61	NO	0							
[WEIRS] ;;Name		From Node		To N	Iodo		Tuno		CrestHt
Qcoeff	Gated	EndCon		EndCoeff	-	Surchar	ge RoadW:	ldth	RoadSurf
7 3.33	NO	Sto-2 0		Sto-		YES	SIDEFI	WOL	2
9		Sto-3		Sto-	- 4		SIDEFI	LOW	2.25
3.33 12	NO	0 Sto-2			-3		SIDEFI	LOW	1.5
3.33	NO	0		0		YES			
14 3.33	NO	Sto-3 0		Sto- 0		YES	SIDEFI	LOM	2.236111
15 3.33	NO	Sto-Surf-BM		Out-		MP-B2 YES	TRANS	/ERSE	0
16		Sto-4		Out-	-to-E	BMP-B1	SIDEFI	MOL	2.25
3.33 19	NO	0 Sto-4		0 Out-		YES MP-B1	SIDEFI	JOW	2.236111
3.33	NO	0		0		YES			
[XSECTIONS]				~				-	2
		Shape Culvert		Geoml			Geom2	Geom	3
;;			_						
10		RECT_CLOSED		0.16667			0.25		0
8 11		RECT_CLOSED RECT_CLOSED					0.25 0.25	0 0	0 0

150	17	RECT_CLOSED	0.5	0.5	0
151	18	RECT_CLOSED	0.0833333	1.5	0
152	7	RECT_OPEN	1	1.75	0
	0				
153	9	RECT_OPEN	1	3	0
	0				
154	12	RECT_OPEN	0.25	0.25	0
	0				
155	14	RECT_OPEN	0.166667	1	0
	0				
156	15	RECT_OPEN	0.5	12	0
	0				
157	16	RECT_OPEN	1	3	0
	0				
158	19	RECT_OPEN	0.16667	2	0
	0				

[CURVES] ;;Name	Туре	X-Value	Y-Value
;; rate-1 rate-1	Rating	0 0.749	0 0
rate-1		0.75	0
rate-1 rate-1		0.792 0.833	0.237 0.671
rate-1		0.875	1.233
rate-1		0.917	1.898
rate-1		0.958	2.653
rate-1		1	3.48
;			
MWS-BMP-D	Storage	0	272
MWS-BMP-D		1 2	272 272
MWS-BMP-D		Z	212
; Storage-B	Storage	0	1362.22
Storage-B	beerage	0.5	1483.98
;			
Sto-1	Storage	0	0
Sto-1		0.18	8.5
Sto-1		0.37	23.135135
Sto-1		0.55	25.636363
Sto-1		0.73	23.150684
Sto-1 Sto-1		0.92 1.1	19.673913 16.454545
Sto-1		1.28	13.203125
Sto-1		1.47	9.5918367
Sto-1		1.65	5.1818181
Sto-1		1.84	0.8260869
;			
;2.5' dia 35.52' L			
Sto-2	Storage	0	0
Sto-2		0.25	46.48
Sto-2 Sto-2		0.5 0.75	34.32 64.08
Sto-2		1	43.92
Sto-2		1.25	68.88
Sto-2		1.5	43.92
Sto-2		1.75	64.08
Sto-2		2	34.32
Sto-2		2.25	46.48
Sto-2		2.5	0.08

203	Sto-2		2.5	0.08
204	;			
205	;2.5dia-160L			
206	Sto-3	Storage	0	0
207	Sto-3		0.25	210.4
208	Sto-3		0.5	155.2
209	Sto-3		0.75	288.8
210	Sto-3		1	200.8
211	Sto-3		1.25	310.4

212	Sto-3		1.5	200.8
213	Sto-3		1.75	288
214	Sto-3		2	156
215 216	Sto-3		2.25 2.5	208.8 0.8
210	Sto-3 ;		2.5	0.0
218	Sto-4	Storage	0	0
219	Sto-4) -	0.25	100.8
220	Sto-4		0.5	74.4
221	Sto-4		0.75	138.4
222	Sto-4		1	96
223 224	Sto-4 Sto-4		1.25 1.5	148.8 96
225	Sto-4		1.75	138.4
226	Sto-4		2	74.4
227	Sto-4		2.25	100.8
228	Sto-4		2.5	1.42109E-14
229 230	; Sto-5	Storage	0	0
231	Sto-5	Storage	0.2	11.7
232	Sto-5		0.4	25.25
233	Sto-5		0.6	33.83333333
234	Sto-5		0.8	33.25
235	Sto-5		1	29
236 237	Sto-5 Sto-5		1.2 1.4	24.25 19
238	Sto-5		1.6	12.6875
239	Sto-5		1.8	5.611111111
240	Sto-5		2	1.165
241	;		0	0
242 243	Sto-6 Sto-6	Storage	0 0.22	0 18.90909091
244	Sto-6		0.45	22.88888889
245	Sto-6		0.68	44.11764706
246	Sto-6		0.9	45.22222222
247	Sto-6		1.13	41.94690265
248 249	Sto-6 Sto-6		1.35 1.58	35.18518519 25.69620253
250	Sto-6		1.30	16.66666667
251	Sto-6		2.03	5.073891626
252	Sto-6		2.25	1.84444444
253				
254 255	[REPORT] ;;Reporting Options			
255	INPUT NO			
257				
258	SUBCATCHMENTS ALL			
259	NODES ALL			
260 261	LINKS ALL			
262	[TAGS]			
263	[]			
	[MAP]			
265	DIMENSIONS -2500.0	0.000	12500.00	0 10000.000
266 267	Units None			
	[COORDINATES]			
269		X-Coord		Y-Coord
270	;;			
271		-1517.557		8581.445
272 273		-593.166		8546.318
273 274	Out-to-BMP-B2 Sto-2	-1067.354 -461.256		8571.846 7134.877
275		-556.891		7949.424
276				8721.963
277	Sto-4	-639.334		8397.919
278				
279 280	[VERTICES] ;;Link	X-Coord		Y-Coord

11 13	-466.885 -464.383	7861.290 8076.458
13	-526.932	8359.179
L7	-709.575	8424.230
L7	-709.575	8521.806
18	-732.092	8399.211
18	-744.602	8531.814
7	-316.768	7430.954
7	-331.780	7758.710
9	-301.756	8078.960
9	-394.328	8369.187
12	-359.301	7435.958
12	-396.830	7791.235
14	-386.823	8071.454
14	-456.877	8359.179
15	-874.704	8829.547
15	-997.300	8837.053
16	-474.391	8454.254
16 19	-476.893	8549.328
19	-526.932 -529.434	8459.258 8534.316
	527.454	0334.310
[Polygons]		
;;Subcatchment	X-Coord	Y-Coord
DMA-2b	-795.459	6524.218
3MP-B2	-1175.313	8551.358
BMP-B1	-824.665	8541.822
DMA-4b	-119.113	8394.207
3MP-D	-627.010	8701.947
[SYMBOLS]		
;;Gage	X-Coord	Y-Coord
;; Escondido	3901.291	9418.665
[BACKDROP]		
	7\17046\Engineeri	ng\Current\GPIP\Storm\SWMM\@

1 2	[TITLE] ;;Project Title/Not	05				
3	,,IIOJECC IICIE/NOC	.63				
4	[OPTIONS]					
5	;;Option	Value				
6 7	FLOW_UNITS INFILTRATION	CFS GREEN A	мрт			
8	FLOW_ROUTING	KINWAVE				
9	LINK_OFFSETS	DEPTH				
10	MIN_SLOPE	0				
11	ALLOW_PONDING	NO				
12 13	SKIP_STEADY_STATE	NO				
14	START_DATE	09/24/1	964			
15	START_TIME	13:00:0	0			
16	REPORT_START_DATE	09/24/1				
17 18	REPORT_START_TIME END DATE	13:00:0 05/23/2				
19	END_DATE END_TIME	22:00:0				
20	SWEEP_START	01/01				
21	SWEEP_END	12/31				
22 23	DRY_DAYS REPORT STEP	0 01:00:0	0			
24	WET_STEP	01:00:0				
25	DRY_STEP	01:00:0				
26	ROUTING_STEP	0:01:00				
27	TNEDWINI DAMDING	זגדייית גת				
28 29	INERTIAL_DAMPING NORMAL FLOW LIMITED	PARTIAL BOTH				
30	FORCE_MAIN_EQUATION					
31	VARIABLE_STEP	0.75				
32	LENGTHENING_STEP	0				
33 34	MIN_SURFAREA MAX TRIALS	12.557 8				
35	HEAD_TOLERANCE	0.005				
36	SYS_FLOW_TOL	5				
37	LAT_FLOW_TOL	5				
38	MINIMUM_STEP	0.5				
39 40	THREADS	1				
41	[EVAPORATION]					
42	;;Data Source ;;	Parameters				
43 44	;; Monthly			0.17	0.19 0.22	0.24 0.22
	0.19 0.13 0.0		0.10	0.1	0.13	0.21 0.22
45	DRY_ONLY	NO				
46 47	[RAINGAGES]					
48	;;Name	Format	Interval	SCF	Source	
49	;;					
50	Escondido dat\Escondido ALERI				FILE	"R:\Rain gage
51	dat (BSCONULUO ALERI	JUALIUII.Udl	ESCONUL(
52	[SUBCATCHMENTS]					
53	;;Name Width %Slope	Rain Gage	01	utlet	Area	%Imperv
54	Width %Slope	CurbLen	SnowPa	ack		
94	· · ·					
55	DMA-1	Escondido	P	DC-3	0.8321	0
БĆ	145.2608057 23.8 DMA-5 35.24834194 3.4	0			0 1 6 4 0	0
56	DMA-5 35.24834194 3.4	ESCONDIDO N	P	00-3	0.1649	0
57	DMA-3	Escondido	P	OC-3	0.2564	0
	48.25915779 5.4		_ `			
58						
59 60	[SUBAREAS] ;;Subcatchment	N-Tmport	N-Dari	S-Tmport	S-Darte	Patzero
00	RouteTo PctRout	ed				ICCASIO
61	;;					

OUTLET DMA-5	0.012	0.1	0 05	0.1	2 5	
OUTLET	0.012	0.1	0.05	0.1	25	
DMA-3 OUTLET	0.012	0.1	0.05	0.1	25	
[INFILTRATION]						
;;Subcatchment	Suction	Ksat	IMD			
;; DMA-1						
DMA-5	6	0.075	0.32			
DMA-3	6	0.075	0.32			
[OUTFALLS]						
;;Name	Elevation	Туре	Stage Data		Gated	Rout
To ;;						
 POC-3	0	FREE				
NO	0	I KEE				
[REPORT] ;;Reporting Option.	S					
INPUT NO	5					
CONTROLS NO						
SUBCATCHMENTS AL	L					
NODES ALL	<u> </u>					
LINKS ALL						
LINKS ALL						
[TAGS] [MAP]						
[TAGS] [MAP] DIMENSIONS -2500.	000 0.000	12500.00	0 10000.000			
[TAGS] [MAP] DIMENSIONS -2500.	000 0.000	12500.00	0 10000.000			
[TAGS] [MAP] DIMENSIONS -2500. Units None	000 0.000	12500.00	0 10000.000			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES]						
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;;	X-Coord		Y-Coord			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;;	X-Coord		Y-Coord			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3	X-Coord		Y-Coord			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES]	X-Coord 4345.525		Y-Coord 3426.372			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES]	X-Coord 4345.525		Y-Coord 3426.372			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;;</pre>	X-Coord 4345.525		Y-Coord 3426.372			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment</pre>	X-Coord 4345.525 X-Coord 		Y-Coord 3426.372 Y-Coord 			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment</pre>	X-Coord 4345.525 X-Coord 		Y-Coord 3426.372 Y-Coord 			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1</pre>	X-Coord 4345.525 X-Coord 		Y-Coord 3426.372 Y-Coord Y-Coord 			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5</pre>	X-Coord 4345.525 X-Coord 		Y-Coord 3426.372 Y-Coord Y-Coord 4563.297 4445.535			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5</pre>	X-Coord 4345.525 X-Coord 		Y-Coord 3426.372 Y-Coord Y-Coord 4563.297 4445.535			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5 DMA-3 [SYMBOLS]</pre>	X-Coord 4345.525 X-Coord 2105.005 3547.596 2860.648		Y-Coord 3426.372 Y-Coord 4563.297 4445.535 4710.500			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5 DMA-3 [SYMBOLS]</pre>	X-Coord 4345.525 X-Coord 2105.005 3547.596 2860.648		Y-Coord 3426.372 Y-Coord 4563.297 4445.535 4710.500			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5 DMA-3 [SYMBOLS] ;;Gage ;;</pre>	X-Coord 4345.525 X-Coord 2105.005 3547.596 2860.648 X-Coord 		Y-Coord 3426.372 Y-Coord 4563.297 4445.535 4710.500 Y-Coord			
[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES]	X-Coord 4345.525 X-Coord 2105.005 3547.596 2860.648 X-Coord 		Y-Coord 3426.372 Y-Coord 4563.297 4445.535 4710.500 Y-Coord			
<pre>[TAGS] [MAP] DIMENSIONS -2500. Units None [COORDINATES] ;;Node ;; POC-3 [VERTICES] ;;Link ;; [Polygons] ;;Subcatchment ;; DMA-1 DMA-5 DMA-3 [SYMBOLS] ;;Gage ;;</pre>	X-Coord 4345.525 X-Coord 2105.005 3547.596 2860.648 X-Coord 3901.291		Y-Coord 3426.372 Y-Coord 4563.297 4445.535 4710.500 Y-Coord 9418.665			

tle/Not							
2, 100	es						
	Value						
	CFS						
1	_	1PT					
)	0						
IG	NO						
STATE	NO						
	00/04/10						
DATE							
_TIME							
)					
	0						
))					
	0.01.00						
IPING	PARTIAL						
_							
EQUATION							
_ <u></u>							
	8						
ICE	0.005						
L							
	5						
د د	5 0.5						
C	5 0.5 1						
)	0.5						
1]	0.5 1						
5e 1]	0.5 1 Parameters						
ce 1]	0.5 1 Parameters 0.07 0.1	 0.13	0.17	0.19	0.22	0.24	0.22
0.0	0.5 1 Parameters 0.07 0.1 9 0.06	0.13	0.17	0.19	0.22	0.24	0.22
ce 1]	0.5 1 Parameters 0.07 0.1 9 0.06	0.13	0.17	0.19	0.22	0.24	0.22
0.0	0.5 1 Parameters 0.07 0.1 9 0.06	0.13	0.17	0.19	0.22	0.24	0.22
2 2 2 2 3 0.0	0.5 1 Parameters 0.07 0.1 9 0.06 NO	0.13				0.24	0.22
9 0.0 9 0.0	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format	0.13 Interval	SCF	So	urce		
20 20 20 3 0.0 1] 1]	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY	0.13 Interval 1:00	SCF 1.0	So	urce		
20 20 20 3 0.0 1] 1]	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format	0.13 Interval 1:00	SCF 1.0	So	urce		
7] 2e 8 0.0 do ALERT TTS]	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat"	0.13 Interval 1:00 Escondid	SCF 1.0 lo IN	So FI	urce LE	"R:\R	ain gage
7] 2e 8 0.0 do ALERT TTS]	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat"	0.13 Interval 1:00 Escondid	SCF 1.0 lo IN	So FI	urce LE	"R:\R	ain gage
2 2 2 2 3 0.0 3 0.0 4 4 4 4 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen	0.13 Interval 1:00 Escondid Ou SnowPa	SCF 1.0 lo IN tlet .ck	So FI	urce LE	"R:\R	ain gage
2] 2e 3 0.0 4 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat"	0.13 Interval 1:00 ' Escondid SnowPa	SCF 1.0 lo IN tlet .ck	So FI	urce LE	"R:\R	ain gage
0 2 2 2 3 0.0 3 4 0 ALERT 4 5 10 8 5 10 9 8 5 10 9 8 5 10 9 7 10 10 10 10 10 10 10 10 10 10 10 10 10	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen	0.13 Interval 1:00 'Escondid SnowPa	SCF 1.0 lo IN tlet .ck	So FI	urce LE	"R:\Ra %.	ain gage Imperv
0 2 2 2 3 0.0 3 4 0 ALERT 4 5 10 8 5 10 9 8 5 10 9 8 5 10 9 7 10 10 10 10 10 10 10 10 10 10 10 10 10	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen	0.13 Interval 1:00 SnowPa	SCF 1.0 10 IN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	So FI	urce LE Area 0.80923	"R:\R; %; 39 5:	ain gage Imperv 5
20 20 20 20 20 20 20 20 20 20	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Scondido 0 Escondido	0.13 Interval 1:00 'Escondid SnowPa	SCF 1.0 10 IN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	So FI	urce LE Area 0.80923	"R:\Ra %.	ain gage Imperv 5
<pre> 3 0.0 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 0	0.13 Interval 1:00 SnowPa St BM	SCF 1.0 lo IN tlet .ck .o-1 IP-C	So FI	urce LE Area 0.80923 0.06909	"R:\R % 39 5: 942 0	ain gage Imperv 5 .20
<pre> 3 0.0 4.5 4.8 </pre>	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 0 Escondido	0.13 Interval 1:00 SnowPa	SCF 1.0 lo IN tlet .ck .o-1 IP-C	So FI	urce LE Area 0.80923	"R:\R % 39 5: 942 0	ain gage Imperv 5 .20
<pre> 2 3 0.0 3 0.0 4 4 5.1 4 3 3 3 4 3 5.1 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 0 Escondido 0	0.13 Interval 1:00 SnowPa St BM	SCF 1.0 lo IN tlet .ck .o-1 IP-C IP-K	So FI	urce LE Area 0.80923 0.06909	"R:\R % 39 5: 942 0 7 8	ain gage Imperv 5 .20
20 20 20 20 20 20 20 20 20 20	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 1 Escondido	0.13 Interval 1:00 SnowPa St BM BM BM	SCF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	So FI	urce LE Area 0.80923 0.06909 0.05097 0.28926	"R:\R % 39 5 942 0 7 8 57 8	ain gage Imperv 5 .20
20 20 20 20 20 20 20 20 20 20	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 0 Escondido 0 Escondido 0 Escondido 0 Escondido 0 Escondido 0 Escondido 0 Escondido	0.13 Interval 1:00 SnowPa St BM	SCF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	So FI	urce LE Area 0.80923 0.06909 0.05097	"R:\R % 39 5 942 0 7 8 57 8	ain gage Imperv 5 .20
<pre> 0 1] 2e 3 0.07 4.8 5.1 5.7 0 </pre>	0.5 1 Parameters 0.07 0.1 9 0.06 NO Format INTENSITY Station.dat" Rain Gage CurbLen Escondido 0 Escondido 1 Escondido	0.13 Interval 1:00 SnowPa St BM BM BM	SCF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	So FI	urce LE Area 0.80923 0.06909 0.05097 0.28926	"R:\R % 39 5 342 0 7 8 57 8 5079 0	ain gage Imperv 5 .20
	G STATE DATE TIME LIMITED QUATION P STEP	CFS GREEN_AM KINWAVE DEPTH 0 GNO STATE DO C_DATE C_DATE C_TIME C_TIME DO C_DATE C_TIME DO C_DATE C_TIME DO C_DATE C_TIME DO CO CO CO CO CO CO CO CO CO CO CO CO CO	CFS GREEN_AMPT KINWAVE DEPTH 0 IG NO STATE NO DOJATE 09/24/1964 13:00:00 05/23/2008 22:00:00 01/01 12/31 0 01:00:00 01:00 01:00:00 01:00:00 01:00:00 01:00:00 00:00 01:00:00 00 01:00:00 00 01:00:00 00 01:00:00 00 00 00 00 00 00 00 00 00 00 00	CFS GREEN_AMPT KINWAVE DEPTH 0 IG NO STATE NO -DATE 09/24/1964 13:00:00 05/23/2008 22:00:00 01/01 12/31 0 01:00:00 00 01:00:00 00 00 00 00 00 00 00 00 00 00 00	CFS GREEN_AMPT KINWAVE DEPTH 0 IG NO STATE NO DATE 09/24/1964 13:00:00 DATE 09/24/1964 TIME 13:00:00 05/23/2008 22:00:00 01/01 12/31 0 0 01:00:00 00 01:00:00 00 00 00 00 00 00 00 00 00 00 00	CFS GREEN_AMPT KINWAVE DEPTH 0 IG NO STATE 09/24/1964 13:00:00 09/24/1964 13:00:00 09/24/1964 13:00:00 05/23/2008 22:00:00 01/01 12/31 0 0 01:00:00 01:00	CFS GREEN_AMPT KINWAVE DEPTH 0 IG NO STATE 09/24/1964 13:00:00 '_DATE 09/24/1964 13:00:00 '_DATE 09/24/1964 13:00:00 '_TIME 13:00:00 05/23/2008 22:00:00 01/01 12/31 0 01:00:00 01:00:00 01:00:00 01:00:00 01:00:00 01:00:00 01:00:00 01:00:00 0:01:00 0 0 12:057 8 12:557 8 0 12:557 8 0:005 5

BMP-C	0	0 Escondido	POC-	-3	0.00330	0 0
10 BMP-K	0	0 Escondido	POC-	-3	0.00502	28 0
2	0	0				
BMP-F.2 20	0	Escondido O	poc-	-3	0.00482	20937 0
3		Escondido	BMP-	-F.2	0.10417	79 8
30	5.7	0				
[SUBAREAS] ;;Subcatchm	ent	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZe
RouteTo ••	PctRout	ed 				
DMA-1 DUTLET		0.012	0.1	0.05	0.1	25
DMA-3		0.012	0.1	0.05	0.1	25
DUTLET DMA-12		0.012	0.1	0.05	0.1	25
OUTLET						
DMA-6 DUTLET		0.012	0.1	0.05	0.1	25
BMP-A		0.012	0.1	0.05	0.1	25
DUTLET BMP-F		0.012	0.1	0.05	0.1	25
OUTLET						
BMP-C DUTLET		0.012	0.1	0.05	0.1	25
BMP-K		0.012	0.1	0.05	0.1	25
OUTLET BMP-F.2		0.012	0.1	0.05	0.1	25
DUTLET						
3 DUTLET		0.012	0.1	0.05	0.05	25
F TATE TT MEANT						
::Subcatchm	ent	Suction	Ksat	IMD		
;;Subcatchm;;	ent		Ksat 			
;;Subcatchm;;	ent	 6	0.075	0.32		
;;Subcatchm;;; DMA-1 DMA-3	ent	 6 6	 0.075 0.075	0.32 0.32		
;;Subcatchm;;; DMA-1 DMA-3 DMA-12	ent	6 6 6	0.075 0.075 0.075 0.075	0.32 0.32 0.32		
;;Subcatchm;;; DMA-1 DMA-3 DMA-12 DMA-6	ent	6 6 6 6	0.075 0.075 0.075 0.075 0.075	0.32 0.32 0.32 0.32 0.32		
;;Subcatchm;;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A	ent	6 6 6 6 6	0.075 0.075 0.075 0.075 0.075 0.1	0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F	ent	6 6 6 6 6 6 6	0.075 0.075 0.075 0.075 0.075 0.1 0.1	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F	ent	6 6 6 6 6 6 6 6	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K	ent	6 6 6 6 6 6 6 6	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-K BMP-F.2	ent	6 6 6 6 6 6 6 6 3.0	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.5	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-K BMP-F.2	ent	6 6 6 6 6 6 6 6	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-A BMP-F BMP-C BMP-K BMP-K BMP-F.2 3	ent 	6 6 6 6 6 6 6 6 3.0	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.5	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm; ;;DMA-1 DMA-1 DMA-2 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-K BMP-K BMP-F.2 3 [LID_CONTRO]	ent 	6 6 6 6 6 6 6 3.0 6	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-F BMP-F.2 3 [LID_CONTRO ;;Name	LS]	6 6 6 6 6 6 6 3.0 6 7ype/Layer	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.5	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-F.2 3 [LID_CONTRO ;;Name ;;	LS]	6 6 6 6 6 6 3.0 6 Type/Layer	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-F.2 3 [LID_CONTRO ;;Name ;; BMP-A	LS]	 6 6 6 6 6 6 3.0 6 7ype/Layer BC	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	Â	
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A	LS]	 6 6 6 6 6 6 3.0 6 7ype/Layer BC	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0	0
;;Subcatchm;;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO: ;;Name ;; BMP-A BMP-A BMP-A 5	LS]	6 6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		
;;Subcatchm;;; DMA-1 DMA-1 DMA-2 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO: ;;Name ;; BMP-A BMP-A 5 BMP-A	LS]	6 6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32		0 0.1
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A 5 BMP-A 5	ent 	6 6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL 1.5	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.2	0.1
;;Subcatchm, ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO ;;Name ;; BMP-A BMP-A BMP-A 5 BMP-A 5 BMP-A 5 BMP-A	ent 	6 6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL 1.5 STORAGE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.2	
;;Subcatchm, ;;	ent 	6 6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL 1.5 STORAGE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.2	0.1
;;Subcatchm, ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO];Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A	ent 	6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL 1.5 STORAGE DRAIN	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.2	0.1
;;Subcatchm, ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A	ent 	6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SURFACE SOIL 1.5 STORAGE DRAIN BC	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603	0.32 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.2 0.5 3	0.1
;;Subcatchm; ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;;BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-F BMP-F	ent 	6 6 6 6 6 6 3.0 6 Type/Layer BC SURFACE SOIL 1.5 STORAGE DRAIN	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.2	0.1
;;Subcatchm; ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A	ent 	6 6 6 6 6 6 7 3.0 6 7 Type/Layer BC SURFACE SURFACE SOIL 1.5 STORAGE DRAIN BC SURFACE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603	0.32 0.4 0.67 1857531 0.55 0.51	0.2 0.5 0	0.1 0 5.7
;;Subcatchm; ;; DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO: ;;Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-F BMP-F 5 BMP-F	LS] 5	6 6 6 6 6 6 7 3.0 6 7 Type/Layer 5 3.0 6 7 SURFACE SURFACE SOIL 1.5 STORAGE DRAIN BC SURFACE SURFACE SURFACE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603	0.32 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.2 0.5 3	0.1
;;Subcatchm, ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-F BMP-F BMP-F 5	ent 	6 6 6 6 6 6 7 9 8 3.0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603 6 18	0.32 0.4 0.67 1857531 0.5	0.2 0.5 0 0 0.2	0.1 0 5.7 0.1
;;Subcatchm, ;;DMA-1 DMA-1 DMA-3 DMA-12 DMA-6 BMP-A BMP-F BMP-C BMP-K BMP-F.2 3 [LID_CONTRO] ;;Name ;; BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-A BMP-F BMP-F BMP-F BMP-F BMP-F	LS] 5	6 6 6 6 6 6 7 3.0 6 7 Type/Layer 5 3.0 6 7 SURFACE SURFACE SOIL 1.5 STORAGE DRAIN BC SURFACE SURFACE SURFACE	0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.5 0.075 Parameters 6 18 48 0.0484924603 6 18	0.32 0.4 0.67 1857531 0.55 0.51	0.2 0.5 0	0.1 0 5.7

BMP-C BMP-C		BC SURFACE	6	0.01	0	0	
5		SURFACE	0	0.01	0	0	
BMP-C		SOIL	18	0.4	0.2	0.1	
5	5	1.5					
BMP-C		STORAGE	48	0.67	0.29	0	
BMP-C		DRAIN	0	0.5	54	6	
BMP-K		BC SURFACE	C	0 0	0	0	
BMP-K 5		SURFACE	6	0.0	0	0	
5 BMP-K		SOIL	18	0.4	0.2	0.1	
5	5	1.5	10	0.1	0.1	0.1	
BMP-K		STORAGE	48	0.67	0.29	0	
BMP-K		DRAIN	0	0.5	54	6	
BMP-F.2		BC	c	2 2	0	0	
BMP-F.2 5		SURFACE	6	0.0	0	0	
BMP-F.2		SOIL	18	0.4	0.2	0.1	
5	5	1.5	10	U.1	0.2	0.1	
BMP-F.2	0	STORAGE	6	0.67	0.29	0	
BMP-F.2		DRAIN				3	6
[LID_USAGE]							
					a Widt	th]	InitSat
FromImp ;;				=-	DrainTo		
;;=======							
BMP-A		BMP-A		1 168	8.42 0	()
0	0	"V:\17\			rrent\GPIP\St		
POC-3							
BMP-F	0	BMP-F			.00 0	(
0	0			ineering\Cu	rrent\GPIP\St		
BMP-C 0	0	BMP-C "\V.\17\		1 144	.01 0 rrent\GPIP\St) orm\SWMM\	·
0 BMP-K	0	BMP-K		1 219		LOLIII (SWIMM))	
0	0			229			
BMP-F.2		BMP-F.2		1 210	.00 0	()
0	0	*			2		
[OUTFALLS] ;;Name		Flowstion	Turo	0+ - ~ ~ ~	ata	Catod	Pout o
;;Name To		BIEVACIUN	түре	staye D	uca	Jaceu	Noule
;;							
POC-3		0	FREE				
NO							
Out_Sto-1		0	FREE			NO	
Bmp-A Out-to-BMP-1	F 2	0	FDFF			NO	
BMP-F.2	E . Z	0	FREE			INO	
[STORAGE]							
;;Name		Elev.			th Shape	Curve	2
Name/Params		N/A	Fe	vap P	si Ka		
C+ o 1							
Sto-1 Sto-1		0	2.5 0	0 0	TABULAR		
1		0	0.75	0	TABULAR		
		v	0.75	0			
		0	3	0	TABULAR		
2			0	0	6		0.32
			0	0	0	0.25	
2			0	0	0	0.25	
2 Sto-Chmbr [ORIFICES]			Ŭ	Ŭ	-		
2 Sto-Chmbr [ORIFICES] ;;Name		From Node	C C	To Node	-	9	
2 Sto-Chmbr [ORIFICES]	Gated	CloseTi	C C	Ŭ	-		

1	NO	Sto-1 0			Out_	Sto-1		SIDE			0
0.61		Sto-1			Out_	Sto-1		SIDE			1
0.61	NO	0									
[WEIRS] ;;Name Qcoeff ;;	Gated	From Node EndCon		End	Coeff	ode Surcha	arge		dth	Road	CrestH Surf
2 3.33	NO	Sto-1 0		0		Sto-1 YES			JOM		2
4 3.33	NO	1 0		0	Out-	20-BMP-F.2 YES	2	SIDEFI	JOM		0
[XSECTIONS] ;;Link		Shape		Geoi	m1		Geo	om2	Geo	m3	
Geom4 ;;	Barrels										
1		RECT_CLOSED	· — — —	0 0	8333		0 ()8333	0		0
3		RECT_CLOSED)	0.1	6667		0.2		0		0
2 0		RECT_OPEN		1.5			3		0		
4 0		RECT_OPEN		0.5			6		0		
[CURVES]		Туре	VU	21110		V. V. Luc					
;;Name ;;			X-V				_				
Sto-BMP-C Sto-BMP-C		Storage	0 1.5			L47 L47					
Sto-BMP-C			3			L47					
STO-BMP-E		Storage				272					
STO-BMP-E STO-BMP-E			1.5 272			272 3					
;											
Sto-BMP-G Sto-BMP-G		Storage	0 1.5			356 356					
Sto-BMP-G			3			356					
; BMP-A		Storage	0			L523					
BMP-A			0.3	333		L692					
; ;2.5'Dia-13	2' L										
Sto-1 Sto-1		Storage	0 0.2	5) 386.4					
Sto-1			0.2			284.8					
Sto-1			0.7		!	531.2					
Sto-1			1			364.8					
Sto-1			1.2			571.2					
Sto-1 Sto-1			1.5 1.7			364.8 531.2					
Sto-1			2	5		284.8					
Sto-1			2.2	5		385.6					
Sto-1			2.5			L.13687E-3	13				
;			0								
Sto-Green		Storage	0			30					
Sto-Green Sto-Green			0.5 0.7			L00 L20					
;			0.1	5		L <u>2</u> V					
, Sto-Chmbr		Storage	0			L000					
Sto-Chmbr			2			L000					
Sto-Chmbr			3			L000					
[REPORT]											

210 ;;Reporting Options

[MAP] DIMENSIONS -2500 Units None		
	0.000 0.000 12	500.000 10000.000
[COORDINATES] ;;Node	X-Coord	Y-Coord
;;	X-Coord 1573.628 423.941 1067.403 201.223	
PUC-3 Out Sto-1	1573.628 423.941	3349.374 3735.335
Out-to-BMP-F.2	1067.403	4452.925
	1077.915	4747.269
2	1288.160	
[VERTICES]	X-Coord 	N. Control
;;Link	x-coord	Y-Coord
1	420.515	4221.888
	554.146	
	354.714	4158.393
3	449.742	3983.887
2	33.328	4149.933
2	252.620	3755.893
4	1190.046	
-	1302.177	4670.179
[Polygons] ;;Subcatchment	X-Coord	Y-Coord
, ,		
DMA-1 DMA-3	-678.537 861.405	4513.956
DMA-12	192.263	
DMA-6	426.835	4740.357
BMP-A	622.675	3728.482
BMP-F	913.223	4551.040
BMP-C	996.064	3889.448
BMP-K	337.574	4474.081
BMP-F.2 3	1158.509 709.986	4382.844 4449.421
[SYMBOLS]		
··Gade	X-Coord	Y-Coord
;;	3901.291	9418.665

ATTACHMENT 2B

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

 \boxtimes Underlying hydrologic soil group

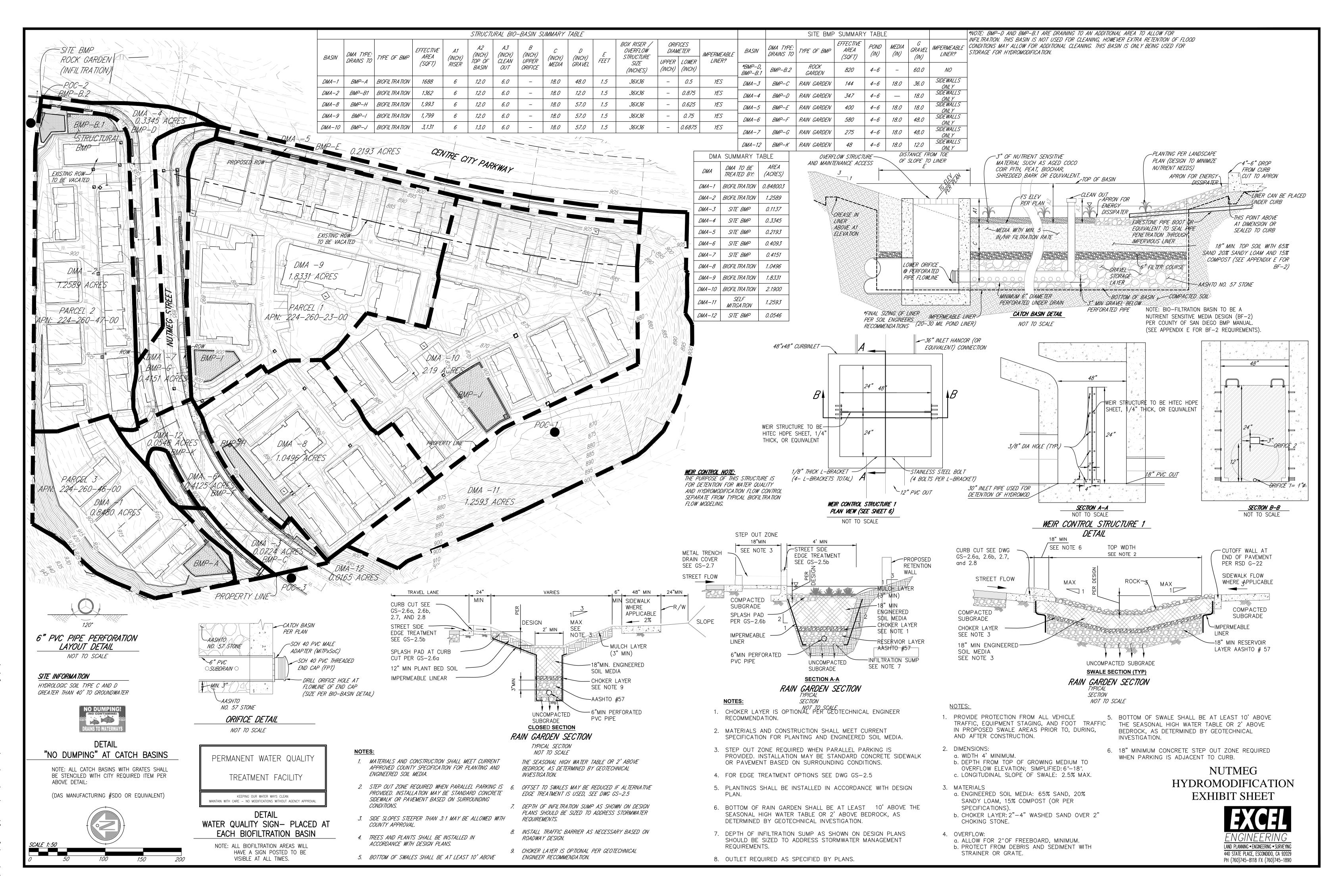
 \boxtimes Approximate depth to groundwater

Existing natural hydrologic features (watercourses, seeps, springs, wetlands)

 \boxtimes Critical coarse sediment yield areas to be protected

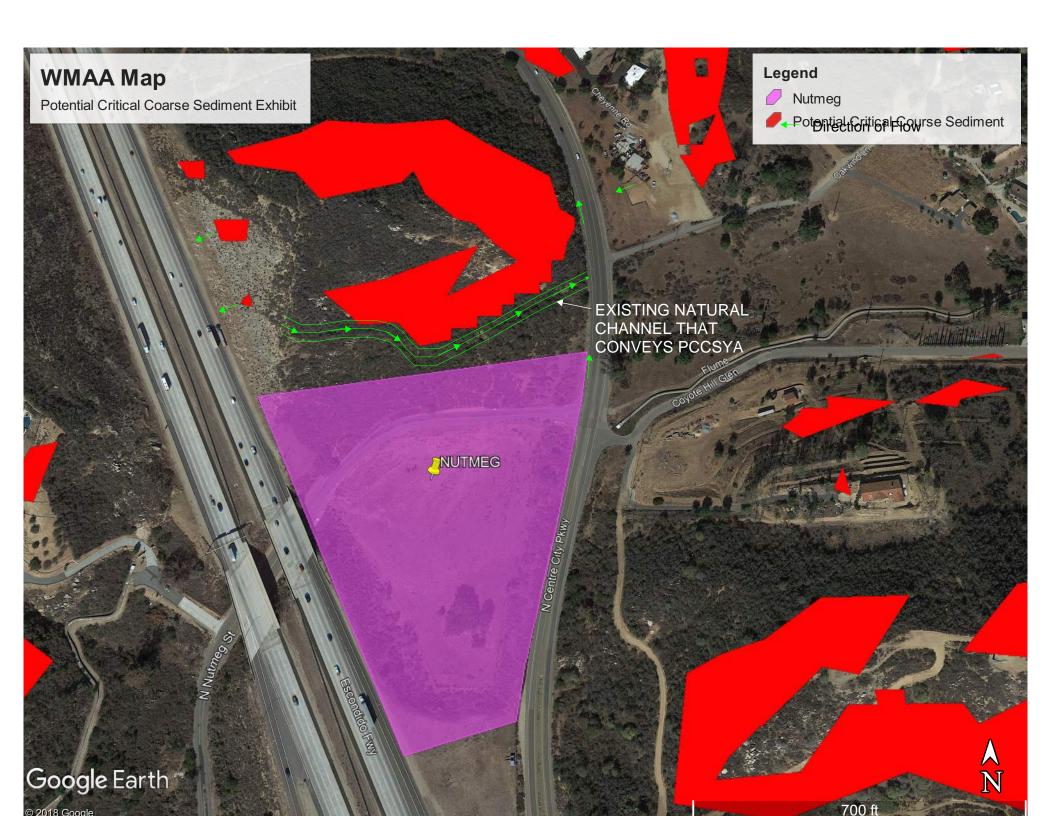
 \boxtimes Existing topography

Existing and proposed site drainage network and connections to drainage offsite


 \boxtimes Proposed grading

 \boxtimes Proposed impervious features

Proposed design features and surface treatments used to minimize imperviousness


Point(s) of Compliance (POC) for Hydromodification Management

- Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)
- Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

This page was left intentionally blank.

ATTACHMENT 2C

This page was left intentionally blank.

ATTACHMENT 2D

Not performed

ATTACHMENT 2E

Not Required

ATTACHMENT 3

Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist
Attachment 3a	Structural BMP Maintenance Plan (Required)	⊠Included
		See Structural BMP Maintenance Information Checklist on the back of this Attachment cover sheet.
Attachment 3b	Draft Storm Water Control Facilities Maintenance Agreement (SWCFMA) (when applicable)	□Included □Not Applicable

OPERATION & MAINTENANCE (O&M) PLAN

Contents

1.	PR	OJECT DESCRIPTION	
2.	OP	PERATION & MAINTENANCE PLAN	1
3.	Op	eration & Maintenance of BMP'S	1
A	۱.	Training	2
В	3.	Landscaping	2
С).	Irrigation System	5
D).	Roof Drains	5
E		Trash Storage Areas	5
F		Storm Water Conveyance System Stenciling and Signing	5
G	à.	Bioretention	6
H	ł.	Rain Garden / Rock Garden	8
١.		30" Detention pipe	8
J		Outlet Structures	8
K	ζ.	Vector Management Control Requirements	8

ATTACHMENTS

A. O&M Exhibit

- A1. Inspection & Maintenance Schedule
- B1. Cost Estimate
- **C1. BMP Training Log**
- D1. Inspection & Maintenance Log

1. PROJECT DESCRIPTION

The project is 137 residential homes which range in square foot from 1,104 square feet to 1,950 square feet; and an overall density of 18 DU/AC. As part of the new construction, associated improvements will include walkways, grass and landscaped areas, parking spaces, landscaping throughout the parking areas and frontages, and all necessary utilities (storm, sewer, water, dry, etc.).

Normal uses of such a development will generate storm water runoff with the potential to carry pollutants to off-site tributaries. Biofiltration ponds are planned to be incorporated throughout the site to treat and detain runoff from impervious and landscaped areas.

2. OPERATION & MAINTENANCE PLAN

The Operation and Maintenance Plan (O&M) needs to address construction and postconstruction concerns as shown in the Storm Water Mitigation Plan. Refer to Precise Grading and Private Improvement Plans for Nutmeg Homes for additional information on BMPs.

3. Operation & Maintenance of BMP'S

It shall be the responsibility of the owner to train all employees for the maintenance and operation of all BMPs, to achieve the maximum pollutant reduction, as addressed in the approved Project's SWQMP. The following schedule of (O&M's) must be followed to satisfy the Conditions of Concern and the Pollutants of Concern as addressed in the approved Project's SWQMP and the City's Storm Water Design Manual. This schedule shall include periodic inspections of all Source Control and Treatment Control BMP's. All maintenance records for training, inspection and maintenance shall be retained and provided to the city upon request.

All BMPs shall be inspected 30 days prior to October lst each year and certified to the City's Environmental Programs Division as to their readiness to receive runoff from the annual rainfall season.

The owner will also provide to the City, as part of the maintenance and operation agreement, an executed maintenance and access easement that shall be binding on the land throughout the life of the project.

	Responsibility of BMPS									
BMP Name	Type of BMP	Public/ Private	Responsible Party							
BMP-A	BIOFILTRATION	PRIVATE	ADJ HOLDINGS, LLC							
BMP-B1	BIOFILTRATION	PRIVATE	ADJ HOLDINGS, LLC							
BMP-B.2	ROCK GARDEN	PUBLIC	CITY OF ESCONDIDO							
BMP-C	RAIN GARDEN	PUBLIC	CITY OF ESCONDIDO							
BMP-D	TREE WELL	PUBLIC	CITY OF ESCONDIDO							
BMP-E	TREE WELL	PUBLIC	CITY OF ESCONDIDO							
BMP-F	RAIN GARDEN	PUBLIC	CITY OF ESCONDIDO							
BMP-G	RAIN GARDEN	PUBLIC	CITY OF ESCONDIDO							
BMP-G.1	TREE WELL	PUBLIC	CITY OF ESCONDIDO							
BMP-H	BIOFILTRATION	PRIVATE	ADJ HOLDINGS, LLC							
BMP-I	BIOFILTRATION	PRIVATE	ADJ HOLDINGS, LLC							
BMP-J	BIOFILTRATION	PRIVATE	ADJ HOLDINGS, LLC							
BMP-K	RAIN GARDEN	PUBLIC	CITY OF ESCONDIDO							

Responsible Party for O&M and For Training- Property Owner

A. Training

Training of Operation and Maintenance personnel is of primary importance to provide knowledge of the operation and maintenance of BMPs. Proper training shall provide information that will enable employees to have in place an effective preventive maintenance program as described in this O & M manual. The responsible party mentioned above should take the course provided by the "BUILDING INDUSTRIES ASSOCIATION of SAN DIEGO COUNTY" to be trained in the purpose and use of BMPs and the maintenance thereof. Proper preventive maintenance will prevent environmental incidents that may be a health and safety hazard.

New employees should be trained as to the purpose and proper maintenance within the first week of their employment.

Employee training shall include receiving a copy of this O & M manual; a discussion on the location and purpose of site specific BMPs, such as Source Control and Treatment Control BMPs; training on how to inspect and report maintenance problems and to whom they report to; They shall be trained in site specific Pollutants of Concern so that they can evaluate the functioning of all on-site BMPs.

These Pollutants are identified in section 2 of this report.

A log of all training and reported inspections and maintenance problems along with what was

done to correct the problem shall be keep on the premises at all times.

Employees shall be periodically trained, at a minimum of once a year, to refresh their abilities to Operate and Maintain all on-site BMPs.

B. Landscaping

Operational and maintenance needs include:

- Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals.
- Animal and vector control.
- Periodic sediment removal to optimize performance.
- Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal.
- Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas.
- Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping.

Inspection Frequency

The facility will be inspected and inspection visits will be completely documented:

- Once a month at a minimum.
- After every large storm (after every storm monitored or these storms with more than 0.50 inch of precipitation.)
- On a weekly basis during extended periods of wet weather.

Inspect for proper irrigation and fertilizer use, and ensure that all landscaped areas have minimum of 80% coverage.

Aesthetic Maintenance

The following activities will be included in the aesthetic maintenance program:

Grass Trimming: Trimming of grass will be done on all landscaped areas, around fences, at the inlet and outlet structures, and sampling structures.

Weed Control. Weeds will be removed through mechanical means. Herbicide will not be used because these chemicals may impact the water quality monitoring.

Functional Maintenance

Functional maintenance has two components:

- Preventive maintenance
- Corrective maintenance

Preventive Maintenance

Preventive maintenance activities to be instituted for landscaped areas are:

- Grass Mowing: Vegetation seed, mix within the landscaped areas, are to be designed to be kept short to maintain adequate hydraulic functioning and to limit the development of faunal habitats.
- Trash and Debris: During each inspection and maintenance visit to the site, debris and trash removal will be conducted to reduce the potential for inlet and outlet structures and other components from becoming clogged and inoperable during storm events.
- Sediment Removal: Sediment accumulation, as part of the operation and maintenance program at of landscaped areas, will be monitored once a month during the dry season, after every large storm (0.50 inch), and monthly during the wet season. Specifically, if sediment reaches a level at or near plant height, or could interfere with flow or operation, the sediment shall be removed. If accumulation of debris or sediment is determined to be the cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore the landscaped areas to design performance standards. Actions will include using additional vegetation and/or removing accumulated sediment to correct channeling or ponding. Characterization and Appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements.
- Landscaped areas will be re-graded, if the flow gradient has been altered. This should be a sign that the BMP is failing, and the soil matrix may need to be replaced.
- Removal of Standing Water: Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas.
- Fertilization and Irrigation: fertilization and irrigation is to be keep at a minimum.
- Elimination of Mosquito Breeding Habitats. The most effective mosquito control program is one that eliminates standing water over a period less than 96 hours.

Corrective Maintenance

Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function of all landscaped areas.

Corrective maintenance activities include:

- Removal of Debris and Sediment: Sediment, debris, and trash, which impede the hydraulic functioning of landscaping and prevent vegetative growth, will be removed and properly disposed. Temporary arrangements will be made for handling the sediments until a permanent arrangement is made. Vegetation will be re-established after sediment removal.
- Structural Repairs: Once deemed necessary, repairs to structural components of landscaping will be done within 10 working days. Qualified individuals (i.e., the designers or contractors) will conduct repairs where structural damage has occurred.
- Embankment and Slope Repairs: Once deemed necessary, damage to the embankments and slopes of landscaped areas will be repaired within 10 working days.
- Erosion Repair: Where a reseeding program has been ineffective, or where other factors have created erosive conditions (i.e., pedestrian traffic, concentrated flow, etc.), corrective steps will be taken to prevent loss of soil and any subsequent danger to the performance and use of landscaped areas as BMPs. There are a number of corrective actions than can be taken.
- These include erosion control blankets, riprap, or reducing flow velocity.

- Consult with an engineer and contractor to address frequently occurring erosion problems.
- Elimination of Animal Burrows: animal burrows will be filled and steps taken to remove the animals if burrowing problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the BMP performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September.
- General Facility Maintenance: In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed.

Maintenance Frequency

The maintenance indicators for selected BMPs are included in Attachment Al.

Debris and Sediment Disposal

Waste generated onsite is ultimately the responsibility of the Owner. Disposal of sediments, debris, and trash will comply with applicable local, county, state, and federal waste control programs.

Hazardous Waste

Suspected hazardous wastes will be analyzed to determine disposal options. Hazardous wastes generated onsite will be handled and disposed of according to applicable local, state, and federal regulations. A solid or liquid waste is considered a hazardous waste if it exceeds the criteria listed in the CCR, Title 22, Article 11.

C. Irrigation System

Inspection Frequency and Procedure

The Irrigation system shall be checked each week as a minimum. The following items shall be checked to insure that they are functioning properly:

- Shut-off devices.
- All piping and sprinkler heads to insure there are no leaks and that proper water spread is maintained.
- All flow reducers.
- Check for overspray/runoff

D. Roof Drains

All roof drains shall be inspected 30 days prior to October 1st of each year to insure that they are clean and free from trash and in good repair. They shall be flushed and any leaks or damages piping shall be either replaced or repaired. Where roof drains flow onto grass areas splash structures and or rock rip- rap shall be maintained so the flow from the roof drains do not cause erosion or damage to the grass area. During the rain season roof drains shall be

inspected weekly and after each rain storm to insure that there is no trash and or silt build up that will restrict the run-off flow from the roof. All trash and/or silt build up shall be removed immediately.

E. Trash Storage Areas

- All trash storage areas shall be inspected daily to insure that they are clean from trash. Also the following shall be inspected annually 30 days prior to October 1st of each year.
- Pavement is in good repair.
- Drainage will not run-off onto adjacent areas.
- That they remain screened or walled to prevent off-site transport of trash.
- That all lids are closed and/or awnings are in good repair to minimize direct precipitation.

F. Storm Water Conveyance System Stenciling and Signing

- Signage/stenciling are to be inspected for legibility and visual obstruction and shall be Repaired and cleared of any obstruction within 5 working day of inspection.
- Inspection Frequency: Semi-annually, 30 days prior to October 1st each year, and monthly during rainy season.

G. Biofiltration

Operational and maintenance needs include:

- Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals.
- Animal and vector control.
- Periodic sediment removal to optimize performance.
- Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal.
- Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas.
- Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping.
- Outlet maintenance: maintain trash free; remove silt; clear clogged outlets and standing Water after 96 hours.

Aesthetic Maintenance

The following activities will be included in the aesthetic maintenance program:

• Weed Control. Weeds will be removed through mechanical means. Herbicide shall not be used since the chemicals may impact water quality.

Functional Maintenance

Functional maintenance has two components:

- Preventive maintenance
- Corrective maintenance

Preventive Maintenance

- Trash and Debris: During each inspection and maintenance visit to the site, debris and trash removal will be conducted to reduce the potential for inlet and outlet structures and other components from becoming clogged and inoperable during storm events.
- Sediment Removal: Sediment accumulation, as part of the operation and maintenance program at of landscaped areas, will be monitored once a month during the dry season, after every large storm (0.50 inch), and monthly during the wet season. Specifically, if sediment reaches a level at or near plant height, or could interfere with flow or operation, the sediment shall be removed. If accumulation of debris or sediment is determined to be the cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore the landscaped areas to design performance standards. Actions will include using additional vegetation and/or removing accumulated sediment to correct channeling or ponding. Characterization and Appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements. Landscaped areas will be re-graded, if the flow gradient has been altered. This should be a sign that the BMP is failing, and the soil matrix may need to be replaced.
- Removal of Standing Water: Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas.
- Fertilization and Irrigation: fertilization and irrigation is to be keep at a minimum.
- Elimination of Mosquito Breeding Habitats. The most effective mosquito control program is one that eliminates standing water over a period less than 96 hours.
- Erosion: Damages from erosion shall be repaired to the original condition.

Corrective Maintenance

Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function of all landscaped areas.

Corrective maintenance activities include:

- Removal of Debris and Sediment: Sediment, debris, and trash, which impede the hydraulic functioning of landscaping and prevent vegetative growth, will be removed and properly disposed. Temporary arrangements will be made for handling the sediments until a permanent arrangement is made. Vegetation will be re-established after sediment removal.
- Structural Repairs: Once deemed necessary, repairs to structural components of landscaping will be done within 10 working days. Qualified individuals (i.e., the designers or contractors) will conduct repairs where structural damage has occurred.
- Embankment and Slope Repairs: Once deemed necessary, damage to the embankments and slopes of landscaped areas will be repaired within 10 working days.
- Erosion Repair: Where a reseeding program has been ineffective, or where other factors have created erosive conditions (i.e., pedestrian traffic, concentrated flow, etc.), corrective steps will be taken to prevent loss of soil and any subsequent danger to the performance and use of landscaped areas as BMPs. There are a number of corrective actions than can be taken.
- These include erosion control blankets, riprap, or reducing flow velocity.
- Consult with an engineer and contractor to address frequently occurring erosion problems.
- Elimination of Animal Burrows: Animal burrows will be filled and steps taken to

remove the animals if burrowing problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the BMP performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September.

• General Facility Maintenance: In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed.

H. Rain Garden/ Rock Garden

Operational and maintenance needs include:

- Within 6 months following construction, the practice and drainage area should be inspected after storm events.
- Remove stakes, wires, and tags on any new trees.
- Water plants if applicable initial three years
- Conduct maintenance inspections
- Check curb cuts and inlets for accumulated grit, leaves, and debris that may block inflow
- Identify maintenance tasks needed
- Look for erosion, bare areas, and where mulch, if applicable, needs to be applied
- Spot weed
- Adjust mulch, if applicable, as needed to ensure full cover
- Remove trash and animal waste
- Remove any dead or diseased plants
- Remove sediment in pretreatment cells and inflow points
- Mow filter strips with turf cover
- Mulch as needed to replace 3" surface cover
- Prune trees and shrubs as needed to keep inlets and outlets clear.
- Remove invasive plants using recommended control methods
- Add planting to maintain desired vegetation density, if applicable
- Blow-off cleanouts using compressed air, high pressure water hose, or drain snake in practices that show evidence of clogged underdrain
- Stabilize the surrounding drainage area to prevent erosion.
- Repair or replace cracked pipes or planter box if cracks are greater than l"
- Secure or repair the liner, if applicable, if loose or damaged
- If scouring is occurring at inlets, add splash pads or rock protection
- Adjust the overflow structure if less than 6" above soil surface or 2" below waterproof liner/top of facility
- Replace drain rock surface material, if applicable, if water ponds at surface during storm events or operates at less than 90% of the design infiltration rate.
- Remove and replace the mulch layer, if applicable

I. 30" Detention pipes

Detention pipes upstream of the Biofiltrations shall be inspected a minimum 2 times a year, weekly during the rainy season, and immediately after major rain events. Pipes and the downstream box shall be kept clear of sediment and debris. The pipes can be hosed clean from the upstream cleanouts. Debris and sediment can be removed at the downstream box. The orifice in the downstream box should be blocked when cleaning to prevent unnecessary sediment for draining to the Biofiltration basin.

J. Outlet Structures

All outlet structures shall be kept functional at all times. Routine inspection and corrective maintenance shall include removal of trash sediment and debris and repair of any structural damage or clogging of orifice outlets. The minimum maintenance frequency shall be 30 days prior to October lst each year, weekly during rainy season or within 24 hours prior to rain forecasts.

K. Vector Management Control Requirements

Due to Clean Water Act requirements and mandates imposed by the Water Quality Control Board, large quantities of stormwater will be detained onsite in above ground and underground storage facilities for treatment and storage. These storage facilities are required to dewater or discharge at a very small flow rate in order to comply with these requirements. The outlet structure for the underground storage and bioretention facility had to be sized to a fraction of an inch in order to maintain the maximum allowed discharge flow. The facility was designed to dewater in less than 96 hours. However, due to its small size and if not properly maintained regularly, it is anticipated that the outlet might have a tendency to clog frequently. Consequently, the facility may not drain within 96 hours and possibly take substantially longer time. This creates an increased risk for onsite Vector Issues and bringing their potential for severe harm to human health.

In order to implement vector controls including minimizing the risk for mosquitoborne disease transmission, It is the responsibility of the Owner to regularly maintain the outlet structures and monitor the site after every storm event to ensure that the system (comprising of above and/or below ground storage facilities) is dewatered in less than 96 hours. Otherwise the owner will be required to implement a vector control plan in accordance with California Department of Public Health.

ATTACHMENT "A1" INSPECTION & MAINTENANCE SCHEDULE

PREVENTATIVE MAINTENANCE AND ROUTINE INSPECTION

TYPE BMP	Routine Action	Maintenance Indicator	Maintenance Frequency	MAINTENANCE ACTIVITY	SITE-SPECIFIC REQUIREMENTS
Landscaping & irrigation	Proper irrigation & Fertilizer.	Less than 80% coverage	30 days prior to October 1st each year and Monthly	Re-seed or Re- plant. Repair Irrigation system with-in 5-days.	All slopes and landscaped areas are to have a minimum coverage of 80%
Trash storage areas	Trash free and removal of silt	Visual Inspection	Daily inspection	Remove trash and silt Daily.	All trash storage areas to be free from trash and silt at all times
Roof drain	Trash free and removal of silt, sedimentation & Debris	Silt build up of more than 1" no trash	30 days prior to October 1st each year and weekly during rain season.	Remove all trash and silt and repair any damage to roof drains,	All Roof to be free from trash and silt and in good repair
Bioretention	Trash free and removal of silt. Clear Clogged outlets and Standing Water.	Silt build up of more than 2" no trash, Exposed soils, dead vegetation, ponded water, and excessive vegetation (see TC-32)	30 days prior to October 1st each year, monthly during rainy season, and after Storm Event	Remove trash and silt – repair and reseed exposed areas, maintain grass height so as not be shorter than 2" or higher than 5" remove all ponded water weekly inspections, (See TC-32)	All bio-filters to be free from trash and silt at all times, grass area to be free from exposed soil and maintained to proper height, ponding of water for more than 72 hours maintenance will be required
Storm Water Conveyance system Stenciling & Signing	Must be legible at all times and have a clear view.	Fading of paint or illegible letters or	Semi-annually, 30 days prior to October 1st each year & monthly during rainy season	Repaint stenciling and/or replace signs 30 days prior to October 1st.	Applicable to all stenciling and signs
Outlet Structures	Must be kept functional at all times. Clear Clogged outlets and Standing Water.	Silt, debris, trash accumulation, Ponding Water	30 days prior to October 1st each year and weekly during rainy season or within 24 hours prior to rain forecasts.	Silt, debris, trash accumulation and repair any structural damage to the outlet structures.	All outlet structures shall be kept functional at all times.

ATTACHMENT "A1" INSPECTION & MAINTENANCE

Rain Gardens and Rock Gardens

When	Maintenance Task	Frequency	Time of the Year
unce ment urs)	Within 6 months following construction, the practice and drainage area should be inspected after storm events.	Twice after installation	Following storm events
tens lish: d	Remove stakes, wires, and tags on any new trees.	One time	One year after planting
Initial maintenance during establishment period (First three years)	Water plants if applicable - initial three years	Weekly during first 2-3 months after installation, and when rainfall is less than 1 inch per week	April-October
Routine Inspection	 Conduct maintenance inspections Check curb cuts and inlets for accumulated grit, leaves, and debris that may block inflow Identify maintenance tasks needed Look for erosion, bare areas, and where mulch, if applicable, needs to be applied 	Quarterly inspection at minimum and maintain as needed.	
Routine Maintenance	 Spot weed Adjust mulch, if applicable, as needed to ensure full cover Remove trash and animal waste Remove any dead or diseased plants Remove sediment in pretreatment cells and inflow points Mow filter strips with turf cover 	Quarterly inspection at minimum and maintain as needed.	
R	Mulch as needed to replace 3" surface cover	Annually or as needed.	February - April
As-Needed Maintenance	Prune trees and shrubs as needed to keep inlets and outlets clear.	As-needed	Feb-April and Sep - Nov as Appropriate

When	Maintenance Task	Frequency	Time of the Year
	Water plants, if applicable, after three years	Weekly during droughts (more than 2 weeks of no rain)	April-October
	 Remove invasive plants using recommended control methods Add planting to maintain desired vegetation density, if applicable Blow-off cleanouts using compressed air, high pressure water hose, or drain snake in practices that show evidence of clogged underdrain Stabilize the surrounding drainage area to prevent erosion. Repair or replace cracked pipes or planter box if cracks are greater than 1" Secure or repair the liner, if applicable, if loose or damaged If scouring is occurring at inlets, add splash pads or rock protection Adjust the overflow structure if less than 6" above soil surface or 2" below waterproof liner/top of facility 	As needed following inspection	 At appropriate time for disease or pest treatment. October-April
	Replace drain rock surface material, if applicable, if water ponds at surface during storm events or operates at less than 90% of the design infiltration rate.	As needed following inspection	
	Remove and replace the mulch layer, if applicable	Once every 3 years	February-April

						retention										
ROUTINE ACTION	MAINTENANCE INDICATOR	FIELD MEASUREMENT	MEASUREMENT FREQUENCY	MAINTENANCE ACTIVITY	Frequency (# of times per year)	Hours per Event	# of Units Requiring Maintenence	Total Hours of Action	Average Labor Crew Size	Total Hours For Year	Avg. (Pro- Rated) Labor Rate/Hr. (\$)	Equipment	Equipmen Cost/Hour (\$)	Materials & Incidentals Cost or Disposal Cost/Event (\$)	Total cos per visit (Lotal cost per vear (%
Vegetation Management for Aesthetics (optional)	Average vegetation height greater than 12-inches, emergence of trees or woody vegetation,	Visual observation and random measurements through out the side slope area	Annually, prior to start of wet season	Cut vegetation to an average height of 6-inches and remove trimmings. Remove any trees, or woody vegetation.	1.0	1.000	6.0	6.0	2	12	\$74.97/hr	Utility Truck	\$ 14.39	\$ 50.00	\$ 1,12	2 \$ 1,122
Soil Repair	Evidence of erosion	Visual observation	Annually, prior to start of wet season	Reseed/revegetate barren spots prior to wet season.	1.0	1.000	6.0	6.0	2	12	\$74.97/hr	Utility Truck	\$ 14.39	\$ 150.00	\$ 1,22	2 \$ 1,222
Standing Water	Standing water for more than 96 hrs	Visual observation	Annually, 96 hours after a target storm (0.60 in) event	Drain facility. Corrective action prior to wet season. Consult engineers if immediate solution is not evident.	1.0	1.000	6.0	6.0	2	12	\$74.97/hr	Utility Truck	\$ 14.39		\$ 1,0	2 \$ 1,072
Trash and Debris	Trash and Debris present	Visual observation	Annually, prior to start of wet season	Remove and dispose of trash and debris	1.0	1.000	6.0	6.0	2	12	\$74.97/hr	Utility Truck	\$ 14.39		\$ 1,0	2 \$ 1,072
Sediment Management	Sediment depth exceeds 10% of the facility design	Measure depth at apparent maximum and minimum accumulation of sediment. Calculate average depth	Annually, prior to start of wet season	Remove and properly dispose of sediment. Regrade if necessary. (expected every 2 years)	1.0	1.500	6.0	9.0	2	18	\$74.97/hr	Utility Truck, 10-15 yd Truck, Backhoe	\$ 56.02	2 \$ 400.00	\$ 2,7!	8 \$ 2,758
Underdrains	Evidence of Clogging	Visual Observation	Annually, prior to start of wet season	Corrective action prior to wet season. Consult engineers if immediate solution is not evident.	1.0	1.000	6.0	6.0	2	12	\$74.97/hr	Utility Truck	\$ 14.39	9	\$ 1,0	2 \$ 1,072
General Maintenance Inspection	Inlet structures, outlet structures, side slopes or other features damaged, significant erosion, burrows, emergence of trees or woody vegetation, graffiti or vandalism, fence damage, etc.	Visual observation	Annually, prior to start of wet season	Corrective action prior to wet season. Consult engineers if immediate solution is not evident.	1.0	0.250	6.0	1.5	2	3	\$74.97/hr	Utility Truck	\$ 14.39	,	\$ 26	8 \$ 268
Trash and Debris from Wier	Trash and Debris present	Visual observation	Monthly during wet season	Remove and dispose of trash and debris	6.0	0.1	2.0	0.3	1	2	\$74.97/hr	Utility Truck	\$ 14.39)	\$ 13	4 \$ 804
Water Seal on Wier	Water Seepage Through side of Wier Plate	Visual observation	Monthly during wet season	Remove Caulking around Wier Plate, Recaulk, Replace Wier Plate if Necessary	6.0	0.125	2.0	0.3	2	3	\$74.97/hr	Utility Truck	\$ 14.39	\$ 15.00	\$ 28	3 \$ 1,698
Sediment Management Around Orifice of Wier Plate	Any and all Sediment Around Wier Plate	Visual observation	Monthly during wet season	Remove and properly dispose of sediment.	6.0	0.125	2.0	0.3	2	3	\$74.97/hr	Utility Truck	\$ 14.39	\$ 10.00	\$ 27	8 \$ 1,668
Reporting					1.0	3.0	1.0	3.0	1	3	\$74.97/hr				\$ 22	5 \$ 225
				Average Annual Tota	al Hours					91.5		Av	erage A	nnual Total (Cost	\$ 12,983.61
												A	verage	Two Year Co	st	\$ 25,967.22

Labor Rate

\$74.97/hr

Equipment	Equipment Cost
Utility Truck	\$14.39/hr
10-15 yd truck	\$28.27/hr
Backhoe	\$13.36/hr
Vactor	\$62.70/hr
Sweeper	\$123.26/hr

	BMP TRAINING LOG				
Date Mo/Day/Yr	Type of Training	Personnel Trained	Trainer		

ATTACHMENT "C1"

MAINTENACE INDICATORS

Typical Maintenance Indicator(s) for Vegetated BMPs	Maintenance Actions		
Accumulation of sediment, litter, or debris	Remove and properly dispose of accumulated materials, without damage to the vegetation.		
Poor vegetation establishment	Re-seed, re-plant, or re-establish vegetation per original plans.		
Overgrown vegetation	Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetation height).		
Erosion due to concentrated irrigation flow	Repair/re-seed/re-plant eroded areas and adjust the irrigation system.		
Erosion due to concentrated storm water runoff flow	Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, The County must be contacted prior to any additional repairs or reconstruction.		
Standing water in vegetated swales	Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, County staff in the Watershed Protection Program must be contacted prior to any additional repairs or reconstruction.		
Standing water in bioretention, biofiltration with partial retention, or biofiltration areas, or flow-through planter boxes for longer than 96 hours following a storm event*	Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, clearing underdrains (where applicable), or repairing/replacing clogged or compacted soils.		
Obstructed inlet or outlet structure	Clear obstructions.		
Damage to structural components such as weirs, inlet or outlet structures	Repair or replace as applicable.		
*These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to			

drain following a storm event.

ACCESS AND MAINTENANCE

Structural BMP-A

Structural BMP-A is constructed near the Southwest corner of the proposed site on the Northside of Nutmeg Street. Please see Figure I.11-2 of Attachment 3b for site overview and BMP location. Access for inspection and maintenance is provided to the south of the structural BMP off the main northbound driveway.

BMP-A is designed as a Biofiltration basin with a 24"x24" boxer riser to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this Biofiltration basin.

Maintenance of BMPS will be performed, at minimum, when these thresholds are exceeded:

- Grass higher than 4"
- Wilting and/or dying trees, shrubs or grass
- Erosive conditions cause ponding area side slopes to exceed 3:1
- Silt buildup of more than 2"
- Ponding surface drawdown time exceeds 24 hours
- Ponding elevation exceeds top of pond elevation

In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used.

No special training or certification is needed in inspecting or maintaining this BMP.

Structural BMP-B

Structural BMP-B is constructed in the Eastern side of the proposed site on the North side of Nutmeg. Please see Figure I.11-2 of Attachment 3b for site overview and BMP location. Access for inspection and maintenance is provided off the private road to the east of the structural BMP.

BMP-B is designed as a Biofiltration basin with a 24"x24" box riser to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this Biofiltration basin.

Maintenance of BMP-B will be performed, at minimum, when these thresholds are exceeded:

- Grass higher than 4"
- Wilting and/or dying trees, shrubs or grass
- Erosive conditions cause ponding area side slopes to exceed 3:1
- Silt buildup of more than 2"
- Ponding surface drawdown time exceeds 24 hours
- Ponding elevation exceeds top of pond elevation

In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used.

No special training or certification is needed in inspecting or maintaining this BMP.

Structural BMP-H

Structural BMP-H is constructed on the South side of Nutmeg Street to treat public end of the Courtyard of the proposed building along the south side. Please see Figure I.11-2 of Attachment 3b for site overview and BMP location. Access for inspection and maintenance is provided off the private road to the east of the structural BMP.

BMP-H is designed as a Biofiltration basin with a 24"x24" box riser to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this Biofiltration basin.

Maintenance of BMP-H will be performed, at minimum, when these thresholds are exceeded:

- Grass higher than 4"
- Wilting and/or dying trees, shrubs or grass
- Erosive conditions cause ponding area side slopes to exceed 3:1
- Silt buildup of more than 2"
- Ponding surface drawdown time exceeds 24 hours
- Ponding elevation exceeds top of pond elevation

In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used.

No special training or certification is needed in inspecting or maintaining this BMP.

Structural BMP-I

Structural BMP-I is constructed on the South side of Nutmeg Street to treat public end of the Courtyard of the proposed building along the south side. Please see Figure I.11-2 of Attachment 3b for site overview and BMP location. Access for inspection and maintenance is provided off the private road to the east of the structural BMP.

BMP-I is designed as a Biofiltration basin with a 24"x24" box riser to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this Biofiltration basin.

Maintenance of BMP-I will be performed, at minimum, when these thresholds are exceeded:

- Grass higher than 4"
- Wilting and/or dying trees, shrubs or grass
- Erosive conditions cause ponding area side slopes to exceed 3:1

- Silt buildup of more than 2"
- Ponding surface drawdown time exceeds 24 hours
- Ponding elevation exceeds top of pond elevation

In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used.

No special training or certification is needed in inspecting or maintaining this BMP.

Structural BMP-J

Structural BMP-J is constructed on the South side of Nutmeg Street to treat public end of the Courtyard of the proposed building along the south side. Please see Figure I.11-2 of Attachment 3b for site overview and BMP location. Access for inspection and maintenance is provided off the private road to the east of the structural BMP.

BMP-J is designed as a Biofiltration basin with a 24"x24" box riser to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this Biofiltration basin.

Maintenance of BMP-J will be performed, at minimum, when these thresholds are exceeded:

- Grass higher than 4"
- Wilting and/or dying trees, shrubs or grass
- Erosive conditions cause ponding area side slopes to exceed 3:1
- Silt buildup of more than 2"
- Ponding surface drawdown time exceeds 24 hours
- Ponding elevation exceeds top of pond elevation

In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used.

No special training or certification is needed in inspecting or maintaining this BMP.

FREE RECORDING REQUESTED PURSUANT TO GOVERNMENT CODE SECTION 27383 **RECORDING REQUESTED BY:**

CITY OF ESCONDIDO

WHEN RECORDED MAIL TO:

CITY ENGINEER CITY OF ESCONDIDO 201 N. BROADWAY ESCONDIDO, CA 92025

(SPACE ABOVE FOR RECORDER'S USE ONLY)

Documentary Transfer Tax \$_____ Signature

STORM WATER CONTROL FACILITY MAINTENANCE AGREEMENT APN NO. _____

THIS AGREEMENT for the design, construction, maintenance and repair of the Storm Water Control Facilities (SWCF(s)), installed on the property as identified in the San Diego County Assessor Tax Roll for 20__, as APN No. ______, and commonly known as _______, Escondido, California, ("Property") is entered into between the CITY OF ESCONDIDO, a municipal corporation ("CITY") and ______, Developer and/or Property Owner ("LOT OWNER(s)"), and in accordance with the CITY of Escondido Grading Plan No. GP_--____ ("Grading Plan"). ("Agreement")

WHEREAS, installation and maintenance of Storm Water Control Facilities is required pursuant to the Escondido Municipal Code, the California Regional Water Quality Control Board ("RWQCB") and by the CITY as a condition of approval of property development; and

WHEREAS, LOT OWNER(s) is the owner of certain real property being developed that provides benefit to the general public and the CITY and meets the requirements of the California RWQCB Order R9-2013-0001 and National Pollution Discharge Elimination System No. CAS0109266 and subsequent amendments; and

WHEREAS, the current and future subdivision LOT OWNER(s) will use the SWCF(s) as installed per the Grading Plan and the provisions of the Storm Water Quality Management Plan ("Storm Water Plan") prepared by the LOT OWNER(s) and approved by the CITY on ______, 201___; and

WHEREAS, it is the mutual desire of the parties to this Agreement that the SWCF(s) be maintained in a safe and usable condition by the LOT OWNER(s); and

WHEREAS, it is the mutual desire of the parties to this Agreement to establish a method for the maintenance and repair of the SWCF(s); and

WHEREAS, the CITY shall have the right but not the obligation to enforce full compliance with the

terms and conditions of this Agreement; and

WHEREAS, it is the mutual intention of the parties that this Agreement constitute a covenant running with the land, binding upon each successive LOT OWNER of all or any portion of the property.

NOW, THEREFORE, IT IS HEREBY AGREED AS FOLLOWS:

1. The Property is benefited by this Agreement, and present and successive LOT OWNER(s) of all or any portion of the property are expressly bound hereby for the benefit of the land. In the event any of the herein described parcels of land are subdivided further, the LOT OWNER(s), heirs, assigns and successors in interest of each such newly created parcel shall be liable under this Agreement for their then pro rata share of expenses and such pro rata shares of expenses shall be computed to reflect such newly created parcels.

2. The cost and expense of maintaining the SWCF(s) shall be the responsibility of and paid by the LOT OWNER(s) or their heirs, assigns and successors in interest. The SWCF(s) shall be constructed and maintained by the LOT OWNER(s) in accordance with the CITY- approved Grading Plan and Storm Water Plan, on file with the CITY.

3. Repair and maintenance responsibilities for all structural SWCF(s) and required Best Management Practices associated with the project are set forth in the Storm Water Plan. LOT OWNER(s) shall, as changes occur, provide the CITY with the name, title, and phone number the persons or entities responsible for maintenance and reporting activity, the persons or entities responsible for funding, schedules and procedures for inspection and maintenance of the SWCF(s) and implementation of worker training requirements, and any other activities necessary to ensure BMP maintenance. The Storm Water Plan shall provide for the servicing of all SWCF(s) as needed and at least once during August or September of each year, and for the retention of inspection and maintenance records for at least three (3) years. LOT OWNER(s) shall submit annual certification to the CITY's Department of Engineering Services between September 1 and October 1 of each year until the property is redeveloped. The certification shall document all maintenance performed and compliance with applicable permits.

4. CITY shall have the right to inspect the SWCF(s) and records as needed to ensure the SWCF(s) are being properly maintained.

5. Should any LOT OWNER(s) fail to pay their share of costs and expenses as required to use, maintain or repair the SWCF(s) in this Agreement, then the CITY or any other LOT OWNER shall be entitled without further notice to institute legal action for the collection of funds advanced on behalf of the LOT OWNER who did not pay their share of costs and expenses and shall be entitled to recover in such action in addition to the funds advanced, interest thereon at the current prime rate of interest, until paid, all costs and disbursements of such action, including such sum or sums as the court may fix as and for a reasonable attorney's fees.

6. Any liability of the LOT OWNER(s) to any worker employed to make repairs or provide maintenance under this Agreement, or to third persons, as well as any liability of the LOT OWNER(s) for damage to the property of agent, or any such worker, or any third persons, as a result of or arising out of repairs and maintenance under this Agreement, shall be borne, as between the LOT OWNER(s) in the same percentages as they bear the costs and expenses of

such repairs and maintenance. Each LOT OWNER shall be responsible for and maintain his own insurance, if any. By this Agreement, the parties do not intend to provide for the sharing of liability with respect to personal injury or property damage other than that attributable to the repairs and maintenance undertaken under this Agreement. Each of the LOT OWNER(s) agrees to indemnify the others from any and all liability for injury to him or damage to their property when such injury or damage results from, arises out of, or is attributable to any maintenance or repairs undertaken pursuant to this Agreement.

7. CITY Indemnification.

To the fullest extent permitted by law, LOT OWNER(s) shall jointly and severally a) indemnify, defend with legal counsel reasonably satisfactory to the CITY, and hold harmless the CITY and the CITY's officers, directors, employees, and council members (hereinafter referred to as "Indemnitees") from all actions, fines, sanctions, levies, penalties, orders and assessments of any kind harmless against any and all liability, loss, damage, fine, penalty, expense, claim, or cost (including without limitation costs and fees of litigation) of every nature (collectively referred to as "RWQCB Orders") that may arise out of or relate to LOT OWNER(s)'s obligations for implementation of storm water management in accordance with the RWQCB Order R9-2013-0001 and subsequent amendments, including any reasonable attorney's fees, costs and expenses incurred by the Indemnitees in responding to any RWQCB Orders arising out of or relating to implementation of storm water management. LOT OWNER(s) obligations shall include but not be limited to design, construction, maintenance and required documentation of the maintenance activities related to all storm water treatment measures proposed for the project and included in the STORM WATER PLAN, approved _, arising out of or in connection with this Agreement or its performance (including acts of omission) except for liability caused by the Indemnitiees' willful misconduct.

b) LOT OWNER(s) obligation to defend shall apply whether or not Indemnitees were negligent or otherwise at fault and whether or not the RWQCB's Orders have any merit. LOT OWNER(s) obligation to defend shall apply with full force and effect regardless of any concurrent negligence or fault by the Indemnitees, or any of them. However LOT OWNER(s) shall not be obligated under this Agreement to indemnify any Indemnitee after entry of a non-appealable final judgment after trial or award in a judicial proceeding for that portion of the final judgment that arises from the willful misconduct of that Indemnitee.

c) LOT OWNER(s) duty to defend the Indemnitees is separate, independent and free standing from LOT OWNER(s) duty to indemnify and hold harmless the Indemnitees. LOT OWNER(s) defense obligation shall arise immediately upon receipt by CITY or LOT OWNER(s) of any written Notice of Violation or equivalent notice of intent to levy any fines, penalties or sanctions against Indemnitees by the RWQCB or other enforcement agency, and shall continue until the entry of any final and non-appealable RWQCB or other enforcement orders.

d) LOT OWNER(s) obligation to indemnify, defend and hold harmless shall be carried on to future property OWNERS and shall continue until the time that the site is redeveloped.

e) It is expressly understood and agreed that the foregoing provisions will survive termination of this Agreement, unless the property is properly redeveloped.

(f) The indemnity protections provided by this Agreement are not intended to exceed the indemnity available under applicable law. If the indemnity protections are found by a court to be unlawful in any way, the protection shall be curtailed or adjusted, but only to the minimum extent required to conform to applicable law.

(g) Nothing in the Agreement, the specifications or other contract documents or CITY approval of the plans and specifications or inspection of the work is intended to include a review, inspection, acknowledgment of any responsibility for any such matter, and CITY, CITY's engineer, and their consultants, and each of their officials, directors, officers, employees and agents, shall have absolutely no responsibility or liability thereof.

8. If, in the CITY's sole judgment said SWCF(s) are not being maintained to standards set forth in paragraph 3 of this Agreement, the CITY may thereupon provide written notice to all LOT OWNER(s) to initiate repairs or construction within ninety (90) days. Upon failure to demonstrate good faith to make repairs or construction within ninety (90), the LOT OWNER(s) agree that the CITY may make all needed repairs to said SWCF(s) and/or construct SWCF(s) to meet the standards set forth in paragraph 3 and to then assess costs to all LOT OWNER(s) equally.

9. If the CITY elects to make necessary maintenance or repairs in accordance with this Agreement, said work shall be without warranty. Said repairs shall be accepted "as is" by the LOT OWNER(s) without any warranty of workmanship and be guaranteed and indemnified by them in accordance this Agreement.

10. The foregoing covenants shall run with the land and shall be deemed to be for the benefit of the land of each of the LOT OWNER(s) and each and every person who shall at any time own all or any portion of the property referred to herein.

11. It is understood and agreed that the covenants herein contained shall be binding on the heirs, executors, administrators, successors, and assigns of each of the LOT OWNER(s).

12. This Agreement shall be recorded and that all obligations created shall constitute a covenant running with the land and any subsequent purchaser of all or any portion thereof, by acceptance of delivery of a deed and/or conveyance regardless of form shall be deemed to have consented to and become bound by this Agreement.

13. The terms of this Agreement may be amended in writing upon majority approval of the LOT OWNER(s) and consent of the CITY.

14. This Agreement shall be governed by the laws of the State of California. In the event that any of the provisions of this Agreement are held to be unenforceable or invalid by any court of competent jurisdiction, the validity, and enforceability of the remaining provisions shall not be affected thereby.

SIGNATURE PAGE FOLLOWS ON PAGE 5:

SIGNATURE PAGE

LOT OWNER(s): _____

PRINT NAME AND TITLE

SIGNATURE

PRINT NAME AND TITLE

SIGNATURE

PRINT NAME AND TITLE

SIGNATURE

DATE SIGNED

ATTACH CALIFORNIA ALL PURPOSE NOTARY ACKNOWLEDGMENT FOR ABOVE SIGNATURES

CITY OF ESCONDIDO,

a municipal Corporation

Date Signed: _____

Director of Public Works / City Engineer

By: _____

APPROVED AS TO FORM: Jeffrey Epp, City Attorney

Ву: _____

DATE SIGNED

DATE SIGNED

This page was left intentionally blank.

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Attachment 3a must identify:


- Specific maintenance indicators and actions for proposed structural BMP(s). This must be based on Section 7.7 of the Storm Water Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)
- How to access the structural BMP(s) to inspect and perform maintenance
- Example Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- ⊠ Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- Recommended equipment to perform maintenance
- When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

Attachment 3b: For all Structural BMPs, Attachment 3b must include a draft maintenance agreement in the City's standard format depending on the Category (PDP applicant to contact City staff to obtain the current maintenance agreement forms). Refer to Section 7.3 in the Storm Water Design Manual for a description of the different categories.

This page was left intentionally blank.

ATTACHMENT 4

City of Escondido PDP Structural BMP Verification for Permitted Land Development Projects

ATTACHMENT 4 SINGLE SHEET BMP PLAN NUTMEG HOMES

			BM	IP TABL	E				
BMP #	BMP TYPE	SYMBOL	CASQA NO.	QUANTITY	DRAWING #	SHEET NO.(S)	INSPECTION FREQUENCY	MAINTENANCE FREQUENCY	
HYDROM	HYDROMODIFICATION & TREATMENT CONTROL								
()-(5)	BIOFIL TRA TION AREA		TC-32	10,098 SF		3, 4	<i>30 DAYS PRIOR TO OCT. 1ST EACH YEAR AND WEEKLY DURING RAIN SEASON.</i>	BI-MONTHLY (SEE ATTACHMENT 3 OF PROJECT SWQMP)	
SOURCE	CONTROL								
6	INLET STENCILING	NO DUMPING DRAINS TO OCEAN	N <i>SD-13</i>	6 EA.		3, 4	SEMI ANNUALLY VISUAL INSPECTION	SEMI ANNUALLY, REPAIR DONE 30 DAYS PRIOR TO OCTOBER 1ST EACH YEAR AND FREQUENCY WILL VARY ACCORDING TO USAGE AND VISUAL INSPECTION	
7	SWEEPING	N/A	SC-43	12 EA.		3, 4		<i>30 DAYS PRIOR TO OCT. 1ST EACH YEAR. INSPECTION AND FREQUENCY WILL VARY ACCORDING TO USAGE AND VISUAL INSPECTION.</i>	

PARTY	RESPONSIL
PARIY	RESPONSIL

NAME:	<u>ADJ HO</u>
CONTACT:	
ADDRESS:	

PLAN	PREPARED	
/ _/ // /		-

NAME:	
COMPANY:	<u>EXCEL ENGINEER</u>
ADDRESS:	<u>440 STATE PL</u>
	ESCONDIDO, CA
PHONE NO.	<i>706.745.8188</i>
CER TIFICA TION	: <u>R.C.E. 45629</u>

BMP NOTES:

1.	THESE BMPS ARE N
	MANUFACTURER'S K
2.	NO CHANGES TO T
	PRIOR APPROVAL F
З.	NO SUBSTITUTIONS
	TYPES WITHOUT PRI
4.	NO OCCUPANCY WI
	STAFF HAS INSPEC
	CONSTRUCTION AND
5	REFER TO MAINTEN

ſ	SCALE	Designed By	Drawn By	Checked By	COMMUNITY DEVELOPMENT DEPARTMENT - PLANNING DEVISION		No.
ļ	Horizontal	ES Plans Pre	AB epared Under Superv	ision Of	SINGLE SHEET BMP EXHIBIT FOR:		
	Vertical	ROBERT D. DENT			NUTMEG HOMES	Sheet 1	1 of 1

SIBLE FOR MAINTENANCE:

<u>ADJ HOLDINGS, LLC</u>

SIGNA TURE

BY:

<u>BERT DENTINO</u>

<u>CEL ENGINEERING</u>

<u>O STATE PL</u> <u>CONDIDO, CA 92029</u>

MANDATORY TO BE INSTALLED PER RECOMMENDATIONS OR THESE PLANS. THE PROPOSED BMPS ON THIS SHEET WITHOUT FROM THE CITY ENGINEER. S TO THE MATERIAL OR TYPES OR PLANTING PRIOR APPROVAL FROM THE CITY ENGINEER. WILL BE GRANTED UNTIL THE CITY INSPECTION CTED THIS PROJECT FOR APPROPRIATE BMP ND INSTALLATION.

REFER TO MAINTENANCE AGREEMENT DOCUMENT.
 SEE PROJECT SWMP FOR ADDITIONAL INFORMATION.

This page was left intentionally blank.

	uctural BMP Verification Form Page 1 of 4		
*	nmary Information Nutmeg Development		
Project Name			
Record ID (e.g., grading/improvement plan number)			
Project Address	2401 Nutmeg Street Escondido, CA 92026		
Assessor's Parcel Number(s) (APN(s))	APN 224-260-23, 224-260-46, 224-60-47		
Project Watershed	904.62 Escondido HSA, Escondido Creek		
(Complete Hydrologic Unit, Area, and Subarea Name with Numeric Identifier)			
Maintenance Notification / Agreement No.			
Responsible Party for Construction Phase			
Developer's Name	ADJ Holdings, LLC		
Address	30220 Rancho Viejo Road, Ste. B San Juan Capistrano, CA 92625		
Email Address			
Phone Number			
Engineer of Work	Robert D. Dentino		
Engineer's Phone Number	760-745-8118		
Responsible Party	for Ongoing Maintenance		
Owner's Name(s)*	ADJ Holdings, LLC		
Address			
Email Address			
Phone Number			
*Note: If a corporation or LLC, provide information for principal partner or Agent for Service of Process. If an HOA, provide information for the Board or property manager at time of project closeout.			

Stormwater Structural Pollutant Control & Hydromodification Control BMPs* (List all from SWQMP)				
Description/Type of Structural BMP	Plan Sheet #	Structural BMP ID#	Maintenance Agreement Recorded Doc #	Revisions
Biofiltration/BF-1		BMP A		
Biofiltration/BF-1		BMP B		
Proprietary Biofiltration/BF-3		BMP C		
Proprietary Biofiltration/BF-3		BMP D		
Proprietary Biofiltration/BF-3		BMP E		
Biofiltration/BF-1		BMP F		
Proprietary Biofiltration/BF-3		BMP G		
Biofiltration/BF-1		BMP H		
Biofiltration/BF-1		BMP I		
Biofiltration/BF-1		BMP J		

*All Priority Development Projects (PDPs) require a Structural BMP

Note: If this is a partial verification of Structural BMPs, provide a list and map denoting Structural BMPs that have already been submitted, those for this submission, and those anticipated in future submissions.

City of Escondido Storm Structural BMP Verification Form Page 3 of 4

Checklist for Engineer of Work (EOW) to submit to Field Engineering:

- □ Copy of the final accepted SWQMP and any accepted addendum.
- □ Copy of the most current plan showing the Storm Water Structural BMP Table, plans/cross-section sheets of the Structural BMPs and the location of each verified asbuilt Structural BMP.
- □ Photograph of each Structural BMP.
- Photograph(s) of each Structural BMP during the construction process to illustrate proper construction.
- □ Copy of the approved Structural BMP maintenance agreement and associated security

By signing below, I certify that the Structural BMP(s) for this project have been constructed and all BMPs are in substantial conformance with the approved plans and applicable regulations. I understand the City reserves the right to inspect the above BMPs to verify compliance with the approved plans and Storm Water Ordinance. Should it be determined that the BMPs were not constructed to plan or code, corrective actions may be necessary before permits can be closed.

Please sign your name and seal.

ricase sign your name and seal.	
Professional Engineer's Printed Name:	[SEAL]
Robert D. Dentino	
Professional Engineer's Signed Name:	

Date: _____

City of Escondido Storm Water Structural BMP Verification Form Page 4 of 4

CITY - OFFICIAL USE ONLY:

	Permit #:
City Inspector:	
Date Project has/expects to close:	
Date verification received from Engineer of Work (EOV	N):
By signing below, City Inspector concurs that every no plan.	oted Structural BMP has been installed per
City Inspector's Signature:	Date:
FOR Environmental Programs:	
Date Received from Field Engineering:	
Environmental Programs Submittal Reviewer:	
Environmental Programs Reviewer concurs that the in Structural BMPs is acceptable to enter into the Structu inventory:	
List acceptable Structural BMPs:	

Environmental Programs Reviewer's Signature: _____

Date: _____

ATTACHMENT 5

Copy of Plan Sheets Showing Permanent Storm Water BMPs, Source Control, and Site Design

This is the cover sheet for Attachment 5.

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

Structural BMP(s) with ID numbers matching Step 6 Summary of PDP Structural BMPs

- ⊠ The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
- \boxtimes Details and specifications for construction of structural BMP(s)
- □Signage indicating the location and boundary of structural BMP(s) as required by City staff
- \boxtimes How to access the structural BMP(s) to inspect and perform maintenance
- Example Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- ⊠ Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- Recommended equipment to perform maintenance
- When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
- \boxtimes Include landscaping plan sheets showing vegetation requirements for vegetated structural $\mathsf{BMP}(s)$
- All BMPs must be fully dimensioned on the plans
- When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number must be provided. Photocopies of general brochures are not acceptable.
- ⊠ Include all source control and site design measures described in Steps 4 and 5 of the SWQMP. Can be included as a separate exhibit as necessary.

This page was left intentionally blank.