
RANCHO CIENEGA CELES KING III POOL DEMOLITION PROJECT DRAFT EIR APPENDICES

TECHNICAL APPENDICES TABLE OF CONTENTS

Appendix A	Notice of Preparation, Initial Study, And Comments Received on the Notice of Preparation
Appendix B	Air Quality and Greenhouse Gas Analysis Technical Memorandum
Appendix C	Cultural Resources Assessment
Appendix D	Noise and Vibration Impact Study
Appendix E	Traffic Impact Analysis Technical Memorandum

APPENDIX A

Notice of Preparation, Initial Study, and Comments Received on the Notice of Preparation

BOARD OF PUBLIC WORKS MEMBERS

KEVIN JAMES

CITY OF LOS ANGELES

CALIFORNIA

DEPARTMENT OF PUBLIC WORKS BUREAU OF ENGINEERING

GARY LEE MOORE, PE, ENV SP CITY ENGINEER

1149 S BROADWAY SUITE 700 LOS ANGELES, CA 90015-2213

http://eng.lacity.org

PRESIDENT HEATHER MARIE REPENNING VICE PRESIDENT

> MICHAEL R. DAVIS PRESIDENT PRO TEMPORE

> > JOEL F. JACINTO COMMISSIONER

AURA GARCIA

DR FERNANDO CAMPOS **EXECUTIVE OFFICER**

ERIC GARCETTI MAYOR

June 21, 2018

NOTICE OF PREPARATION

To: Responsible Agencies, Trustee Agencies, Stakeholders and Interested Parties

From: City of Los Angeles Department of Public Works

Bureau of Engineering, Environmental Management Group

1149 South Broadway, Suite 600

Los Angeles, CA 90015

Subject: Notice of Preparation of a Draft Environmental Impact Report for the Rancho

Cienega Celes King III Pool Demolition Project

The City of Los Angeles (City) Department of Public Works, Bureau of Engineering (BOE) is the Lead Agency under the California Environmental Quality Act (CEQA) and will prepare an Environmental Impact Report (EIR) for the proposed project. The City is proposing to demolish the Celes King III Indoor Pool building and pool (Celes King III Pool) and convert the site into a community front lawn and playground

The City requests your agency's views on the scope and content of the environmental information relevant to your agency's statutory responsibilities in connection with the proposed project, in accordance with California Code of Regulations, Title 14, Section 15082(b). Your agency may need to use the EIR when considering any permit or other approval that your agency must issue for the proposed project. In addition, the City requests comments from other interested parties, stakeholders, and the general public on the scope of the environmental issues related to the proposed project.

The project site is located in the southeast quadrant of the Rancho Cienega Sports Complex at 5001 Rodeo Road in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The project site is bounded by a paved surface parking lot to the west, a tennis shop to the north, tennis courts to the east, and Rodeo Road to the south. Generally, the Rancho Cienega Sports Complex is bounded by the Los Angeles County Metropolitan Transportation Authority (Metro) Expo Line light rail transit system to the north (along Exposition Boulevard), Dorsey High School to the east, residential land uses to the south across Rodeo Road, and commercial uses to the west. Regional access to the project area is provided via Interstate 10 (I-10) and Interstate 405 (I-405). The project site is served by Rodeo Road and Martin Luther King Jr. Boulevard to the south, La Brea Avenue to the west, Exposition Boulevard to the north, and Farmdale Avenue to the east. Figures 1 and 2 attached show the regional location and the project site, respectively.

Implementation of the proposed project would include conducting required hazardous materials abatement, draining water from the existing Celes King III Pool, and demolishing the Celes King III Pool building. Following demolition, construction activities would include infill of the pool pit, rough grading of

the site, utility installations, landscaping and hardscaping, and installation of playground and shade structures.

An analysis of potential environmental effects is provided in the Initial Study Checklist prepared for the Proposed Project. Potential impacts associated with the Proposed Project may include:

- Air Quality
- Cultural Resources
- Greenhouse Gas Emissions
- Hazards and Hazardous Materials
- Noise
- Transportation/Traffic
- Tribal Cultural Resources

In accordance with CEQA Guidelines Section 15126.6, the EIR will include an evaluation of the No Project Alternative, as well as a discussion of a reasonable range of alternatives. Potential alternatives will be analyzed at a lower degree of detail that the proposed project.

The Initial Study Checklist is available for review at the following locations:

- Baldwin Hills Branch Library, 2906 S La Brea Avenue, Los Angeles, CA 90016
- Jefferson/Wright Memorial Branch Library, 2211 W Jefferson Boulevard, Los Angeles, CA 90018
- Council District 10 Office, 1819 S. Western Avenue, Los Angeles, CA 90006
- City of Los Angeles Department of Public Works, Bureau of Engineering, EMG, 1149 South Broadway, Suite 600, Los Angeles, CA 90015

A copy of the Initial Study Checklist may also be obtained by contacting James R Tebbetts of the Bureau of Engineering at (213) 485-5732 and can also be accessed online at: http://eng.lacity.org/techdocs/emg/projects.htm

Comments

Comments will be accepted from June 21, 2018 to July 20, 2018. Please send your comments by mail to:

James R Tebbetts, Environmental Specialist II City of Los Angeles Department of Public Works Bureau of Engineering, EMG 1149 South Broadway, Suite 600, Mail Stop 939 Los Angeles, CA 90015

Comments may also be submitted by e-mail to James. Tebbetts@lacity.org (please include "Celes King III Pool Comments" in the subject line) or by fax to (213) 847-0656.

Scoping Meeting

A scoping meeting will be held to obtain input on the scope of the contents of the EIR, as well as to present information on the proposed project design. This meeting will be held at the following date, time and location:

Thursday, June 28, 2018 6:30 p.m. to 8:00 p.m.

Rancho Cienega Sports Complex Ira C. Massey Child Care Center 5001 Rodeo Road Los Angeles, CA 90016

Scoping Meeting Location

Source: Esri Maps & Data, 2018

Figure 1 **Regional Map**

Source: Esri 2018.

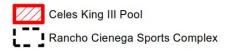


Figure 2
Project Location Map

Initial Study

Initial Study

Rancho Cienega Celes King III Pool Demolition Project

June 2018

City of Los Angeles

Department of Recreation and Parks

Bureau of Engineering Environmental Management Group

TABLE OF CONTENTS

Sect	<u>tion</u>	<u>Page</u>
l.	INTRODUCTION	1
		1
		2
		2
II.	PROJECT DESCRIPTION	3
		3
	B. Location	3
		6
	D. Description	6
III.	EXISTING ENVIRONMENT	7
IV.	POTENTIAL ENVIRONMENTAL	EFFECTS 8
	A. Aesthetics	8
	B. Agriculture and Forestry R	esources 8
	C. Air Quality	8
	D. Biological Resources	9
	E. Cultural Resources	9
		9
		ns9
		1aterials9
		lity10
		10
		10
		10
		10
		10
		11
	• • • • • • • • • • • • • • • • • • •	11
		11
		ms11
	S. Mandatory Findings of Sig	nificance11
V.	PREPARATION AND CONSULT	ATION12
VI.	DETERMINATION - RECOMME	
	DOCUMENTATION	12
VII.	REFERENCES	14

INITIAL STUDY PUBLIC WORKS – BUREAU OF ENGINEERING

APPENDICES

APPENDIX	(A Environmental Screening Checklist	17
	LIST OF FIGURES	
<u>Figure</u>		<u>Page</u>
Figure 1 Figure 2	Regional Map Project Location Map	4 5

CITY OF LOS ANGELES CALIFORNIA ENVIRONMENTAL QUALITY ACT INITIAL STUDY

Council District: 10 Date: June 2018

Lead City Agency: Department of Public Works, Bureau of Engineering

Project Title: Rancho Cienega Celes King III Pool Demolition Project

I. INTRODUCTION

A. Purpose of an Initial Study

The California Environmental Quality Act (CEQA) was enacted in 1970 for the purpose of providing decision-makers and the public with information regarding environmental effects of proposed projects; identifying means of avoiding environmental damage; and disclosing to the public the reasons behind a project's approval even if it leads to environmental damage. The Bureau of Engineering (BOE), Environmental Management Group (EMG) has determined that the proposed project is subject to CEQA and no exemptions apply. Therefore, the preparation of an Initial Study (IS) is required.

An IS is a preliminary analysis conducted by the lead agency, in consultation with other agencies (responsible or trustee agencies, as applicable), to determine whether there is substantial evidence that a project may have a significant effect on the environment. If the IS concludes that the project, with mitigation, may have a significant effect on the environment, an Environmental Impact Report (EIR) should be prepared; otherwise the lead agency may adopt a Negative Declaration (ND) or Mitigated Negative Declaration (MND).

This IS has been prepared in accordance with CEQA (*Public Resources Code* §21000 et seq.), the State CEQA Guidelines (Title 14, *California Code of Regulations*, §15000 et seq.), and the *City of Los Angeles CEQA Guidelines* (1981, amended July 31, 2002).

B. Document Format

This IS/MND is organized into seven sections as follows:

<u>Section I, Introduction:</u> provides an overview of the project and the CEQA environmental documentation process.

<u>Section II, Project Description:</u> provides a description of the project location, project background, and project components, and proposed construction and operation.

<u>Section III, Existing Environment:</u> provides a description of the existing environmental setting with focus on features of the environment that could potentially affect the proposed project or be affected by the proposed project.

<u>Section IV, Potential Environmental Effects:</u> provides a detailed discussion of the environmental factors that would be potentially affected by this project as indicated by the screening checklist in Appendix A.

<u>Section V, Preparation and Consultation:</u> provides a list of key personnel involved in the preparation of this report and key personnel consulted.

<u>Section VI, Determination – Recommended Environmental Documentation:</u> provides the recommended environmental documentation for the proposed project.

<u>Section VII, References:</u> provides a list of reference materials used during the preparation of this report.

C. CEQA Process

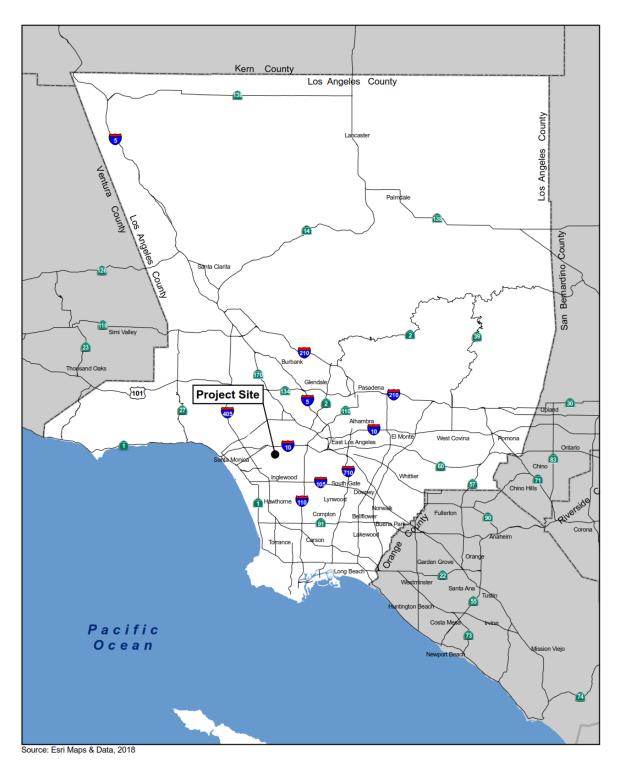
CEQA applies to proposed projects initiated by, funded by, or requiring discretionary approvals from state or local government agencies. The proposed project constitutes a project as defined by CEQA (*California Public Resources Code* §21000 et seq.). CEQA Guidelines §15367 states that a "Lead Agency" is "the public agency which has the principal responsibility for carrying out or approving a project." Therefore, BOE is the lead agency responsible for compliance with CEQA for the proposed project.

As lead agency for the proposed project, BOE must complete an environmental review to determine if implementation of the proposed project would result in significant adverse environmental impacts. To fulfill the purposes of CEQA, an IS has been prepared to assist in making that determination. Based on the nature and scope of the proposed project, the evaluation contained in the IS environmental checklist (contained herein), and the comments received from agencies and members of the public during review of the Notice of Preparation (NOP) of an EIR, factors that have potential to involve significant adverse environmental impacts will be determined.

Such factors will become the focus of more detailed analysis in the EIR to determine the nature and extent of any potential environmental impacts and establish appropriate mitigations for those impacts determined to be significant. The EIR will also include an

evaluation of alternatives to the proposed project that would reduce or avoid significant impacts, including a No Project Alternative. Based on the IS analysis and the NOP review, factors for which no significant adverse environmental impacts are expected to occur will be eliminated from further evaluation in the EIR. A preliminary evaluation of the potentially affected factors is included in the IS checklist in Section IV and Appendix A.

As a covered entity under Title II of the *Americans with Disabilities Act* (ADA), the City of Los Angeles does not discriminate on the basis of disability and, upon request, would provide reasonable accommodation to ensure equal access to its programs, services, and activities.


II. PROJECT DESCRIPTION

A. Introduction

The proposed Rancho Cienega Celes King III Pool Demolition Project (proposed project) would demolish the Celes King III Indoor Pool building and pool (Celes King III Pool) and convert the site into a community front lawn and playground area. The Celes King III Pool is located within the Rancho Cienega Sports Complex in Los Angeles, California, in Council District 10.

B. Location

The project site is located in the southeast quadrant of the Rancho Cienega Sports Complex at 5001 Rodeo Road in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The project site is bounded by a paved surface parking lot to the west, a tennis shop approved for demolition to the north, tennis courts to the east, and Rodeo Road to the south. Generally, the Rancho Cienega Sports Complex is bounded by the Los Angeles County Metropolitan Transportation Authority (Metro) Expo Line light rail transit system to the north (along Exposition Boulevard), Dorsey High School to the east, residential land uses to the south across Rodeo Road, and commercial uses to the west. Regional access to the project area is provided via Interstate 10 (I-10) and Interstate 405 (I-405). The project site is served by Rodeo Road and Martin Luther King Jr. Boulevard to the south, La Brea Avenue to the west, Exposition Boulevard to the north, and Farmdale Avenue to the east. Figure 1 shows the regional location of the project site. Figure 2 shows the project site within the Rancho Cienega Sports Complex.

Miles Figure 1

O 3 6 12 18 24

Regional Map

C. Purpose

The overall purpose for the proposed project is to provide safe and upgraded infrastructure to meet the community's recreational needs. The existing Celes King III Pool no longer meets the standards for competition pools.

The objectives of the proposed project are:

- To alleviate the maintenance concerns for the existing Celes King III Pool.
- To provide additional upgraded playground facilities in a densely populated area.
- To provide additional landscaping for the park for relaxation and enjoyment.
- To remove and properly dispose hazardous materials used in the construction of the Celes King III Pool.

D. Description

The proposed project would conduct required hazardous materials abatement, drain water from the existing Celes King III Pool, and demolish the Celes King III Pool building. Following demolition, construction activities would include infill of the pool pit, rough grading of the site, utility installations, landscaping and hardscaping, and installation of playground and shade structures.

Demolition and construction activities would last approximately 10 months from December 2019 to August 2020. Approximately 14,000 cubic yards of demolition debris would be exported from the project site. Demolition and construction activities would consist of a maximum of 10 truck trips per day. A total of approximately 20 construction workers would be on-site each day. Demolition and hazardous materials abatement would require approximately four types of equipment, consisting of a demolition excavator, articulating dump truck, street sweeper, and 20 yard roll off bins. Construction activities would require approximately four types of equipment, consisting of a compactor, several 20 yard roll off bins, street sweepers, and several backhoes/skip loaders, as well as concrete trucks as necessary. It is not anticipated that any trees be removed as part of the proposed project.

Following construction, the proposed project would operate similarly to existing conditions, and the community front lawn and playground area would be passive uses.

The existing Rancho Cienega Sports Complex is currently developed as a sports complex. The existing complex contains a variety of facilities, including a gymnasium, basketball courts, baseball diamond, child play area, community room, football field, handball courts, picnic tables, soccer field, skate park, and tennis courts. The Rancho Cienega Sports Complex has been approved for construction and demolition activities as part of the recently approved Rancho Cienega Sports Complex Project. Phase 1 of the Rancho Cienega Sports Complex Project would include demolition and construction

of the indoor gymnasium to the northwest of the project site, demolition of the existing restroom facilities and construction of a new indoor pool, bathhouse facility, and multiuse building to the northwest of the project site, rehabilitation of the tennis shop to the north of the project site, construction of a new stadium overlook and concession stand to the northwest of the project site, and improvements to the primary parking lot along Rodeo Road directly adjacent to the project site on the west. Phase 2 of the Rancho Cienega Sports Complex Project would include demolition of parking lots, outdated electrical and plumbing infrastructure, asphalt maintenance driveways and concrete sidewalks, and construction of a driveway, off street parking, park infrastructure (including landscaping and furniture), a tennis block with bleachers and a shade structure, bleachers and a shade structure for the baseball field, and a stadium block that includes a press box, concession stand, elevated bleachers, and restrooms. Construction of the proposed project would occur following the end of Phase 1 and prior to the commencement of Phase 2 of the approved Rancho Cienega Sports Complex Project.

III. EXISTING ENVIRONMENT

The project site consists of the Celes King III Indoor Pool, located within the Rancho Cienega Sports Complex at 5001 Rodeo Road, approximately 6.5 miles southwest of downtown Los Angeles in the *West Adams-Baldwin Hills-Leimert Community Plan* and Council District 10 areas of the City of Los Angeles. The project site has historically been used as a recreation facility, with the Celes King III Pool building constructed in the 1960s. The Celes King III Pool building is a cinder-block/concrete walled, steel-supported structure that consists of offices, lock rooms, and support facilities located at the northern end of the building with the pool area located to the south.

The area surrounding the project site is fully developed and highly urbanized. Current land uses in the area consist of residential housing, light industrial and commercial use, and public lands. The project site totals approximately 0.4 acres and is zoned OS-1XL (Open Space).¹

The California Department of Conservation, California Geological Survey's Seismic Hazard Zonation Program Map indicates that the project site is not within an Alquist-Priolo Earthquake Fault Zone. The nearest fault zone to the project site is the Newport-Inglewood Fault which is located approximately 1.3 miles southwest of the site and no active faults are known to cross the project site.² The project site is located within a designated liquefaction zone.³ The project site is not located within a 100-year floodplain, but is located within a 500-year (0.2-percent-annual-chance) floodplain.^{4,5}

1

City of Los Angeles Department of City Planning, ZIMAS. Website: http://zimas.lacity.org/, accessed April 26, 2018.

² California Department of Conservation Division of Mines and Geology. *Earthquake Fault Zones and Seismic Hazard Zones Map, Hollywood Quadrangle*. Website:

http://maps.conservation.ca.gov/cgs/informationwarehouse/, accessed April 26, 2018.

ibia.

⁴ Federal Emergency Management Agency. FEMA Flood Map Service Center: Search By Address.

IV. POTENTIAL ENVIRONMENTAL EFFECTS

The environmental factors checked below would be potentially affected by this project, involving at least one impact as indicated by the checklist in Appendix A. A detailed discussion of these potential environmental effects follows.

Aesthetics	Agriculture and Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Geology /Soils
Greenhouse Gas Emissions	Hazards & Hazardous Materials	Hydrology / Water Quality
Land Use / Planning	Mineral Resources	Noise
Population / Housing	Public Services	Recreation
Transportation/Traffic	Tribal Cultural Resources	Utilities / Service Systems
Mandatory Findings of Significance		

A. Aesthetics

The project site is not located within a scenic vista nor is it located along or near a designated California Scenic Highway. The proposed project would be consistent with the existing visual character of the project area. Initial screening determined that the proposed project would not result in impacts to aesthetics and visual resources (See Appendix A).

B. Agriculture and Forestry Resources

Initial screening determined that the proposed project would not result in impacts to agriculture and forestry resources. These resources do not occur on or near the project site (See Appendix A).

C. Air Quality

Initial screening determined that the proposed project would generate air pollutants as a result of construction equipment emissions and fugitive dust. The proposed project is not anticipated to result in long-term air quality impacts during operation. An air quality

Firm Panel 06037C1615F, effective on 09/26/2008 Available online at: https://msc.fema.gov/portal/search?AddressQuery=los%20angeles%20city#searchresultsanchor; accessed April 30, 2018

⁵ Ibid.

and greenhouse gas technical report will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential air quality impacts (See Appendix A).

D. Biological Resources

The project site is located within a heavily-urbanized area and is currently developed with the existing Celes King III Pool. No native vegetation, sensitive communities, wetlands, or wildlife corridors exists within the project site, and there would be no direct impacts to sensitive plants, wildlife, or vegetation communities. The proposed project would not conflict with local policies, such as a tree preservation policy or ordinance, or the provisions of an adopted habitat conservation plan. Initial screening determined that the proposed project would result in less than significant impacts related to biological resources (See Appendix A).

E. Cultural Resources

The proposed project would demolish the existing Celes King III Pool, which is eligible for listing in the National Register of Historic Places and California Register of Historical Resources. A cultural resources technical report will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential impacts to cultural resources (See Appendix A).

F. Geology and Soils

The project site is located in an area that is susceptible to liquefaction and other geological phenomena. However, the proposed project would not construct any habitable structures that would be susceptible to liquefaction or seismic-related events. Initial screening determined that the proposed project would result in less than significant impacts related to geology and soils (See Appendix A).

G. Greenhouse Gas Emissions

Initial screening determined that construction activities associated with the proposed project would generate greenhouse gas emissions. It is not anticipated that greenhouse gas emissions would be generated during project operation. An air quality and greenhouse gas technical report will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential greenhouse gas emissions impacts (See Appendix A).

H. Hazards and Hazardous Materials

A preliminary survey conducted for the *Rancho Cienega Sports Complex Project* determined that the Celes King III Pool may contain asbestos-containing materials and lead based paint. The EIR will include a detailed analysis of the potential hazards and hazardous materials impacts (See Appendix A).

I. Hydrology and Water Quality

The proposed project would not violate any water quality standard or waste discharge requirements, or interference with groundwater recharge, substantially alter the drainage pattern of the site, contribute to runoff water, or degrade water quality. Additionally, the proposed project does not include a residential component that would be subject to flooding, impede flood flows, or expose people or structure to flooding, or inundation by seiche, tsunami, or mudflow. Initial screening determined that the proposed project result in less than significant impacts to hydrology and water quality (See Appendix A).

J. Land Use and Planning

The project site is located in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The proposed project would not cause a disruption to an established community and no new land uses would be introduced at the project site. Initial screening determined that the proposed project would not result in significant impacts related to consistent with applicable land use plans (See Appendix A).

K. Mineral Resources

The project site is not in an area identified as containing significant mineral deposits. Initial screening determined that the proposed project would result in no impacts to mineral resources (See Appendix A).

L. Noise

Construction activities associated with the propose project may increase noise levels and/or generate groundborne vibration from the use of heavy equipment. Initial screening determined that the proposed project would potentially result in significant impacts due to construction noise and vibration. A technical noise analysis will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential noise and vibration impacts (See Appendix A).

M. Population and Housing

The project site does not contain any existing housing and the proposed project would not generate new permanent residents. Initial screening determined that the proposed project would result in no impacts to population and housing (See Appendix A).

N. Public Services

The proposed project would not generate new permanent residents that would increase the demand for public services. Initial screening determined that the proposed project would result in no impacts to public services (See Appendix A).

O. Recreation

The proposed project would demolish the existing Celes King III Pool and convert the site to a community lawn and playground area. However, construction of the proposed project would not generate new permanent residents that would increase the use of existing parks and recreational facilities. Initial screening determined that the proposed project would result in less than significant impacts to recreation (See Appendix A).

P. Transportation/Traffic

Construction activities associated with the proposed project would generate traffic. Initial screening determined that the proposed project would potentially result in significant impacts related to transportation and traffic during the demolition and construction activities. It is not anticipated that the proposed project would generate additional vehicle trips during project operation. A traffic study will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential transportation and traffic impacts (See Appendix A).

Q. Tribal Cultural Resources

The project site is located in an area that may contain Native American cultural resources. Initial screening determined that the proposed project would potentially result in significant impacts to tribal cultural resources. A cultural resources technical report will be prepared for the proposed project, and the EIR will include a detailed analysis of the potential impacts to tribal cultural resources (See Appendix A).

R. Utilities and Service Systems

The proposed project would include the installation of new stormwater and drainage infrastructure for the landscaped area. These improvements would not result in the need for new or expanded storm drain facilities elsewhere in the system. Additionally, the proposed project would not generate new permanent residents that would increase the demand for utilities and service systems, and would comply with all federal, state, and local regulations related to the existing wastewater treatment requirements of the Regional Water Quality Control Board and solid waste. Initial screening determined that the proposed project would result in less than significant impacts to utilities and service systems (See Appendix A).

S. Mandatory Findings of Significance

Based on the foregoing, it has been determined that:

The proposed project would potentially result in significant impacts to cultural resources. A cultural resources technical report will be prepared for the proposed project, and the potential impacts to cultural resources will be further studied in the EIR.

Additionally, the proposed project would potentially result in impacts to air quality, greenhouse gas emissions, hazards and hazardous materials, noise, and transportation

and traffic. Therefore, the EIR will also include an analysis of the proposed project's potential to result in cumulatively considerable impacts, achieve short-term environmental goals to the disadvantage of long-term environmental goals, and cause substantial adverse effects on human beings, either directly or indirectly. A detailed analysis of these issues will be included in the EIR (See Appendix A).

The EIR will identify feasible mitigation measures that would avoid or substantially reduce any significant adverse impacts resulting from implementation of the proposed project.

V. PREPARATION AND CONSULTATION

Lead Agency

City of Los Angeles Department of Public Works Bureau of Engineering, Environmental Management Group 1149 South Broadway, Suite 600 Los Angeles, CA 90015

James R. Tebbetts, Environmental Specialist II

City of Los Angeles Department of Public Works Bureau of Engineering, Architectural Division 1149 South Broadway, Suite 600 Los Angeles, CA 90015

Ohaji K. Abdallah, Architectural Associate II/Project Manager

Technical Assistance Provided By:

Fareeha Kibriya, Project Manager (AECOM) Vicky Rosen, Environmental Analyst (AECOM) Jang Seo, GIS Specialist (AECOM)

VI. DETERMINATION – RECOMMENDED ENVIRONMENTAL DOCUMENTATION

A. Summary

This CEQA Initial Study has been prepared to assist the lead agency in determining whether the proposed project would result in significant adverse environmental impacts. Based on the nature and scope of the proposed project and evaluation contained in the Environmental Screening Checklist (contained herein as Appendix A), it was been determined that the proposed project would result in potentially significant impacts to the following environmental issue areas: air quality, cultural resources, greenhouse gas emissions, hazards and hazardous materials, noise, transportation and traffic, and tribal cultural resources.

B. Recommended Environmental Documentation

On the basis of this initial evaluation:

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

Prepared By:

Fareeha Kibriya Project Manager AECOM

Reviewed By:

James Tebbetts

Environmental Specialist II Environmental Management Group

Approved By:

Maria Martin

Environmental Affairs Officer

Environmental Management Group

VII. <u>REFERENCES</u>

The following sources were used in the preparation of this document.

- 1. AirNav. Airport Information. Available at: https://www.airnav.com/cgi-bin/airport-search [Hazards and Hazardous Materials, Noise]
- California Department of Conservation. California Geological Survey. Division of Mines and Geology. Landslide Inventory Map for the Hollywood Quadrangle, Los Angeles County, California. 2013. Available online at: http://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=regulat orymaps [Geology and Soils]
- 3. California Department of Conservation. California Geological Survey. Division of Mines and Geology. Mineral Lands Classification. Available online at: http://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=regulat orymaps [Mineral Resources]
- 4. California Department of Conservation. California Geological Survey. Division of Mines and Geology. Seismic Hazard Zone Report for the Hollywood 7.5-Minute Quadrangle, Los Angeles County, California. 1998. Available online at: http://maps.conservation.ca.gov/cgs/informationwarehouse/ [Geology and Soils]
- 5. California Department of Conservation, Division of Land Resource Protection. Farmland Mapping and Monitoring Program. California Important Farmland Finder. Available at: https://maps.conservation.ca.gov/DLRP/CIFF/ [Agricultural and Forestry Resources]
- California Department of Conservation, Division of Land Resource Protection.
 Williamson Act Program. Williamson Act Maps in PDF Format, Los Angeles County
 Williamson Act FY 2015/2016 Map. Available at:
 ftp://ftp.consrv.ca.gov/pub/dlrp/wa/LA_15_16_WA.pdf [Agricultural and Forestry
 Resources]
- 7. California Department of Fish and Wildlife (CDFW). California Natural Diversity Data Base (CNDDB). Full report for Hollywood, Beverly Hills, Burbank, Inglewood, Los Angeles, Pasadena, South Gate, Van Nuys, and Venice Quadrangles. [Biological Resources]
- 8. California Department of Fish and Wildlife. California Regional Conservation Plans in PDF Format. October 2017. Available at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=68626&inline [Biological Resources]
- 9. California Department of Resources Recycling and Recovery (CalRecycle). Detailed Facility Search. Available at: http://www.calrecycle.ca.gov/facit/facility/search.aspx [Utilities and Service Systems]

- 10. California Department of Toxic Substances Control. EnviroStor Database. Available at: http://www.envirostor.dtsc.ca.gov/public/default.asp [Hazards and Hazardous Materials]
- 11. California State Water Resources Control Board. Geotracker Database. Available at: http://geotracker.waterboards.ca.gov/ [Hazards and Hazardous Materials]
- 12. City of Los Angeles, Bureau of Engineering. Initial Study/Mitigated Negative Declaration for Rancho Cienega Sports Complex Project. 2016. Available at: http://eng.lacity.org/rancho_cienega_sports_complex [Geology and Soils, Hazards and Hazardous Materials]
- 13. City of Los Angeles, City Council. [LAMC] Municipal Code. Section 12.04.05(B)(a)(ii). [Agricultural and Forestry Resources]
- 14. City of Los Angeles, Department of City Planning. General Plan, Conservation and Safety Elements. Available at: https://planning.lacity.org/GP_elements.html [Geology and Soils, Hazards and Hazardous Materials, Mineral Resources, Transportation and Traffic]
- 15. City of Los Angeles, Department of City Planning. General Plan, Mobility Plan 2035. 2016. [Mobility Plan] Available at: https://planning.lacity.org/documents/policy/mobilityplnmemo.pdf [Aesthetics]
- City of Los Angeles, Department of City Planning. West Adams-Baldwin Hills-Leimert Community Plan. Available at: https://planning.lacity.org/complan/pdf/wadcptxt.pdf [Aesthetics]
- 17. City of Los Angeles, Department of City Planning. Zoning Information and Map Access System (ZIMAS). Website: http://zimas.lacity.org/ [Agricultural and Forestry Resources]
- 18. City of Los Angeles, Department of Public Works, Bureau of Sanitation (LASAN). Central Los Angeles Recycling and Transfer Station (CLARTS) and Landfills. Available at: https://www.lacitysan.org/san/faces/home/portal/s-lsh-wwd/s-lsh-wwd-s/s-lsh-wwd-s-cl?_adf.ctrl-state=18i0u0zgfe_1&_afrLoop=2739561806359811&_afrWindowMode=0&_afrWindowId=liennm2bl#!%40%40%3F_afrWindowId%3Dliennm2bl%26_afrLoop%3D2739561806359811%26_afrWindowMode%3D0%26_adf.ctrl-state%3D18i0u0zgfe_5[Utilities and Service Systems]
- 19. City of Los Angeles. Department of Recreation and Parks (LARAP). Urban Forest Program. Available at: https://www.laparks.org/forest/urban-forest/program [Biological Resources]
- 20. City of Los Angeles. Department of Recreation and Parks (LARAP). Year Round Pools. Available at: https://www.laparks.org/aquatic/year-round [Public Services]

INITIAL STUDY PUBLIC WORKS – BUREAU OF ENGINEERING

- 21. Federal Emergency Management Agency. FEMA Flood Map Service Center: Search By Address. Firm Panel 06037C1615F, effective on 09/26/2008 Available online at: https://msc.fema.gov/portal/search?AddressQuery=los%20angeles%20city#searchresultsanchor
- 22. South Coast Air Quality Management District (SCAQMD). Map of Jurisdiction. Available at: http://www.aqmd.gov/docs/default-source/default-document-library/map-of-jurisdiction.pdf [Air Quality]
- 23. U.S. Environmental Protect Agency. Envirofacts Database. Available at: https://www3.epa.gov/enviro/ [Hazards and Hazardous Materials]
- 24. U.S. Fish and Wildlife Service, National Wetlands Inventory. Available at: http://www.fws.gov/wetlands/Data/Mapper.html [Biological Resources]

APPENDIX A

ENVIRONMENTAL SCREENING CHECKLIST

A brief explanation is provided for all answers except "No Impact" answers that are adequately supported by the information sources cited following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

Issues	Potentially Significant Impact	Less Than Significant With	Mitigation Less Than Significant	No Impact	
1. AESTHETICS – Would the project:		I			
a) Have a substantial adverse effect on a scenic vista?				\boxtimes	
Standard: A significant impact may occur if the proposed project introduces incompatible visual elements within a field of view containing a scenic vista or substantially alters a view of a scenic vista.					
Explanation: Scenic views or vistas are panoramic public views of various natural features, including the ocean, striking or unusual natural terrain, or unique urban or historic features. Public access to these views may be available from nearby parklands, private and public-owned sites, and public right-of-way.					
The West Adams-Baldwin Hills-Leimert Community Plan does not delineate or designate any specific views as scenic vistas within the project area. The project area is located within an urban setting and is bounded by the Metro Expo Line light rail transit system to the north, Dorsey High School to the east, residential housing to the south across Rodeo Road, and commercial uses to the west. The project site is currently developed with an indoor pool building.					
The proposed project would demolish the existing Celes King III Pool and converted the site to a community front lawn and playground area. Construction of the proposed project would result in short-term impacts to aesthetics due to the presence of construction equipment and materials in the visual landscape however, the project site is not located within a scenic vista. During operation, the proposed project would include landscaping and a playground area, consistent with the current visual elements of the project area. As such, the proposed project would not have an adverse effect on a scenic vista. No impact would occur, and refurther analysis is required.					

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
b)	Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				\boxtimes
	Standard: A significant impact may occur where scenic scenic highway would be damaged or removed as a resul				
Explanation: The Celes King III Pool is identified as a historic resource; however, the project site is not located along or near a designated California Scenic Highway or locally designated scenic highway. The proposed project would occur within the boundaries of the existing Celes King III Pool. The nearest designated scenic highway is Route 110, also known as the Arroyo Seco Historic Parkway, which is located approximately 8.9 miles northeast of the project site. State Highway 1 (Pacific Coast Highway) is located approximately 6 miles southwest of the project site and is an eligible California Scenic Highway. Additionally, a portion of Rodeo Road, located approximately 0.28-miles west of the project site, is a locally designated scenic highway in the West Adams-Baldwin Hills-Leimert Community Plan. However, the project site is not visible from the portion of Rodeo Road which is locally designated as a scenic highway. Additionally, no scenic resources such as groves of trees or rock outcroppings are located on the project site. As such, no impact to scenic resources would occur, and no further analysis is required. Reference: 15 (Mobility Plan 2035), 16 (Community Plan)					
c)	Substantially degrade the existing visual character or quality of the site and its surroundings?			\boxtimes	
	Standard: A significant impact may occur if the propincompatible visual elements to the project site or visual incompatible with the character of the area surrounding the	l eleme	ents that		
	Explanation: The project site is located in a highly urbandams-Baldwin Hills-Leimert Community of the City proposed project would demolish the existing Celes Kingsite to a community front lawn and playground area. The proposed project would be consistent with Chapter Design, of the West Adams-Baldwin Hills-Leimert Commin the plan, the focus of the plan is on "elimination of revitalization of underutilized opportunity sites; conserving character; making walking, bicycling, and public transportant enjoyable, and providing strategies to fuse	of Log III Poer 3, Lagunity Purban of previous previous previous of the contraction of th	s Angele of and co and Use lan. As o decay thr iling neight convenients, asly discrete.	& Ulliscus ough borh ent, s	The t the rban ssed the nood safe, cted
	neighborhoods together, socially, culturally, as well as str project would adhere to the design guidelines discuss				

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
pl st	Baldwin Hills-Leimert Community Plan by utilizing the project site as an additional playground area since the existing Celes King III Pool no longer meets the standards for competition pools and a new indoor pool facility would be built as part of the approved Rancho Cienega Sports Complex Project.						
co ef le	The proposed project has the potential for short-term aesthetic effects during construction activities due to construction equipment and materials on-site. These effects would be temporary and occur within the project site boundaries. As such, less than significant impacts to visual character would occur, and no further analysis is required. Reference: 16 (Community Plan)						
W	reate a new source of substantial light or glare that ould adversely affect day or nighttime views in the rea?				\boxtimes		
SI C2 SI	Standard: A significant impact would occur if the proposed project caused a substantial increase in ambient illumination levels beyond the property line or caused new lighting to spill-over onto light-sensitive land uses such as residential, some commercial and institutional uses that require minimum illumination for proper function, and natural areas.						
Explanation: The project site is currently illuminated by existing lighting on-site, existing lighting within the Rancho Cienega Sports Complex, and adjacent street lights along Rodeo Road to the south. Project construction would occur during daylight hours, and therefore, would not require nighttime lighting. The proposed project would include installation of new security lighting in the front lawn and playground area, which would operate regularly, similar to existing on-site lighting. The nighttime lighting fixtures that would be installed would direct the light to within the landscaped and playground area, and no spillover impacts would occur at surrounding properties. As such, the proposed project would not create a substantial source of light or glare that would result in adverse effects to day/nighttime views of the area. No impact would occur, and no further analysis is required.							
2. AGRI	CULTURE AND FOREST RESOURCES – Would the p	roject:					
of m M	onvert Prime Farmland, Unique Farmland, or Farmland f Statewide Importance (Farmland), as shown on the paps prepared pursuant to the Farmland Mapping and Ionitoring Program of the California Resources Agency, onon-agricultural use?				\boxtimes		
	Standard: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land						

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. A significant impact may occur if the proposed project were to result in the conversion of state-designated agricultural land from agricultural use to another non-agricultural use.						
Explanation: No prime or unique farmland, or farmland of statewide importance exists within the project area or vicinity. No impact would occur, and no further analysis is required. Reference: 5 (Farmland Mapping and Monitoring Program California Important Farmland Finder)						
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?				\boxtimes		
Standard: A significant impact may occur if the proposed project were to result in the conversion of land zoned for agricultural use, or indicated under a Williamson Act contract, from agricultural use to another non-agricultural use.						
Explanation: No land on or near the project site is zoned for or contains agricultural uses. As the City of Los Angeles does not participate in the Williamson Act, there are no Williamson Act properties within the project site. Therefore, no impact would occur, and no further analysis is required. Reference: 6 (California Department of Conservation Williamson Act Maps)						
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)) or timberland (as defined in Public Resources Code Section 4526)?						
Standard: In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board.						
Explanation: The project site is zoned OS-1XL (Open Spa for natural resource preserves for the managed production forest lands. However, there are no forest land or timberlate the project. Therefore, the proposed project would not zoning or cause rezoning of forest land or timberland resource, and no further analysis is required. Reference: 13 (on of reand are conflicources.	esources, as in the t with the No impa	includ vicinit e exis act wo	ding ty of sting		

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
d) Result in the loss of forest land or conversion of forest land to non-forest use?						
Standard: In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board.						
Explanation: Refer to item 2 (c) above. No impact would occur, and no further analysis is required.						
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of farmland, to non-agricultural use or conversion of forest land to non-forest use?				\boxtimes		
Standard: A significant impact may occur if a project results in the conversion of farmland to another non-agricultural use.						
Explanation: Refer to items 2 (a) and 2 (c) above. No implication further analysis is required.	oact wo	ould occu	r, and	d no		
3. AIR QUALITY – Would the project:						
a) Conflict with or obstruct implementation of the applicable air quality plan?	\boxtimes					
Standard: A significant impact may occur if the project was inconsistent with or obstruct the implementation of the Air Quality Element of the City's General Plan or the Air Quality Management Plan (AQMP).						
the Air Quality Management Plan (AQMP). Explanation: The SCAQMD monitors air quality within the project area and the South Coast Air Basin, which includes portions of Los Angeles County containing the project site. The proposed project would demolish the existing Celes King III Pool and convert the site to a community front lawn and playground area. The proposed project would be a passive use during operation, and thus, no long-term air quality impacts are anticipated. An air quality technical report will be prepared for the proposed project to determine whether short-term construction emissions would exceed the emissions budgeted for the project site in the applicable air quality management plan. A detailed analysis of this issue will be included in the EIR. Reference: 22 (SCAQMD)						

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?	\boxtimes				
Standard: A significant impact may occur if the proposition of SCAQMD air quality standard. The SCAQMD has set for reactive organic gases (ROG), nitrogen oxides (NOx) sulfur dioxide (SO ₂), and particulate matter (PM ₁₀) construction and operation in the South Coast Air Basin.	thresho , carbo	lds of sig	nifica ide (0	ance CO),	
Explanation: The proposed project would generate air pollutants as a result of construction emissions. Short-term impacts may result from construction equipment emissions, such as demolition excavators, dump trucks, graders, and worker vehicle exhaust, and from fugitive dust during demolition activities. The proposed project would not likely result in long-term air quality impacts during operations as the proposed project is intended for passive uses. The air quality technical report prepared for the proposed project will evaluate construction air quality impacts. A detailed analysis of this issue will be included in the EIR.					
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?	\boxtimes				
Standard: A significant impact may occur if the proposed project would result in a cumulatively considerable net increase of a criteria pollutant for which the South Coast Air Basin exceeds federal and state ambient air quality standards and has been designated as an area of non-attainment by the USEPA and/or California Air Resources Board. The South Coast Air Basin is a non-attainment area for ozone, particulate matter (PM ₁₀), and fine particulate matter (PM _{2.5}).					
Explanation: The SCAQMD recommends that a project's potential contribution to cumulative impacts should be assessed utilizing the same significance criteria as those for the project-specific impacts. The air quality technical report prepared for the proposed project will evaluate the potential for cumulative air quality impacts. A detailed analysis of this issue will be included in the EIR.					
d) Expose sensitive receptors to substantial pollutant concentrations?					
Standard: A significant impact may occur if construc proposed project generated pollutant concentrations		•			

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
significantly affect sensitive receptors.						
Explanation: The SCAQMD indicates that sensitive receptors include residences, schools, playgrounds, child care centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. Operation of the proposed project would not be anticipated to generate substantial new sources of pollutant concentrations as the proposed project would be a passive use. The air quality technical report prepared for the proposed project will evaluate the potential for individual receptors to be exposed to unhealthful pollutant concentrations during construction. A detailed analysis of this issue will be included in the EIR.						
e) Create objectionable odors affecting a substantial number of people?			\boxtimes			
Standard: A significant impact may occur if objectionable adversely impact sensitive receptors.	e odors	occur th	at w	ould		
Explanation: Potential sources that may emit odors during construction activities include exhaust from diesel construction equipment. Such odors may be a temporary source of nuisance to adjacent uses; however, odors from these sources would be localized and generally confined to the immediate area surrounding the project site. The odors would be typical of most construction sites and temporary in nature, and would not be considered a significant environmental impact. Operation of the proposed project would not add any new odor sources. As a result, the proposed project's construction and operational activities would not create objectionable odors affecting a substantial number of people. The impact would be less than significant, and no further analysis is required.						
4. BIOLOGICAL RESOURCES – Would the project:		,				
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?			\boxtimes			
Standard: A significant impact may occur if the proposed project would remove or modify habitat for any species identified or designated as a candidate, sensitive, or special status species in local or regional plans, policies, or regulation, or by the state or federal regulatory agencies cited.						
Explanation: Special-status plant species include those listed as Endangered, Threatened, Rare or those species proposed for listing (Candidates) by the United						

Less Than Significant With Mitigation Significant Impact Issues States Fish and Wildlife Service (USFWS) and/or California Department of Fish and Wildlife (CDFW), or those listed by the California Native Plant Society (CNPS).6,7,8 Sensitive wildlife species are those species listed as threatened or endangered, proposed for listing, or candidate for listing by USFWS and/or CDFW, or considered special status by CDFW. Sensitive habitats are those that are regulated by USFWS, U.S. Army Corps of Engineers, and/or those considered sensitive by the CDFW. The project site is located in the heavily-urbanized West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The site is currently developed with the Celes King III Pool. Because the proposed project would involve demolition and construction within the existing boundary of the Celes King III Pool and no native vegetation exists within the project site, there would be no direct impacts to sensitive plants, wildlife, or vegetation communities. Furthermore, it is not anticipated that any trees would be removed to accommodate project construction. However, temporary indirect impacts to nesting birds in the vicinity of the project site could occur as a result of noise and dust generated during construction. Disturbances related to construction could result in changes in bird behavior, including nest abandonment or decreased feeding frequency, leading to increased nestling mortality. By avoiding vegetation removal during the nesting bird season or conducting pre-construction surveys to ensure compliance with the Migratory Bird Treaty Act and California Fish and Game Code, indirect impacts to nesting birds would be less than significant, and no further analysis is required. Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or \boxtimes regional plans, policies, regulations or by the California Department of Fish and Wildlife or US Fish and Wildlife Service? Standard: A significant impact may occur if riparian habitat or any other sensitive natural community were to be adversely modified. Explanation: Sensitive natural communities are those that are designated as rare in the region by the CNDDB, provide potentially suitable habitat to support specialstatus plant or wildlife species, or receive regulatory protection (i.e., Section 404 of the Clean Water Act and/or Section 1600 et seq. of the California Fish and Game

Species listed or proposed for listing as threatened or endangered under the federal Endangered Species Act (Title 50 Code of Federal Regulations [CFR] 17.12 [listed plants], Title 50 CFR 17.11 [listed animals] and includes notices in the Federal Register for proposed species).

Species listed or proposed for listing by the State of California as threatened or endangered under the California Endangered Species Act (Title 14 California Code of Regulations 670.5).

Plants listed as rare under the California Native Plant Protection Act (California Fish and Game Code Section 1900 et seq.).

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
	Code). Rare communities are given the highest inventory	priority	/ .	.ii			
	The site occurs in a heavily-urbanized community of the City of Los Angeles and no natural vegetation communities occur on-site. As a result, the proposed project would not adversely affect any sensitive natural community or riparian habitat. No impact would occur, and no further analysis is required. Reference: 7 (CDFW CNDDB)						
c)	Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?						
	Standard: A significant impact may occur if federally defined by Section 404 of the Clean Water Act would be r				, as		
	Explanation: The project site occurs in a heavily-urbanized community of the City of Los Angeles and no federal- or state-protected wetlands or other waters coincide with the project site or would be affected by implementation of the project. As a result, no impacts would occur, and no further analysis is required. Reference: 24 (U.S. Fish and Wildlife Service National Wetlands Inventory)						
d)	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			\boxtimes			
	Standard: A significant impact may occur if the proposed project interferes or removes access to a migratory wildlife corridor or impedes the use of native wildlife nursery sites.						
	nursery sites. Explanation: In an urban context, a wildlife migration corridor can be defined as a linear landscape feature of sufficient width and buffer to allow animal movement between two comparatively undisturbed habitat fragments, or between a habitat fragment and some vital resource that encourages population growth and diversity. Habitat fragments are isolated patches of habitat separated by otherwise foreign or inhospitable areas, such as urban/suburban tracts or highways. Two types of wildlife migration corridors seen in urban settings are regional corridors, defined as those linking two or more large areas of natural open space, and local corridors, defined as those allowing resident wildlife to access critical resources (food, cover, and water) in a smaller area that might otherwise be isolated by urban development.						

Less Than Significant With Mitigation ignificant Impact Issues The project site occurs in a heavily-urbanized community of the City of Los Angeles and there are no surface waters, drainages, or other corridors that allow for wildlife movement on or within the vicinity of the project site. The site is not within an established wildlife corridor, and the proposed project would not interfere with the movement of any native wildlife species. As a result, the proposed project would not interfere with the movement of any native resident or migratory wildlife species or with established native resident or migratory wildlife corridors, and would not impede the use of native wildlife nursery sites. Direct impacts are not anticipated. Additionally, no trees exist within the project site; however, nesting birds may avoid the project vicinity due to increased levels of noise or dust during construction. By avoiding vegetation removal during the nesting bird season or conducting pre-construction surveys to ensure compliance with the Migratory Bird Treaty Act and California Fish and Game Code, indirect impacts to nesting birds would be less than significant, and no further analysis is required. Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy X or ordinance? Standard: A significant impact may occur if the proposed project would cause an impact that is inconsistent with local regulations pertaining to biological resources. Explanation: Native tree species that measure four inches or more in cumulative diameter, four and one-half feet above the ground, including native oak (Quercus spp.), southern California black walnut (Juglans californica var. californica), western sycamore (Platanus racemosa), and California bay (Umbellularia californica), are protected by the Los Angeles Municipal Code. Any tree grown or held for sale by a nursery, or trees planted or grown as part of a tree planting program, are not included in the definition of a protected tree. Should any of the species listed above that meet the size requirements need to be removed, relocated, or replaced, the proposed project would comply with the City's protected tree ordinance. The City of Los Angeles Board of Public Works tree removal policy requires replacing street trees at a two-to-one ratio for trees that are removed from the Los Angeles Recreation and Parks (LARAP) also has a tree replacement policy that can be found within the LARAP's Tree Care Manual. The LARAP tree replacement policy requires "whenever trees are removed, the existing trees' aggregate diameter, measures at breast height shall be replacement at an equal or greater rate of caliper of new trees." It is not anticipated that any trees would be removed to accommodate project construction. However, should any trees require removal, the proposed project

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
would comply with the City's tree removal policies related to protected trees and replacing street trees. As such, impacts would be less than significant, and no further analysis is required. Reference: 19 (Urban Forest Program)						
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				\boxtimes	
	Standard: A significant impact may occur if the propinconsistent with mapping or policies in any conservation					
Explanation: The project site is located in a heavily-urbanized community of the City of Los Angeles and does not coincide with the boundaries of any adopted Habitat Conservation Plan or Natural Community Conservation Plan. As a result, the proposed project would not conflict with an approved conservation plan. No impact would occur, and no further analysis is required. Reference: 8 (CDFW California Regional Conservation Plans)					pted sult, No	
5. CU	LTURAL RESOURCES – Would the project:					
a)	Cause a substantial adverse change in the significance of a historical resource as defined in California Code of Regulations Section 15064.5?	\boxtimes				
	Standard: A significant impact may result if the proposubstantial adverse change to the significance of a historicabove).					
	Explanation: The Celes King III Pool is eligible for listing in the National Register of Historic Places and California Register of Historical Resources. A detailed cultural resources technical report will be prepared for the proposed project, which will assess any potential impacts to significant historical resources, including the Celes King III Pool, in the project area. A detailed analysis of this issue will be included in the EIR.					
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to California Code of Regulations Section 15064.5?	\boxtimes				
	Standard: A significant impact may occur if the proposed substantial adverse change in the significance of an archafalls under the CEQA Guidelines section cited above.					
	Explanation: A detailed cultural resources technical report proposed project, which will assess any potential im-					

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
	resources in the project area. A detailed analysis of this the EIR.	issue	will be in	clude	ed in
c)	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	\boxtimes			
	Standard: A significant impact may occur if grading associated with the proposed project would disturb resources or unique geologic features.				
	Explanation: A detailed cultural resources technical report proposed project, which will assess any potential im resources in the project area. A detailed analysis of this the EIR.	pacts	to paleo	ntolo	gical
d)	Disturb any human remains, including those interred outside of formal cemeteries?	\boxtimes			
	Standard: A significant impact may occur if grading associated with the proposed project would disturb interre				ities
	Explanation: A detailed cultural resources technical report will be prepared for the proposed project, which will assess any potential impacts to human remains in the project area. A detailed analysis of this issue will be included in the EIR.				
6. GE	OLOGY AND SOILS – Would the project:				
a)	Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
	i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?				
	Standard: A significant impact may occur if the proposed project were located within a state-designated Alquist-Priolo Zone or other designated fault zone and appropriate building practices were not followed.				

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
Explanation: The project site is not located within Earthquake Fault Zone/Alquist-Priolo Special Study Zotated in a seismically active area, as is most of a Newport-Inglewood fault is the closest fault to the papproximately 1.3 miles southwest of the site. Additionally the Newport-Inglewood fault may be within approximately southwest portion of the project site. However, no across the project site. Following demolition of the Celesite would be graded, landscaped, and converted to a playground area. The proposed project does not include habitable structures. Therefore, the proposed project or structures to potential adverse effects from the rupture fault. No impact would occur, and no further analysis (Seismic Hazard Zone Report)	Zone. Souther roject sonally, nately (active factive factive factive factive the community would integer of a	The project of the pr	ect sithia. Is locally trace from knowne properties on of service per earthque arthque enter the	re is The ated e of the n to bject and any ople lake	
ii) Strong seismic ground shaking?			\boxtimes		
Standard: A significant impact may occur if the propose comply with building code requirements intended to propose associated with strong seismic ground shaking.					
Explanation: As with most locations in southern California, the project site is susceptible to ground shaking during an earthquake. As indicated in item 6 (a)(i) above, the project site is not located within an Alquist-Priolo Special Study Zone, and thus the potential for hazards associated with strong seismic ground shaking, such as ground surface rupture, affecting the site is considered low. Following demolition of the Celes King III Pool, the project site would be graded, landscaped, and converted to a community lawn and playground area. The proposed project does not include the construction of any habitable structures. Therefore, the impact from strong seismic ground shaking would be less than significant, and no further analysis is required.					
iii) Seismic-related ground failure, including liquefaction?			\boxtimes		
Standard: A significant impact may occur if the pro- located in an area identified as having a high appropriate design measures required within such de incorporated into the project.	risk of	liquefac	tion	and	
Explanation: The project site is located within a st liquefaction area. However, the proposed project does any structures that would be susceptible to lique	s not pr	opose to	const	ruct	

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
demolition of the Celes King III Pool, the project site would be graded, landscaped, and converted into a community lawn and playground area. Therefore, impacts from seismic-related ground failure, including liquefaction, would be less than significant, and no further analysis is required. Reference: 4 (Seismic Hazard Zone Report), 14 (General Plan)						
iv) Landslides?				\boxtimes		
Standard: A significant impact may occur if the propose a hillside area with soil conditions that would suggest and appropriate design measures were not implemented.	t high p					
Explanation: The project site is located in an area that is relatively flat and is not identified as a potential landslide hazard area by state or City. Additionally, the project site is not located within a City-designated hillside area or earthquake induced landslide area. The proposed project would not include the construction of any habitable structures. Therefore, the proposed project would not expose people or structures to potential adverse effects from landslides. No impact would occur, and no further analysis is required. Reference: 2 (Landslide Inventory Map), 14 (General Plan)						
b) Result in substantial soil erosion or the loss of topsoil?			\boxtimes			
Standard: A significant impact may occur if the propose large areas to the erosion effects of wind or water for a pr						
Explanation: The proposed project would include ground-disturbing activities, such as grading, compaction of soil, and landscaping. These activities could result in the potential for erosion to occur at the project site, though soil exposure would be temporary and short-term in nature. Prior to construction activities, a Storm Water Pollution Prevention Plan (SWPPP) would be prepared and identify structural and non-structural Best Management Practices to be implemented during the construction phase. The SWPPP would be implemented to minimize soil erosion and runoff, and would include stabilizing and protecting disturbed areas, retaining sediment within the construction area, and use of temporary measures (i.e. silt fences, gravel bag barriers, temporary drainage inlet protection). The project site would be graded, landscaped, and converted to a community lawn and playground area following demolition of the Celes King III Pool. No large areas of exposed soil would exist that would be exposed to the effects of erosion by wind or water. The impact would be less than significant, and no further analysis is required.						
 Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, 			\boxtimes			

Issues	Potentially	Significant Impact	Less Than Significant	With	Mitigation	Less Than Significant	No Impact	•
and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?								

Standard: A significant impact may occur if the proposed project was built in an unstable area without proper site preparation or design features to provide adequate foundations for project buildings, thus posing a hazard to life and property.

Explanation: One of the major types of liquefaction induced ground failure is lateral spreading of mildly sloping ground. Lateral spreading involves primarily side-to-side movement of earth materials due to ground shaking, and is evidenced by near-vertical cracks to predominantly horizontal movement of the soil mass involved. As discussed in items 6 (a)(iii) and 6 (a)(iv), the project site is located in an area identified as being at risk for liquefaction, but is not located within a designated hillside area. All demolition and construction work would adhere to the latest version of the *City of Los Angeles Building Code* and other applicable federal, state, and local codes relative to liquefaction criteria. Following demolition of the Celes King III Pool, the project site would be graded, landscaped, and converted to a community lawn and playground area. The proposed project does not include any habitable structures. Therefore, the impact would be less than significant, and no further analysis is required.

Subsidence is the lowering of surface elevation due to changes occurring underground, such as the extraction of large amounts of groundwater, oil, or gas. When groundwater is extracted from aquifers at a rate that exceeds the rate of replenishment, overdraft occurs, which can lead to subsidence. However, the proposed project does not anticipate the extraction of any groundwater, oil, or gas from the project site. Therefore, no impacts to subsidence would occur and no further analysis is required.

Collapsible soils consist of loose dry materials that collapse and compact under the addition of water or excessive loading. Collapsible soils are prevalent throughout the southwestern United States, specifically in areas of young alluvial fans. Soil collapse occurs when the land surface is saturated at depths greater than those reached by typical rain events. According to a geotechnical investigation conducted for the *Rancho Cienega Sports Complex Project*, the portion of the Rancho Cienega Sports Complex where the project site is located is mapped as clay and sand of pre-development marshlands. Nonetheless, the proposed project would not include the construction of any habitable structures. As such, impacts associated with on- or off-site landslides, lateral spreading, subsidence, and collapses would be less than significant, and no further analysis is required. Reference: 12 (IS/MND for Rancho Cienega)

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
d)	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?			\boxtimes		
	Standard: A significant impact may occur if the propose expansive soils without proper site preparation or deadequate foundations for project buildings, thus posir property.	sign fe	atures to	pro	vide	
	Explanation: Expansive soils are clay-based soils that tervolume) as they absorb water and shrink (lessen in volume) as they absorb water and shrink (lessen in volume). If soils consist of expansive clays, foundation mean occur if wetting and drying of the clay does not occur entire area. According to a geotechnical investigation of clanega Sports Complex Project, the portion of the Complex where the project site is located is mapped adevelopment marshlands. Nonetheless, the proposed proconstruction of any habitable structures. Therefore, the not create a substantial risk to life or property resulting Impacts would be less than significant, and no furth Reference: 12 (IS/MND for Rancho Cienega)	lume) a loveme ccur un conducte Ranche as clay oject do propo ng fron	as water nt and/or iformly aced for the control contro	is dr dam cross Rai a Sp d of clude ect w ive s	awn nage the ncho ports pre- e the ould soils.	
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?				\boxtimes	
	Standard: A significant impact may occur if the proposed that were incapable of adequately supporting the use of swastewater disposal system, and such a system was proposed.	septic t				
Explanation: Construction and operation of the proposed project would not involve the use of septic tanks or alternative wastewater disposal systems. Therefore, no impact associated with the use of such systems would occur, and no further analysis is required.						
7. GR	EENHOUSE GAS EMISSIONS – Would the project:	·				
a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?	\boxtimes				
	Standard: A significant impact may occur if the project w greenhouse gas emissions during construction or operation		enerate su	ubsta	ntial	

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact			
Explanation: The proposed project would generate greenhouse gas emissions as a result of demolition of the Celes King III Pool and grading activities. Construction related emissions would be generated from off-road demolition equipment and on road vehicle exhaust. The proposed project would not generate greenhouse gas emissions during operations as the proposed project is intended for passive uses. The greenhouse gases technical report prepared for the proposed project will evaluate construction-related greenhouse gas emissions impacts. A detailed analysis of this issue will be included in the EIR.							
b) Conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases?							
Standard: A significant impact may occur if the project would conflict with adopted plans, policies, or regulations to reduce greenhouse gas emissions.							
Explanation: As discussed in item 7(a), the proposed project would generate greenhouse gas emissions during demolition and grading activities. In addition to analyzing impacts related to such emissions, the EIR will also include a detailed analysis of the proposed project's compliance with applicable plans, policies, and regulations adopted for the purpose of reducing greenhouse gas emissions.							
8. HAZARDS AND HAZARDOUS MATERIALS - Would the pro	ject:						
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?	\boxtimes						
	Standard: A significant impact may occur if the proposed project involved the use or disposal of hazardous materials as part of its routine operations and would have						
Explanation: A preliminary survey conducted for the Rancho Cienega Sports Complex Project determined that the Celes King III Pool may contain asbestos-containing materials (ACMs) and lead based paint (LBP). As such, a detailed analysis of this issue will be included in the EIR.							
Operation of the proposed project would not require routine transport, storage, use, and disposal of hazardous materials as the community front lawn and playground area would be passive uses. Therefore, project operation would not pose a significant hazard to the public or the environment. No operational impact related to hazardous materials would occur. Reference: 12 (IS/MND for Rancho Cienega)							

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?	\boxtimes				
	Standard: A significant impact may occur if the proposed accidental explosion or utilized substantial amounts of ha of its routine operations that could potentially pose a had accident or upset conditions.	zardou	s materia	s as	part	
	Explanation: Refer to item 8 (a) above.					
ACMs are materials that contain asbestos, a naturally-occurring fibrous mineral that has been mined for its useful thermal properties and tensile strength. When left intact and undisturbed, these materials do not pose a health risk to building occupants. There is, however, potential for exposure when ACMs become damaged to the extent that asbestos fibers become airborne and are inhaled. These airborne fibers are carcinogenic and can cause lung disease. The age of a building is directly related to its potential for containing elevated levels of ACMs. Asbestos was utilized routinely in many building materials until 1978.						
LBP, which can result in lead poisoning when consumed or inhaled, was widely used in the past to coat and decorate buildings. Lead poisoning can cause anemia and damage to the brain and nervous system, particularly in children. Like ACMs, LBP generally does not pose a health risk to building occupants when left undisturbed; however, deterioration, damage, or disturbance could result in hazardous exposure. In 1978, the use of LBP was federally banned by the Consumer Product Safety Commission. Therefore, structures built before 1978 are likely to contain LBP, as well as those built shortly thereafter, as the phase-out of LBP was gradual. The Celes King Pool III building was constructed in the 1960s.						
	A preliminary survey conducted for the <i>Rancho Cienega</i> determined that the Celes King III Pool may contain ACI detailed analysis of this issue will be included in the EIR for Rancho Cienega)	Ms and	I LBP. A	s suc	h, a	
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?	\boxtimes				
	Standard: A significant impact may occur if the proposed project were located within one-quarter mile of an existing or proposed school site and were projected to release toxic emissions which pose a hazard beyond regulatory thresholds.					

Less Than Significant With Mitigation ignificant Impact Issues Explanation: There are two schools located within a 0.25-mile radius of the project site: Dorsey High School, located east of the project site at 3537 Farmdale Road, and View Park Continuation High School, also located east of the project site at 4701 Rodeo Road. In addition, a child care facility, the Ira C. Massey Child Care Center, is located directly north of the project site within the Rancho Cienega Sports Complex. A preliminary survey conducted for the Rancho Cienega Sports Complex Project determined that the Celes King III Pool may contain ACMs and LBP. As such, a detailed analysis of this issue will be included in the EIR. Reference: 12 (IS/MND for Rancho Cienega) d) Be located on a site which is included on a list of sites compiled pursuant to hazardous materials \boxtimes Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? Standard: California Government Code Section 65962.5 requires various State agencies to compile lists of hazardous waste disposal facilities, unauthorized release from underground storage tanks, contaminated drinking water wells, and solid waste facilities from which there is known migration of hazardous waste and submit such information to the state Secretary for Environmental Protection on at least an annual basis. A significant impact may occur if the project site is included on any of the above referenced lists and, therefore, would pose an environmental hazard to surrounding sensitive uses Explanation: The project site is not listed in the State Water Resources Control Board GeoTracker system which includes leaking underground fuel tank sites and spills, leaks, investigations, and cleanups sites; or the Department of Toxic Substances Control EnviroStor Data Management System which includes CORTESE sites, or the Environmental Protection Agency's database of regulated facilities. Although no hazardous materials sites exist on the project site, the Rancho Cienega Recreation Center is listed as a land disposal site with a completed cleanup status as of May 26, 2016. In addition, several leaking underground storage tank cleanup sites, two school investigation sites, and one cleanup site exist in the project vicinity While unlikely, should contaminated soils be encountered during construction of the proposed project, excavated material (e.g., soil) would be monitored and tested prior to disposal. Excavated material that is deemed hazardous would be subject to strict federal, state, and local regulations for its handling, transport, and disposal. These activities would occur

under the oversight of the Department of Toxic Substances Control, State Water Resources Control Board, and City of Los Angeles Fire Department. Adherence to federal, state, and local standards would minimize the risk to the public or the

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
environment. Therefore, the impact would be less than analysis is required. Reference: 10 (EnviroStor), 11 (Geo	_			:		
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?				\boxtimes		
	Standard: A significant impact may occur if the proposed project site were located within a public airport land use plan area, or within two miles of a public airport,					
Explanation: The project site is not located within an airport land use plan, or within two miles of a public airport or public use airport. The project site is located approximately 5.3 miles east of the Santa Monica Municipal Airport and 5.6 miles northeast of the Los Angeles International Airport. Therefore, no safety hazard associated with proximity to an airport is anticipated for the proposed project. No impact would occur, and no further analysis is required. Reference: 1 (AirNav)						
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?				\boxtimes		
Standard: A significant impact may occur if the project hazard for people residing or working in the project are near a private airstrip.						
Explanation: The project site is not located within the vicinity of a private airstrip. Therefore, no safety hazard from proximity to a private airport or airstrip is anticipated from the proposed project. No impact would occur, and no further analysis is required. Reference: 1 (AirNav)						
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?			\boxtimes			
Standard: A significant impact may occur if the prosubstantially interfere with roadway operations used emergency response plan or evacuation plan or would go create traffic congestion that would interfere with the exec	in co enerate	njunction sufficient	with traff	an		
Explanation: During construction activities, vehicles and the project site via the entrance off Rodeo Road. No ranticipated during demolition and construction activities.	oad or	lane clos	sures	are		

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
be confined to the project site with the exception of haul During construction, ingress and egress to the site particularly for emergency response vehicles, would be maddition, operation of the proposed project would not system. Therefore, construction and operation of the project impair or interfere with implementation of an adopted emergency evacuation plan. The impact would be less further analysis is required.	and	surroundi led at all le adjace l project v y respons	ng a times ent st would se pla	rea, . In treet not n or		
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?				\boxtimes		
Standard: A significant impact may occur if the proposed wild land area and poses a significant fire hazard, which structures in the area in the event of a fire.						
Explanation: The project site is not located within a designated High Fire Hazard Severity Zone according to the <i>City of Los Angeles General Plan</i> . The project site and surrounding areas are completely developed and there are no wildlands adjacent to the site. Therefore, no impact related to wildland fires would occur, and no further analysis is required. Reference: 14 (General Plan)						
9. HYDROLOGY AND WATER QUALITY – Would the project:			,			
a) Violate any water quality standards or waste discharge requirements?			\boxtimes			
Standard: A significant impact may occur if the proposed which did not meet the quality standards of agencies which quality and water discharge into storm-water drainage sys	ch regu					
Explanation: The proposed project would not violate a waste discharge requirement. Demolition and construgrading, would result in the disturbance of soil and potential for soil erosion. Additionally, construction activit require the on-site use and storage of fuels and lubricants during the construction phase would have the pote sediments and spilled substances from construction acreceiving waters. However, BOE or its contractor would proposition that would identify standard Best Manager runoff from the project site. Therefore, impacts on water	iction a tempor ies and . Storr ntial to tivities prepare nent P	activities, arily incred equipment of events of carry off-site to a SWPP ractices to	suchease ent woccurdisture one neare Price Price Suche entre	the ould rring bed arby or to ntrol		

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
activities would be less than significant, and no further analysis is required. Upon completion of the proposed project, storm flows would be directed to the existing municipal storm drain system. There would be no exposed soil remaining at the completion of landscaping activities; therefore, there would be no potential for soil erosion or contamination. No long-term impact to water quality would occur during project operations.						
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?						
Standard: A project would normally have a significant impact on groundwater supplies if it were to result in a demonstrable and sustained reduction of groundwater recharge capacity or change the potable water levels sufficiently that it would reduce the ability of a water utility to use the groundwater basin for public water supplies or storage of imported water, reduce the yields of adjacent wells or well fields, or adversely change the rate or direction of groundwater flow.						
Explanation: The proposed project includes the demolition of the Celes King III Pool and installation of a community front lawn and playground area following demolition activities. The proposed project would not require excavation that would encounter groundwater or affect the rate of groundwater recharge, or involve the extraction of groundwater. Therefore, no impact would occur, and no further analysis is required.						
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?			\boxtimes			
Standard: A significant impact may occur if the proposition of drainage patterns that resulted in erosion or siltation during construction or operation of the	a subs	stantial in				
Explanation: There are no streams or rivers located nearby that would be affected by the proposed project. The proposed project would be located within previously developed and disturbed areas. Construction activities would temporarily increase the potential for erosion due to excavation. However, the proposed project would implement standard Best Management Practices that would minimize impacts						

Less Than Significant With Mitigation Significant Impact Issues during construction. Construction of the proposed Project would include installation of storm water and drainage infrastructure in the playground area. However, all drainage flows, including storm water that would infiltrate directly into the soil in the community lawn area, would be routed through on-site storm water facilities which would connect to the existing storm water infrastructure. As such, operation of the proposed project would not result in alteration of the existing drainage pattern that would result in a substantial increase in erosion or siltation. Impacts associated with altering the existing drainage pattern of the site would be less than significant, and no further analysis is required. d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the \boxtimes rate or amount of surface runoff in a manner that would result in flooding on- or off-site? Standard: A significant impact may occur if the proposed project resulted in increased runoff volumes during construction or operation of the proposed project that would result in flooding conditions affecting the project site or nearby properties. Explanation: As discussed in item 9 (a), there are no streams or rivers located nearby that would be affected by the proposed project. The proposed project would be located within previously developed and disturbed areas. Construction activities would temporarily increase the potential for erosion due to excavation. However, the proposed project would implement standard Best Management Practices that would minimize impacts during construction. Construction of the proposed Project would include installation of storm water and drainage infrastructure in the community lawn area. However, all drainage flows would be routed through the on-site storm water facilities which would connect to the existing storm water infrastructure. As such, operation of the proposed project would not result in a substantial increase alteration of the existing drainage pattern that would result in on- or off-site flooding. Impacts would be less than significant, and no further analysis is required.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?			\boxtimes			
Standard: A significant impact may occur if the volume of a level which exceeded the capacity of the storm drain site. A significant impact may also occur if the substantially increase the probability that polluted runor drain system.	system propos	n serving ed proje	a pro	oject ould		
Explanation: Prior to demolition of the Celes King III Pool, the existing pool would be drained into the existing sewer system. Demolition and construction water needs would generate minimal quantities of discharge water, which would drain into storm drains located within or adjacent to the project site. As discussed in item 9(c), following the demolition of the Celes King III Pool, the proposed project would install storm water and drainage infrastructure in the community lawn area, which would connect to existing storm water infrastructure. During operation, the proposed project would result in a decreased the amount of impervious surfaces as the project site would contain a landscaped area. The landscaped area would require routine watering, similar to other landscaped areas within the Rancho Cienega Sports Complex. Therefore, the proposed project would not contribute runoff water exceeding the capacity of stormwater drainage systems. As discussed, Best Management Practices would be implemented to control runoff from the project site during the construction phase. The impact would be less than significant, and no further analysis is required.						
f) Otherwise substantially degrade water quality? Standard: A significant impact may occur if a project incl	uded p	otential s	⊠ ource	□ es of		
water pollutants and potential to substantially degrade water quality. Explanation: Other than the construction sources of pollutants described previously (i.e., fuels from construction equipment, etc.), the proposed project would not include other potential sources of contaminants that could degrade water quality. Additionally, as discussed in above, standard Best Management Practices would be implemented to control runoff from the project site during construction to prevent the degradation of water quality. Therefore, impacts to water quality would be less than significant, and no further analysis is required.						
g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?						

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
Standard: A significant impact may occur if the propose within a 100-year flood zone.	ed proje	ect placed	l hou	ısing		
Explanation: No 100-year flood zones coincide with the project site. According to Flood Insurance Rate Map Number 06037C1615F, the entire project site is located within an area designated as Zone X, which is categorized as an area that is within a 500-year flood zone. Notwithstanding, the proposed project does not include construction of housing. Therefore, the proposed project would not place housing within a 100-year flood zone. No impact would occur, and no further analysis is required. Reference: 21 (FEMA)						
h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?				\boxtimes		
Standard: A significant impact may occur if the proposition within a 100-year flood zone and would impede or redirect		•) loc	ated		
Explanation: As noted in item 9 (g) above, the project site is not located within a 100-year flood hazard area. The proposed project includes the demolition of the Celes King III Pool and installation of a community front lawn and playground area following demolition activities. As such, no structures would be placed within a 100-year flood hazard area as part of the proposed project. No impact would occur, and no further analysis is required.						
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?			\boxtimes			
Standard: A significant impact may occur if the proposed area where a dam or levee could fail, exposing people or risk of loss, injury or death.						
risk of loss, injury or death. Explanation: According to the <i>City of Los Angeles General Plan Safety Element</i> , the project site is located within the potential inundation area of the Hollywood Reservoir and the Silver Lake Reservoir. The inundation area is based on an assumed catastrophic failure of dams during peak storage capacity. The inundation boundary shown on the map encompasses all probable routes that a flood might follow after exiting a dam; thus, the map shows a very large and conservative inundation area. However, all dams are continually monitored by various governmental agencies (such as the State of California Division of Safety of Dams and the U.S. Army Corps of Engineers) to guard against the threat of dam failure. Catastrophic failure of a major dam as a result of an earthquake is regarded as unlikely. Current design and construction practices and ongoing review, modification, and dam reconstruction programs are intended to ensure that						

Less Than Significant With Mitigation Significant Impact Issues all dams are capable of withstanding the maximum magnitude earthquake for the site. Therefore, the potential for the project site to be inundated as a result of a dam failure, and potential exposure of people and structures to flooding due to dam failure, is low. Impacts would be less than significant. Additionally, the proposed project would not construct any habitable structures that would be vulnerable to flooding or inundation in the event of a dam break, and would not impede or redirect flood flows in the project area. In the event of an emergency, the City has adopted emergency evacuation procedures that would be implemented in the case of a dam break. Therefore, the proposed project would not result in exposure of people or structures to significant risk of loss, injury or death related to flooding or dam inundation. Impacts would be less than significant, and no further analysis is required. Reference: 14 (General Plan) \boxtimes j) Inundation by seiche, tsunami, or mudflow? Standard: A significant impact may occur if the proposed project were located in an area with inundation potential due to seiche, tsunami, or mudflow. Explanation: Seiches are large waves generated in enclosed bodies of water in response to ground shaking. The project site is not located near an enclosed large body of water that could experience seiches during an earthquake. Thus, no impact would occur, and no further analysis is required. Tsunamis are tidal waves generated in large bodies of water caused by fault displacement or major ground movement. Hazardous tsunamis, which are rare along the Los Angeles coastline, have the potential to cause flooding in the lowlying coastal area. The project site is located approximately 7.2 miles from the Pacific Ocean and is not located within a tsunami hazard area. Therefore, no impact would occur, and no further analysis is required. As discussed in item 6 (a)(iv), the project site is not located within a Citydesignated hillside area and would not be subject to a landslide. Therefore, no impact associated with inundation from mudflow would occur, and no further analysis is required.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
10. LAND USE AND PLANNING – Would the project:	I	<u> </u>				
a) Physically divide an established community?						
Standard: A significant impact may occur if the propose large or otherwise configured in such a way as to create an established community.						
Explanation: The proposed project is located within the existing Rancho Cienega Sports Complex in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The proposed project would demolish the existing Celes King III Pool, cover the project site with landscaping, and convert the area to a playground area. Neither construction nor operation of the proposed project would include features such as a highway, above-ground infrastructure, or an easement that would cause a permanent disruption to an established community or would otherwise create a physical barrier within an established community. Therefore, the proposed project would not physically divide an established community. No impact would occur, and no further analysis is required.						
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?				\boxtimes		
Standard: A significant impact may occur if the proposed with the <i>General Plan</i> , or other applicable plan, or designated to avoid or mitigate a significant potential envi	with th	e site's	zonin			
Explanation: The project site is located entirely within the City of Los Angeles in the West Adams-Baldwin Hills-Leimert Community Plan Area. The West Adams-Baldwin Hills-Leimert Community Plan is one of 35 community plans that comprise the land use element of the City of Los Angeles General Plan. The community plan establishes the goals, objectives, policies, and programs applicable to the West Adams-Baldwin Hills-Leimert Community Plan Area.						
The City's current zoning designation for the project site is OS-1XL (Open Space) The site is designated as Open Space by the <i>General Plan</i> . No new land uses would be introduced at the project site. Following demolition of the Celes King II Pool, the project site would be landscaped and converted to a community lawr and playground area. Therefore, the proposed project would not conflict with the existing zoning or <i>General Plan</i> designations for the project site. No impact would						

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact				
occur, and no further analysis is required. The proposed project is also consistent with the goals and policies set forth in the City's community plan. The West Adams-Baldwin Hills-Leimert Community Plan advocates improving the utilization and development of recreational facilities at existing parks as well as accommodating active parklands. As such, the proposed project would be consistent with land use plans and policies contained in the West Adams-Baldwin Hills-Leimert Community Plan. Accordingly, no impacts to applicable land use plans would occur, and no further analysis is required. Reference: 16 (Community Plan)								
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?				\boxtimes				
Standard: A significant impact may occur if the proposed project were located within an area governed by a habitat conservation plan or natural community conservation plan and would conflict with such plan.								
Explanation: As previously discussed in item 4 (d), the project site is not located in a habitat conservation plan or a natural community conservation plan area. As such, the proposed project would not conflict with the provisions of an approved conservation plan. No impact would occur, and no further analysis is required.								
11. MINERAL RESOURCES – Would the project:								
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				\boxtimes				
Standard: A significant impact may occur if the project were located in an area used or available for extraction of a regionally important mineral resource, if the project converted an existing or potential present or future regionally-important mineral extraction use to another use, or if a project affected access to such a site.								
Explanation: No mineral resources are identified within the project site. No impact would occur, and no further analysis is required. Reference: 3 (California Department of Conservation Mineral Lands Classification)								

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
b)	Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				\boxtimes	
	Standard: A significant impact may occur if a project used or available for extraction of a locally-important reproject converted such a resource to another use or a site.	mineral	resource	and	the	
Explanation: No mineral resources are identified within the project site. No impact would occur, and no further analysis is required and the EIR will include a brief discussion of this issue. Reference: 14 (General Plan)						
12. NO	ISE – Would the project result in:					
a)	Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	\boxtimes				
	Standard: A significant impact may occur if the project exceeding the standards for ambient noise as establis and Municipal Code or exposed persons to that increase	hed by	the Gen	eral		
Explanation: The proposed project may generate increased noise levels during demolition and grading activities. A technical noise analysis will be prepared for the proposed project that will assess the potential for short-term increases in noise levels and any associated impacts. A detailed analysis of this issue will be included in the EIR.						
b)	Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?	\boxtimes				
	Standard: A significant impact may occur if the project wor generate excessive ground-borne vibration or ground				ns to	
Explanation: Construction activities associated with the proposed project may generate groundborne vibration from the use of heavy equipment. The technical noise analysis prepared for the proposed project will evaluate the potential for groundborne noise and vibration, as well as any associated impacts. A detailed analysis of this issue will be included in the EIR.						
c)	A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?	\boxtimes				

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
	Standard: A significant impact may occur if the project permanently increase the ambient noise levels in the prexisting without the proposed project.			,	
	Explanation: Refer to item 12 (a) above. A detailed an included in the EIR.	alysis c	of this issu	ıe wil	ll be
d)	A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?	\boxtimes			
	Standard: A significant impact may occur if the proposed substantial temporary or periodic increase in the amproject vicinity above levels existing without the proposed	bient n	oise leve		
	Explanation: Refer to item 12 (a) above. A detailed an included in the EIR.	alysis c	of this issu	ıe wil	ll be
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				
	Standard: A significant impact may occur if the project two miles of an airport.	t site w	ere locat	ed w	ithin
	Explanation: The project site is not located within an airport land use plan. The project site is located approximately 5.3 miles east of the Santa Monica Municipal Airport and 5.6 miles northeast of the Los Angeles International Airport. Due to the distance from the nearest airport, the proposed project would not expose people working or residing in the project area to excessive noise. No impact would occur, and no further analysis is required. Reference: 1 (AirNav)				
f)	For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				\boxtimes
	Standard: A significant impact may occur if the project two miles of a private airstrip.	t site w	ere locat	ed w	ithin

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
	Explanation: The project site is not located near a private airstrip. The closest private airstrip, the Goodyear Blimp Base Airport, is located approximately 12.1 miles south of the project site. No impact would occur, and no further analysis is required. Reference: 1 (AirNav)					
13. PO	PULATION AND HOUSING – Would the project:			······································		
a)	Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				\boxtimes	
	Standard: A significant impact may occur if population growth is induced in an area, either directly or indirectly, such that the population of the area may exceed the planned population of that area.					
	Explanation: The proposed project would demolish an existing building and convert the area to a community lawn and playground area. The proposed project would not directly or indirectly induce substantial population growth because it does not include a residential or commercial element. No impact would occur, and no further analysis is required.					
b)	Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				\boxtimes	
	Standard: A significant impact may occur if the project would result in a net loss of 15 single-family dwellings or 25 dwellings in multi-family housing.					
	Explanation: The project site does not contain any housing or residential uses. As such, no housing would be displaced or changed as a result of the proposed project. No impact would occur, and no further analysis is required.					
c)	Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				\boxtimes	
	Standard: A significant impact may occur if the project of 15 single-family dwellings or 25 dwellings in multi-fam	ily hou	sing.			
	Explanation: No housing currently exists on the project project would not displace any population. No imparture analysis is required.					

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
14. PUBLIC SERVICES –	i	<u> </u>	<u>:</u>			
the provision of new or physically altered governmental physically altered governmental facilities, the construction significant environmental impacts, in order to maintain a	a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:					
Department (LAFD) could not adequately serve the pr	Standard: A significant impact may occur if the City of Los Angeles Fire Department (LAFD) could not adequately serve the proposed project based on response time, access, or fire hydrant/water availability.					
Explanation: The proposed project does not include new housing or non-residential development that would substantially increase the residential or employee populations in the area; thus, the demand for fire protection services would not substantially increase. The proposed project would demolish the Celes King III Pool in accordance with the latest version of the <i>City of Los Angeles Building Code</i> . As such, the proposed project would not increase fire hazards or substantially increase the demand for fire protection services. Therefore, no impact to fire protection services would occur, and no further analysis is required.						
ii) Police protection?				\boxtimes		
Standard: A significant impact may occur if the proposin an increase in demand for police services that wou the police department responsible for serving the site.	ld exce	•		i		
Explanation: As previously stated in item 14 (a)(i), the not directly result in an increase in residential popincrease in employee populations. During demolitic implement standard site security features, such as project site. Following the demolition of the Celes Kin would be graded, landscaped, and converted to a play expected to generate additional calls for police project site would be a passive use. As such, implement the proposed project would not increase the new protection services or adversely affect service ratios impact to police protection services would occur, as required.	ulations on active s fencing III Post ayground rotection entation s or res	s or a suvities, BC ng, to second, the pr nd area a on service n and ope addition sponse tir	ubstance cure roject and is eas erational portions.	ntial ould the site not the on of olice		

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
iii) Schools?				\boxtimes		
Standard: A significant impact may occur if the proposed project includes substantial employment or population growth that could generate demand for school facilities that exceeded the capacity of the school district responsible for serving the project site.						
Explanation: The proposed project would not induce employment or population growth, either directly or indirectly, and would therefore not increase the demand for schools in the area. No impact would occur, and no further analysis is required.						
iv) Parks?				\boxtimes		
Standard: A significant impact may occur if the recreation and park services available could not accommodate the population increase resulting from the implementation of the proposed project.						
Explanation: The project site is currently developed with an indoor pool. The proposed project would demolish the existing Celes King III Pool and convert the area to a community front lawn and playground facilities. As previously discussed, the construction of the proposed project would not induce growth, either directly or indirectly, and therefore, would not increase the demand for recreation in the area. In addition, the approved <i>Rancho Cienega Sports Complex Project</i> would construct a new indoor pool facility. There are three additional indoor pools located within a five-mile radius of the project site, including Laces Aquatic Center, Eleanor Green Robert Aquatic Center, and LA84 Foundation/John C. Argue Swim Stadium. Therefore, no impacts to parks would occur, and no further analysis is required. Reference: 20 (LARAP)						
v) Other public facilities?				\boxtimes		
Standard: Projects that do not result in a net increa normally would not have a significant impact on public			itial u	ınits		
Explanation: Construction and operation of the pro- induce growth, either directly or indirectly, and, there the demand for or use of libraries or other public Therefore, no impact to other public facilities wou analysis is required.	efore, v ic facil	vould not lities in t	incre he a	ase rea.		

	Issues	Potentially Significant	Less Than Significant With Mitigation	Less Than Significant	No Impact
15. RE0	CREATION –	<u>i</u>	<u>i</u>	i	
a)	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				
	Standard: A significant impact may occur if the proposed project includes substantial employment or population growth that may generate demand for public park facilities that exceed the capacity of existing parks.				
	Explanation: The proposed project would demolish the existing Celes King III Pool. As previously discussed, the approved <i>Rancho Cienega Sports Complex Project</i> would construct a new indoor pool facility, and there are three indoor pools located within a five-mile radius of the project site, including Laces Aquatic Center, Eleanor Green Robert Aquatic Center, and LA84 Foundation/John C. Argue Swim Stadium. The demand for parks and recreational facilities is generally associated with an increase in housing or population. Construction workers would be drawn from the existing workforce in the region. As such, construction of the proposed project would not generate new permanent residents that would substantially increase the use of existing parks and recreational facilities. Following demolition of the Celes King III Pool, the project site would be landscaped and be a passive use. Therefore, the proposed project would not induce growth, either directly or indirectly, and, therefore, would not increase the demand for parks or other recreational facilities in the area. No impacts would occur, and no further analysis is required.				
b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?			\boxtimes	
	Standard: A significant impact may occur if a project indexpansion of park facilities and such construction valverse effect on the environment.				
	Explanation: The proposed project would demolish the Pool and convert the area to a community front lawn a Current playground facilities at the Rancho Cienega Sport to be demolished as part of the Rancho Cienega Sport the age and dilapidated state of the playground. Theref would improve the recreational services available within providing a new playground facility. As such, impassignificant, and no further analysis is required.	and plorts Constant C	ayground omplex are plex Proje e propose ocal comr	facili plan ect du ed pro nunit	ties. ined ie to oject y by

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact		
16. TR	ANSPORTATION/TRAFFIC – Would the project:		·				
a)	Exceed the capacity of the existing circulation system, based on an applicable measure of effectiveness (as designated in a general plan policy, ordinance, etc.), taking into account all relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?	\boxtimes					
	Standard: A significant impact may occur if the proposed project causes an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system.						
	Explanation: The proposed project would demolish the existing Celes King III Pool and convert the area to a community lawn and playground area. Traffic may be affected temporarily due to construction activities. A traffic study will be prepared for the proposed project, including an analysis of construction traffic impacts. A detailed analysis of this issue will be included in the EIR.						
b)	Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?						
	Standard: A significant impact may occur if the proposed project causes a conflict with an applicable congestion management program.						
	Explanation: The proposed project would demolish the existing Celes King III Pool and convert the area to a playground area with landscaping. Project-related traffic impacts may potentially occur during construction activities only. The County of Los Angeles Congestion Management Program level of significance thresholds are not intended to be applied to construction activities. No traffic impacts are anticipated to occur during project operation due to the passive nature of the project. Therefore, no impact would occur, and no further analysis is required.						
c)	Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks?				\boxtimes		

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact	
Standard: A significant impact may occur if the prop traffic patterns, including either an increase in traffi location the resulted in substantial safety risks.	•	-	-		
Monica Municipal Airport and 5.6 miles northeast of the Airport. Neither construction nor operation of the prop	Explanation: The project site is located approximately 5.3 miles east of the Santa Monica Municipal Airport and 5.6 miles northeast of the Los Angeles International Airport. Neither construction nor operation of the proposed project would affect air traffic patterns. No impact to air traffic patterns would occur, and no further analysis is required.				
 d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? Standard: A significant impact may occur if the prop- increased road hazards due to a design feature or incor 	•	•	stant	ially	
Explanation: The project site is located entirely within Celes King III Pool at the Rancho Cienega Sports project would demolish the existing Celes King III Pool playground area with landscaping. No roads would be proposed project and the proposed project would be cland use. Therefore, the proposed project would not income.	Explanation: The project site is located entirely within the existing site of the Celes King III Pool at the Rancho Cienega Sports Complex. The proposed project would demolish the existing Celes King III Pool and convert the area to a playground area with landscaping. No roads would be constructed as part of the proposed project and the proposed project would be consistent with the existing land use. Therefore, the proposed project would not increase hazards to a design feature or have any incompatible uses. No impact would occur, and no further				
 e) Result in inadequate emergency access? Standard: A significant impact may occur if the propinadequate emergency access. 	posed p	oroject re	Sulte	⊠ d in	
Explanation: Rodeo Road and Martin Luther King a designated as "selected disaster routes" in the City of a Safety Element. However, construction of the project completely within the boundaries of the project site of the Cienega Sports Complex. No road or lane closured demolition and construction activities. During construct the site and surrounding area, particularly for emergy would be maintained at all times. In addition, operation would not after the adjacent street system. Therefore would not affect emergency access or result in inade to No impact would occur, and no further analysis is (General Plan)	Los Angosed procated researe ion, ingosency researe, the quate e	geles Geno oject wou within the anticipate ress and c esponse propose propose mergency	eral Fulld of Rangel du egres vehiced produced p	Plan ecur acho ring s to cles, oject oject ess.	

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?				
Standard: A significant impact may occur if the propo adopted policies, plans, or programs supporting alternat	•	•		with
Explanation: The project site lies entirely within the becienega Sports Complex. The existing sidewalk front Rodeo Road and any bus stops would remain acconstruction in order to ensure safe pedestrian travel access. As such, no impact to alternative transportation programs would occur, and no further analysis is require	ing the essible el and ion mo ed.	project s during a convenie des or s	site a and nt tra uppo	llong after ansit rting
17. TRIBAL CULTURAL RESOURCES – Would the project can change in the significance of a tribal cultural resources, def Code Section 21074 as either a site, feature, place, or geographically defined in terms of the size and scope of the or object with cultural value to a California Native American to	ined in ultural Iandsc	Public R landscap ape, sacr	esou e tha	rces at is
 a) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code Section 5020.1(k), or? 				
Standard: A significant impact may result if the pro substantial adverse change to the significance of a trib above).				
Explanation: A cultural resources technical report we proposed project, which will identify any significant tribat project area, and will assess any potential impacts to sugaralysis of this issue will be included in the EIR.	l cultur	al resourc	es ir	n the
b) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.				
Standard: A significant impact may result if the pro substantial adverse change to the significance of a trib above).	al reso	ource (as	ident	tified
Explanation: A cultural resources technical report v	vill be	prepared	I for	the

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
proposed project, which will identify any significant tribator project area, and will assess any potential impacts to sure analysis of this issue will be included in the EIR. 18. UTILITIES AND SERVICE SYSTEMS – Would the project:				;
 a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? Standard: A significant impact may occur if the pr wastewater treatment requirements of the local regulato 	•			eeds
Explanation: The proposed project would demolish the convert the area to a community front lawn and playg generated by project-related construction and opera collected and transported through existing local, trunk, a quality of wastewater from the proposed project is exwould not exceed wastewater treatment requirements Quality Control Board. Impacts would be less than sanalysis is required.	round a ation a and mai pected s of th	area. Wactivities walline sew to be tyle	astew would vers. pical nal W	ater be The and ater
b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? Standard: A significant impact may occur if the propos	ed proi	 ect_result	⊠ ed in	
need for new construction or expansion of water of facilities that could result in an adverse environmental mitigated.	or was	tewater	treatr	nent
Explanation: The proposed project would demolish the convert the area to a community front lawn and playg require water supply and generate wastewater. Prior to King III Pool, the existing pool would be drained. For construction activities, the proposed project would nominal amount of water and wastewater for landscapin project is not expected to require or result in the construction of existing water or wastewater facilities. Impacts would and no further analysis is required.	round of demonstrates of the contract of the c	area, whi olition of t ng demol and ge such, the	ch whe Chition nerate proportion in the chite proporti	eles and e a se a sion

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
c) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
Standard: A significant impact may occur if the volume of the proposed project increases to a level exceeding the drain system serving the project site.				
Explanation: The proposed project would include stormwater and drainage infrastructure for the landscap improvements would not result in the need for new of facilities elsewhere in the system that could result in sproject site currently includes drainage facilities, and limited in size. Therefore, the construction and operation would result in less than significant impacts to the stofurther analysis is required.	ed area or expa ignifica the en on of the	a. Howevended stouch impact impact impact itre proje e propose	er, the control of th	nese drain s the te is oject
d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? Standard: A significant impact may occur if the property of the project	oropose	 ed projec	⊠ ťs w	□ /ater
demands would exceed the existing water supplies that Explanation: The City of Los Angeles Department of W potable water to the project area. The proposed project amount of water for construction activities and for landso the project. Impacts would be less than significant, a required.	/ater aret would	nd Power I require a during op	non eratio	ninal on of
e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?			\boxtimes	
Standard: A significant impact may occur if the propose wastewater generation to such a degree that the capa serving the project site would be exceeded.				
Explanation: Refer to items 18 (a) and 18 (b) above. In significant, and no further analysis is required.	npacts	would be	less	than

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?			\boxtimes	
Standard: A significant impact may occur if the proposed solid waste generation to a degree that existing and proposed would be insufficient to accommodate the additional was	ojected			
Explanation: During construction, solid waste wordemolition of the existing Celes King III Pool and findebris. The proposed project would haul away approximate of demolition debris. There are no City-owned landfit therefore, waste from the proposed project would be hard operated landfills. The City standard for public works into be recycled where feasible. Following construction generate substantial amounts of solid waste. Therefore less than significant, and no further analysis is in (CalRecycle), 18 (LASAN)	om ge nately fils curruled to equires n, the ore, the	neral con 14,000 cu ently in control private of demolitic project versimpact	nstructibic yopera r Cou on de vould	ction ards tion; unty- ebris not d be
g) Comply with federal, state, and local statutes and regulations related to solid waste? Standard: A significant impact may occur if the propose solid waste that was in excess of or was not dispose applicable regulations.				
Explanation: The proposed project would be demo operated following all applicable laws, regulations, adopted City standards regarding solid waste disposal. than significant, and no further analysis is required.	ordinan	ces, and	forn	nally
18. MANDATORY FINDINGS OF SIGNIFICANCE	T		· · · · · · · · · · · · · · · · · · ·	
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				
Explanation: As discussed in item 4, Biological Resource Screening Checklist, impacts are less than significant.				

Issues	Potentially Significant Impact	Less Than Significant With Mitigation	Less Than Significant	No Impact
project has the potential to impact historical resources. Cultural Resources. As such, potential impacts related be evaluated in the EIR.				
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?	\boxtimes			
Explanation: The EIR will contain an analysis o considerable impacts associated with the proposed projethis issue will be included in the EIR.	•			•
c) Does the project have the potential to achieve short- term environmental goals to the disadvantage of long- term environmental goals?	\boxtimes			
Explanation: A detailed analysis of this issue will be inclu	ded in	the EIR.		
d) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?	\boxtimes			
Explanation: The proposed project could potentially resu that may cause adverse effects on human beings with environmental areas discussed in this Initial Study: air emissions, hazards and hazardous materials, noise, and A detailed analysis of these issues will be included in the	n regar quality transp	d to the , greenh	follo ouse	wing gas

Comments Received on the Notice of Preparation

GOVERNOR'S OFFICE of PLANNING AND RESEARCH

Notice of Preparation

June 21, 2018

To:

Reviewing Agencies

Re:

Rancho Cienega Celes King III Pool Demolition Project

SCH# 2018061048

Attached for your review and comment is the Notice of Preparation (NOP) for the Rancho Cienega Celes King III Pool Demolition Project draft, Environmental Impact Report (EIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, within 30 days of receipt of the NOP from the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

James R Tebbetts City of Los Angeles 1149 South Broadway, Suite 600, MS 939 Los Angeles, CA 90015

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely,

Director, State Clearinghouse

Attachments cc: Lead Agency

Document Details Report State Clearinghouse Data Base

SCH# 2018061048

Project Title Rancho Cienega Celes King III Pool Demolition Project

Lead Agency Los Angeles, City of

Type NOP Notice of Preparation

Description The proposed Rancho Cienega Celes King III Pool Demolition Project would demolish the Celes King

III Indoor Pool building and pool and convert the site into a community front lawn and playground area. The Celes King III Pool is located within the Rancho Cienega Sports Complex in Los Angeles, CA, in

Council District 10.

Lead Agency Contact

Name James R Tebbetts

(213) 978-1332

Agency City of Los Angeles

Phone email

Address 1149 South Broadway, Suite 600, MS 939

City Los Angeles

State CA Zip 90015

Fax

Project Location

County Los Angeles

City Los Angeles, City of

Region

Cross Streets 5001 Rodeo Rd

Lat / Long Parcel No.

Township Range Section Base

Proximity to:

Highways 1-405, 10

Airports

Railways LA METRO

Waterways

Schools Dorsey HS

Land Use

Project Issues Air Quality; Tribal Cultural Resources; Other Issues; Toxic/Hazardous; Noise; Traffic/Circulation

Reviewing Agencies Resources Agency; Office of Historic Preservation; Department of Parks and Recreation; Department of Fish and Wildlife, Region 5; Resources, Recycling and Recovery; State Water Resources Control

Board, Division of Drinking Water, District 4; Caltrans, District 7; Santa Monica Mountains

Conservancy; Regional Water Quality Control Board, Region 4

Date Received 06/21/2018

Start of Review 06/21/2018

End of Review 07/20/2018

Last Updated 5/22/18

CFOA Coordinator

STATE OF CALIFORNIA Edmund G. Brown Jr., Governor

NATIVE AMERICAN HERITAGE COMMISSION

Cultural and Environmental Department 1550 Harbor Blvd., Suite 100 West Sacramento, CA 95691 Phone (916) 373-3710

June 28, 2018

James R. Tebbetts City of Los Angeles 1149 South Broadway, Suite 600, MS 939 Los Angeles, CA 90015

Also sent via e-mail: james.tebetts@lacity.org

RE: SCH# 2018061048, Rancho Cienega Celes king III Pool Demolition Project, City of Los Angeles; Los

Angeles County, California

Dear Mr. Tebbetts:

The Native American Heritage Commission has received the Notice of Preparation (NOP) for Draft Environmental Impact Report for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code § 21000 et seq.), specifically Public Resources Code section 21084.1, states that a project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit.14, § 15064.5 (b) (CEQA Guidelines Section 15064.5 (b)). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an environmental impact report (EIR) shall be prepared. (Pub. Resources Code § 21080 (d); Cal. Code Regs., tit. 14, § 15064 subd. (a)(1) (CEQA Guidelines § 15064 (a)(1)). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource, a lead agency will need to determine whether there are historical resources with the area of project effect (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a separate category of cultural resources, "tribal cultural resources" (Pub. Resources Code § 21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment (Pub. Resources Code § 21084.2). Please reference California Natural Resources Agency (2016) "Final Text for tribal cultural resources update to Appendix G: Environmental Checklist Form," http://resources.ca.gov/ceqa/docs/ab52/Clean-final-AB-52-App-G-text-Submitted.pdf. Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code § 21084.3 (a)). AB 52 applies to any project for which a notice of preparation or a notice of negative declaration or mitigated negative declaration is filed on or after July 1, 2015. If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). Both SB 18 and AB 52 have tribal consultation requirements. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101, 36 C.F.R. § 800 et seq.) may also apply.

The NAHC recommends **lead agencies consult with all California Native American tribes** that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of <u>portions</u> of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments. **Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws**.

AB 52

AB 52 has added to CEQA the additional requirements listed below, along with many other requirements:

- 1. Fourteen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within fourteen (14) days of determining that an application for a project is complete or of a decision by a public agency to undertake a project, a **lead agency** shall provide formal notification to a designated contact of, or tribal representative of, traditionally and culturally affiliated California Native American tribes that have requested notice, to be accomplished by at least one written notice that includes:
 - a. A brief description of the project.
 - **b.** The lead agency contact information.
 - **c.** Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code § 21080.3.1 (d)).
 - **d.** A "California Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code § 21073).
- 2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a Negative Declaration, Mitigated Negative Declaration, or Environmental Impact Report: A lead agency shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code § 21080.3.1, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or environmental impact report. (Pub. Resources Code § 21080.3.1(b)).
 - **a.** For purposes of AB 52, "consultation shall have the same meaning as provided in Gov. Code § 65352.4 (SB 18). (Pub. Resources Code § 21080.3.1 (b)).
- **3.** <u>Mandatory Topics of Consultation If Requested by a Tribe</u>: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:
 - a. Alternatives to the project.
 - **b.** Recommended mitigation measures.
 - c. Significant effects. (Pub. Resources Code § 21080.3.2 (a)).
- **4.** Discretionary Topics of Consultation: The following topics are discretionary topics of consultation:
 - **a.** Type of environmental review necessary.
 - **b.** Significance of the tribal cultural resources.
 - **c.** Significance of the project's impacts on tribal cultural resources.
 - **d.** If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code § 21080.3.2 (a)).
- 5. Confidentiality of Information Submitted by a Tribe During the Environmental Review Process: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Government Code sections 6254 (r) and 6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code § 21082.3 (c)(1)).
- **6.** <u>Discussion of Impacts to Tribal Cultural Resources in the Environmental Document:</u> If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:
 - a. Whether the proposed project has a significant impact on an identified tribal cultural resource.
 - **b.** Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code section 21082.3, subdivision (a), avoid or substantially lessen the impact on the identified tribal cultural resource. (Pub. Resources Code § 21082.3 (b)).

- **7.** <u>Conclusion of Consultation</u>: Consultation with a tribe shall be considered concluded when either of the following occurs:
 - **a.** The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or
 - **b.** A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code § 21080.3.2 (b)).
- 8. Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document: Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code section 21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code section 21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code § 21082.3 (a)).
- 9. Required Consideration of Feasible Mitigation: If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public Resources Code section 21084.3 (b). (Pub. Resources Code § 21082.3 (e)).
- **10.** Examples of Mitigation Measures That, If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:
 - a. Avoidance and preservation of the resources in place, including, but not limited to:
 - i. Planning and construction to avoid the resources and protect the cultural and natural context.
 - **ii.** Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
 - **b.** Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
 - i. Protecting the cultural character and integrity of the resource.
 - ii. Protecting the traditional use of the resource.
 - iii. Protecting the confidentiality of the resource.
 - **c.** Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
 - d. Protecting the resource. (Pub. Resource Code § 21084.3 (b)).
 - e. Please note that a federally recognized California Native American tribe or a nonfederally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code § 815.3 (c)).
 - **f.** Please note that it is the policy of the state that Native American remains and associated grave artifacts shall be repatriated. (Pub. Resources Code § 5097.991).
- 11. Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource: An environmental impact report may not be certified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
 - a. The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code sections 21080.3.1 and 21080.3.2 and concluded pursuant to Public Resources Code section 21080.3.2.
 - **b.** The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
 - c. The lead agency provided notice of the project to the tribe in compliance with Public Resources Code section 21080.3.1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code § 21082.3 (d)).

This process should be documented in the Cultural Resources section of your environmental document.

The NAHC's PowerPoint presentation titled, "Tribal Consultation Under AB 52: Requirements and Best Practices" may be found online at: http://nahc.ca.gov/wp-content/uploads/2015/10/AB52TribalConsultation CalEPAPDF.pdf

SB 18

SB 18 applies to local governments and requires **local governments** to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code § 65352.3). Local governments should consult the Governor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at: https://www.opr.ca.gov/docs/09_14_05_Updated_Guidelines_922.pdf

Some of SB 18's provisions include:

- 1. <u>Tribal Consultation</u>: If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a "Tribal Consultation List." If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has 90 days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code § 65352.3 (a)(2)).
- 2. No Statutory Time Limit on SB 18 Tribal Consultation. There is no statutory time limit on SB 18 tribal consultation.
- 3. Confidentiality: Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code section 65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code sections 5097.9 and 5097.993 that are within the city's or county's jurisdiction. (Gov. Code § 65352.3 (b)).
- **4.** Conclusion of SB 18 Tribal Consultation: Consultation should be concluded at the point in which:
 - **a.** The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
 - **b.** Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor's Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precludes agencies from initiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and "Sacred Lands File" searches from the NAHC. The request forms can be found online at: http://nahc.ca.gov/resources/forms/

NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, mitigation of project-related impacts to tribal cultural resources, the NAHC recommends the following actions:

- 1. Contact the appropriate regional California Historical Research Information System (CHRIS) Center (http://ohp.parks.ca.gov/?page_id=1068) for an archaeological records search. The records search will determine:
 - a. If part or all of the APE has been previously surveyed for cultural resources.
 - b. If any known cultural resources have been already been recorded on or adjacent to the APE.
 - c. If the probability is low, moderate, or high that cultural resources are located in the APE.
 - **d.** If a survey is required to determine whether previously unrecorded cultural resources are present.
- **2.** If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
 - **a.** The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public disclosure.

- **b.** The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.
- 3. Contact the NAHC for:
 - a. A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project's APE.
 - **b.** A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.
- **4.** Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
 - **a.** Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, section 15064.5(f) (CEQA Guidelines section 15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
 - **b.** Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
 - c. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code section 7050.5, Public Resources Code section 5097.98, and Cal. Code Regs., tit. 14, section 15064.5, subdivisions (d) and (e) (CEQA Guidelines section 15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

Please contact me if you need any additional information at gayle.totton@nahc.ca.gov.

Sincerely,

Gayle Totton, M.A., PhD.

Gaule Totton

Associate Governmental Program Analyst

(916) 373-3714

cc: State Clearinghouse

Los Angeles Unified School District

Office of Environmental Health and Safety

AUSTIN BEUTNER
Superintendent of Schools

DIANE PAPPAS

Chief Executive Officer, District Operations & Digital Innovations

CARLOS A. TORRES

Acting Director, Environmental Health and Safety

7/5/18

James R Tebbetts

City of Los Angeles Department of Public Works
1149 South Broadway, Suite 600, Mail Stop 939

Los Angeles, CA 90015

SUBJECT: PROJECT NAME: Rancho Cienega Celes King III Pool Demolition

PROJECT LOCATION: 5001 Rodeo Road, Los Angeles, CA 90016

Presented below are comments submitted on behalf of the Los Angeles Unified School District (LAUSD) regarding the notice of preparation for the subject project. Due to the fact that Dorsey High School is located adjacent to the proposed project site, LAUSD is concerned about the potential negative impacts of the project to our students, staff and parents traveling to and from the referenced campus.

Based on the extent/location of the proposed development, it is our opinion that significant environmental impacts on the surrounding community (air quality, noise, traffic, pedestrian safety, etc.) will occur. Since the project will have a significant impact on LAUSD schools, mitigation measures designed to help reduce or eliminate such impacts are included in this response.

Air Quality

District students and school staff should be considered sensitive receptors to air pollution impacts. Construction activities for the proposed project would result in short term impacts on ambient air quality in the area resulting from equipment emissions and fugitive dust. To ensure that effective mitigation is applied to reduce construction air pollutant impacts on the school, we ask that the following language be included as a mitigation measure for air quality impacts:

• If the proposed mitigation measures do not reduce air quality impacts to a level of insignificance, the project applicant shall develop new and appropriate measures to effectively mitigate construction related air emissions at the affected schools. Provisions shall be made to allow the school and or designated representative(s) to notify the project applicant when such measures are warranted.

Noise

Noise created by construction activities may affect the school in proximity to the proposed project site. These construction activities include grading, earth moving, hauling, and use of heavy equipment. The California Environmental Quality Act requires that such impacts be quantified, and eliminated or reduced to a level of insignificance.

LAUSD established maximum allowable noise levels to protect students and staff from noise impacts generated in terms of Leq. These standards were established based on regulations set forth by the California Department of Transportation and the City of Los Angeles. LAUSD's exterior noise standard is 67 dBA Leq and the interior noise standard is 45 dBA Leq. A noise level increase of 3 dBA or more over ambient noise levels is considered significant for existing schools and would require mitigation to achieve levels within 2 dBA of pre-project ambient level. To ensure that effective mitigations are employed to reduce

construction related noise impacts on District sites, we ask that the following language be included in the mitigation measures for noise impacts:

• If the proposed mitigation measures do not reduce noise impacts to a level of insignificance, the project applicant shall develop new and appropriate measures to effectively mitigate construction related noise at the affected school. Provisions shall be made to allow the school and or designated representative(s) to notify the project applicant when such measures are warranted.

Traffic/Transportation

LAUSD's Transportation Branch <u>must be contacted</u> at (213) 580-2950 regarding the potential impact upon existing school bus routes. The Project Manager or designee will have to notify the LAUSD Transportation Branch of the expected start and ending dates for various portions of the project that may affect traffic within nearby school areas. To ensure that effective mitigations are employed to reduce construction and operation related transportation impacts on District sites, we ask that the following language be included in the mitigation measures for traffic impacts:

- School buses must have unrestricted access to schools.
- During the construction phase, truck traffic and construction vehicles may not cause traffic delays for our transported students.
- During and after construction changed traffic patterns, lane adjustment, traffic light patterns, and altered bus stops may not affect school buses' on-time performance and passenger safety.
- Construction trucks and other vehicles are required to stop when encountering school buses using red-flashing-lights must-stop-indicators per the California Vehicle Code.
- Contractors must install and maintain appropriate traffic controls (signs and signals) to ensure vehicular safety.
- Contractors must maintain ongoing communication with LAUSD school administrators, providing sufficient notice to forewarn children and parents when existing vehicle routes to school may be impacted.
- Parents dropping off their children must have access to the passenger loading areas.

Pedestrian Safety

Construction activities that include street closures, the presence of heavy equipment and increased truck trips to haul materials on and off the project site can lead to safety hazards for people walking in the vicinity of the construction site. To ensure that effective mitigations are employed to reduce construction and operation related pedestrian safety impacts on District sites, we ask that the following language be included in the mitigation measures for pedestrian safety impacts:

- Contractors must maintain ongoing communication with LAUSD school administrators, providing sufficient notice to forewarn children and parents when existing pedestrian routes to school may be impacted.
- Contractors must maintain safe and convenient pedestrian routes to all nearby schools. The District will provide School Pedestrian Route Maps upon your request.

- Contractors must install and maintain appropriate traffic controls (signs and signals) to ensure pedestrian and vehicular safety.
- Haul routes are not to pass by <u>any</u> school, except when school is <u>not</u> in session.
- No staging or parking of construction-related vehicles, including worker-transport vehicles, will occur on or adjacent to a school property.
- Funding for crossing guards at the contractor's expense is required when safety of children may be compromised by construction-related activities at impacted school crossings.
- Barriers and/or fencing must be installed to secure construction equipment and to minimize trespassing, vandalism, short-cut attractions, and attractive nuisances.
- Contractors are required to provide security patrols (at their expense) to minimize trespassing, vandalism, and short-cut attractions.

The District's charge is to protect the health and safety of students and staff, and the integrity of the learning environment. The comments presented above identify potential environmental impacts related to the proposed project that must be addressed to ensure the welfare of the students attending Dorsey High School, their teachers and the staff, as well as to assuage the concerns of the parents of these students. Therefore, the measures set forth in these comments should be adopted as conditions of project approval to offset unmitigated impacts on the affected school students and staff.

Thank you for your attention to this matter. If you need additional information please contact me at (213) 241-4674.

Regards,

Cinah Daqiq Environmental Specialist/Research Associate

SENT VIA USPS AND E-MAIL:

July 6, 2018

James.Tebbetts@lacity.org
James R. Tebbetts, Environmental Specialist II
City of Los Angeles Department of Public Works,
Bureau of Engineering
1149 South Broadway, Suite 600
Los Angeles, CA 90015

Notice of Preparation of a Draft Environmental Impact Report for the Rancho Cienega Celes King III Pool Demolition Project

The South Coast Air Quality Management District (SCAQMD) staff appreciates the opportunity to comment on the above-mentioned document. SCAQMD staff's comments are recommendations regarding the analysis of potential air quality impacts from the project that should be included in the Draft Environmental Impact Report (DEIR). Please send SCAQMD a copy of the DEIR upon its completion. Note that copies of the DEIR that are submitted to the State Clearinghouse are not forwarded to SCAQMD. Please forward a copy of the DEIR directly to SCAQMD at the address shown in the letterhead. In addition, please send with the DEIR all appendices or technical documents related to the air quality, health risk, and greenhouse gas analyses and electronic versions of all air quality modeling and health risk assessment files¹. These include emission calculation spreadsheets and modeling input and output files (not PDF files). Without all files and supporting documentation, SCAQMD staff will be unable to complete our review of the air quality analyses in a timely manner. Any delays in providing all supporting documentation will require additional time for review beyond the end of the comment period.

Air Quality Analysis

SCAQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. SCAQMD recommends that the lead agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from SCAQMD's Subscription Services Department by calling (909) 396-3720. More guidance developed since this Handbook is also available on SCAQMD's website at: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993). SCAQMD staff also recommends that the lead agency use the CalEEMod land use emissions software. This software has recently been updated to incorporate up-to-date state and locally approved emission factors and methodologies for estimating pollutant emissions from typical land use development. CalEEMod is the only software model maintained by the California Air Pollution Control Officers Association (CAPCOA) and replaces the now outdated URBEMIS. This model is available free of charge at: www.caleemod.com.

SCAQMD has also developed both regional and localized significance thresholds. SCAQMD staff requests that the lead agency quantify criteria pollutant emissions and compare the results to SCAQMD's

¹ Pursuant to the CEQA Guidelines Section 15174, the information contained in an DEIR shall include summarized technical data, maps, plot plans, diagrams, and similar relevant information sufficient to permit full assessment of significant environmental impacts by reviewing agencies and members of the public. Placement of highly technical and specialized analysis and data in the body of an DEIR should be avoided through inclusion of supporting information and analyses as appendices to the main body of the DEIR. Appendices to the DEIR may be prepared in volumes separate from the basic DEIR document, but shall be readily available for public examination and shall be submitted to all clearinghouses which assist in public review.

CEOA regional pollutant emissions significance thresholds to determine air quality impacts. SCAOMD's **CEQA** regional pollutant emissions significance thresholds can be found here: http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf. In addition to analyzing regional air quality impacts, SCAQMD staff recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LSTs can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts when preparing a CEQA document. Therefore, when preparing the air quality analysis for the project, it is recommended that the lead agency perform a localized analysis by either using the LSTs developed by SCAOMD staff or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at: http://www.aqmd.gov/home/regulations/ceqa/air-qualityanalysis-handbook/localized-significance-thresholds.

The lead agency should identify any potential adverse air quality impacts that could occur from all phases of the project and all air pollutant sources related to the project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, such as sources that generate or attract vehicular trips, should be included in the analysis.

In the event that the project generates or attracts vehicular trips, especially heavy-duty diesel-fueled vehicles, it is recommended that the lead agency perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment ("Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis") can be found at: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mobile-source-toxics-analysis. An analysis of all toxic air contaminant impacts due to the use of equipment potentially generating such air pollutants should also be included.

In addition, guidance on siting incompatible land uses (such as placing homes near freeways) can be found in the California Air Resources Board's *Air Quality and Land Use Handbook: A Community Health Perspective*, which can be found at: http://www.arb.ca.gov/ch/handbook.pdf. CARB's Land Use Handbook is a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process. Guidance² on strategies to reduce air pollution exposure near high-volume roadways can be found at: https://www.arb.ca.gov/ch/rd_technical_advisory_final.PDF.

Mitigation Measures

In the event that the project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize these impacts. Pursuant to CEQA Guidelines Section 15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed. Several resources are available to assist the lead agency with identifying potential mitigation measures for the project, including:

_

² In April 2017, CARB published a technical advisory, *Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways: Technical Advisory*, to supplement CARB's Air Quality and Land Use Handbook: A Community Health Perspective. This technical advisory is intended to provide information on strategies to reduce exposures to traffic emissions near high-volume roadways to assist land use planning and decision-making in order to protect public health and promote equity and environmental justice. The technical advisory is available at: https://www.arb.ca.gov/ch/landuse.htm.

- Chapter 11- Mitigating the Impact of a Project, of SCAQMD's CEQA Air Quality Handbook
- SCAQMD's CEQA web pages available here: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mitigation-measures-and-control-efficiencies
- SCAQMD's Rule 403 Fugitive Dust, and the Implementation Handbook for controlling construction-related emissions and Rule 1403 Asbestos Emissions from Demolition/Renovation Activities
- SCAQMD's Mitigation Monitoring and Reporting Plan (MMRP) for the 2016 Air Quality Management Plan (2016 AQMP) available here (starting on page 86): http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2017/2017-mar3-035.pdf
- CAPCOA's Quantifying Greenhouse Gas Mitigation Measures available here: http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf

Alternatives

In the event that the project generates significant adverse air quality impacts, CEQA requires the consideration and discussion of alternatives to the project or its location which are capable of avoiding or substantially lessening any of the significant effects of the project. The discussion of a reasonable range of potentially feasible alternatives, including a "no project" alternative, is intended to foster informed decision-making and public participation. Pursuant to CEQA Guidelines Section 15126.6(d), the DEIR shall include sufficient information about each alternative to allow meaningful evaluation, analysis, and comparison with the project.

Permits

In the event that the project requires a permit from SCAQMD, SCAQMD should be identified as a responsible agency for the project. For more information on permits, please visit SCAQMD webpage at: http://www.aqmd.gov/home/permits. Questions on permits can be directed to SCAQMD's Engineering and Permitting staff at (909) 396-3385.

Data Sources

SCAQMD rules and relevant air quality reports and data are available by calling SCAQMD's Public Information Center at (909) 396-2039. Much of the information available through the Public Information Center is also available at SCAQMD's webpage at: http://www.aqmd.gov.

SCAQMD staff is available to work with the lead agency to ensure that project air quality impacts are accurately evaluated and any significant impacts are mitigated where feasible. If you have any questions regarding this letter, please contact Robert Dalbeck, Assistant Air Quality Specialist, at rdalbeck@aqmd.gov or call (909) 396-2139.

Sincerely,

Daniel Garcia

Daniel Garcia Program Supervisor Planning, Rule Development & Area Sources

DG/RD LAC180620-01 Control Number ----- Forwarded message -----

From: Gaston, Sean < sgaston@lausd.net>

Date: Thu, Jul 19, 2018 at 2:55 PM

Subject: Re: Comments Regarding NOP for Rancho Cienega Celes King III Pool Demolition

To: "Daqiq, Cinah" <cp-cinah.daqiq@lausd.net>, "james.tebbetts@lacity.org" <james.tebbetts@lacity.org

Cc: "GODEK, GWENN" < gwenn.godek@lausd.net>

Good afternoon,

I have returned from summer break. I read the copy of the response. You have addressed the schools greatest concern which is heavy truck and equipment parking, and pedestrian safety. Thank you for forwarding me the communication.

Regards,

Dr. Sean Gaston, Principal Susan Miller Dorsey Senior High School

A First Choice School Offering A First Class Education

From: Daqiq, Cinah

Sent: Thursday, July 5, 2018 12:12:50 PM

To: james.tebbetts@lacity.org
Cc: Gaston, Sean; GODEK, GWENN

Subject: Comments Regarding NOP for Rancho Cienega Celes King III Pool Demolition

Hello

Please see LAUSD's comment letter (attached) regarding the Rancho Cienega Celes King III Pool Demolition.

Thank you,

Cinah Daqiq

Environmental Specialist/Research Associate

LAUSD | Office of Environmental Health & Safety

Contract Professional

 $\underline{\textbf{333 S. Beaudry Ave}}., 21^{\text{st}} \, \text{Floor, Los Angeles, CA} \, 90017$

213.241.4674 office

925.324.5922 mobile

cp-cinah.daqiq@lausd.net

APPENDIX B

Air Quality and Greenhouse Gas Analysis Technical Memorandum

213.593.8100 tel 213.593.8053 fax

Technical Memorandum

То	Ohaji Abdallah, Shokoufe Marashi, City of Los Angeles Pages 11
CC	Fareeha Kibriya, AECOM
Subject	Rancho Cienega Celes King III Pool Demolition Project Air Quality and Greenhouse Gas Analysis Technical Memorandum
From	Greg Tonkovich, Paola Peña, AECOM
Date	March 15, 2019

AECOM has prepared this technical memorandum to assess the potential air quality and greenhouse gas (GHG) impacts related to the demolition and construction of the Rancho Cienega Celes King III Pool Demolition Project. The analysis of the project's air quality impacts is consistent with guidance from the South Coast Air Quality Management District (SCAQMD) and City of Los Angeles California Environmental Quality Act (CEQA) Guidelines.

Project Description

The proposed Rancho Cienega Celes King III Pool Demolition Project (proposed project) is located within the Rancho Cienega Sports Complex in Los Angeles, California. The proposed project would conduct hazardous materials abatement, drain water from the existing Celes King III Pool, and demolish the Celes King III Pool building. Following demolition, construction activities would include infill of the pool pit, rough grading of the site, utility installations, landscaping and hardscaping, and installation of playground and shade structures. Following construction, the proposed project would operate similarly to existing conditions, and the community front lawn and playground area would be passive uses of the existing Rancho Cienega Sports Complex.

Air Quality Background

Air quality is defined by the concentration of pollutants in relation to their impact on human health. Concentrations of air pollutants are determined by the rate and location of pollutant emissions released by pollution sources, and the atmosphere's ability to transport and dilute such emissions. Natural factors that affect transport and dilution include terrain, wind, and sunlight. Therefore, ambient air quality conditions within the local air basin are influenced by natural factors such as topography, meteorology, and climate, in addition to the amount of air pollutant emissions released by existing air pollutant sources.

The project site is located within the South Coast Air Basin (SCAB) under the jurisdiction of the SCAQMD. The SCAQMD monitors air quality within the SCAB, which includes Orange County and portions of Los Angeles, Riverside, and San Bernardino counties. The SCAB is bounded by the Pacific Ocean to the west; the San Gabriel, San Bernardino, and San Jacinto mountains to the north and east; and the San Diego County line to the south.

Individual air pollutants at certain concentrations may adversely affect human or animal health, reduce visibility, damage property, and reduce the productivity or vigor of crops and natural vegetation. Six air pollutants have been identified by the United States Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) as being of concern both on a nationwide and statewide level: ozone; carbon monoxide (CO); nitrogen dioxide (NO₂); sulfur dioxide

AECOM

Subject: Rancho Cienega Celes King III Pool Demolition Project March 15, 2019 Page 2

 (SO_2) ; lead; and particulate matter (PM), which is subdivided into two classes based on particle size: PM equal to or less than 10 micrometers in diameter (PM_{10}) and PM equal to or less than 2.5 micrometers in diameter $(PM_{2.5})$. Because the air quality standards for these air pollutants are regulated using human health and environmentally based criteria, they are commonly referred to as "criteria air pollutants." Ozone is not directly emitted in the air, rather it is formed by chemical reactions between nitrogen oxides (NOx) and volatile organic compounds (VOC) in the presence of sunlight; therefore, air quality regulations focus on ozone's precursors. Descriptions of each criteria air pollutant and their health effects are included below, and are based on information provided by the SCAQMD.¹

Ozone

Ozone, a colorless gas with a sharp odor, is a highly reactive form of oxygen. High ozone concentrations exist naturally in the stratosphere. However, it is also formed in the atmosphere when VOCs and nitrogen oxides (NO_X) react in the presence of ultraviolet sunlight (also known as smog). The primary sources of VOC and NO_X , the components of ozone, are automobile exhaust and industrial sources. Some mixing of stratospheric ozone downward through the troposphere to the earth's surface does occur; however, the extent of ozone transport is limited.

The propensity of ozone for reacting with organic materials causes it to be damaging to living cells and cause health effects. Short-term exposures (lasting for a few hours) to ozone at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. Individuals exercising outdoors, children and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible subgroups for ozone effects. An increased risk for asthma has been found in children who participate in multiple sports and live in communities with high ozone.

Carbon Monoxide

CO is a colorless, odorless, relatively inert gas that, in urban areas, is associated primarily with the incomplete combustion of fossil fuels, mainly gasoline. Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of worsening oxygen supply to the heart. Inhaled CO has no direct toxic effect on the lungs, but exerts its effect on tissues by interfering with oxygen transport by competing with oxygen to combine with hemoglobin present in the blood to form carboxyhemoglobin. Hence, conditions with an increased demand for oxygen supply can be adversely affected by exposure to CO. Individuals most at risk include patients with diseases involving heart and blood vessels, fetuses (unborn babies), and patients with chronic hypoxemia (oxygen deficiency) as seen in high altitudes.

Nitrogen Dioxide

Nitric oxide (NO) is a colorless gas, formed from nitrogen (N_2) and oxygen (N_2) under conditions of high temperature and pressure, which are generally present during combustion of fuels (e.g., motor vehicles). NO reacts rapidly with the oxygen in air to form NO_2 , which is responsible for the brownish tinge of polluted air. The two gases, NO_2 and NO_2 , are referred to collectively as NO_X . In the presence of sunlight, atmospheric NO_2 reacts and splits to form an NO_2 molecule and an oxygen atom. The oxygen atom can react further to form ozone, via a complex series of chemical reactions involving hydrocarbons.

SCAQMD, 2017, Final Program Environmental Impact Report for the 2016 AQMP, available at: http://www.aqmd.gov/home/library/documents-support-material/lead-agency-scaqmd-projects.

AECOM

Subject: Rancho Cienega Celes King III Pool Demolition Project March 15, 2019 Page 3

Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is associated with long-term exposures to NO_2 at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California (fewer or no stoves). Increases in resistance to air flow and airway contraction is observed after short-term exposure to NO_2 in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma and/or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these subgroups.

Sulfur Dioxide

 SO_2 is a colorless gas with a sharp odor. It reacts in air to form sulfuric acid, which contributes to acid precipitation, and sulfates, which are components of particulate matter. Main sources of SO_2 include coal and oil used in power plants and industries. Exposure of a few minutes to low levels of SO_2 can result in airway constriction in some asthmatics. All asthmatics are sensitive to the effects of SO_2 . In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, is observed after acute higher exposure to SO_2 . In contrast, healthy individuals do not exhibit similar acute responses, even after exposure to higher concentrations of SO_2 .

Lead

Pb in the atmosphere is present as a mixture of a number of lead compounds. Leaded gasoline and lead smelters have been the main sources of lead emitted into the air. Due to the phasing out of leaded gasoline, there was a dramatic reduction in atmospheric Pb over the past three decades. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. In adults, increased Pb levels are associated with increased blood pressure. Pb poisoning can cause anemia, lethargy, seizures, and death. There is no evidence to suggest that there are direct effects of Pb on the respiratory system.

Particulate Matter

PM is a complex mixture of extremely small particles and liquid droplets. PM is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles. Natural sources of particulate matter include windblown dust and ocean spray. The size of PM is directly linked to the potential for causing health problems. Particles small enough to be inhaled into the deepest parts of the lung are of great concern to public health. Major sources of PM₁₀ include crushing or grinding operations; dust stirred up by vehicles traveling on roads; wood burning stoves and fireplaces; dust from construction, landfills and agriculture; wildfires and brush/waste burning; industrial sources; windblown dust from open lands; and atmospheric chemical and photochemical reactions. Emissions of PM_{2.5} result from fuel combustion (e.g., motor vehicles, power generation and industrial facilities), residential fireplaces and wood stoves. In addition, PM_{2.5} can be formed in the atmosphere from gases such as SO₂, NO_x, and VOC.

Respirable particles (PM_{10}) can accumulate in the respiratory system and aggravate health problems such as asthma, bronchitis and other lung diseases. Children, the elderly, exercising adults, and those suffering from asthma are especially vulnerable to adverse health effects of PM. A consistent correlation between elevated ambient fine particulate matter ($PM_{2.5}$) levels and an increase in mortality rates, respiratory infections, number and severity of asthma attacks and the number of hospital admissions has been observed in different parts of the United States and various areas around the world. Studies have reported an association between long-term exposure to air pollution dominated by $PM_{2.5}$ and increased mortality, reduction in life-span, and an increased mortality from lung cancer.

Daily fluctuations in $PM_{2.5}$ concentration levels have also been related to hospital admissions for acute respiratory conditions, to school and kindergarten absences, to a decrease in respiratory function in normal children and to increased medication use in children and adults with asthma. Studies have also shown lung function growth in children is reduced with long-term exposure to PM. In addition to children, the elderly, and people with pre-existing respiratory and/or cardiovascular disease appear to be more susceptible to the effects of PM_{10} and $PM_{2.5}$.

Areas are classified under the Federal Clean Air Act and California Clean Air Act as attainment, non-attainment, or maintenance (previously non-attainment and currently attainment) for each criteria pollutant based on whether the federal and state air quality standards have been achieved. With respect to National Ambient Air Quality Standards (NAAQS), the SCAB is designated nonattainment area for ozone and PM_{2.5}, and as an attainment or unclassified area for all other pollutants. With respect to the California Ambient Air Quality Standards (CAAQS), the SCAB is designated as a nonattainment area for ozone, PM₁₀, and PM_{2.5}, and as an attainment area for all other pollutants (SCAQMD 2016).

In addition to criteria air pollutants, EPA and ARB regulate hazardous air pollutants, also known as toxic air contaminants (TAC). TAC collectively refer to a diverse group of air pollutants that are capable of causing chronic (i.e., long-duration) and acute (i.e., severe but short-term) adverse effects on human health, including carcinogenic effects. TACs can be separated into carcinogens and noncarcinogens based on the nature of the effects associated with exposure to the pollutant. For regulatory purposes, carcinogens are assumed to have no safe threshold below which health impacts would not occur. Any exposure to a carcinogen poses some risk of contracting cancer. Noncarcinogens differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

Greenhouse Gases and Climate Change Background

Certain gases in the earth's atmosphere, classified as GHGs, play a critical role in determining the earth's surface temperature. A portion of the solar radiation that enters earth's atmosphere is absorbed by the earth's surface, and a smaller portion of this radiation is reflected back toward space. Infrared radiation is absorbed by GHGs; as a result, infrared radiation released from the earth that otherwise would have escaped back into space is instead "trapped," resulting in a warming of the atmosphere. This phenomenon, known as the "greenhouse effect," is responsible for maintaining a habitable climate on Earth.

GHGs are present in the atmosphere naturally, are released by natural sources and anthropogenic sources, and are formed from secondary reactions taking place in the atmosphere. The following are GHGs that are widely accepted as the principal contributors to human-induced global climate change that are relevant to the proposed project:

- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)

Emissions of CO₂ are byproducts of fossil fuel combustion. CH₄ is the main component of natural gas and is associated with agricultural practices and landfills. N₂O is a colorless GHG that results from industrial processes, vehicle emissions, and agricultural practices.

Global warming potential (GWP) is a concept developed to compare the ability of each GHG to trap heat in the atmosphere relative to CO₂. The GWP of a GHG is based on several factors, including the

AECOM

Subject: Rancho Cienega Celes King III Pool Demolition Project March 15, 2019 Page 5

relative effectiveness of a gas to absorb infrared radiation and length of time (i.e., lifetime) that the gas remains in the atmosphere ("atmospheric lifetime"). The reference gas for GWP is CO_2 ; therefore, CO_2 has a GWP of 1. The other main GHGs that have been attributed to human activity include CH_4 , which has a GWP of 28, and N_2O , which has a GWP of 265 (IPCC 2013). For example, 1 ton of CH_4 has the same contribution to the greenhouse effect as approximately 28 tons of CO_2 . GHGs with lower emissions rates than CO_2 may still contribute to climate change, because they are more effective at absorbing outgoing infrared radiation than CO_2 (i.e., high GWP). The concept of CO_2 -equivalents (CO_2 e) is used to account for the different GWP potentials of GHGs to absorb infrared radiation.

The primary effect of rising global concentrations of atmospheric GHG is a rise in the average global temperature of approximately 0.2 degrees Celsius per decade, determined from meteorological measurements worldwide between 1990 and 2005. Climate change modeling using emission rates shows that further warming is likely to occur given the expected rise in global atmospheric GHG concentrations from innumerable sources of GHG emissions worldwide, which would induce further changes in the global climate system during the current century.² Adverse impacts from global climate change worldwide and in California include:

- Declining sea ice and mountain snowpack levels, thereby increasing sea levels and sea surface evaporation rates with a corresponding increase in atmospheric water vapor due to the atmosphere's ability to hold more water vapor at higher temperatures;³
- Rising average global sea levels primarily due to thermal expansion and the melting of glaciers, ice caps, and the Greenland and Antarctic ice sheets;⁴
- Changing weather patterns, including changes to precipitation, ocean salinity, and wind patterns, and more energetic aspects of extreme weather including droughts, heavy precipitation, heat waves, extreme cold, and the intensity of tropical cyclones;⁵
- Declining Sierra Mountains snowpack levels, which account for approximately half of the surface water storage in California, by 70 percent to as much as 90 percent over the next 100 years;⁶
- Increasing the number of days conducive to ozone formation (e.g., clear days with intense sun light) by 25 to 85 percent (depending on the future temperature scenario) in high ozone areas located in Southern California and the San Joaquin Valley by 2100;⁷ and
- Increasing the potential for erosion of California's coastlines and seawater intrusion into the Sacramento Delta and associated levee systems due to the rise in sea level.⁸

Scientific understanding of the fundamental processes responsible for global climate change has improved over the past decade. However, there remain significant scientific uncertainties. For

IPCC, 2007, Climate Change 2007 Synthesis Report, available at: https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.ht m.

USEPA, 2009, Draft Endangerment Finding, 74 Fed. Reg. 18886, 18904, available at: https://www.federalregister.gov/documents/2009/12/15/E9-29537/endangerment-and-cause-or-contribute-findings-for-greenhouse-gases-under-section-202a-of-the-clean.

³ Ibid.

⁵ Ibid.

⁶ Cal/EPA, Climate Action Team, 2006, Climate Action Team Report to Governor Schwarzenegger and the California Legislature, available at: http://www.energy.ca.gov/2010publications/CAT-1000-2010-005/CAT-1000-2010-005.PDF.

⁷ Ibid.

⁸ Ibid.

example, uncertainties exist in predictions of local effects of climate change, occurrence of extreme weather events, and effects of aerosols, changes in clouds, shifts in the intensity and distribution of precipitation, and changes in oceanic circulation. Due to the complexity of the climate system, the uncertainty surrounding the implications of climate change may never be completely eliminated. Due to these uncertainties, there continues to be significant debate as to the extent to which increased concentrations of GHGs have caused or will cause climate change, and with respect to the appropriate actions to limit and/or respond to climate change. In addition, it may not be possible to link specific development projects to future specific climate change impacts, though estimating project-specific impacts is possible.

Impacts

The following discussion summarizes the evaluation of air quality and GHGs with respect to construction and operation of the proposed project in response to City of Los Angeles CEQA guidelines.

Air Quality Impacts

(A) Would the proposed project conflict with or obstruct implementation of the applicable air quality plan?

Air quality plans describe air pollution control strategies to be implemented by a city, county, or regional air district. The primary purpose of an air quality plan is to bring an area that does not attain NAAQS and CAAQS into compliance with those standards pursuant to the requirements of the Clean Air Act and California Clean Air Act. The applicable Air Quality Management Plan (AQMP) for the project site was prepared by SCAQMD in partnership with the ARB, EPA, and the Southern California Association of Governments (SCAG).

The most recent air quality plan developed by the SCAQMD is the 2016 AQMP. The 2016 AQMP is the legally enforceable blueprint for how the region will meet and maintain state and federal air quality standards. The 2016 AQMP identifies strategies and control measures needed to achieve attainment of the 8-hour ozone standard and federal annual and 24-hour standard for $PM_{2.5}$ in the SCAB.

Consistency with the AQMP is also determined through evaluation of whether the project would exceed the estimated emissions used as the basis of the AQMP, which are based, in part, on population projections developed by the SCAG. The SCAG forecasts are based on local general plans and other related documents, such as housing elements, that are used to develop population projections and traffic projections.

Construction of the proposed project would involve the use of off-road equipment, haul trucks, and worker commute trips. Assumptions for off-road equipment emissions in State Implementation Plan were developed based on hours of activity and equipment population reported to ARB for rule compliance. The use of construction equipment in the AQMP is estimated for the region on an annual basis, and construction-related emissions are estimated as an aggregate in the AQMP. The project would not increase the assumptions for off-road equipment use in the AQMP.

The proposed project is consistent with the existing zoning (OS-1XL, Open Space) for the site. In addition, there would be no significant net increase in emissions during operations as the proposed project is intended for passive uses. Therefore, the proposed project would not substantially increase population or employment in the planning area and would not generate vehicle trips that exceed the current assumptions used to develop the City of Los Angeles General Plan, Regional Transportation Plan, and AQMP.

Therefore, it is reasonable to assume that the intensity of construction and operational emissions have been accounted for in the 2016 AQMP. The proposed project would not conflict with or obstruct implementation of the applicable air quality plan. The impact would be less than significant and no mitigation measures would be required.

(B) Would the proposed project cause a violation of any air quality standard or contribute substantially to an existing or projected air quality violation?

Construction

Construction of the proposed project would result in the temporary generation of criteria pollutant emissions from demolition and construction of project components. VOC, NO_x, and CO emissions are primarily associated with mobile equipment exhaust, including off-road construction equipment and on-road motor vehicles. Fugitive PM dust emissions are primarily associated with site preparation and grading activities and vary as a function of such parameters as soil silt content, soil moisture, wind speed, acreage of disturbance area, and miles traveled by construction vehicles on- and off-site.

Construction of the proposed project is anticipated to begin in December 2020 and would occur for approximately 12 months. The analysis assumed approximately 14,000 cubic yards of demolition debris would be exported from the project site. Demolition and construction activities would consist of a maximum of 10 truck trips per day. In addition, approximately 1,600 cubic yards of soil would be required for infill of the pool pit, resulting in approximately 160 haul truck soil import trips. Soil import would occur over approximately one month during the 12-month construction duration. It is anticipated that a total of approximately 20 construction workers would be on-site each day.

Construction-related emissions associated with typical construction activities were modeled using the California Emissions Estimator Model (CalEEMod), Version 2016.3.2. CalEEMod allows the user to enter project-specific construction information, such as types, number, and horsepower of construction equipment, and number and length of off-site motor vehicle trips. Construction-related exhaust emissions for the proposed project were estimated for construction worker commutes, haul trucks, and the use of off-road equipment. The anticipated equipment used for the demolition and construction of the proposed project is anticipated to be equipment that would already be on-site following construction activities of Phase 1 of the *Rancho Cienega Sports Complex Project*. Thus, this analysis includes the use of Tier 4 final equipment, consistent with the equipment required per Mitigation Measure AQ-1 for the *Rancho Cienega Sports Complex Project* (City of Los Angeles 2016).

The SCAQMD significance thresholds were used to assess regional and localized emissions during construction and operation of the proposed project (SCAQMD 2015). Localized emissions of criteria air pollutants and precursors were assessed in accordance with SCAQMD's local significance thresholds (LST) guidance. For projects less than five acres, the SCAQMD has developed look-up tables showing the maximum mass emissions that would not cause an exceedance of any LST. Since the proposed project site is approximately 0.4 acres, peak daily localized emissions were estimated using the look-up tables for Source Receptor Area 1. Sensitive receptors within the vicinity of the proposed project site include Dorsey High School adjacent and to the east, Ira C. Massey Child Care Center adjacent and to the north, and residences approximately 38 meters south across Rodeo Road. For projects with boundaries located closer than 25 meters to the nearest receptor, the LST guidance recommends using the LST tables for receptors at 25 meters (SCAQMD 2015). Therefore, the analysis assumes a project site of 1 acre and a receptor distance of 25 meters for the LST tables. Although SCAQMD LSTs only consider the amount of on-site emissions generated by construction activities, this analysis conservatively compares the total construction-related emissions to the LSTs.

Emissions associated with vehicle trips to and from the project site during construction would be dispersed throughout the region and would have a nominal localized impact in the project site vicinity.

As shown in Table 1, construction emissions for the proposed project would result in maximum daily emissions of approximately 1 pound of VOC, 10 pounds of NOx, 16 pounds of CO, less than 1 pound of SO_x , 4 pounds of PM_{10} and 1 pound of $PM_{2.5}$. Additional modeling assumptions and details are provided in Attachment A.

Table 1

Maximum Daily Regional Construction Emissions

VaculDecovinties	Estimated Emissions (lbs/day)					
Year/Description	voc	NO _x	СО	SO _x	PM ₁₀ ¹	PM _{2.5} ¹
2020	0.55	9.17	9.15	0.03	4.04	0.81
2021	0.66	8.66	15.41	0.04	3.54	0.69
Maximum Daily Emissions	0.66	9.17	15.41	0.04	4.04	0.81
SCAQMD Regional Thresholds	75	100	550	150	150	55
SCAQMD Localized Thresholds ^{2,3}		74	680		5	3
Exceed Thresholds?	No	No	No	No	No	No

Source: SCAQMD 2008a, 2015. Emissions estimated by AECOM in 2019.

Notes: lbs/day = pounds per day; VOC = volatile organic compounds; NOx = nitrogen oxides; CO = carbon monoxide; SOx = sulfur oxides; PM10 = particulate matter less than 10 microngs in diameter; PM2.5 = particulate matter less than 2.5 microns in diameter

- 1. PM_{10} and $PM_{2.5}$ emissions include reductions associated with compliance with SCAQMD Rule 403 Fugitive Dust.
- 2. Assumes a 1-acre project site and a 25-meter receptor distance for Source Receptor Area 1.
- 3. The SCAQMD has not developed an LST for VOC or SO_X emissions.

As shown in Table 1, construction-generated emissions of VOC, NO_X , CO, SO_X , PM_{10} , and $PM_{2.5}$ would not exceed applicable LST or daily emission thresholds established by the SCAQMD. Therefore, construction emissions would not violate an ambient air quality standard or contribute substantially to an existing violation.

Operation

Following construction, the project site would be landscaped and include a playground area. The community front lawn and playground area would be passive uses, similar to the existing uses of the Rancho Cienega Sports Complex. Therefore, operational emissions are anticipated to remain similar to existing conditions and impacts related to the violation of air quality standards would be less than significant. No mitigation measures would be required.

(C) Would the project result in cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The SCAQMD cumulative analysis focuses on whether a specific project would result in cumulatively considerable increase in emissions. By its very nature, air pollution is largely a cumulative impact. The nonattainment status of regional pollutants is a result of past and present development within the SCAB, and this regional impact is cumulative rather than being attributable to any one source. A

project's emissions may be individually limited, but cumulatively considerable when taken in combination with past, present, and future development projects.

The SCAQMD thresholds are designed to identify those projects that would result in significant levels of air pollution and to assist the region in attaining the applicable state and federal ambient air quality standards. Projects that would not exceed the thresholds of significance would not contribute a considerable amount of criteria air pollutant emissions to the region's emissions profile, and would not impede attainment and maintenance of ambient air quality standards.

As discussed above, the proposed project would result in the generation of criteria air pollutant emissions, but at levels that do not exceed any of the SCAQMD regional and localized thresholds. Therefore, impacts would be less than significant. No mitigation measures would be required.

(D) Would the project expose sensitive receptors to substantial pollutant concentrations?

Some members of the population are especially sensitive to air pollutant emissions and should be given special consideration when evaluating air quality impacts from projects. These people include children, older adults, persons with preexisting respiratory or cardiovascular illness, and athletes and others who engage in frequent exercise. Sensitive receptors within the vicinity of the proposed project include Dorsey High School adjacent and to the east of the project site, Ira C. Massey Child Care Center adjacent and to the north of the project site, and multi-family residences approximately 38 meters south of the project site.

Construction

As shown in Table 1, demolition and construction activities would result in emissions of criteria air pollutants, but at levels that would not exceed the SCAQMD regional and localized thresholds of significance. The regional thresholds of significance were designed to identify those projects that would result in significant levels of air pollution and to assist the region in attaining the applicable state and federal ambient air quality standards, which were established using health-based criteria to protect the public with a margin of safety from adverse health impacts due to exposure to air pollution. In addition, the LSTs represent the maximum emissions from a project that will not cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standards and are developed based on the ambient concentrations of that pollutant for each source receptor area. As such, the criteria air pollutant emissions associated with the proposed project would not expose sensitive receptors to substantial criteria pollutant concentrations.

The greatest potential for toxic air contaminant (TAC) emissions would be related to diesel particulate matter (diesel PM) emissions associated with heavy-duty construction equipment operations. Heavy-duty construction equipment would operate during the 12-month construction period and would cease following buildout of the proposed project. Construction emissions would occur intermittently throughout the day and would not occur as a constant plume of emissions from the project site. Additionally, construction of the proposed project would occur following the end of Phase 1 and prior to the commencement of Phase 2 of the approved *Rancho Cienega Sports Complex Project*. As discussed previously, the equipment used for the demolition and construction of the proposed project is anticipated to be equipment that would already be on-site following construction activities of Phase 1 of the *Rancho Cienega Sports Complex Project*. As such, due to the shorter construction schedule (12 months) and fewer construction activities and equipment use of the proposed project compared to *Rancho Cienega Sports Complex Project*, the health risk assessment (HRA) conducted for the *Rancho Cienega Sports Complex Project*, can be used to evaluate the impacts of construction of the proposed project to sensitive receptors.

The HRA for the *Rancho Cienega Sports Complex Project* was conducted by AECOM and prepared to evaluate the emissions of TACs during construction activities and their effects on nearby receptors, including the Ira C. Massey Child Care Center (occupied from 3PM to 6PM), Dorsey High School, and surrounding residential housing (City of Los Angeles 2016). The HRA was performed in accordance with the *Air Toxics Hot Spots Program Guidance Manual for the Preparation of Risk Assessments* developed by the Office of Environmental Health Hazard Assessment (OEHHA) for conducting HRAs in California under the Air Toxics "Hot Spots" Program, as well as methodologies from the *Health Risk Assessments for Proposed Land Use Projects* (OEHHA 2015; CAPCOA 2009). Excess lifetime cancer risks, chronic noncancer hazard index (HI), and acute noncancer HI were estimated as part of the HRA. The results of the HRA concluded that the maximum cancer risk and hazard index due to the unmitigated construction emissions would be far below the SCAQMD cancer risk thresholds of 10 in a million and hazard indices of 1.0 (City of Los Angeles 2016).

Based on the shorter construction schedule, smaller project area, and fewer equipment required for the proposed project, it can be assumed that the construction of the proposed project would also not expose sensitive receptors to substantial pollutant concentrations that would result in a health risk. The impact would be less than significant. No mitigation measures would be required.

Operation

The land uses associated with the proposed project would be recreational and would be consistent with the existing conditions, which are not typically sources of TAC emissions. Additionally, the lawn and playground area would be passive uses. Therefore, the proposed project's long-term operational activities would not generate substantial TAC emissions and would not expose sensitive receptors to substantial operational TAC concentrations. The impact would be less than significant.

(E) Would the project create objectionable odors affecting a substantial number of people?

The occurrence and severity of odor impacts depend on numerous factors, including the nature, frequency, and intensity of the source; wind speed and direction; and the presence of sensitive receptors. While offensive odors rarely cause any physical harm, they still can be very unpleasant, leading to considerable distress and often generating citizen complaints to local governments and regulatory agencies.

Potential sources that may emit odors during construction activities include exhaust from diesel construction equipment. Odors from these sources would be localized and generally confined to the immediate area surrounding the project site. The proposed project would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary in nature.

Operation of the proposed project would not add any new odor sources. The project would not have any significant odor sources, and any odors generated would be similar to odors associated with the existing land uses. As a result, the proposed project's construction and operational activities would not create objectionable odors affecting a substantial number of people. The impact would be less than significant.

Greenhouse Gas Emissions Impacts

(A) Would the project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

Heavy-duty off-road equipment, materials transport, and worker commutes during construction of the proposed project would result in exhaust-related GHG emissions. Total construction-related GHG

emissions were estimated using the same methodology to estimate criteria pollutant emissions discussed under Air Quality Impacts.

As the City of Los Angeles has not established screening thresholds for GHG emissions, the analysis uses the applicable significance thresholds developed by the SCAQMD. The SCAQMD has adopted a significance threshold of 10,000 metric tons (MT) of carbon dioxide equivalents (CO₂e) per year for industrial (stationary source) projects. The GHG CEQA Significance Threshold Stakeholder Working Group also recommended options for evaluating non-industrial projects, including thresholds for residential, commercial, and mixed use projects. These draft thresholds include a threshold of 3,500 MT CO₂e per year for residential projects, 1,400 MT CO₂e per year for commercial projects, and 3,000 MT CO₂e per year for mixed use projects (SCAQMD 2008b, 2009).

Total GHG emissions associated with construction of the proposed project would be approximately 373 MT CO₂e, with the maximum of 339 MT CO₂e occurring in 2021. SCAQMD recommends that construction emissions be amortized over 30 years, which is assumed to be the average lifetime of a project's operations, and added to the operational emissions of the project. When this total is amortized over the 30-year life of the project, annual construction emissions would be approximately 12 MT CO₂e per year. Since the proposed project recreational land uses would be most similar to a commercial land use, the proposed SCAQMD threshold of 1,400 MT CO₂e per year will be used for this analysis.

As discussed previously, the community front lawn and playground area would consist of passive uses. Therefore, GHG emissions from area sources (including landscaping equipment), mobile sources, and energy consumption associated with operations would be anticipated to be remain similar to existing conditions. Operational GHG emissions would be limited to indirect emissions associated with nominal water use for landscaping. For the purposes of the GHG analysis, water consumption was assumed to occur over the 0.4-acre site. Based on the default CalEEMod rates for water consumption for a park land use, indirect water-related GHG emissions would be approximately 3 MT CO₂e per year. As such, the amortized emissions of 15 MT CO₂e associated with construction and landscaping would be less than the proposed SCAQMD threshold of 1,400 MT CO₂e per year. Therefore, this impact would be less than significant and no mitigation measures would be required.

Would the project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHG?

In September 2006, California passed the California Global Warming Solutions Act of 2006 (Assembly Bill [AB] 32; California Health and Safety Code Division 25.5, Sections 38500, et seq.). AB 32 establishes regulatory, reporting, and market mechanisms to achieve quantifiable reductions in GHG emissions and establishes a cap on statewide GHG emissions. It requires that statewide GHG emissions be reduced to 1990 levels by 2020. In 2016, the state legislature passed Senate Bill SB 32, which established a 2030 GHG emissions reduction target of 40 percent below 1990 levels.

In 2008 and 2014, ARB approved the Scoping Plan and the first update to the Scoping Plan, respectively (ARB 2008, 2014). ARB's Scoping Plan is the state's plan to achieve the GHG reductions in California required by AB 32 and also reiterates the state's role in the long-term goal established in Executive Order S-3-05, which is to reduce GHG emissions to 80% below 1990 levels by 2050. In response to SB 32 and the companion legislation of AB 197, ARB approved the Final Proposed 2017 Scoping Plan Update: The Strategy for Achieving California's 2030 GHG Target in November 2017 (ARB 2017). The 2017 Scoping Plan draws from the previous plans to present strategies to reaching California's 2030 GHG reduction target. None of these statewide plans or policies constitutes a regulation to adopt or implement a regional or local plan for reduction or

mitigation of GHG emissions. In addition, it is assumed that any requirements formulated under the mandate of AB 32 and SB 32 would be implemented consistent with statewide policies and laws.

In May 2007, Los Angeles released "Green LA: An Action Plan to Lead the Nation in Fighting Global Warming" (Climate Action Plan) with a goal to reduce the City's GHG emissions to 35 percent below 1990 levels by the year 2030. The Climate Action Plan focuses on reducing GHG emissions by increasing the use of renewable energy sources, implementing green building policies, diverting waste from landfills, greening the Port of Los Angeles, and changing land use and transportation patterns to reduce dependence on automobiles. In April 2015, the City of Los Angeles released the City's Sustainable City pLAn, which lays out strategies and priority initiatives to reduce Los Angeles's GHG emissions by 45 percent by 2025, 60 percent by 2035, and 80 percent by 2050, all against a 1990 baseline (City of Los Angeles 2015). Neither the Green LA Climate Action Plan nor the City's Sustainable City pLAn include any specific GHG emission reduction requirements for construction activities that would be directly applicable to the proposed project.

Therefore, the proposed project would not conflict with the AB 32 Scoping Plan or Scoping Plan updates, GreenLA Climate Action Plan, or Sustainable City pLAn. As discussed above, the proposed project would not generate GHG emissions that would have a significant impact on the environment. Therefore, the proposed project would not conflict with any applicable plan, policy, or regulation for the purpose of reducing GHG emissions. This impact would be less than significant. No mitigation measures would be required.

References

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Rancho Cienega Celes King III Pool Demo

Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
City Park	0.40	Acre	0.40	17,424.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	11			Operational Year	2021
Utility Company	Los Angeles Depart	tment of Water & Power			
CO2 Intensity (lb/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Date: 3/15/2019 5:04 PM

Project Characteristics -

Land Use - No building square footage associated with park land use. Project consists of lawn and playground area.

Construction Phase - Project specific schedule: December 2019 - December 2020. Additional grading phase added to include soil import trips.

Off-road Equipment - Project specific equipment.

Off-road Equipment - Project specific equipment. Off-highway truck to account for concrete truck.

Off-road Equipment - Phase for additional truck trips associated with soil import.

Grading - Project specific information - based on approximately 1,519 cy needed as fill.

Demolition - Demolition debris calculated assuming 14,000 cy of demo debris exported from the site based on CalRecyle Debris Tool for loose concrete.

Trips and VMT - Haul trips during fill based on approx. 1,519 cy at 10 cy of material per load. Approx 20 construction workers onsite each day and max of 10 truck trips per day.

Vehicle Trips - Passive use - no new trips.

Water And Wastewater - Default water consumption.

Solid Waste - Default solid waste generation.

Construction Off-road Equipment Mitigation - Watering consistent with SCAQMD Rule 403. Tier 4F mitigation consistent with Rancho Cienega Sports Complex analysis.

Table Name	Column Name	Default Value	New Value
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Date: 3/15/2019 5:04 PM

Page 3 of 22

tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstructionPhase	NumDays	10.00	66.00
tblConstructionPhase	NumDays	2.00	198.00
tblConstructionPhase	NumDays	2.00	24.00
tblConstructionPhase	PhaseEndDate	12/15/2020	3/3/2021
tblConstructionPhase	PhaseEndDate	12/18/2020	12/6/2021
tblConstructionPhase	PhaseStartDate	12/17/2020	3/4/2021
tblGrading	AcresOfGrading	0.00	0.40
tblGrading	MaterialImported	0.00	1,519.00
tblOffRoadEquipment	OffRoadEquipmentType		Dumpers/Tenders
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Sweepers/Scrubbers
tblOffRoadEquipment	OffRoadEquipmentType		Sweepers/Scrubbers
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	1.00	0.00

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Date: 3/15/2019 5:04 PM

Page 4 of 22

tblOffRoadEquipment	UsageHours	6.00	8.00
tblTripsAndVMT	HaulingTripNumber	190.00	304.00
tblTripsAndVMT	VendorTripNumber	0.00	20.00
tblTripsAndVMT	WorkerTripNumber	8.00	40.00
tblTripsAndVMT	WorkerTripNumber	3.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	40.00
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	WD_TR	1.89	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 5 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2020	1.0180	12.6800	8.8142	0.0324	6.9996	0.3487	7.3483	1.2273	0.3231	1.5504	0.0000	3,366.956 7	3,366.956 7	0.4138	0.0000	3,377.301 8
2021	1.6118	16.8711	13.1656	0.0415	6.5005	0.5960	6.7984	1.1048	0.5496	1.3810	0.0000	4,178.162 3	4,178.162 3	0.8138	0.0000	4,198.507 3
Maximum	1.6118	16.8711	13.1656	0.0415	6.9996	0.5960	7.3483	1.2273	0.5496	1.5504	0.0000	4,178.162 3	4,178.162 3	0.8138	0.0000	4,198.507 3

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Tota	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	'day							lb/	/day		
2020	0.5554	9.1731	9.1474	0.0324	4.0038	0.0398	4.0436	0.7737	0.0385	0.8122	0.0000	3,366.956 7	3,366.956 7	0.4138	0.0000	3,377.301 8
2021	0.6626	8.6620	15.4119	0.0415	3.5047	0.0541	3.5420	0.6512	0.0532	0.6872	0.0000	4,178.162 3	4,178.162 3	0.8138	0.0000	4,198.507 3
Maximum	0.6626	9.1731	15.4119	0.0415	4.0038	0.0541	4.0436	0.7737	0.0532	0.8122	0.0000	4,178.162 3	4,178.162 3	0.8138	0.0000	4,198.507 3
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	53.68	39.65	-11.74	0.00	44.38	90.06	46.38	38.90	89.49	48.85	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 6 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	ategory lb/day lb/day															
Area	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	1 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	9.0000e- 004	0.0000	4.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000	0.0000	9.0000e- 005

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Area	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	9.0000e- 004	0.0000	4.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000	0.0000	9.0000e- 005

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Date: 3/15/2019 5:04 PM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	12/2/2020	3/3/2021	5	66	
2	Grading Soil Import	Grading	3/4/2021	4/6/2021	5	24	
3	Grading	Grading	3/4/2021	12/6/2021	5	198	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading Soil Import	Concrete/Industrial Saws	0	0.00	81	0.73
Grading Soil Import	Rubber Tired Dozers	0	0.00	247	0.40
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Grading	Concrete/Industrial Saws	0	8.00	81	0.73
Grading Soil Import	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Demolition	Dumpers/Tenders	1	8.00	16	0.38
Demolition	Excavators	1	8.00	158	0.38
Demolition	Sweepers/Scrubbers	1	8.00	64	0.46
Grading	Sweepers/Scrubbers	1	8.00	64	0.46
Demolition	Rubber Tired Dozers	0	1.00	247	0.40
Grading	Rubber Tired Dozers	0	1.00	247	0.40
Grading	Plate Compactors	1	8.00	8	0.43
Demolition	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Off-Highway Trucks	1	8.00	402	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	3	40.00	0.00	1,661.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading Soil Import	1	0.00	0.00	304.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	40.00	20.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment Water Exposed Area

CalEEMod Version: CalEEMod.2016.3.2 Page 9 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.2 Demolition - 2020 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					5.4470	0.0000	5.4470	0.8247	0.0000	0.8247			0.0000			0.0000
Off-Road	0.5884	5.2049	5.5060	8.4600e- 003		0.3215	0.3215		0.2972	0.2972		807.2351	807.2351	0.2479	 	813.4329
Total	0.5884	5.2049	5.5060	8.4600e- 003	5.4470	0.3215	5.7685	0.8247	0.2972	1.1219		807.2351	807.2351	0.2479		813.4329

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.2252	7.3301	1.7042	0.0195	1.1055	0.0235	1.1289	0.2840	0.0224	0.3064		2,116.7534	2,116.7534	0.1519		2,120.551 8
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.2044	0.1450	1.6040	4.4500e- 003	0.4471	3.7400e- 003	0.4508	0.1186	3.4400e- 003	0.1220		442.9682	442.9682	0.0140	 	443.3172
Total	0.4296	7.4751	3.3082	0.0240	1.5526	0.0272	1.5798	0.4025	0.0259	0.4284		2,559.721 6	2,559.721 6	0.1659		2,563.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.2 Demolition - 2020 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					2.4512	0.0000	2.4512	0.3711	0.0000	0.3711			0.0000			0.0000
Off-Road	0.1258	1.6980	5.8392	8.4600e- 003		0.0126	0.0126		0.0126	0.0126	0.0000	807.2351	807.2351	0.2479		813.4328
Total	0.1258	1.6980	5.8392	8.4600e- 003	2.4512	0.0126	2.4638	0.3711	0.0126	0.3838	0.0000	807.2351	807.2351	0.2479		813.4328

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.2252	7.3301	1.7042	0.0195	1.1055	0.0235	1.1289	0.2840	0.0224	0.3064		2,116.7534	2,116.7534	0.1519		2,120.551 8
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2044	0.1450	1.6040	4.4500e- 003	0.4471	3.7400e- 003	0.4508	0.1186	3.4400e- 003	0.1220		442.9682	442.9682	0.0140		443.3172
Total	0.4296	7.4751	3.3082	0.0240	1.5526	0.0272	1.5798	0.4025	0.0259	0.4284		2,559.721 6	2,559.721 6	0.1659		2,563.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021
<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					5.4470	0.0000	5.4470	0.8247	0.0000	0.8247			0.0000			0.0000
	0.5312	4.6752	5.4736	8.4600e- 003		0.2732	0.2732		0.2528	0.2528		807.3087	807.3087	0.2479		813.5070
Total	0.5312	4.6752	5.4736	8.4600e- 003	5.4470	0.2732	5.7202	0.8247	0.2528	1.0775		807.3087	807.3087	0.2479		813.5070

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.2149	6.8335	1.6785	0.0193	0.6064	0.0210	0.6275	0.1615	0.0201	0.1816		2,093.320 8	2,093.320 8	0.1497		2,097.062 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1907	0.1305	1.4730	4.3000e- 003	0.4471	3.6100e- 003	0.4507	0.1186	3.3300e- 003	0.1219		428.9004	428.9004	0.0126		429.2160
Total	0.4056	6.9640	3.1515	0.0236	1.0535	0.0246	1.0782	0.2800	0.0235	0.3035		2,522.221 2	2,522.221 2	0.1623		2,526.278 3

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	11 11 11				2.4512	0.0000	2.4512	0.3711	0.0000	0.3711			0.0000			0.0000
Off-Road	0.1258	1.6980	5.8392	8.4600e- 003		0.0126	0.0126		0.0126	0.0126	0.0000	807.3087	807.3087	0.2479	 	813.5070
Total	0.1258	1.6980	5.8392	8.4600e- 003	2.4512	0.0126	2.4638	0.3711	0.0126	0.3838	0.0000	807.3087	807.3087	0.2479		813.5070

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.2149	6.8335	1.6785	0.0193	0.6064	0.0210	0.6275	0.1615	0.0201	0.1816		2,093.320 8	2,093.320 8	0.1497		2,097.062 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1907	0.1305	1.4730	4.3000e- 003	0.4471	3.6100e- 003	0.4507	0.1186	3.3300e- 003	0.1219		428.9004	428.9004	0.0126		429.2160
Total	0.4056	6.9640	3.1515	0.0236	1.0535	0.0246	1.0782	0.2800	0.0235	0.3035		2,522.221 2	2,522.221 2	0.1623		2,526.278 3

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.3 Grading Soil Import - 2021 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					0.0248	0.0000	0.0248	2.9900e- 003	0.0000	2.9900e- 003			0.0000			0.0000
Off-Road	0.1873	1.8958	2.2602	3.1100e- 003	 	0.1118	0.1118		0.1028	0.1028		300.9001	300.9001	0.0973		303.3330
Total	0.1873	1.8958	2.2602	3.1100e- 003	0.0248	0.1118	0.1366	2.9900e- 003	0.1028	0.1058		300.9001	300.9001	0.0973		303.3330

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.1082	3.4394	0.8448	9.7100e- 003	0.2215	0.0106	0.2321	0.0607	0.0101	0.0708		1,053.591 9	1,053.591 9	0.0753		1,055.475 1
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.1082	3.4394	0.8448	9.7100e- 003	0.2215	0.0106	0.2321	0.0607	0.0101	0.0708	-	1,053.591 9	1,053.591 9	0.0753		1,055.475 1

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.3 Grading Soil Import - 2021 Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					0.0112	0.0000	0.0112	1.3500e- 003	0.0000	1.3500e- 003			0.0000			0.0000
Off-Road	0.0380	0.1646	2.3421	3.1100e- 003		5.0600e- 003	5.0600e- 003	 	5.0600e- 003	5.0600e- 003	0.0000	300.9001	300.9001	0.0973	i i i	303.3330
Total	0.0380	0.1646	2.3421	3.1100e- 003	0.0112	5.0600e- 003	0.0162	1.3500e- 003	5.0600e- 003	6.4100e- 003	0.0000	300.9001	300.9001	0.0973		303.3330

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.1082	3.4394	0.8448	9.7100e- 003	0.2215	0.0106	0.2321	0.0607	0.0101	0.0708		1,053.591 9	1,053.591 9	0.0753		1,055.475 1
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.1082	3.4394	0.8448	9.7100e- 003	0.2215	0.0106	0.2321	0.0607	0.0101	0.0708		1,053.591 9	1,053.591 9	0.0753		1,055.475 1

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.4 Grading - 2021
Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	1.0618	9.4676	8.0261	0.0193		0.4659	0.4659		0.4294	0.4294		1,860.078 9	1,860.078 9	0.5940		1,874.929 3
Total	1.0618	9.4676	8.0261	0.0193	0.0000	0.4659	0.4659	0.0000	0.4294	0.4294		1,860.078 9	1,860.078 9	0.5940		1,874.929 3

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0638	1.9378	0.5615	5.0000e- 003	0.1280	4.1000e- 003	0.1321	0.0369	3.9200e- 003	0.0408		534.6911	534.6911	0.0345		535.5540
Worker	0.1907	0.1305	1.4730	4.3000e- 003	0.4471	3.6100e- 003	0.4507	0.1186	3.3300e- 003	0.1219		428.9004	428.9004	0.0126		429.2160
Total	0.2546	2.0682	2.0346	9.3000e- 003	0.5752	7.7100e- 003	0.5829	0.1554	7.2500e- 003	0.1627		963.5915	963.5915	0.0471		964.7700

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

3.4 Grading - 2021

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.2619	2.2878	10.1905	0.0193	 	0.0308	0.0308		0.0308	0.0308	0.0000	1,860.078 9	1,860.078 9	0.5940	; ! ! !	1,874.929 3
Total	0.2619	2.2878	10.1905	0.0193	0.0000	0.0308	0.0308	0.0000	0.0308	0.0308	0.0000	1,860.078 9	1,860.078 9	0.5940		1,874.929 3

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0638	1.9378	0.5615	5.0000e- 003	0.1280	4.1000e- 003	0.1321	0.0369	3.9200e- 003	0.0408		534.6911	534.6911	0.0345		535.5540
Worker	0.1907	0.1305	1.4730	4.3000e- 003	0.4471	3.6100e- 003	0.4507	0.1186	3.3300e- 003	0.1219		428.9004	428.9004	0.0126		429.2160
Total	0.2546	2.0682	2.0346	9.3000e- 003	0.5752	7.7100e- 003	0.5829	0.1554	7.2500e- 003	0.1627		963.5915	963.5915	0.0471		964.7700

4.0 Operational Detail - Mobile

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	day		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	day		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day									lb/day					
Mitigated	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000	1	9.0000e- 005
Unmitigated	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000	 	0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000	i i	9.0000e- 005

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.0000 i											lb/d	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Dan divista	9.0000e- 004					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0000	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005
Total	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 22 Date: 3/15/2019 5:04 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
I 5 ' '	9.0000e- 004		1 1			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0000	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005
Total	9.0000e- 004	0.0000	4.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000		9.0000e- 005	9.0000e- 005	0.0000		9.0000e- 005

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Winter

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						

11.0 Vegetation

Equipment Type

Number

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Rancho Cienega Celes King III Pool Demo

Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
City Park	0.40	Acre	0.40	17,424.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	11			Operational Year	2021
Utility Company	Los Angeles Depart	tment of Water & Power			
CO2 Intensity (lb/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Date: 3/15/2019 4:50 PM

Project Characteristics -

Land Use - No building square footage associated with park land use. Project consists of lawn and playground area.

Construction Phase - Project specific schedule: December 2019 - December 2020. Additional grading phase added to include soil import trips.

Off-road Equipment - Project specific equipment.

Off-road Equipment - Project specific equipment. Off-highway truck to account for concrete truck.

Off-road Equipment - Phase for additional truck trips associated with soil import.

Grading - Project specific information - based on approximately 1,519 cy needed as fill.

Demolition - Demolition debris calculated assuming 14,000 cy of demo debris exported from the site based on CalRecyle Debris Tool for loose concrete.

Trips and VMT - Haul trips during fill based on approx. 1,519 cy at 10 cy of material per load. Approx 20 construction workers onsite each day and max of 10 truck trips per day.

Vehicle Trips - Passive use - no new trips.

Water And Wastewater - Default water consumption.

Solid Waste - Default solid waste generation.

Construction Off-road Equipment Mitigation - Watering consistent with SCAQMD Rule 403. Tier 4F mitigation consistent with Rancho Cienega Sports Complex analysis.

Table Name	Column Name	Default Value	New Value
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final

6.3.2 Page 3 of 27 D

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Date: 3/15/2019 4:50 PM

tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstructionPhase	NumDays	10.00	66.00
tblConstructionPhase	NumDays	2.00	198.00
tblConstructionPhase	NumDays	2.00	24.00
tblConstructionPhase	PhaseEndDate	12/15/2020	3/3/2021
tblConstructionPhase	PhaseEndDate	12/18/2020	12/6/2021
tblConstructionPhase	PhaseStartDate	12/17/2020	3/4/2021
tblGrading	AcresOfGrading	0.00	0.40
tblGrading	MaterialImported	0.00	1,519.00
tblOffRoadEquipment	OffRoadEquipmentType		Dumpers/Tenders
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Sweepers/Scrubbers
tblOffRoadEquipment	OffRoadEquipmentType		Sweepers/Scrubbers
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	1.00	0.00

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Date: 3/15/2019 4:50 PM

Page 4 of 27

tblOffRoadEquipment	UsageHours	6.00	8.00
tblTripsAndVMT	HaulingTripNumber	190.00	304.00
tblTripsAndVMT	VendorTripNumber	0.00	20.00
tblTripsAndVMT	WorkerTripNumber	8.00	40.00
tblTripsAndVMT	WorkerTripNumber	3.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	40.00
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	WD_TR	1.89	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 5 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

2.1 Overall Construction <u>Unmitigated Construction</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	√yr		
2020	0.0110	0.1411	0.0968	3.6000e- 004	0.0767	3.8300e- 003	0.0805	0.0134	3.5500e- 003	0.0170	0.0000	33.8872	33.8872	4.1000e- 003	0.0000	33.9897
2021	0.1520	1.4699	1.2237	3.7200e- 003	0.2014	0.0549	0.2562	0.0401	0.0507	0.0907	0.0000	336.9067	336.9067	0.0675	0.0000	338.5940
Maximum	0.1520	1.4699	1.2237	3.7200e- 003	0.2014	0.0549	0.2562	0.0401	0.0507	0.0907	0.0000	336.9067	336.9067	0.0675	0.0000	338.5940

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr						0.0000 336.9065 336.9065 0.0675 0.0000 33				
2020	5.8600e- 003	0.1025	0.1005	3.6000e- 004	0.0437	4.4000e- 004	0.0441	8.4300e- 003	4.2000e- 004	8.8500e- 003	0.0000	33.8872	33.8872		0.0000	33.9897
2021	0.0621	0.6728	1.4470	3.7200e- 003	0.1353	4.8100e- 003	0.1401	0.0301	4.7300e- 003	0.0348	0.0000	336.9065	336.9065	0.0675	0.0000	338.5938
Maximum	0.0621	0.6728	1.4470	3.7200e- 003	0.1353	4.8100e- 003	0.1401	0.0301	4.7300e- 003	0.0348	0.0000	336.9065	336.9065	0.0675	0.0000	338.5938
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	58.30	51.87	-17.19	0.00	35.62	91.06	45.29	28.01	90.50	59.47	0.00	0.00	0.00	0.00	0.00	0.00

Page 6 of 27

Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	12-2-2020	3-1-2021	0.4162	0.3012
2	3-2-2021	6-1-2021	0.6697	0.3275
3	6-2-2021	9-1-2021	0.6048	0.2808
4	9-2-2021	9-30-2021	0.1907	0.0885
		Highest	0.6697	0.3275

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste	r,					0.0000	0.0000		0.0000	0.0000	6.0900e- 003	0.0000	6.0900e- 003	3.6000e- 004	0.0000	0.0151
Water	r,					0.0000	0.0000		0.0000	0.0000	0.0000	2.9491	2.9491	7.0000e- 005	1.0000e- 005	2.9551
Total	1.6000e- 004	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.0900e- 003	2.9491	2.9552	4.3000e- 004	1.0000e- 005	2.9702

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	MT/yr										
Area	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste			1 1 1			0.0000	0.0000		0.0000	0.0000	6.0900e- 003	0.0000	6.0900e- 003	3.6000e- 004	0.0000	0.0151
Water			1 1			0.0000	0.0000		0.0000	0.0000	0.0000	2.9491	2.9491	7.0000e- 005	1.0000e- 005	2.9551
Total	1.6000e- 004	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.0900e- 003	2.9491	2.9552	4.3000e- 004	1.0000e- 005	2.9702

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	12/2/2020	3/3/2021	5	66	
2	Grading Soil Import	Grading	3/4/2021	4/6/2021	5	24	
3	Grading	Grading	3/4/2021	12/6/2021	5	198	

CalEEMod Version: CalEEMod.2016.3.2 Page 8 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading Soil Import	Concrete/Industrial Saws	0	0.00	81	0.73
Grading Soil Import	Rubber Tired Dozers	0	0.00	247	0.40
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Grading	Concrete/Industrial Saws	0	8.00	81	0.73
Grading Soil Import	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Demolition	Dumpers/Tenders	1	8.00	16	0.38
Demolition	Excavators	1	8.00	158	0.38
Demolition	Sweepers/Scrubbers	1	8.00	64	0.46
Grading	Sweepers/Scrubbers	1	8.00	64	0.46
Demolition	Rubber Tired Dozers	0	1.00	247	0.40
Grading	Rubber Tired Dozers	0	1.00	247	0.40
Grading	Plate Compactors	1	8.00	8	0.43
Demolition	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Off-Highway Trucks	1	8.00	402	0.38

Trips and VMT

Page 9 of 27

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

Date: 3/15/2019 4:50 PM

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	3	40.00	0.00	1,661.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading Soil Import	1	0.00	0.00	304.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	40.00	20.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment Water Exposed Area

3.2 Demolition - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust			i i i		0.0599	0.0000	0.0599	9.0700e- 003	0.0000	9.0700e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.4700e- 003	0.0573	0.0606	9.0000e- 005		3.5400e- 003	3.5400e- 003	i i	3.2700e- 003	3.2700e- 003	0.0000	8.0554	8.0554	2.4700e- 003	0.0000	8.1173
Total	6.4700e- 003	0.0573	0.0606	9.0000e- 005	0.0599	3.5400e- 003	0.0635	9.0700e- 003	3.2700e- 003	0.0123	0.0000	8.0554	8.0554	2.4700e- 003	0.0000	8.1173

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.2 Demolition - 2020
Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton				MT	/yr						
Hauling	2.4400e- 003	0.0822	0.0181	2.2000e- 004	0.0119	2.6000e- 004	0.0122	3.0600e- 003	2.4000e- 004	3.3100e- 003	0.0000	21.3378	21.3378	1.4900e- 003	0.0000	21.3750
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0300e- 003	1.6400e- 003	0.0181	5.0000e- 005	4.8200e- 003	4.0000e- 005	4.8600e- 003	1.2800e- 003	4.0000e- 005	1.3200e- 003	0.0000	4.4939	4.4939	1.4000e- 004	0.0000	4.4975
Total	4.4700e- 003	0.0839	0.0362	2.7000e- 004	0.0167	3.0000e- 004	0.0170	4.3400e- 003	2.8000e- 004	4.6300e- 003	0.0000	25.8318	25.8318	1.6300e- 003	0.0000	25.8725

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	1 11 11				0.0270	0.0000	0.0270	4.0800e- 003	0.0000	4.0800e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oil Road	1.3800e- 003	0.0187	0.0642	9.0000e- 005		1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	8.0554	8.0554	2.4700e- 003	0.0000	8.1173
Total	1.3800e- 003	0.0187	0.0642	9.0000e- 005	0.0270	1.4000e- 004	0.0271	4.0800e- 003	1.4000e- 004	4.2200e- 003	0.0000	8.0554	8.0554	2.4700e- 003	0.0000	8.1173

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.2 Demolition - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	2.4400e- 003	0.0822	0.0181	2.2000e- 004	0.0119	2.6000e- 004	0.0122	3.0600e- 003	2.4000e- 004	3.3100e- 003	0.0000	21.3378	21.3378	1.4900e- 003	0.0000	21.3750
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0300e- 003	1.6400e- 003	0.0181	5.0000e- 005	4.8200e- 003	4.0000e- 005	4.8600e- 003	1.2800e- 003	4.0000e- 005	1.3200e- 003	0.0000	4.4939	4.4939	1.4000e- 004	0.0000	4.4975
Total	4.4700e- 003	0.0839	0.0362	2.7000e- 004	0.0167	3.0000e- 004	0.0170	4.3400e- 003	2.8000e- 004	4.6300e- 003	0.0000	25.8318	25.8318	1.6300e- 003	0.0000	25.8725

3.2 Demolition - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.1198	0.0000	0.1198	0.0181	0.0000	0.0181	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0117	0.1029	0.1204	1.9000e- 004		6.0100e- 003	6.0100e- 003		5.5600e- 003	5.5600e- 003	0.0000	16.1123	16.1123	4.9500e- 003	0.0000	16.2360
Total	0.0117	0.1029	0.1204	1.9000e- 004	0.1198	6.0100e- 003	0.1258	0.0181	5.5600e- 003	0.0237	0.0000	16.1123	16.1123	4.9500e- 003	0.0000	16.2360

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	4.6600e- 003	0.1533	0.0357	4.3000e- 004	0.0131	4.6000e- 004	0.0136	3.4900e- 003	4.4000e- 004	3.9300e- 003	0.0000	42.2058	42.2058	2.9300e- 003	0.0000	42.2790
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.7900e- 003	2.9500e- 003	0.0333	1.0000e- 004	9.6400e- 003	8.0000e- 005	9.7200e- 003	2.5600e- 003	7.0000e- 005	2.6300e- 003	0.0000	8.7025	8.7025	2.6000e- 004	0.0000	8.7089
Total	8.4500e- 003	0.1562	0.0690	5.3000e- 004	0.0227	5.4000e- 004	0.0233	6.0500e- 003	5.1000e- 004	6.5600e- 003	0.0000	50.9083	50.9083	3.1900e- 003	0.0000	50.9879

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	11 11 11		1 1 1		0.0539	0.0000	0.0539	8.1600e- 003	0.0000	8.1600e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.7700e- 003	0.0374	0.1285	1.9000e- 004		2.8000e- 004	2.8000e- 004		2.8000e- 004	2.8000e- 004	0.0000	16.1123	16.1123	4.9500e- 003	0.0000	16.2360
Total	2.7700e- 003	0.0374	0.1285	1.9000e- 004	0.0539	2.8000e- 004	0.0542	8.1600e- 003	2.8000e- 004	8.4400e- 003	0.0000	16.1123	16.1123	4.9500e- 003	0.0000	16.2360

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	4.6600e- 003	0.1533	0.0357	4.3000e- 004	0.0131	4.6000e- 004	0.0136	3.4900e- 003	4.4000e- 004	3.9300e- 003	0.0000	42.2058	42.2058	2.9300e- 003	0.0000	42.2790
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.7900e- 003	2.9500e- 003	0.0333	1.0000e- 004	9.6400e- 003	8.0000e- 005	9.7200e- 003	2.5600e- 003	7.0000e- 005	2.6300e- 003	0.0000	8.7025	8.7025	2.6000e- 004	0.0000	8.7089
Total	8.4500e- 003	0.1562	0.0690	5.3000e- 004	0.0227	5.4000e- 004	0.0233	6.0500e- 003	5.1000e- 004	6.5600e- 003	0.0000	50.9083	50.9083	3.1900e- 003	0.0000	50.9879

3.3 Grading Soil Import - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	11 11 11				3.0000e- 004	0.0000	3.0000e- 004	4.0000e- 005	0.0000	4.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.2500e- 003	0.0228	0.0271	4.0000e- 005		1.3400e- 003	1.3400e- 003		1.2300e- 003	1.2300e- 003	0.0000	3.2757	3.2757	1.0600e- 003	0.0000	3.3022
Total	2.2500e- 003	0.0228	0.0271	4.0000e- 005	3.0000e- 004	1.3400e- 003	1.6400e- 003	4.0000e- 005	1.2300e- 003	1.2700e- 003	0.0000	3.2757	3.2757	1.0600e- 003	0.0000	3.3022

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.3 Grading Soil Import - 2021 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	1.2800e- 003	0.0421	9.8100e- 003	1.2000e- 004	2.6100e- 003	1.3000e- 004	2.7400e- 003	7.2000e- 004	1.2000e- 004	8.4000e- 004	0.0000	11.5869	11.5869	8.0000e- 004	0.0000	11.6070
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.2800e- 003	0.0421	9.8100e- 003	1.2000e- 004	2.6100e- 003	1.3000e- 004	2.7400e- 003	7.2000e- 004	1.2000e- 004	8.4000e- 004	0.0000	11.5869	11.5869	8.0000e- 004	0.0000	11.6070

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					1.3000e- 004	0.0000	1.3000e- 004	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.6000e- 004	1.9700e- 003	0.0281	4.0000e- 005		6.0000e- 005	6.0000e- 005	1 1 1	6.0000e- 005	6.0000e- 005	0.0000	3.2757	3.2757	1.0600e- 003	0.0000	3.3021
Total	4.6000e- 004	1.9700e- 003	0.0281	4.0000e- 005	1.3000e- 004	6.0000e- 005	1.9000e- 004	2.0000e- 005	6.0000e- 005	8.0000e- 005	0.0000	3.2757	3.2757	1.0600e- 003	0.0000	3.3021

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.3 Grading Soil Import - 2021 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	1.2800e- 003	0.0421	9.8100e- 003	1.2000e- 004	2.6100e- 003	1.3000e- 004	2.7400e- 003	7.2000e- 004	1.2000e- 004	8.4000e- 004	0.0000	11.5869	11.5869	8.0000e- 004	0.0000	11.6070
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.2800e- 003	0.0421	9.8100e- 003	1.2000e- 004	2.6100e- 003	1.3000e- 004	2.7400e- 003	7.2000e- 004	1.2000e- 004	8.4000e- 004	0.0000	11.5869	11.5869	8.0000e- 004	0.0000	11.6070

3.4 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1051	0.9373	0.7946	1.9100e- 003		0.0461	0.0461		0.0425	0.0425	0.0000	167.0561	167.0561	0.0534	0.0000	168.3898
Total	0.1051	0.9373	0.7946	1.9100e- 003	0.0000	0.0461	0.0461	0.0000	0.0425	0.0425	0.0000	167.0561	167.0561	0.0534	0.0000	168.3898

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.4 Grading - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr MT/yr												/yr			
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	6.1500e- 003	0.1954	0.0530	5.0000e- 004	0.0125	4.0000e- 004	0.0129	3.6000e- 003	3.8000e- 004	3.9800e- 003	0.0000	48.8063	48.8063	2.9900e- 003	0.0000	48.8812
Worker	0.0170	0.0133	0.1498	4.3000e- 004	0.0434	3.6000e- 004	0.0438	0.0115	3.3000e- 004	0.0119	0.0000	39.1611	39.1611	1.1500e- 003	0.0000	39.1899
Total	0.0232	0.2087	0.2027	9.3000e- 004	0.0559	7.6000e- 004	0.0566	0.0151	7.1000e- 004	0.0158	0.0000	87.9674	87.9674	4.1400e- 003	0.0000	88.0711

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	ii ii ii				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0259	0.2265	1.0089	1.9100e- 003		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	167.0559	167.0559	0.0534	0.0000	168.3896
Total	0.0259	0.2265	1.0089	1.9100e- 003	0.0000	3.0500e- 003	3.0500e- 003	0.0000	3.0500e- 003	3.0500e- 003	0.0000	167.0559	167.0559	0.0534	0.0000	168.3896

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

3.4 Grading - 2021

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	6.1500e- 003	0.1954	0.0530	5.0000e- 004	0.0125	4.0000e- 004	0.0129	3.6000e- 003	3.8000e- 004	3.9800e- 003	0.0000	48.8063	48.8063	2.9900e- 003	0.0000	48.8812
Worker	0.0170	0.0133	0.1498	4.3000e- 004	0.0434	3.6000e- 004	0.0438	0.0115	3.3000e- 004	0.0119	0.0000	39.1611	39.1611	1.1500e- 003	0.0000	39.1899
Total	0.0232	0.2087	0.2027	9.3000e- 004	0.0559	7.6000e- 004	0.0566	0.0151	7.1000e- 004	0.0158	0.0000	87.9674	87.9674	4.1400e- 003	0.0000	88.0711

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН
City Park	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated	1					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	/yr	
City Park		0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Mitigated	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005
Unmitigated	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.6000e- 004		i	 		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	0.0000	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005
Total	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	7/yr		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.6000e- 004		1 1 1			0.0000	0.0000	1 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	0.0000	0.0000	1.0000e- 005	0.0000		0.0000	0.0000	1 	0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005
Total	1.6000e- 004	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	0.0000	1.0000e- 005

7.0 Water Detail

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		МТ	√yr	
	2.0101	7.0000e- 005	1.0000e- 005	2.9551
Ommigatou	2.9491	7.0000e- 005	1.0000e- 005	2.9551

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
City Park	0 / 0.476593	2.9491	7.0000e- 005	1.0000e- 005	2.9551
Total		2.9491	7.0000e- 005	1.0000e- 005	2.9551

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 27 Date: 3/15/2019 4:50 PM

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
City Park	0 / 0.476593	2.9491	7.0000e- 005	1.0000e- 005	2.9551
Total		2.9491	7.0000e- 005	1.0000e- 005	2.9551

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	-/yr	
gatea	6.0900e- 003	3.6000e- 004	0.0000	0.0151
Unmitigated	6.0900e- 003	3.6000e- 004	0.0000	0.0151

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
City Park	0.03	6.0900e- 003	3.6000e- 004	0.0000	0.0151
Total		6.0900e- 003	3.6000e- 004	0.0000	0.0151

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
City Park	0.03	6.0900e- 003	3.6000e- 004	0.0000	0.0151
Total		6.0900e- 003	3.6000e- 004	0.0000	0.0151

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

Rancho Cienega Celes King III Pool Demo - Los Angeles-South Coast County, Annual

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

APPENDIX C Cultural Resources Assessment

AECOM 401 West A Street Suite 1200 San Diego, CA 92101 www.aecom.com 619.610.7600 tel 619.610.7601 fax

Memorandum

То	James R. Tebbetts, Environmental Specialist II, Department of Public Works, Bureau of Engineering 1				
CC	Ohaji K. Abdallah, Architectural Associate II/Project Manager, Department of Public Works, Bureau of Engineering				
Subject	Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project (Project No. 60575000)				
From	Trina Meiser, Senior Historic Preservation Planner Marc Beherec, Senior Archaeologist				
Date	June 15, 2018				

Introduction

The City of Los Angeles (City) proposes to demolish the Celes King III Indoor Pool and convert the site into a community front lawn and playground area (project). The Department of Public Works, Bureau of Engineering (LABOE) is the lead agency. Under the separate Initial Study/Mitigated Negative Declaration (IS/MND) for Rancho Cienega Sports Complex Project prepared by AECOM, the City of Los Angeles is constructing a new sports complex on the 30-acre park property. Under that IS/MND dated March 2016, the Celes King III Pool was to remain in place. Now, the City proposes demolishing the existing Celes King III Indoor Pool. The facility was constructed in 1963, is aging, and presents substantial maintenance challenges. In addition, the pool no longer meets the standards for competition pools. The City proposes to demolish the building, and grade and landscape the building site. Building on previous studies for the Rancho Cienega Sports Complex Project, this report documents the cultural resources assessment of the project, specifically new impacts of the proposed demolition of the Celes King III Pool. This analysis was conducted by AECOM cultural resources staff who meet the Secretary of the Interior's Professional Qualification Standards (36 Code of Federal Regulations [C.F.R.] Part 61) for archaeology, history and architectural history, in compliance with the guidelines of the California Environmental Quality Act (CEQA).

Project Location

The project site is located in the southeast quadrant of the Rancho Cienega Sports Complex at 5001 Rodeo Road in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. Generally, the Rancho Cienega Sports Complex is bounded by the Los Angeles County Metropolitan Transportation Authority (Metro) Expo Line light rail transit system to the north (along Exposition Boulevard), Dorsey High School to the east, residential land uses to the south across Rodeo Road, and commercial uses to the west. The project site is bounded by a paved surface parking lot to the west, a tennis shop approved for demolition to the north, tennis courts to the east, and Rodeo Road to the south. Figure 1 shows the regional location of the project site. Figure 2 shows the project site within the Rancho Cienega Sports Complex.

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 2

Project Description

The proposed project would conduct required hazardous materials abatement, drain water from the existing Celes King III Pool, and demolish the Celes King III Pool building. Following demolition, construction activities would include infill of the pool pit, rough grading of the site, utilities installation, landscaping and hardscaping, and installation of playground and shade structures.

Demolition and construction activities would last approximately 12 months from December 2020 to December 2021. Conducting the required hazardous materials abatement, draining water from the existing Celes King III Pool, and demolishing the Celes King III Pool building would last approximately 4 months. Approximately 14,000 cubic yards of demolition debris would be exported from the project site. Infill of the pool pit would last approximately 2 months, requiring approximately 1,600 cubic yards of soil to be imported for backfill. Rough grading of the site, utility installations, landscaping and hardscaping, and installation of playground and shade structures would last approximately 6 months. Demolition and construction activities would require an average of 10 truck roundtrips per day, with a peak of 18 daily truck roundtrips occurring during one month for the infill of the pool pit. A total of approximately 20 construction workers would be on-site each day. Demolition and hazardous materials abatement would require approximately four types of equipment, consisting of a demolition excavator, articulating dump truck, street sweeper, and 20 yard roll off bins. Construction activities would require approximately four types of equipment, consisting of a compactor, several 20 yard roll off bins, street sweepers, and several backhoes/skip loaders, as well as concrete trucks as necessary. It is not anticipated that any trees be removed as part of the proposed project. Following construction, the project site would operate similarly to existing conditions, and the community front lawn and playground area would have passive uses.

The existing Rancho Cienega Sports Complex is currently developed as a sports complex. The existing complex contains a variety of facilities, including a gymnasium, basketball courts, baseball diamond, child play area, community room, football field, handball courts, picnic tables, soccer field, skate park, and tennis courts. The Rancho Cienega Sports Complex has been approved for construction and demolition activities as part of the recently approved Rancho Cienega Sports Complex Project. Phase 1 of the Rancho Cienega Sports Complex Project would include demolition and construction of the indoor gymnasium to the northwest of the project site, demolition of the existing restroom facilities and construction of a new indoor pool, bathhouse facility, and multiuse building to the northwest of the project site, rehabilitation of the tennis shop to the north of the project site, construction of a new stadium overlook and concession stand to the northwest of the project site, and improvements to the primary parking lot along Rodeo Road directly adjacent to the project site on the west. Phase 2 of the Rancho Cienega Sports Complex Project would include demolition of parking lots, outdated electrical and plumbing infrastructure, asphalt maintenance driveways and concrete sidewalks, and construction of a driveway, off street parking, park infrastructure (including landscaping and furniture), a tennis block with bleachers and a shade structure, bleachers and a shade structure for the baseball field, and a stadium block that includes a press box, concession stand, elevated bleachers, and restrooms. Construction of the proposed project would occur following the end of Phase 1 and prior to the commencement of Phase 2 of the approved Rancho Cienega Sports Complex Project.

Area of Potential Effects

The previous cultural resource study for the *Rancho Cienega Sports Complex Project* (AECOM 2015) investigated an Area of Potential Effects (APE) that encompassed the entire Rancho Cienega Park, including the current project area. Within the previous APE, one historical resource (as defined in California Code of Regulations Section 15064.5) was identified, the Celes King III Pool (Plates 1 and 2). Because no other historical resources were identified within the vicinity of the Celes King III Pool,

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 3

it is unlikely that the project will result in any indirect visual, atmospheric, and audible effects to other historical resources. Therefore, the APE for this project is limited to the project footprint, including all areas of ground disturbance. The vertical extent of the APE accounts for proposed grading and excavation activities. Figure 3 shows the APE.

Plate 1. Celes King III Pool, exterior.

Plate 2. Celes King III Pool, interior.

Identification of Historical Resources

Based on the findings of the previous cultural resource study for the *Rancho Cienega Sports Complex Project* (AECOM 2015), which included a cultural resources records search at the South Central Coastal Information Center, Native American contact program and Sacred Land files search, additional archival research, pedestrian survey, and paleontological records search, the APE contains one historical resource and potential areas of archaeological and paleontological sensitivity. The Celes King III Indoor Pool was found eligible under Criterion 3 of the California Register of Historical Resources for its distinctive modern design for a civic building in Los Angeles, and is considered a historical resource as defined in California Code of Regulations Section 15064.5. As the project would

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 4

be constructed in an area with known prehistoric and historic archaeological and paleontological sensitivity, prehistoric and/or historic archaeological resources and paleontological resources may be present within the APE. Such resources may lie beneath the surface obscured by existing pavement or vegetation.

Assembly Bill (AB) 52 Consultation

AB 52 modified CEQA to directly address tribal concerns from the beginning of the planning process. AB 52 established a new category of resources in the California Environmental Quality Act called tribal cultural resources (TCRs). TCRs are resources which are "Sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe" that are also eligible for listing on the California Register of Historical Resources (CRHR) or a local register, or are determined by a lead agency, in consultation with California Native American tribes, to be significant. AB 52 mandates direct government-to-government consultation with interested tribes in order to identify and protect TCRs.

On behalf of the LABOE and in support of its responsibilities under AB 52, AECOM conducted a Native American contact program to inform interested parties of the project and to address any concerns regarding TCRs or other resources that might be affected by the project. The program involved contacting Native American representatives identified by the Native American Heritage Commission (NAHC) to solicit comments and concerns regarding the project.

A letter was prepared and mailed to the NAHC on May 21, 2018. The letters requested that a Sacred Lands File check be conducted for the project and that contact information be provided for Native American groups or individuals that may have concerns about cultural resources in the project area. The NAHC responded in a letter sent via email on May 30, 2018. The letter indicated that a Sacred Lands File search had been conducted with negative results. The letter also included an attached list of Native American contacts whom it indicated may have information about Native American cultural resources within the project area.

Letters were mailed on June 6, 2018, to the six parties indicated on the NAHC contact list:

- Chairperson Anthony Morales of the Gabrielino/Tongva San Gabriel Band of Mission Indians,
- Chairperson Andrew Salas of the Gabrielino Band of Mission Indians Kizh Nation,
- Charles Alvarez of the Gabrielino-Tongva Tribe,
- Chairperson Robert F. Dorame of the Gabrielino Tongva Indians of California Tribal Council,
- Chairperson Sandonne Goad of the Gabrielino/Tongva Nation, and
- Chairperson Donna Yocum of the San Fernando Band of Mission Indians.

Maps depicting the APE and response forms were attached to each letter. Follow-up phone calls were made to each of these parties on July 18, 2018. Documents pertaining to the Native American contact program are attached as Appendix B.

Two tribes responded to the letter, and an additional two tribes commented in the course of follow-up calls.

- Admin Specialist Brandy Salas of the Gabrieleno Band of Mission Indians Kizh Nation responded on behalf of Chairperson Andrew Salas in an email on June 13, 2018. Ms. Salas requested direct government-to-government consultation.
- Chairperson Robert F. Dorame called in response to the letter on June 14, 2018. Mr. Dorame stated that the project area is known to his tribe to be sensitive for cultural resources. He is

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 5

particular concerned about the potential for human remains, because the CHRIS records search identified sites with human remains less than 0.5 mile from the project area. Mr. Dorame requested both an archaeological monitor and a tribal monitor be present during ground-disturbing activities. Mr. Dorame also requested direct government-to-government consultation.

- Chairperson Anthony Morales was reached by phone on July 18, 2018. Mr. Morales stated that
 the West Los Angeles area is spiritually and culturally sensitive for his tribe because of the
 number of archaeological sites encountered in the area. Mr. Morales said that he recommends
 Native American monitoring, and requests that a member of his tribe be used as a monitor. Mr.
 Morales also requested direct government-to-government consultation.
- Chairperson Donna Yocum was reached by phone on July 18, 2018. Ms. Yocum informed us that, her tribe would defer to more local tribes. She recommended we contact the Gabrielino groups for comment.

Impacts Assessment

Historical Resources

A significant impact would result if the project caused a substantial adverse change to the significance of a historical resource, as defined in California Code of Regulations Section 15064.5. The Celes King III Pool is a historical resource that is significant under CRHR Criterion 3 for its modern architectural design. Its character-defining features include the stylized configuration of windows primarily on the south side of the building that continue on the east and west sides, its roof slope, and the presence of the indoor pool. Demolition of the Celes King III Pool would cause a substantial adverse change to the historical resource by the removal of all of its features, and would result in a significant and unavoidable impact under CEQA.

Measures should be implemented to mitigate the significant impact; however, demolition would still result in a significant and unavoidable impact. Mitigation may include archival documentation consistent with the standards of the National Park Service's Historic American Building Survey (HABS) documentation, which is described by the NPS as "the last means of preservation of a property; when a property is to be demolished, its documentation provides future researcher access to valuable information that otherwise would be lost" (Russell 1990). Proposed mitigation measures are listed below.

Mitigation Measure CULT-1: Prior to demolition, Secretary of the Interior-qualified professionals in history or architectural history shall perform photo recordation and documentation consistent with HABS documentation. HABS-type documentation shall consist of large-format archival photographs, reproductions of historic drawings, if available, a sketch map, and written data (e.g., historic context, building description) that comprise a detailed record that reflects the building's historical significance. Following completion of the HABS-type documentation, the materials shall be placed on file with LABOE, the Los Angeles Public Library, and the LA Conservancy.

Mitigation Measure CULT-2: A display and interpretive material for public exhibition concerning the history of the Rancho Cienega Sports Complex and the Celes King III Indoor Pool shall be developed. The display and interpretive material shall incorporate information produced in the HABS-like documentation and historical research related to the historical resource. This display and interpretive material shall be available to the public in a physical and/or digital format, such as a poster or website page.

Implementation of Mitigation Measures CULT-1 and CULT-2 would not retain or preserve the character-defining features of the historical resource, and would not reduce the substantial adverse

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 6

change to the historical resource. Implementation of the mitigation measures would not lower the impact of demolition to a level less than significant; therefore, the project would result in a significant and unavoidable impact on a historical resource. No impacts would occur from the operation of the project.

Archaeological Resources

A significant impact would occur if the project caused a substantial adverse change in the significance of an archaeological resource, as defined in California Code of Regulations Section 15064.5. Following demolition of the Celes King III Pool building, construction activities would include hazardous materials abatement, rough grading, infill of the pool pit, utility installations, landscaping and hardscaping, and installation of playground and shade structures. The project may have direct impacts on subsurface archaeological resources that may be encountered during construction. Disturbance of archaeological resources would result in a significant impact under CEQA.

Archival research revealed that five prehistoric sites, including one burial site, are located less than 0.5-mile west of the site. The closest site is less than 0.15-mile west of the project site. Some of these are deeply buried by alluvium. For example, the human remains uncovered approximately 0.5-mile southeast of the project site lay up to 23 feet below the 1924 ground surface. Archaeological sites may also be buried by the placement of fill that was imported to the Rancho Cienega Sports Center property during its development beginning in the 1930s. The lack of surface evidence of archaeological materials does not preclude the possibility that subsurface archaeological materials may exist. The presence of alluvium may mean that any surface evidence of archaeological materials has been buried and could be encountered during excavation. Based on the cultural resources assessment for the *Rancho Cienega Sports Complex Project*, the project site is culturally sensitive for prehistoric and/or historic archaeological resources. Because the potential to encounter archaeological resources exists for this project, archaeological monitoring should be conducted during all ground-disturbing activities into native soils. Because of previous disturbances to the site, this depth is unknown. Mitigation Measure CULT-3 should be implemented to ensure that any potential impacts remain less than significant.

Mitigation Measure CULT-3: Archaeological monitoring shall consist of spot checking until native soils are observed, at which time monitoring will be conducted full time. The archaeological monitor shall have the authority to redirect construction equipment in the event potential archaeological resources are encountered. If archaeological resources are encountered, work in the vicinity of the discovery shall halt until appropriate treatment or further investigation of the resource is determined by a qualified archaeologist in accordance with the provisions of CEQA Guidelines Section 15064.5. In addition, it is recommended that the construction personnel and staff receive training on possible archaeological resources that may be present in the area to establish an understanding of what to look for during ground-disturbing activities.

Paleontological Resources

A significant impact would occur if grading or excavation activities associated with the proposed project disturbed unique paleontological resources or unique geologic features. Following demolition of the Celes King III Pool building, construction activities would include hazardous materials abatement, rough grading, infill of the pool pit, utility installations, landscaping and hardscaping, and installation of playground and shade structures. The project may have direct impacts on unknown, subsurface paleontological resources that may be encountered during construction. Disturbance of paleontological resources would result in a significant impact under CEQA.

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 7

Archival research indicates that excavations near the project site extending into older Quaternary have encountered significant vertebrate fossils. In some places, Quaternary older alluvium and significant fossil remains may lay close to the surface. For example, the closest fossil locality recorded by the Natural History Museum of Los Angeles County, near the intersection of Rodeo Road and Sycamore Avenue, encountered a fossil horse at a depth of 6 feet below ground surface. As the project would be constructed in an area with known paleontological sensitivity, excavations into undisturbed older Quaternary layers, which vary in depth within the project vicinity, may disturb significant paleontological resources that potentially lie beneath the surface obscured by existing pavement or vegetation. Such resources may lie beneath the surface obscured by existing pavement or vegetation. As such, paleontological monitoring is recommended during ground-disturbing activities in areas of paleontological sensitivity. Mitigation Measure CULT-4 should be implemented to ensure that any potential impacts remain less than significant.

Mitigation Measure CULT-4: Excavations into undisturbed older Quaternary layers, which vary in depth within the project site, shall be monitored. Monitoring shall consist of spot checking until native soils are observed, at which time monitoring shall be conducted full-time. In the event that potential paleontological resources are encountered, a qualified paleontologist shall be retained to recover and record any fossil remains discovered. Any fossils, should they be recovered, shall be prepared, identified, and catalogued before curation in an accredited repository designated by the lead agency.

With implementation of Mitigation Measure CULT-4, potential impacts to paleontological resources during construction activities associated with the project would be less than significant. No impacts would occur from the operation of the project.

Tribal Cultural Resources

A significant impact would occur if the project caused a substantial adverse change in the significance of a TCR, as defined in California Public Resources Code Section 21074. Although no TCRs have been identified within the project area, as noted above, the project site is culturally sensitive for buried prehistoric and/or historic archaeological resources that could include TCRs. Native American individuals identified by the NAHC as representatives of California Indian Tribes have requested that both archaeological and Native American monitoring be conducted during ground-disturbing activities. Moreover, they have requested ongoing government-to-government consultation throughout the life of the project.

Mitigation Measure TCR-1: A trained Native American consultant or consultants shall be engaged to monitor ground-disturbing work in the area containing the Native American cultural resources. The consultant or consultants shall be selected from the interested Native American parties who consulted on the project. This monitoring shall occur on an as-needed basis as determined by LABOE in consultation with interested tribes, and shall be intended to ensure that Native American concerns are taken into account during the construction process. The Native American consultant will report findings to LABOE or its archaeological consultant, which will disseminate the information to the consulting Native American parties. The Native American parties identified by the NAHC shall be consulted regarding the treatment and final disposition of any materials of Native American origin found during the course of the project, if any, and will assist LABOE in determining whether these materials constitute TCRs.

With implementation of Mitigation Measure TCR-1, potential impacts to tribal cultural resources identified during construction activities for the proposed project would be less than significant. In addition, no impacts would occur from the operation of the proposed project.

Subject: Cultural Resources Assessment of Rancho Cienega Celes King III Pool Demolition Project June 15, 2018
Page 8

Summary

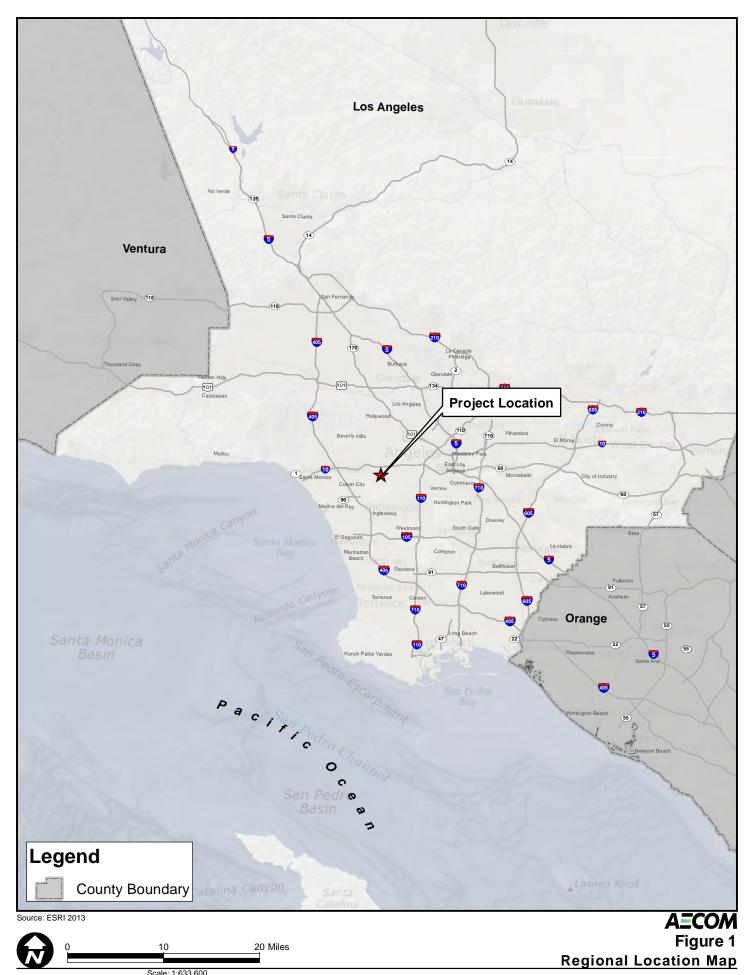
The project would result in impacts to cultural resources. The Celes King III Pool is a historical resource under CEQA, and the project would cause a substantial adverse change to the historical resource from demolition, resulting in a significant and unavoidable impact. Mitigation Measures CULT-1 and CULT-2 should be implemented to reduce the impact, but implementation will not reduce the impact to a level less than significant. The project also has the potential to impact unknown, subsurface archaeological, paleontological, and tribal cultural resources from excavation and grading activities. Implementation of Mitigation Measures CULT-3 and CULT-4 would reduce potential impacts to a level less than significant. TCR-1 will reduce the impact to tribal cultural resources to a less-than-significant level and satisfy LABOE's consultation requirements under AB 52.

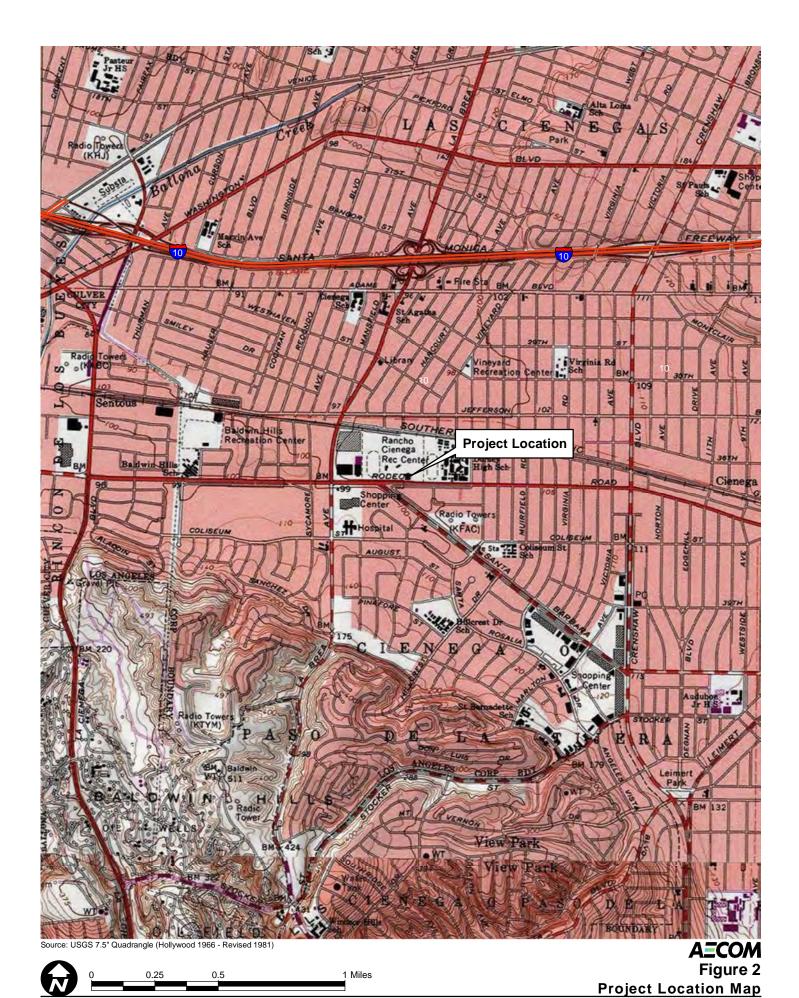
References

AECOM

- 2015 Draft Cultural Resources Assessment Rancho Cienega Sports Complex (Celes King III Pool) Project, Los Angeles, California. Prepared for LABOE.
- 2016 Initial Study/Mitigated Negative Declaration for Rancho Cienega Sports Complex Project. Prepared for LABOE (March 2016).

Russell, Caroline H.

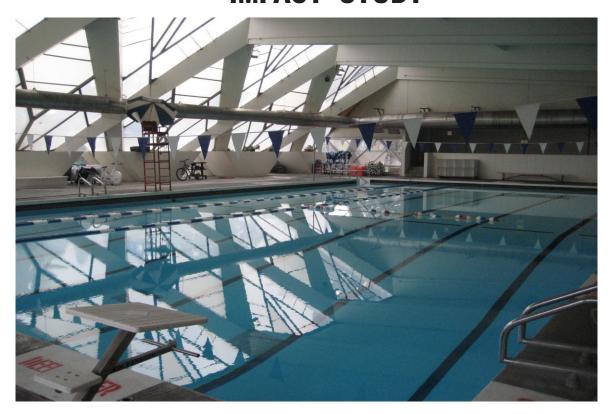

1990 Secretary of the Interior's Standards and Guidelines for Architectural and Engineering Documentation: HABS/HAER Standards. Historic American Building Survey/Historic American Engineering Record, Cultural Resource Program, U.S. Department of the Interior, National Park Service. Accessed through http://www.nps.gov/hdp/standards/standards.pdf.


Attachments

A. Maps

B. AB 52 Correspondence (Confidential)

Attachment A Maps



Attachment B
AB 52 Correspondence
(Confidential)

APPENDIX D Noise and Vibration Impact Study

RANCHO CIENEGA CELES KING III POOL DEMOLITION

NOISE AND VIBRATION IMPACT STUDY

Prepared for LOS ANGELES BUREAU OF ENGINEERING

Prepared by TERRY A. HAYES ASSOCIATES INC.

TABLE OF CONTENTS

		<u>Pag</u>	ge No.
1.0	SUM	MMARY OF FINDINGS	1
2.0	2.1 2.2	RODUCTION Purpose of Report Project Description	3
3.0	3.1 3.2 3.3 3.4 3.5 3.6	Existing Setting	4 8 10 10
4.0	REF	FERENCES	20
		LIST OF TABLES	
Table Table Table Table Table Table Table	3-1 3-2 3-3 3-4 3-5 3-6	Summary of Impact Statements Construction Vibration Damage Criteria Construction Vibration Annoyance Criteria Existing Ambient Noise Levels Noise Level Ranges of Typical Construction Equipment Typical Outdoor Construction Noise Levels Vibration Velocities for Construction Equipment Estimated Vibration Levels	9 10 14 14 17
		LIST OF FIGURES	
Figure	e 3-1	Project Location	6

TECHNICAL APPENDIX

Appendix A Noise Data and Calculations

taha 2018-028 i

1.0 SUMMARY OF FINDINGS

Terry A. Hayes Associates Inc. (TAHA) completed a noise and vibration impact analysis for the Rancho Cienega Celes King III Pool Demolition Project (proposed project). The analysis assessed construction and operational impacts associated with the proposed project. Summary of impact statements are shown in **Table 1-1**. Mitigation measures are summarized following the table.

TABLE 1-1: SUMMARY OF IMPACT STATEMENTS		
Impact Statement	Proposed Project Level of Significance	Applicable Mitigation Measures
Would the proposed project result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	Less-than-Significant Impact With Mitigation	N1 though N8
Would the proposed project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?	Less-than-Significant Impact	None
Would the proposed project result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?	Less-than-Significant Impact	None
Would the proposed project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?	Less-than-Significant Impact With Mitigation	N1 though N8
For a project located within an airport land use plan or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?	No Impact	None
For a project located within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise?	No Impact	None
SOURCE: TAHA, 2018.	<u>-</u>	·

Mitigation Measures

- **N1** Construction equipment shall be properly maintained and equipped with mufflers.
- **N2** Construction equipment shall have rubber tires instead of tracks.
- **N3** Equipment shall be turned off when not in use for an excess of five minutes, except for equipment that requires idling to maintain performance.
- A public liaison shall be appointed for project construction will be responsible for addressing public concerns about construction activities, including excessive noise. As needed, the liaison shall determine the cause of the concern (e.g., starting too early, bad muffler) and implement measures to address the concern.
- N5 The construction manager shall coordinate with the site administrator for Dorsey High School to schedule construction activity such that student exposure to noise is minimized.
- **N6** The public shall be notified in advance of the location and dates of construction hours and activities.
- N7 Construction activities shall be prohibited between the hours of 9:00 p.m. and 7:00 a.m. when located within 500 feet of occupied sleeping quarters or other land uses sensitive to increased nighttime noise levels.

N8 If Mitigation Measures N1 through N7 do not reduce noise impacts to a level of insignificance, the project applicant shall develop new and appropriate measures to effectively mitigate construction related noise at the affected school. Provisions shall be made to allow the school and or designated representative(s) to notify the project applicant when such measures are warranted (e.g., Mitigation Measure N4).

2.0 INTRODUCTION

2.1 PURPOSE OF REPORT

The purpose of this report is to evaluate the potential noise and vibration impacts associated with the proposed project.

2.2 PROJECT DESCRIPTION

2.2.1. Project Description

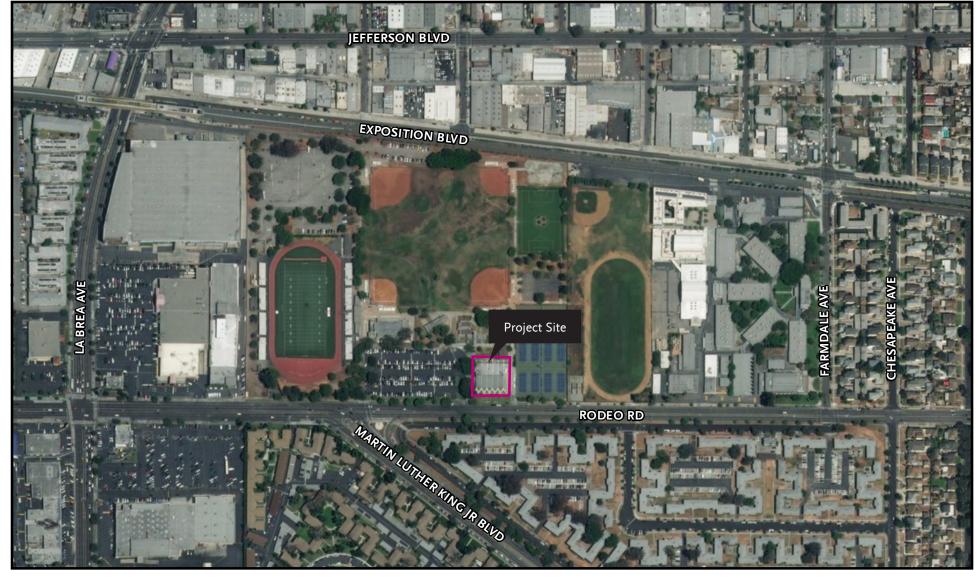
The proposed project consists of demolition of the Celes King III Indoor Pool. The building and pool will be demolished, and the site will be graded and landscaped.

2.2.2. Project Background

The Rancho Cienega Sports Complex (Phase 1) Project was approved on December 2016. The proposed project included the development of an upgraded and expanded sports complex. The proposed project will construct a new 30,000 square-foot sports complex that includes a new indoor gymnasium with office space, a running path, and a lookout deck on the second floor; a new tennis shop with restrooms and tennis overlook; a new stadium overlook with a concession stand, restrooms and a ticket office; installation of new driveways; and upgrades to existing parking areas. For historic reasons, demolition of the Celes King III Indoor Pool was not considered with the Rancho Cienega Sports Complex (Phase 1) Project which was approved by the Board of Recreation and Park Commissioners on December 14, 2016. This demolition project is related to but not necessary for the Ranch Cienega Sports Complex.

2.2.3. Location

The project site is located at 5001 Rodeo Road in the West Adams-Baldwin Hills-Leimert Community of the City of Los Angeles. The project site is bounded by the Rancho Cienega Sports Complex to the north, Susan Miller Dorsey High School to the east, residential land uses to the south, and a shopping center to the west. **Figure 2-1** shows the location of the project site.


2.2.4. Setting

The project site currently has an indoor pool. Adjacent to the project site is the existing Rancho Cienega Sports Complex which contains a variety of facilities including a gymnasium, basketball courts, baseball diamond, children's play area, community room, football field, handball courts, picnic tables, soccer field, skate park, and tennis courts. The project site is accessed via Rodeo Road on the south side and via Exposition Boulevard on the north side. There are two main parking areas: one in the northwest area of the park and another in the southern area adjacent to Rodeo Road.

The land uses located in the vicinity of the project site are highly urbanized. The Project area consists predominantly of single- and multi-family residential housing, industrial uses, commercial uses, and public facilities.² Residential housing is located to the east and south of the project site, industrial and commercial uses to the west, and exclusively industrial to the north. Public facilities land uses are located directly adjacent to the north and institutional uses east of the project site.

¹City of Los Angeles Department of Recreation and Parks, Rancho Cienega Sports Complex. Website: https://www.laparks.org/reccenter/rancho-cienega-sports-complex, accessed May 23, 2018.

²City of Los Angeles Department of City Planning, *West Adams-Baldwin Hills-Leimert Community Plan Generalized Land Use Map*, http://planning.lacity.org/complan/central/pdf/genlumap.wad.pdf, accessed May 24, 2018.

LEGEND:

Source: TAHA, 2018.

0 0.06 0.12 Miles

Rancho Cienega Celes King III Pool Demolition Noise and Vibration Impact Study

FIGURE 2-1
PROJECT LOCATION

3.0 NOISE AND VIBRATION

This section describes the characteristics and effects of noise and vibration, discusses the applicable regulatory setting, the existing setting, and evaluates noise and vibration levels associated with the proposed project.

3.1 NOISE AND VIBRATION CHARACTERISTICS AND EFFECTS

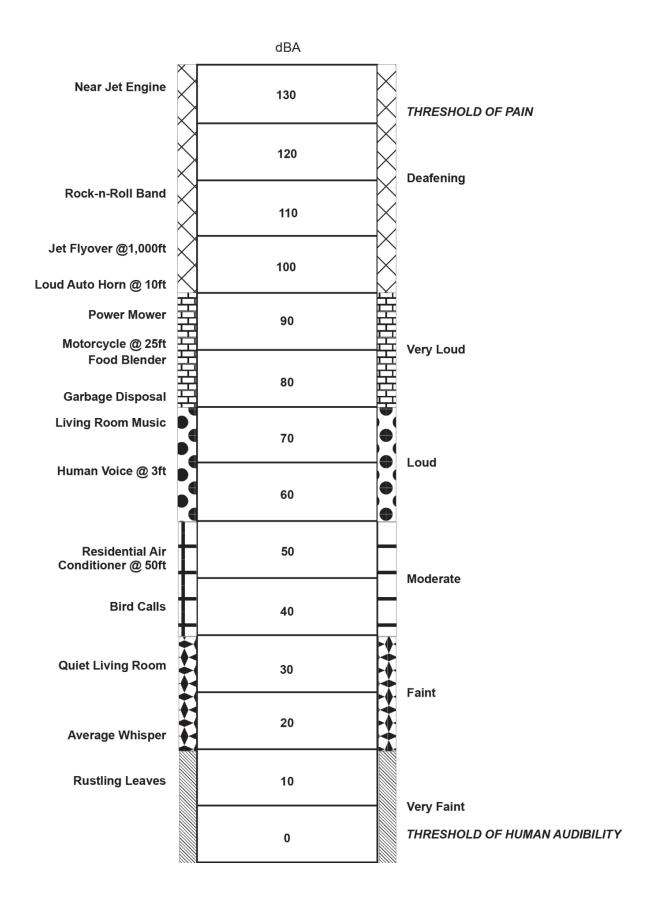
3.1.1 Noise

Characteristics of Sound

Sound is technically described in terms of the loudness (amplitude) and frequency (pitch).³ The standard unit of measurement for sound is the decibel (dB). The human ear is not equally sensitive to sound at all frequencies. The A-weighted scale, abbreviated dBA, reflects the normal hearing sensitivity range of the human ear. On this scale, the range of human hearing extends from approximately 3 to 140 dBA. **Figure 3-1** provides examples of A-weighted noise levels from common sounds.

Noise Definitions

This noise analysis discusses average sound levels in terms of Equivalent Noise Level (L_{eq}). L_{eq} is the average sound level for any specific time period, on an energy basis. The L_{eq} for one hour is the energy average noise level during the hour. The average noise level is based on the energy content (acoustic energy) of the sound. L_{eq} can be thought of as the level of a continuous noise which has the same energy content as the fluctuating noise level. L_{eq} is expressed in units of dBA.


Effects of Noise

Noise is generally defined as unwanted sound. The degree to which noise can impact the human environment ranges from levels that interfere with speech and sleep (annoyance and nuisance) to levels that cause adverse health effects (hearing loss and psychological effects). Human response to noise is subjective and can vary greatly from person to person. Factors that influence individual response include the intensity, frequency, and pattern of noise, the amount of background noise present before the intruding noise, the nature of work or human activity that is exposed to the noise source.

Audible Noise Changes

Studies have shown that the smallest perceptible change in sound level for a person with normal hearing sensitivity is approximately 3 dBA. A change of at least 5 dBA would be noticeable and may evoke a community reaction. A 10-dBA increase is subjectively heard as a doubling in loudness and would likely cause a community response.

³California Department of Transportation, *Technical Noise Supplement*, September 2013.

Source: Cowan, James P., Handbook of Environmental Acoustics, 1993.

Noise levels decrease as the distance from the noise source to the receiver increases. Noise levels generated by a stationary noise source, or "point source," will decrease by approximately 6 dBA over hard surfaces (e.g., pavement) and 7.5 dBA over soft surfaces (e.g., grass) for each doubling of the distance. For example, if a noise source produces a noise level of 89 dBA at a reference distance of 50 feet, then the noise level would be 83 dBA at a distance of 100 feet over hard surface from the noise source, 77 dBA at a distance of 200 feet, and so on. Noise levels generated by a mobile source will decrease by approximately 3 dBA over hard surfaces and 4.5 dBA over soft surfaces for each doubling of the distance.

Generally, noise is most audible when traveling by direct line-of-sight.⁴ In urban environments, barriers, such as walls, berms, or buildings, are often present, which breaks the line-of-sight between the source and the receiver, greatly reducing noise levels from the source since sound can only reach the receiver by bending over the top of the barrier (diffraction). However, if a barrier is not high or long enough to break the line-of-sight from the source to the receiver, its effectiveness is greatly reduced. In situations where the source or the receiver is located 3 meters (approximately 10 feet) above the ground, or whenever the line-of-sight averages more than 3 meters above the ground, sound levels would be reduced by approximately 3 dBA for each doubling of distance.

3.1.2 Vibration

Characteristics of Vibration

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration can be a serious concern, causing buildings to shake and rumbling sounds to be heard. In contrast to noise, vibration is not a common environmental problem. It is unusual for vibration from sources such as buses and trucks to be perceptible, even in locations close to major roads. Some common sources of vibration are trains, buses on rough roads, and construction activities, such as rock blasting, pile driving, and heavy earth-moving equipment.

Vibration Definitions

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings and is usually measured in inches per second. The root mean square (RMS) amplitude is most frequently used to describe the effect of vibration on the human body. The RMS amplitude is defined as the average of the squared amplitude of the signal. Decibel notation (VdB) is commonly used to measure RMS. The VdB acts to compress the range of numbers required to describe vibration.⁵

Effects of Vibration

High levels of vibration may cause physical personal injury or damage to buildings. However, vibration levels rarely affect human health. Instead, most people consider vibration to be an annoyance that may affect concentration or disturb sleep. In addition, high levels of vibration may damage fragile buildings or interfere with equipment that is highly sensitive to vibration (e.g., electron microscopes).

taha 2018-028

⁴Line-of-sight is an unobstructed visual path between the noise source and the noise receptor.

⁵Federal Transit Administration, *Transit Noise and Vibration Impact Assessment*, May 2006.

Perceptible Vibration Changes

In contrast to noise, vibration is not a phenomenon that most people experience every day. The background vibration velocity level in residential areas is usually 50 VdB RMS or lower, well below the threshold of perception for humans which is around 65 VdB RMS.⁶ Most perceptible indoor vibration is caused by sources within buildings, such as operation of mechanical equipment, movement of people, or slamming of doors. Typical outdoor sources of perceptible vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If the roadway is smooth, the vibration from traffic is rarely perceptible.

3.2 REGULATORY SETTING

3.2.1 Noise

Federal

United States Environmental Protection Agency (USEPA). The Noise Control Act of 1972 established programs and guidelines to identify and address the effects of noise on public health, welfare, and the environment. In 1981, the USEPA determined that subjective issues such as noise would be better addressed at local levels of government, thereby allowing more individualized control for specific issues by designated federal, state, and local government agencies. Consequently, in 1982, responsibilities for regulating noise control policies were transferred to specific federal agencies, and state and local governments. However, noise control guidelines and regulations contained in the USEPA rulings in prior years remain in place.

State

The State of California has adopted noise standards in areas of regulation not preempted by the federal government. State standards regulate noise levels of motor vehicles, sound transmission through buildings, occupational noise control, and noise insulation. State regulations governing noise levels generated by individual motor vehicles and occupational noise control are not applicable to planning efforts, nor are these areas typically subject to California Environmental Quality Act (CEQA) analysis.

Local

The City of Los Angeles has established policies and regulations concerning the generation and control of noise that could adversely affect its citizens and noise-sensitive land uses. Regarding construction, Section 41.40 (Noise Due to Construction, Excavation Work – When Prohibited) of the Los Angeles Municipal Code (LAMC) states that no construction or repair work shall be performed between the hours of 9:00 p.m. and 7:00 a.m. on Monday through Friday since such activities would generate loud noises and disturb persons occupying sleeping quarters in any adjacent dwelling, hotel, apartment, or other place of residence. Further, no person, other than an individual home owner engaged in the repair or construction of his/her single-family dwelling, shall perform any construction or repair work of any kind or perform such work within 500 feet of land so occupied before 8:00 a.m. or after 6:00 p.m. on any Saturday, nor at any time on any Sunday or on a federal holiday. Under certain conditions, the City may grant a waiver to allow limited construction activities to occur outside of the limits described above.

LAMC Section 112.04 (Powered Equipment Intended for Repetitive Use in Residential Areas and Other Machinery, Equipment, and Devices) specifies between the hours of 10:00 p.m. and. 7:00 a.m. of the following day, no person shall operate any lawn mower, backpack blower, lawn edger,

taha 2018-028

⁶Federal Transit Administration, Transit Noise and Vibration Impact Assessment, May 2006.

riding tractor, or any other machinery, equipment, or other mechanical or electrical device, or any hand tool which creates a loud, raucous or impulsive sound, within any residential zone or within 500 feet of a residence. Furthermore, no gas-powered blower shall be used within 500 feet of a residence at any time.

LAMC Section 112.05 (Maximum Noise Level of Powered Equipment or Powered Hand Tools) specifies the maximum noise level of powered equipment or powered hand tools. Any powered equipment or hand tool that produces a maximum noise level exceeding 75 dBA at a distance of 50 feet is prohibited. However, this noise limitation does not apply where compliance is technically infeasible. Technically infeasible means the above noise limitation cannot be met despite the use of mufflers, shields, sound barriers and/or any other noise-reduction device or techniques during the operation of equipment.

The Los Angeles Unified School District (LAUSD) has established noise standards to ensure that excess noise exposure to students and faculty does not occur. LAUSD has adopted an exterior noise standard of 67 dBA L_{eq} and an interior classroom noise standard of 45 dBA L_{eq}.

3.2.2 Vibration

Federal

The Federal Transit Administration (FTA) has published guidance for assessing building damage impacts from vibration. **Table 3-1** shows the FTA building damage criteria for vibration. FTA has also established criteria related to vibration annoyance, which are shown in **Table 3-2**.

TABLE 3-1: CONSTRUCTION VIBRATION DAMAGE CRITERIA		
Building Category	Peak Particle Velocity (inches per second)	
I. Reinforced-concrete, steel or timber (no plaster)	0.5	
II. Engineered concrete and masonry (no plaster)	0.3	
III. Non-engineered timber and masonry buildings	0.2	
IV. Buildings extremely susceptible to vibration damage	0.12	
SOURCE: FTA, Transit Noise and Vibration Impact Assessment, May 2006.		

TABLE 3-2: CONSTRUCTION VIBRATION ANNOYANCE CRITERIA			
	Vibration Impact Level (VdB re micro-inch per second)		
Land Use Category	Frequent Events /a/	Occasional Events /b/	Infrequent Events /c/
1. Buildings where vibration would interfere with interior operations.	65 /d/	65 /d/	65 /d/
2. Residences and buildings where people normally sleep.	72	75	80
3. Institutional land uses with primarily daytime use.	75	78	83

[/]a/ Frequent Events are defined as more than 70 vibration events of the same source per day.

State

There are no adopted State vibration standards.

taha 2018-028

[/]b/ Occasional Events" are defined as between 30 and 70 vibration events of the same source per day.

[/]c/ Infrequent Events" are defined as fewer than 30 vibration events of the same kind per day.

[/]d/ This criterion limit is based on levels that are acceptable for most moderately-sensitive equipment such as optical microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building often requires special design of the HVAC systems and stiffened floors.

SOURCE: FTA, Transit Noise and Vibration Impact Assessment, May 2006.

Local

There are no adopted City of Los Angeles vibration standards.

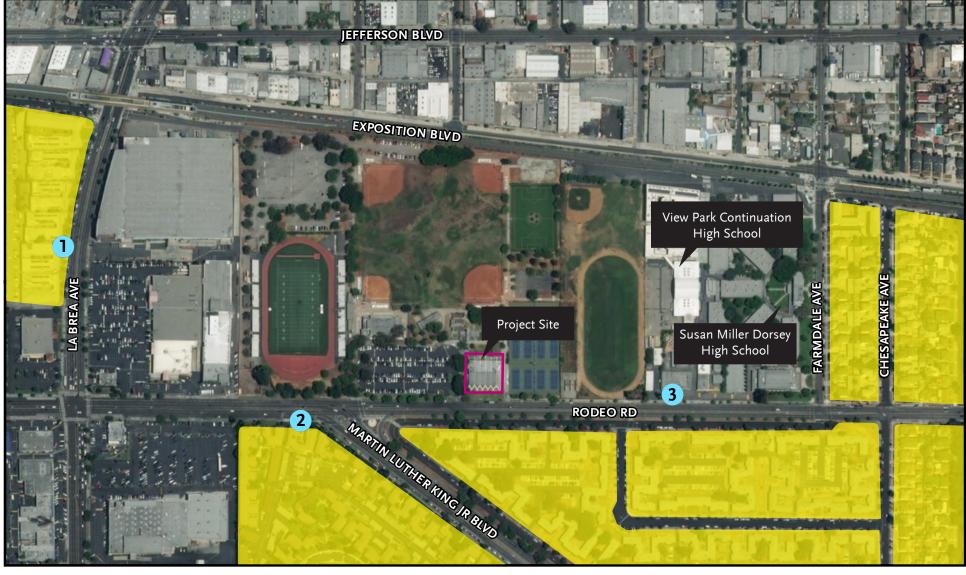
3.3 EXISTING SETTING

3.3.1 Existing Noise and Vibration Environment

To characterize the existing noise environment around the project site, ambient noise was monitored using a SoundPro DL Sound Level Meter on May 31, 2018, between 10:00 a.m. and 12:00 p.m. The detailed locations are shown in **Figure 3-2**. Measurements were taken for 15-minute periods at each site. As shown in **Table 3-3**, the existing ambient sound levels range between 70.4 and 70.8 dBA Leq. Traffic was the primary source of noise at each site. Possible sources of vibration at the project site include the Los Angeles County Metropolitan Transportation Authority (Metro) Expo Line and truck traffic. Based on the field visits, neither source generates perceptible vibration on the project site.

TABLE 3-3: EXISTING AMBIENT NOISE LEVELS		
Figure 3-2 Key	Noise Monitoring Location	Sound Level (dBA, Leq)
1	Residences at 3515 S. La Brea Ave.	70.8
2	Residences at 5010 Rodeo Rd.	70.4
3	Susan Miller Dorsey High School	70.4
SOURCE: TAHA, 2018.		·

3.3.2 Sensitive Receptors


Sensitive receptors are locations where people reside or where the presence of unwanted sound could adversely affect the use of the land. They typically include residences, schools, hospitals, guest lodging, libraries, and some passive recreation areas. The project site is located in an urban environment and many sensitive receptors are located near the construction zone as shown in **Figure 3-2**. Sensitive receptors within the vicinity of the project site include Dorsey High School adjacent to the east, residences directly to the south and southwest across Rodeo Road.

3.4 METHODOLOGY AND IMPACT CRITERIA

3.4.1 Methodology

The noise and vibration analysis considers construction and operational sources. Construction noise levels were based on information obtained from USEPA. Noise levels associated with typical construction equipment were obtained from the Federal Highway Administration (FHWA) Roadway Construction Noise Model.⁷ This model predicts noise from construction operations based on a compilation of empirical data and the application of acoustical propagation formulas. Maximum equipment noise levels were adjusted based on anticipated percent of use. Example equipment noise levels were estimated by making a distance adjustment to the construction source noise level.

⁷Federal Highway Administration, *Roadway Construction Noise Model*, Version 1.1, August 2006.

LEGEND:

#

Noise Monitoring Locations

Residences

0 0.06 0.12 Miles

FIGURE 3-2

Source: TAHA, 2018.

Rancho Cienega Celes King III Pool Demolition Noise and Vibration Impact Study

NOISE MONITORING LOCATIONS AND SENSITIVE RECEPTORS

The methodology used for this analysis can be viewed in Section 2.1.4 (Sound Propagation) of the California Department of Transportation (Caltrans) Technical Noise Supplement. Vibration levels generated by construction equipment were estimated using example vibration levels and propagation formulas provided by FTA found in Section 12.2 (Construction Vibration Assessment).⁸

(1) Noise Distance Attenuation Formula: $dBA_2 = dBA_1 + 20 \times LOG_{10} (D_1/D_2)$

Where:

 dBA_1 = Noise level at the reference distance of 50 feet

 dBA_2 = Noise level at the receptor

 D_1 = Reference distance (50 feet)

 D_2 = Distance from source to receptor (measured distance)

(2) Logarithmic Noise Level Addition Formula: $Nc = 10 \times LOG10 ((10^{N1/10}) + (10^{N2/10}))$

Where:

Nc = Combined noise level

N1 = Noise level one

N2 = Noise level two

Vibration levels were estimated using example vibration levels and propagation formulas provided by FTA.⁹ The methodology and formulas obtained from the FTA Transit Noise and Vibration Assessment guidance can be viewed below. Vibration damage is assessed using formula (3) and vibration annoyance is assessed using formula (4).

(3) Vibration Damage Attenuation Formula: $PPV_{equip} = PPV_{ref} \times (25/D)^{1.5}$

Where:

PPV_{equip} = Peak particles velocity in inches per second of the equipment adjusted for distance

PPV_{ref} = Reference vibration level in inches per second at 25 feet

D = Distance from the equipment to the receptor in feet

(4) Vibration Annoyance Attenuation Formula: $Lv_{equip} = Lv_{ref} - 30 \times LOG (D/25)$

Where:

Lv_{equip} = Vibration level in vibration decibels of equipment adjusted for distance

 Lv_{ref} = Reference vibration level in vibration decibels at 25 feet

D = Distance from the equipment to the receptor in feet

⁸Federal Transit Administration, *Transit Noise and Vibration Impact Assessment*, May 2006.

⁹Ibid.

3.4.2 CEQA Significance Thresholds

The proposed project would not result in a substantial permanent increase in ambient noise levels or expose persons to excessive noise from public or private airports. Accordingly, this issue is not further analyzed for potential impacts.

In accordance with Appendix G of the CEQA Guidelines, the proposed project would have a significant impact related to noise and vibration if it would result in:

- Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels;
- A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project; and/or
- A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project.
- For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?
- For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

Construction Noise

Based on the LAMC, the proposed project would exceed the local standards and substantially increase temporary construction noise levels if:

- Construction activities would occur within 500 feet of a noise-sensitive use and outside the hours allowed in the LAMC. The allowable hours of construction in the LAMC include 7:00 a.m. to 9:00 p.m. Monday through Friday and 8:00 a.m. to 6:00 p.m. on Saturday. No construction activity is allowed on Sundays or federal holidays; and/or
- Equipment noise levels would exceed 75 dBA Lea at 50 feet unless technically infeasible.

Construction Vibration

The construction-related vibration analysis considers the potential for building damage and annoyance. Maximum vibration levels were assessed based on large bulldozer and hoe ram activity, which would be considered as a frequent event happening between 70 times or more in one day.

- Vibration levels would exceed 0.3 inches per second at engineered concrete and masonry buildings (e.g., typical residential buildings, schools, commercial centers); and/or
- Vibration levels associated with hoe ram activity would exceed 72 VdB at residences or 75 VdB at institutional land uses with primarily daytime use.

3.5 ENVIRONMENTAL IMPACTS

3.5.1 Would the proposed project result in exposure persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? (Less-than-Significant Impact With Mitigation)

Impact Analysis

Construction

Equipment. Construction activity is anticipated to begin in December 2020 and take approximately 12 months to complete, concluding in December 2021. The LAMC allows construction activity to occur Monday through Friday between the hours of 7:00 a.m. and 9:00 p.m., although daily construction would not likely occur after 6:00 p.m. If necessary, construction of the proposed project would occur between the hours of 8:00 a.m. and 6:00 p.m. on Saturdays. There would be no construction activities on Sundays or federal holidays, and no construction would occur during prohibited hours.

Demolition and grading activities would require heavy-duty equipment common to urban development, including, but not limited to, hoe rams, graders, loaders, and trucks. Typical noise levels from various types of equipment that may be used during construction are listed in **Table 3-4**. The table shows noise levels at distances of 50 feet from the construction noise source. Construction activities typically require the use of numerous pieces of noise-generating equipment. A hoe ram would be used for breaking up concrete during the pool demolition. Hoe ramming would generate the highest noise levels of any construction equipment with a noise level of 90.3 dBA at 50 feet. The noise levels shown in **Table 3-5** take into account that multiple pieces of construction equipment would be operating simultaneously. When considered as an entire process with multiple pieces of equipment, project-related activity (i.e., ground clearing and site preparation) would generate noise levels between 78 and 89 dBA L_{eq} at 50 feet.

TABLE 3-4: NOISE LEVEL RANGES OF TYPICAL CONSTRUCTION EQUIPMENT		
Construction Equipment	Noise Level at 50 feet (Leq, dBA)	
Backhoe (Skid Loader/Skip Loader)	73.6	
Compactor	76.2	
Dump Truck	72.5	
Excavator	76.7	
Hoe Ram	90.3	
Roller	73.0	
SOURCE: FHWA, Roadway Construction Noise Model, Version 1.1, 2008.		

TABLE 3-5: TYPICAL OUTDOOR CONSTRUCTION NOISE LEVELS		
Construction Method	Noise Level at 50 feet (dBA, L _{eq})	
Ground Clearing	84	
Site Preparation	89	
Foundations	78	
Structural	85	
Finishing	89	
SOURCE: USEPA, Noise from Construction Equipment and Operations, Building Equipment and Home Appliances, PB 206717, 1971.		

The impact analysis is based on the construction limits outlined in the LAMC. As discussed above, construction activity would comply with the allowable hours of construction in the LAMC, including 7:00 a.m. to 9:00 p.m. Monday through Friday, 8:00 a.m. to 6:00 p.m. on Saturday, and no construction activity on Sundays or federal holidays. The LAMC limits equipment noise levels to 75 dBA at 50 feet unless technically infeasible. Noise levels from individual pieces of equipment would typically range from 72.5 to 90.3 dBA $L_{\rm eq}$ at 50 feet. Unmitigated noise levels would typically exceed the allowable noise level stated in the LAMC. Therefore, without mitigation, the proposed project would result in a significant impact related to construction noise.

Trucks. In addition to on-site construction activities, noise would be generated off-site by construction-related trucks. Demolition and construction activities would require an average of 10 truck roundtrips per day, with a peak of 18 daily truck roundtrips occurring during one month for the infill of the pool pit. A doubling of traffic volume is typically needed to audibly increase noise levels along a roadway segment. An additional 10 truck round trips per day on average or 18 truck round trips per day during the peak period would not double the volume on any roadway segment. It is not anticipated that off-site vehicle activity would audibly change average daily noise levels. Therefore, the proposed project would result in a less-than-significant impact related to off-site noise during construction.

Operations

Typical sources of noise for new projects include increased traffic, mechanical equipment, and parking lots. The project site would include a community front lawn with playground facilities and would not introduce new operational sources of noise. The playground would generate noise similar to the existing tennis courts and would not represent a new noise source. Furthermore, playground noise is not anticipated to be audible above existing traffic noise along Rodeo Road due to the high existing noise level of 70.4 dBA $L_{\rm eq}$. The landscaped areas would require occasional routine maintenance involving typical landscaping equipment, which would comply with the provisions of LAMC Section 112.04. Therefore, the proposed project would result in a less-than-significant impact related to operational noise.

Mitigation Measures:

- N1 Construction equipment shall be properly maintained and equipped with mufflers.
- **N2** Construction equipment shall have rubber tires instead of tracks.
- N3 Equipment shall be turned off when not in use for an excess of five minutes, except for equipment that requires idling to maintain performance.
- A public liaison shall be appointed for project construction will be responsible for addressing public concerns about construction activities, including excessive noise. As needed, the liaison shall determine the cause of the concern (e.g., starting too early, bad muffler) and implement measures to address the concern.
- N5 The construction manager shall coordinate with the site administrator for Dorsey High School to schedule construction activity such that student exposure to noise is minimized.
- **N6** The public shall be notified in advance of the location and dates of construction hours and activities.
- N7 Construction activities shall be prohibited between the hours of 9:00 p.m. and 7:00 a.m. when located within 500 feet of occupied sleeping quarters or other land uses sensitive to increased nighttime noise levels.

N8 If Mitigation Measures N1 through N7 do not reduce noise impacts to a level of insignificance, the project applicant shall develop new and appropriate measures to effectively mitigate construction related noise at the affected school. Provisions shall be made to allow the school and or designated representative(s) to notify the project applicant when such measures are warranted (e.g., Mitigation Measure N4).

Significance After Mitigation

Construction

Mitigation Measures **N1** through **N7** are designed to reduce construction noise levels. The equipment mufflers associated with Mitigation Measure **N1** would reduce construction noise levels by approximately 3 dBA. Mitigation Measures **N2** through **N7**, although difficult to quantify, would also reduce and/or control construction noise levels. Mitigation Measure **N8** provides a mechanism for additional noise control if construction activities are disruptive at Dorsey High School. Other measures included the following:

- Electric Equipment Electric equipment would generate less noise than diesel equipment but is not widely available and the horsepower associated with electric equipment would not meet project requirements.
- Relocation Removing the affected land uses from the construction zone would eliminate the impact. This measure would not be feasible due to the associated cost of relocation.
- Window Retrofits Retrofitting windows at affected land uses would reduce noise exposure.
 This measure would not be feasible due to the number of affected land uses and associated cost of retrofitting considering the temporary nature of the noise from construction.

Mitigation Measures **N1** through **N8** are feasible measures to control noise levels, including engine mufflers. With implementation of these feasible mitigation measures, and based on compliance with the LAMC, construction equipment noise would be mitigated to the greatest extent feasible. Therefore, the proposed project would result in a less-than-significant impact related to construction noise.

Operations

No significant impacts have been identified related to operational noise. Therefore, no mitigation measures are required.

3.5.2 Would the proposed project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels? (Less-than-Significant Impact)

Impact Analysis

Construction

Construction activity can generate varying degrees of vibration, depending on the procedure and equipment. Operation of construction equipment generates vibrations that spread through the ground and diminish in amplitude with distance from the source. The effect on buildings located in the vicinity of a construction site often varies depending on soil type, ground strata, and construction characteristics of the receiver building(s). The results from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibration at moderate levels, and to slight damage at the highest levels. In most cases, the primary concern regarding construction vibration relates to damage.

On-Site Equipment. The FTA provides vibration levels for various types of construction equipment with an average source level reported in terms of velocity.¹⁰ **Table 3-6** provides estimates of vibration levels for a wide range of soil conditions.

TABLE 3-6: VIBRATION VELOCITIES FOR CONSTRUCTION EQUIPMENT		
Equipment	PPV at 25 feet (Inches/Second)	Approximate L _v at 25 feet /a/
Large Bulldozer	0.089	87
Loaded Trucks	0.076	86
Hoe Ram	0.089	87
Small Bulldozer	0.003	58
/a/ RMS velocity in decibels (VdB) related to 1 micro-inch/second.		
SOURCE: FTA, Transit Noise and Vibration Impact Assessment, May 2006.		

The reference levels were used to estimate vibration levels at the sensitive receptors most likely to be impacted by equipment at each location of construction activity. Vibration levels are shown in **Table 3-7** and discussed in detail for each construction phase.

TABLE 3-7: ESTIMATED VIBRATION LEVELS			
	Distance from Bulldozing	Vibration Lo (Inches Per Se	
Sensitive Receptor	Activity (Feet)	Inches/ Second /a/	VdB
Multi-Family Residences to the south	160	0.0055	63/b/
Multi-Family Residences to the southwest	450	0.0012	49/b/
Dorsey High School Track	300	0.0021	55/c/
Dorsey High School nearest Classroom	550	0.0009	47/c/

[/]a/ Engineered concrete and masonry (no plaster) building damage impact criterion is 0.3 inches per second.

SOURCE: TAHA, 2018.

The maximum vibration levels would be generated during large bulldozer and hoe ram activity. Vibration levels would be approximately 0.089 inches per second and 87 VdB at 25 feet. The nearest off-site sensitive land use would be approximately 160 feet to the south across Rodeo Road. Large bulldozer and hoe ram vibration levels would be approximately 0.006 inches per second and 63 VdB. These levels would be below the significance thresholds of 0.3 inches per second and 72 VdB. Additionally, as shown in **Table 3-7**, vibration levels would not exceed the significance thresholds at any other off-site sensitive land use, including Dorsey High School.

Off-Site Trucks. In addition to on-site construction activities, construction trucks on the roadway network have the potential to expose vibration-sensitive land uses located near the proposed project access route. As shown in **Table 3-6**, loaded trucks generate vibration levels of 0.076 inches per second at a distance of 25 feet. Rubber-tired vehicles, including trucks, do not generate significant roadway vibrations that can cause building damage. It is possible that trucks would generate perceptible vibration at sensitive receptors adjacent to the roadway. However, these would be transient and instantaneous events typical to the roadway network. This level of activity is not considered substantial enough to generate a vibration annoyance. Therefore, construction truck activity would result in a less-than-significant vibration impact.

[/]b/ The applicable annoyance impact criterion for residences experiencing frequent events (i.e., over 70 vibration events from the same source per day) is 72 VdB.

[/]c/ The applicable annoyance impact criterion for institutional land uses experiencing frequent events (i.e., over 70 vibration events from the same source per day) is 75 VdB.

¹⁰Federal Transit Administration, *Transit Noise and Vibration Impact Assessment*, May 2006.

Operations

The proposed project would not introduce any significant stationary sources of vibration, including mechanical equipment that would be perceptible at sensitive receptors. Therefore, operational activity would result in a less-than-significant impact related to vibration.

Mitigation Measures

No impacts have been identified related to groundborne vibration levels, and no mitigation measures are required.

3.5.3 Would the proposed project result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project? (Less-than-Significant Impact)

Impact Analysis

As discussed in Section 3.5.1, above, the proposed project would not generate new traffic or include a significant source of mechanical equipment noise. Maintenance (i.e., landscaping) activities would comply with the provisions of LAMC Section 112.04. Therefore, the proposed project would result in a less-than-significant impact related to operational noise.

Mitigation Measures

No impacts have been identified related to permanent noise levels, and no mitigation measures are required.

3.5.4 Would the proposed project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project? (Less-than-Significant Impact with Mitigation)

Impact Analysis

As discussed in Section 3.5.1, sensitive receptors around the construction zone would experience increased noise levels associated with construction. Construction noise impacts would be temporary in nature, but equipment noise levels would exceed the 75 dBA at 50 feet. Therefore, without mitigation, the proposed project would result in a significant noise impact related to temporary and periodic construction activity.

Mitigation Measures

Refer to Mitigation Measures **N1** through **N8**, above.

Significance After Mitigation

Based on compliance with the LAMC, construction equipment noise would be mitigated to the greatest extent feasible. The implementation of Mitigation Measures **N1** through **N8** would reduce noise impacts to less-than-significant.

3.5.5 Would the proposed project result in for a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? (*No Impact*)

Impact Analysis

The project site is not located within an airport land use plan. The nearest airports to the project site are the Santa Monica Municipal Airport and the Los Angeles International Airport, located approximately five miles to the west and south, respectively. Due to the distance from the nearest airport, the proposed project would not expose people working or residing in the project area to excessive noise. Therefore, no impact would occur.

Mitigation Measures

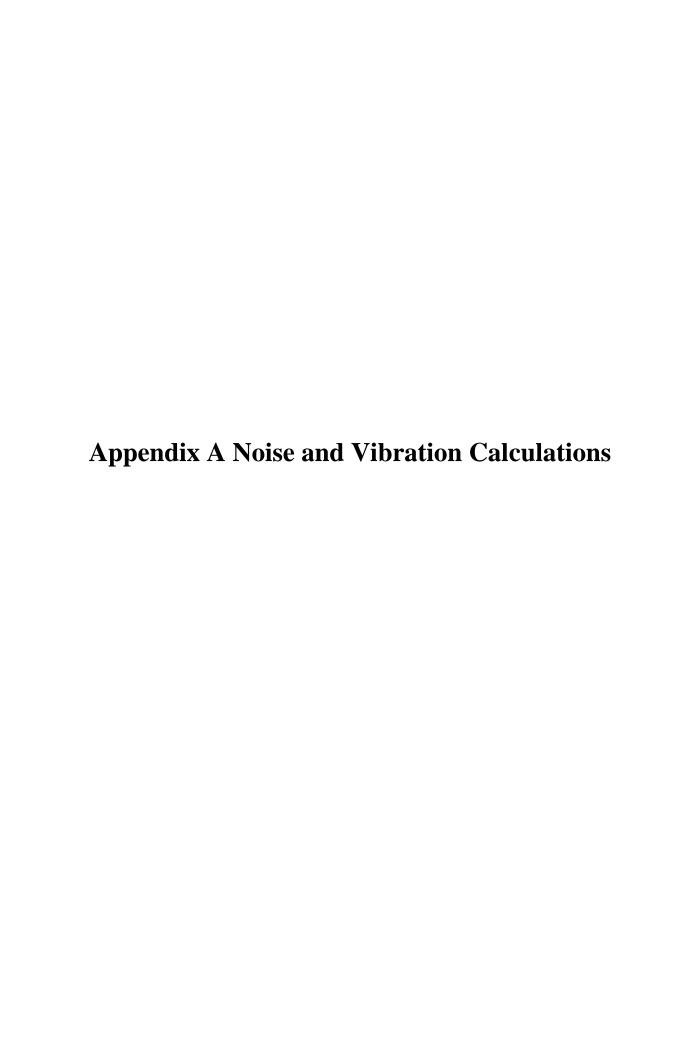
No impacts have been identified related to public airport noise levels, and no mitigation measures are required.

3.5.6 Would the proposed project result in for a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels? (*No Impact*)

Impact Analysis

The project site is not located within the vicinity of a private airstrip. Therefore, no noise impacts to people working or residing in the project area would occur.

Mitigation Measures


No impacts have been identified related to private airport noise levels, and no mitigation measures are required.

3.6 CUMULATIVE IMPACTS

The Rancho Cienega Sports Complex (Phase 1) Project would be completed prior to the proposed project and construction associated with that project would not occur concurrently with the proposed project. All other related projects would be over 1,000 feet from the project site. Noise generated by the proposed project would not be audible at related project sites. Similarly, vibration generated by the proposed project would not be perceptible at related project sites. There is no potential for the proposed project and related projects to combine to increase noise or vibration levels. The proposed project would not generate new vehicle trips to and from the site following construction, or a significant change in permanent noise or vibration levels in the project area. Therefore, the proposed project would not contribute to a cumulative noise or vibration impact.

4.0 REFERENCES

- California Department of Transportation, Technical Noise Supplement, September 2013.
- City of Los Angeles Department of City Planning, West Adams-Baldwin Hills-Leimert Community Plan. June 2016.
- City of Los Angeles Department of Recreation and Parks, *Rancho Cienega Sports Complex*, https://www.laparks.org/reccenter/rancho-cienega-sports-complex, accessed on June 4, 2018.
- Federal Highway Administration, Roadway Noise Construction Model, Software Version 1.1.
- Federal Transit Administration, Transit Noise and Vibration Impact Assessment, May 2006.
- Los Angeles Municipal Code, Section 112.04 (Powered Equipment Intended for Repetitive Use in Residential Areas and Other Machinery, Equipment, and Devices).
- Los Angeles Municipal Code, Section 112.05 (Maximum Noise Level of Powered Equipment or Powered Hand Tools).
- Los Angeles Municipal Code, Section 41.40 (Noise Due to Construction, Excavation Work When Prohibited).
- United States Environmental Protection Agency, *Noise from Construction Equipment and Operations, Building Equipment and Home Appliances*, PB 206717, 1971.

Vibration Annoyance Analysis

Receptor	Distance (feet)	Vibration Level (VdB)	
Multi-Family Residences to the South	160	63	
Multi-Family Residences to the Southwest	450	49	
Dorsey High School Track	300	55	
Dorsey High School Nearest Classroom	550	47	

Equation: Lv(D) = Lv(25 ft) - 30log(D/25)

D = Distance (feet) **Lv(D)** = Vibration Level

Equipment Reference VdB	
Large Bulldozer	87
Loaded Trucks	86
Pile Driver (Impact)	104
Small Bulldozer	58

Source: Federal Transit Administration, Transit Noise and Vibration Impact Assessment, May 2006.

Vibration Damage Analysis

Receptor	Distance (feet)	Vibration Level	
Multi-Family Residences to the South	160	0.0055	
Multi-Family Residences to the Southwest	450	0.0012	
Dorsey High School Track	300	0.0021	
Dorsev High School Nearest Classroom	550	0.0009	

Equation: PPVequip = PPVref x (25/D)^1.5

PPV (equip) is the peak particle velocity in in/sec of the equipment adjusted

for distance

PPV (ref) is the reference vibration level in in/sec at 25 feet (Table 12-2)

D is the distance from the equipment to the receiver.

Equipment Reference PPV	
Large Bulldozer	0.089
Loaded Trucks	0.076
Pile Driver (Impact)	0.644
Small Bulldozer	0.003

Source: Federal Transit Administration, Noise and Vibration Model, 2006

Summation of Noise Levels

Equation: $Ns=10 \times LOG10((10^{(N1/10))}+(10^{(N2/10)})+(10^{(N3/10)})+(10^{(N4/10)}))$

Ns = Noise Level Sum

N1 = Noise Level 1

N2 = Noise Level 2

N3 = Noise Level 3

N4 = Noise Level 4

Source: California Department of Transportation, Technical Noise Supplement, 2013

Noise Distance Attenuation

Equation: Ni = No - 20(log Di/Do)

Di = distance to receptor (Di>Do)

Ni = attenuated noise level of interest

Do = reference distance

No = reference noise level

Source: (Bolt, Beranek, and Newman, 1971)

APPENDIX E

Traffic Impact Analysis Technical Memorandum

1100 Corporate Center Drive, Suite 201, Monterey Park, CA 91754

T: 323.260.4703 | F: 323.260.4705 | www.koacorp.com MONTEREY PARK ORANGE ONTARIO SAN DIEGO

TECHNICAL MEMORANDUM

Date: March 12, 2019

To: Fareeha Kibriya – AECOM

From: Brian Marchetti, AICP

Subject: Traffic Impact Analysis – LABOE Rancho Cienega Celes King III Pool Demolition Project

Overview

The proposed Project involves the replacement of the Celes King III Pool facility with a community front lawn and playground facilities at the Rancho Cienega Recreation Center. The Celes King III Pool is located within the Recreation Center, along Obama Boulevard and east of Martin Luther King Jr. Boulevard. Construction-related trips will access the park site via Obama Boulevard.

The study area applied to the proposed Project included five study intersections within the local area. Traffic counts were conducted to reflect existing traffic conditions at the following signalized intersections:

- 1. La Brea Avenue & Jefferson Boulevard
- 2. La Brea Avenue & Obama Boulevard
- 3. Martin Luther King Jr. Boulevard & Obama Boulevard
- 4. Farmdale Avenue & Obama Boulevard
- 5. Crenshaw Boulevard & Obama Boulevard

Conclusions

The proposed Project would generate a total of 110 daily weekday vehicle trips, including 24 a.m. peak hour trips and 24 p.m. peak hour trips. No significant traffic or circulation impacts are expected to occur due to the Project under either existing baseline or future baseline conditions, therefore, mitigation measures are not recommended.

Project Description and Location

The proposed Project construction would occur at the Celes King III Pool site, which is located within the Rancho Cienega Recreation Center at 5001 Obama Boulevard and is bounded by a paved surface parking lot to the west, a tennis shop to the north, tennis courts to the east, and Obama Boulevard to the south. The Project would require demolition of the existing pool building, followed by construction activities including infill of the pool pit, rough grading of the site, utility installations, landscaping and hardscaping, and installation of playground and shade structures.

Project construction would last approximately 12 months from December 2020 to December 2021. The proposed Project would operate similarly to existing conditions after construction is completed. The Project location and the traffic study area are illustrated in the figure in Attachment A.

Methodology

The focus of this traffic study is on the construction period of the proposed Project. The post-construction operations period will not generate significant levels of additional daily traffic. Selected intersections were analyzed along the construction routes and project site. Study intersections were analyzed for potential impacts due to construction-related traffic.

The steps involved in the analysis included collection of baseline traffic data; analysis of existing, existing with-construction, and future with-construction conditions; and identification of significant impacts. Major signalized intersections near the project site and along the project routes were identified that would potentially be impacted by construction trip generation from the Project site.

Weekday turning movement counts were conducted on Thursday, May 24, 2018 from 7:00 a.m. to 10:00 a.m. and 3:00 p.m. to 6:00 p.m. at the five study intersections. The traffic count worksheets are provided in Attachment B.

Level of Service Methodology

For signalized intersections, the level of service (LOS) is calculated as the volume of vehicles that pass through a facility divided by the capacity of that facility, which produces the volume-to-capacity (V/C) ratio. A facility is considered "at capacity" at a V/C ratio of 1.00 or greater, whereby extreme congestion occurs. This V/C ratio value is a function of hourly volumes, signal phasing, and approach lane configuration on each leg of the intersection.

LOS values range from LOS A to LOS F. LOS A indicates excellent operating conditions with little delay to motorists, whereas LOS F represents congested conditions with excessive vehicle delay. LOS E is typically defined as the operating "capacity" of the roadway. Table 1 defines the LOS criteria for signalized intersections.

Table 1 – Level of Service Definitions

LOS	Flow Condition	Signalized V/C Ratio
А	LOS A describes primarily free-flow operations at average travel speeds, usually about 90 percent of the free-flow speed for the arterial classification. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Stopped delay at signalized intersections is minimal.	0.00 - 0.60
В	LOS B represents reasonably unimpeded operations at average travel speeds, usually about 70 percent of the free-flow speed for the arterial classification. The ability to maneuver within the traffic stream is only slightly restricted and stopped delays are not bothersome. Drivers are not generally subjected to appreciable tension.	0.61 - 0.70
С	LOS C represents stable operations; however, the ability to maneuver and change lanes in mid-block locations may be more than at LOS B, and longer queues, adverse signal coordination, or both may contribute to lower average speeds of about 50 percent of the average free-flow speed for the arterial classification. Motorists will experience appreciable tension while driving.	0.71 - 0.80
D	LOS D borders on a range in which small increases in flow may cause a substantial increase in delay and hence decreases in arterial speed. LOS D may be due to adverse signal progression, inappropriate signal timing, high volumes, or some combination of these factors. Average travel speeds are about 40 percent for free-flow.	0.81 - 0.90
E	LOS E is characterized by significant delays and average travel speeds of one-third the free-flow speed or less. Such operations are caused by some combination of adverse progression, high signal density, high volumes, extensive delays at critical intersections, and inappropriate signal timing.	0.91 - 1.00
F	LOS F characterizes arterial flow at extremely low speeds below one-third to one-fourth of the free-flow speed. Intersection congestion is likely at critical signalized locations, with high delays and extensive queuing. Adverse progression is frequently a contributor to this condition.	Over 1.00

Source: KOA Corporation

Determination of Traffic Impacts

As defined by the Los Angeles Department of Transportation (LADOT) traffic study guidelines, significant impacts of a proposed project on a facility must be mitigated to a level of insignificance, where feasible. A significant impact is typically identified if project-related traffic would case service levels to deteriorate beyond a threshold limit specified by the overseeing agency. Impacts can also be significant if an intersection is already operating below an acceptable LOS and project traffic would cause a further decline below a certain threshold. LADOT has established specific thresholds for project-related increases in the V/C ratio of signalized study intersections.

Table 2 defines the increases in peak-hour V/C ratios that would result in significant impacts.

Table 2 - Significant Traffic Impact Thresholds for Signalized Intersections

		5 . G. G
Level of Service	Final V/C*	LADOT Significance: Project Related Volume-to-Capacity (V/C) increase
С	< 0.70 – 0.80	Equal to or greater than 0.040
D	< 0.80 – 0.90	Equal to or greater than 0.020
E and F	0.90 or more	Equal to or greater than 0.010

^{*} Final V/C is the V/C ratio at an intersection, considering impacts from the project, ambient growth, trips from area/cumulative projects, but without proposed project traffic impact mitigations.

The Congestion Management Plan for Los Angeles County requires that the traffic impact of individual projects of potential regional significance be analyzed. A specific system of arterial roadways and all freeways comprises the CMP system. In accordance with the CMP Transportation Impact Analysis Guidelines, a traffic impact analysis is conducted for the following scenarios:

- At CMP arterial monitoring intersections, including freeway on-ramps or off-ramps, where the proposed project would add 50 or more vehicle trips during either the morning or evening weekday peak hours; and
- At CMP mainline freeway monitoring locations where the project would add 150 more trips in either direction during either the morning or evening weekday peak hours.

The County of Los Angeles CMP level of significance thresholds are not intended to be applied to construction activities.

The construction Project trip generation was based on the number of construction workers and construction truck trip estimates. The trip generation total was determined based on the most intense period of construction activity for the Project. To evaluate a worst-case scenario for construction trip generation of the proposed Project, it is assumed that each employee will drive to and from the work areas with 50% arriving and departing during peak periods. Construction truck trips were converted to a passenger car equivalent (PCE) total, using a factor of 2.5 per truck. This factoring was used to increase truck volumes due to additional roadway space and design capacity utilized by larger and slower trucks. This applied value matches typical factors used in area studies that include trips generated by trucking activities. The factor is based on conservative factors defined by the Southern California Association of Governments (SCAG) Heavy Duty Truck Model.

Existing Area Traffic Conditions

For the traffic impact analysis, five locations were defined as study intersections. Existing traffic volumes were collected on Thursday, May 24, 2018. The following are the five study intersections:

- 1. La Brea Avenue & Jefferson Boulevard
- 2. La Brea Avenue & Obama Boulevard
- 3. Martin Luther King Jr. Boulevard & Obama Boulevard
- 4. Farmdale Avenue & Obama Boulevard
- 5. Crenshaw Boulevard & Obama Boulevard

Table 3 summarizes the characteristics of key roadway segments along the project corridor of construction.

Table 3 – Roadway Characteristics

Roadway	Classification	Lar NB/EB	nes SB/WB	Median Type	Posted Speed Limit (mph)	General Land Use
La Brea Avenue	Modified Avenue I	3	3	CTL	35	Commercial/Residential
Farmdale Avenue	Collector Street	1	1	ST	25	Residential
Crenshaw Boulevard	Modified Avenue I	2	2	DY	35	Commercial
Exposition Boulevard	Modified Collector	1	1	DY	35	Industrial
Jefferson Boulevard	Avenue II	2	2	DY	35	Commercial
Obama Blvd	Modified Avenue I	2	2	DY	35	Residential
Martin Luther King. Jr Boulevard	Modified Avenue I	2	3	CTL	40	Residential/Commercial

DY – Double Yellow

Existing Area Transit Service

The Project study area is served by public transit bus lines operated by the Los Angeles County Metropolitan Transportation Authority (Metro). Table 4 provides a description of the transit lines that serve the Project corridors.

ST - Striped

CTL - Center Turn Lane

Table 4 – Transit Service Summary

Agency	Line	From	From To Via		Peak Frequency
Metro	Expo Line	Downtown Los Angeles	Culver City		12 Minutes
Metro	212/312	Hollywood	Hollywood Hawthorne/Lennox Green Line Station		10-12 Minutes
Metro	105	West Hollywood	Vernon	Obama Blvd/MLK Boulevard	_10-16 Minutes
Metro	<u>38</u>	Washington/Fairfax	Downtown Los Angeles	Jefferson Boulevard	_12-24 Minutes
Metro	210	Redondo Beach	Hollywood	Crenshaw Boulevard	_10-20 Minutes
Metro	705	West Hollywood	Vernon	Obama Blvd/MLK Boulevard	_10-20 Minutes
Metro	<u>710</u>	Redondo Beach	Hollywood	Crenshaw Boulevard	_10-20 Minutes
Metro	740	West Adams	Redondo Beach	Crenshaw Boulevard/La Brea Avenue	15 Minutes
LADOT	Crenshaw Dash	Neighborhood C	Circulator Shuttle	La Brea Avenue/Crenshaw Boulevard/Coliseum Street/Santa Rosalia Drive	20 Minutes

Existing weekday a.m. and p.m. peak-hour traffic conditions within the study area were documented. Based on the traffic counts conducted at the study intersections, a LOS value and corresponding volume-to-capacity ratio was determined for each study intersection.

Table 5 provides the V/C and LOS values under existing conditions, for the a.m. and p.m. peak hours.

Table 5 – Intersection Level of Service Calculations – Existing Conditions (2018)

	Ctudy Interceptions		eak	PM Peak		
	Study Intersections	V/C	LOS	V/C	LOS	
1	La Brea Avenue & Jefferson Boulevard	0.895	D	0.917	E	
2	La Brea Avenue & Obama Blvd	0.946	E	0.975	E	
3	Martin Luther King Jr. Boulevard & Obama Blvd	0.403	Α	0.432	A	
4	Farmdale Avenue & Obama Blvd	0.407	Α	0.454	A	
5	Crenshaw Boulevard & Obama Blvd	0.669	В	0.647	В	

LOS = Level of Service; V/C = Volume-to-Capacity Ratio

The data in Table 5 indicates that three of the five intersections are currently operating at LOS D or better during the a.m. and p.m. peak hours. The following intersections are operating at LOS E (poor operating conditions, nearing capacity):

- La Brea Avenue & Jefferson Boulevard: Operating at LOS E in the p.m. peak hour.
- La Brea Avenue & Obama Boulevard: Operating at LOS E in the a.m. and p.m. peak hours.

Trip Generation Estimate

It is assumed that a majority of the construction workers would arrive at the construction site by personal vehicles during the a.m. peak hour and all depart during the p.m. peak hour. During the project construction period, truck trips would occur over an eight-hour period that begins during the a.m. peak hour and is completed during the

p.m. peak hour. The truck trips can be divided into materials delivery trips, which will transport materials to and from the site, and soil import trips, which will bring soil to the site to fill the pool pit.

Demolition and construction activities would last approximately 12 months from December 2020 to December 2021. A maximum of 18 round truck trips would occur per day—including 10 trips by delivery trucks and 8 trips by soil import trucks. Approximately 20 construction workers would be on-site each day.

Table 6 provides the construction Project trip generation calculations. It is estimated that the proposed Project would generate a total of 110 daily weekday vehicle trips, including 24 a.m. peak hour trips and 24 p.m. peak hour trips.

Table 6 – Trip Generation

					AM PEAK HOUR					PM PEAK HOUR					
	AVERAGE DAILY TRIPS			Truck	Trips*		1		tal ips	Truck Trips*		Employee Trips		Total Trips	
TRIP GENERATION	Trucks*	Employee	Total	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out
Field Personnel	0	20	20			10	0	10	0			0	10	0	10
Materials Delivery	50	0	50	4	4			4	4	4	4			4	4
Soil Import	40	0	40	3	3			3	3	3	3			3	3
TOTAL TRIPS	90	20	110	7	7	10	0	17	7	7	7	0	10	7	17

^{*} Truck trips include a Passenger Car Equivalency (PCE) factor of 2.5.

Note: An average of 10 daily delivery truck round trips and 8 daily soil import truck trips would occur during the most intense construction period. Daily totals were multipled by the PCE factor.

Existing Plus-Project Construction Conditions

An existing plus-Project construction scenario was included in this analysis to comply with rulings on existing conditions baseline analysis from the *Sunnyvale West Neighborhood Association v. City of Sunnyvale City Council and Neighbors for Smart Rail v. Expositions Metro Rail Construction Authority* CEQA court cases. This additional analysis scenario provides information about project impacts under the current baseline conditions.

The study intersection operations for the existing and existing plus-Project construction scenarios are summarized in Table 7.

Table 7 – Study Intersection Conditions – Existing plus-Project Conditions

	Study Intercections		eak	PM Peak		
	Study Intersections	V/C	LOS	V/C	LOS	
1	La Brea Avenue & Jefferson Boulevard	0.896	D	0.918	E	
2	La Brea Avenue & Obama Blvd	0.948	E	0.977	E	
3	Martin Luther King Jr. Boulevard &Obama Blvd	0.405	Α	0.432	A	
4	Farmdale Avenue & Obama Blvd	0.412	Α	0.456	A	
5	Crenshaw Boulevard & Obama Blvd	0.671	В	0.650	В	

LOS = Level of Service; V/C = Volume-to-Capacity Ratio

The data in Table 7 indicates that three of the five intersections are currently operating at LOS D or better during the a.m. and p.m. peak hours. The following intersections are operating at LOS E (poor operating conditions, nearing capacity):

- La Brea Avenue & Jefferson Boulevard: Operating at LOS E in the p.m. peak hours.
- La Brea Avenue & Obama Boulevard: Operating at LOS E in the a.m. and p.m. peak hours.

Impact Analysis – Existing plus-Project Conditions

Project trips were added to the existing conditions analysis, to provide an existing plus-Project construction impact analysis. The existing and existing plus-project construction traffic V/C and LOS values are provided by Table 8. Traffic impacts created by the proposed Project were determined by comparing the existing conditions to the existing with–Project construction traffic conditions.

Table 8 – Existing plus-Project Conditions and Impacts

			Existing (2018)		Existing (2 Proje				
		Peak	Condit	ion	Construc	ction	Change in	Sig	
	Study Intersections	Hour	V/C	LOS	V/C	LOS	V/C	Impact?	
1	La Brea Avenue & Jefferson Boulevard	AM	0.895	D	0.896	D	0.001	No	
		PM	0.917	E	0.918	E	0.001	No	
2	La Brea Avenue & Obama Blvd	AM	0.946	E	0.948	E	0.002	No	
		PM	0.975	E	0.977	E	0.002	No	
3	Martin Luther King, Jr. Boulevard & Obama Blvd	AM	0.403	Α	0.405	Α	0.002	No	
		PM	0.432	Α	0.432	<u>A</u>	0.000	No	
4	Farmdale Avenue & Obama Blvd	AM	0.407	Α	0.412	Α	0.005	No	
		PM	<u>0.454</u>	Α	0.456	<u>A</u>	0.002	No	
5	Crenshaw Boulevard & Obama Blvd	AM	0.669	В	0.671	В	0.002	No	
		PM	<u>0.647</u>	В	0.650	<u>B</u>	0.003	No	

LOS = Level of Service, V/C = Volume-to-Capacity Ratio

As previously discussed, the LADOT has established specific thresholds for project-related increases in the V/C ratio which are considered significant impacts. As shown in Table 8, the proposed Project would not create any impacts under existing baseline conditions.

Existing scenario and Existing plus-Project scenario level of service worksheets are provided in Attachment C.

Future Baseline/Pre-Project Conditions

To define future baseline conditions, ambient traffic volume growth of one percent per year was added to the year-2018 traffic counts to define project-year 2021 conditions, in addition to trips from cumulative projects. An updated list of planned/pending projects was analyzed, and trip generation and general assignment was computed to provide this cumulative analysis and future baseline volumes.

Table 9 provides the trip generation of the cumulative projects for the immediate area.

Table 9 – Cumulative Projects Trip Generation

			lative 110		Daily	AM Peak Hour			PM Peak Hour			
ID	Location	Land Use	Intensity	Units	Total	Total	In	Out	Total	In	Out	
1	3221 S La Cienega Blvd	Mixed Use	1,218	d.u.	10,136	737	319	419	849	467	382	
2	4220 W Montclair St	Apartments	46	d.u.	358	24	6	18	34	21	13	
	4220 W MONICIAN St	Retail	1.214	k.s.f.	330	24	0	10	34	21	15	
3	2905 W Exposition PI	Condominiums	78	d.u.	453	34	5	29	40	27	13	
4	4115 W Martin Luther King Jr Blvd	School	500	students	1,054	344	210	134	72	31	41	
5	4252 Crenshaw Blvd	Apartments	110	d.u	372	19	-1	20	20	16	4	
		Hotel	43	rooms								
6	5710 W Adams Blvd	Retail	0.86	k.s.f	536	38	23	15	45	24	21	
		Restaurant	2.15	k.s.f	1							
		Apartments	410	d.u.								
		Condominiums	551	d.u.	1		447		1 222	665		
		Hotel	400	rooms	12.512							
_		Office	148.000	k.s.f		875		428			660	
7	3650 W Martin Luther King Jr Blvd	Other	50.000	k.s.f	13,512			428	1,333		668	
		Theater	2,823	seats	1							
		Retail	978.251	k.s.f								
		Other	44.052	k.s.f	1							
8	3900 W Martin Luther King Jr Blvd	Medical Office	105.000	k.s.f.	2,846	188	148	40	228	63	165	
9	4018 S Buckingham Rd	Senior Housing	130	d.u.	447	26	10	16	33	18	15	
10	3831 W Stocker St	Apartments	127	d.u.	710	52	4	48	69	50	19	
11	F101 W/ Adama Blind	Apartments	72	d.u.	2.051	121	F0	63	245	172	172	
11	5181 W Adams Blvd	Retail	33.860	k.s.f.	3,951	121	59	62	345	173	172	
	TOTAL				34,375	2,458	1,230	1,229	3,068	1,555	1,513	

Impact Analysis – Future with Project Conditions

Project trips were added to the future baseline conditions analysis, to provide the future post-Project construction impact analysis. This is summarized in Table 10 below.

Table 10 – Future Post-Project Conditions and Impacts

		Peak	Existing (Condit		Future (2021) No Project Construction		Future (2021) With Project Construction		Change in	Sig
	Study Intersections	Hour	V/C	LOS	V/C	LOS	V/C	LOS	V/C	Impact?
1	La Brea Avenue & Jefferson Boulevard	AM	0.895	D	0.990	E	0.991	E	0.001	No
		PM	0.917	E	1.027	F	1.027	F	0.000	No
2	La Brea Avenue & Obama Blvd	AM	0.946	E	1.077	F	1.079	F	0.002	No
		PM	0.975	E	1.117	F	1.119	F	0.002	No
3	Martin Luther King, Jr. Boulevard & Obama Blvd	AM	0.403	Α	0.463	Α	0.466	Α	0.003	No
		PM	0.432	Α	0.538	Α	0.539	<u>A</u>	0.001	No
4	Farmdale Avenue & Obama Blvd	AM	0.407	Α	0.421	Α	0.426	Α	0.005	No
		PM	0.454	Α	0.470	Α	0.472	<u>A</u>	0.002	No
5	Crenshaw Boulevard & Obama Blvd	AM	0.669	В	0.843	D	0.845	D	0.002	No
		PM	0.647	В	0.854	D	0.858	D	0.004	No

 $LOS = Level \ of \ Service, \ V/C = Volume-to-Capacity \ Ratio$

The proposed Project construction activities would not create any impacts under future baseline conditions at any of the study intersections.

The future pre-Project and future post-Project analysis worksheets are provided in Attachment C.

ATTACHMENT A PROJECT SITE AND TRAFFIC STUDY AREA

LABOE Rancho Cienega Celes King III Pool Demolition Project Site and Traffic Study Area

ATTACHMENT B

EXISTING TRAFFIC COUNTS

INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AimTD LLC. tel: 714 253 7888 cs@aimtd.com

	DATE: Thu, May 24, 18	LOCATION NORTH & EAST & W	SOUTH:		LA Rancho La Brea Jefferson					PROJECT : LOCATION CONTROL:	l#:	SC1748 3 SIGNAL			_			
	NOTES:										AM PM MD OTHER OTHER	∢W	N S ¥	E▶	9	Add U-	Tums to Le	ft Turns
		N	IOR I HBOUI	ND	į	OUTHBOU	ND		EASTBOUN	D	'	MESTBOON	D			U-TUR	NS	
		NL	La Brea	NR	SL	La Brea	SR	EL	Jefferson ET	ER	WL	Jefferson WT	WR	TOTAL	NB SB	EB	WB	TTL
	LANES:	1	3	0	1	3	0	1	2	1	1	2	0		0 0	0	0	
Г	7:00 AM	115	528	27	10	248	35	18	47	32	44	241	8	1,353	0 0	0	0	0
	7:15 AM 7:30 AM	92 115	438 474	41	10 7	285 256	23 18	23 13	68 84	41 50	49 46	220 217	3 15	1,293	0 0	0	0	0
	7:30 AM 7:45 AM	86	474	38	13	325	21	15	78	83	78	217	19	1,335	1 0	0	0	1
	8:00 AM	100	478	45	7	294	13	19	90	67	89	203	19	1,424	0 0	0	0	0
	8:15 AM	88	460	26	11	308	43	23	85	79	69	232	11	1,435	0 0	Ō	0	0
	8:30 AM	104	506	44	9	284	32	11	96	79	58	245	9	1,477	0 0	0	0	0
	8:45 AM	89	481	34	15	295	27	14	81	60	65	253	14	1,428	0 0	0	0	0
	9:00 AM 9:15 AM	79 73	436 405	32 39	8	251 254	38 27	11	69	52 61	96 126	252 209	14	1,338	0 0	0	0	0
Ā	9:15 AM 9:30 AM	81	405	29	8	254	39	21	69	60	97	209	8	1,281	1 0	0	0	1
Ι`	9:45 AM	63	429	23	14	236	39	13	57	57	97	166	11	1,375	1 0	0	0	1
	VOLUMES	1,085	5,589	418	119	3,307	355	192	884	721	914	2,694	140	16,418	4 0	0	0	4
	APPROACH %	15%	79%	6%	3%	87%	9%	11%	49%	40%	24%	72%	4%			1		
	APP/DEPART	7,092	/	5,921	3,781	/	4,946	1,797	/	1,421	3,748	/	4,130	0	1			
	BEGIN PEAK HR		7:45 AM												1			
ı	VOLUMES	378	1,937	153	40	1,211	109	68	349	308	294	905	58	5,810	1			
	APPROACH % PEAK HR FACTOR	15%	78% 0.943	6%	3%	89% 0.939	8%	9%	48% 0.969	42%	23%	72% 0.976	5%	0.983	1			
	APP/DEPART	2.468	0.743	2.063	1,360	0.737	1.814	725	0.707	542	1,257	0.770	1,391	0.763	1			
Н	03:00 PM	41	379	36	13	343	14	39	142	98	85	126	8	1,324	1 0	0	0	1
	3:15 PM	58	438	33	10	343	14	28	130	102	79	88	17	1,340	0 0	0	0	0
	3:30 PM	40	352	47	8	338	14	22	159	121	96	100	10	1,307	1 0	0	0	1
	3:45 PM	40	411	55	16	382	18	19	127	91	88	87	10	1,344	0 0	0	0	0
	4:00 PM 4:15 PM	45 47	350 432	44 46	9	344 410	16 9	29 15	148 126	103 102	95 107	101 92	14 15	1,298	0 1	0	0	0
	4:30 PM	52	349	62	14	354	7	9	151	102	110	117	15	1,414	0 0	0	0	0
	4:45 PM	46	408	83	19	381	10	12	150	99	89	86	8	1,391	0 0	0	0	0
	5:00 PM	26	400	56	11	365	12	26	153	88	105	107	9	1,358	0 0	Ō	0	0
Δ	5:15 PM	49	448	56	14	412	9	18	129	114	105	90	11	1,455	0 0	0	0	0
۵		44	371	62	5	368	9	17	138	96	128	150	20	1,408	0 0	0	0	0
	5:45 PM VOLUMES	45 533	374 4.712	67 647	9	397 4.437	10 142	9 243	119 1.672	97 1.211	113	1.254	7 144	1,357 16,336	2 1	0	0	3
	APPROACH %	9%	80%	11%	3%	94%	3%	8%	53%	39%	46%	48%	6%	10,330		U	U	3
ı	APP/DEPART	5.892	7	5.100	4.720	7170	6.850	3.126	/	2,459	2.598	/	1.927	0	1			
	BEGIN PEAK HR		4:45 PM												1			
	VOLUMES	165	1,627	257	49	1,526	40	73	570	397	427	433	48	5,612	1			
l	APPROACH %	8%	79%	13%	3%	94%	2%	7%	55%	38%	47%	48%	5%		1			
	PEAK HR FACTOR	2.040	0.926	1.740	1 /15	0.928	2.250	1.040	0.974	07/	000	0.762	/20	0.964	1			
_	APP/DEPART	2,049	/	1,748	1,615	/	2,350	1,040	/	876	908	/	638	0	i			

La Brea NORTH SIDE

Jefferson WEST SIDE EAST SIDE Jefferson

> SOUTH SIDE La Brea

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
	8:00 AM
5	8:15 AM
AM	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
ΡM	4:15 PM
Ь	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:30 PM 5:45 PM

		PED AND	BIKE	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
10	2	6	22	40
2	5	1	17	25
7	6	14	29	56
6	10	9	18	43
8	9	8	21	46
5	10	5	25	45
4	8	9	17	38
11	7	9	12	39
5	5	10	9	29
13	9	8	23	53
10	15	11	17	53
8	4	15	22	49
89	90	105	232	516
0	0	0	9	9
0	7	0	27	34
2	1	0	18	21
0	0	3	12	15
0	1	0	13	14
0	3	0	17	20
9	12	15	24	60
13	11	15	24	63
8	19	10	23	60
11	12	23	19	65
6	19	13	30	68
8	13	10	16	47
57	98	89	232	476

	PEDEST	RIAN CRO	SSINGS	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
6	0	4	13	23
1	1	0	8	10
4	4	10	13	31
3	8	5	11	27
4	5	7	13	29
1	9	4	23	37
2	6	8	16	32
6	6	8	8	28
3	5	9	8	25
10	7	8	20	45
7	11	9	16	43
5	2	15	20	42
52	64	87	169	372
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
5	6	7	15	33
10	4	14	13	41
7	12	10	17	46
10	3	18	16	47
6	8	11	20	45
6	9	9	13	37
44	42	69	94	249

E	BICYC			
NS	SS	ES	WS	TOTAL 8
3	1	1	3 2 1	8
1	0	0	2	5
2		1	1	4
1 4	1	0	0	2
4	3	1	3	11
2 5	1	1	0	6
2	2	1	1	6
5		1		8
3	0	1	0	3
3	2	0	1	6
3		1	0	8
3 33 0	<mark>2</mark> 19	0	2	7
33	19	8	14 0	74 0
0	0	0	0	0
U	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0 3 2 1	0	0	0	0 0 12
3	5 5 5	3	1	12
2	5		2	9 10
1	5	0		10
1	7	4	1	13
0	5 4	2	3	10
9	4	1		9 63
9	31	10	13	63

	SC	HOOL AGE	PED	
NS	SS	ES	WS	TOTAL
1	1	1	6	9
0	2	1	7	10
1	2	3	15	21
2	1	4	7	14
0	1	0	5	6
0	0	0	2	2
0	0	0	0	0
0	0	0	3	3
0	0	0	1	1
0	0	0	2	2
0	0	1	1	2
0	0	0	0	0
4	7	10	49	70
0	0	0	9	9
0	7	0	27	34
2	1	0	18	21
0	0	3	12	15
0	1	0	13	14
0	3	0	17	20
1	1	5	8	15
1	2	1	9	13
0	2	0	2	4
0	2	1	2	5
0	6	0	7	13
0	0	0	1	1
4	25	10	125	164

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

NOED ITS	PREPARED BY: Aim	TD LLC. tel: 714 253	7888 cs@aimto	i.com					
STREET: North / Sounth		La Brea							
East/West		Jefferson							
Day:	Thursday, May 24, 2018		Weather Sunn	у					
Hours:									
School Day Yes	District		I/S CODE						
DUAL-	N/B	S/B	E/B	W/B					
WHEELED BIKES BUSES	738 18 93	552 27 85	344 50 43	344 42 64					
AM PK 15 MIN	N/B TIME 670 7:00:00 AM	S/B 362	TIME 2 8:15:00 AM	E/B TIM 187	E 8:15:00 AM	W/B T	9:00:00 AM		
PM PK 15 MIN	553 5:15:00 PM	439	5 5:15:00 PM	302	3:30:00 PM	298	5:30:00 PM		
AM PK HOUR	2487 7:00:00 AM	1360	7:45:00 AM	725	7:45:00 AM	1374	8:45:00 AM		
PM PK HOUR	2049 4:45:00 PM	162	1 5:00:00 PM	1079	3:15:00 PM	955	5:00:00 PM		
NORTHBOUND Appr	oach		SOUTHBOUND A	pproach		Т	OTAL	XING S/L	XING N/L
8-9 3 9-10 2 3-4 1 4-5 1	Th Rt 08 1933 146 81 1925 149 96 1731 123 79 1580 171 90 1539 235 64 1593 241	Total 2487 2487 2455 2150 1930 1964 1998	Hours L 7-8 8-9 9-10 3-4 4-5 5-6	t Th 40 1114 42 1181 37 1012 47 1406 55 1489 39 1542	97 115	otal 1251 1338 1192 1513 1586 1621	N-S 3738 3793 3342 3443 3550 3619	Ped Sch 13 6 26 1 25 0 0 8 10 7 32 10	Ped Sch 14 4 13 0 25 0 0 2 15 2 29 0
TOTAL 16	18 10301 1065	12984	TOTAL	260 7744	497	8501	21485	106 32	96 8
EASTBOUND Approa	ach		WESTBOUND Ap	pproach		Т	OTAL	XING W/L	XING E/L
8-9 9-10 3-4 4-5 5-6	Th Rt Total 69 2777 206 67 352 285 56 255 230 08 558 412 65 575 404 70 539 395 35 2556 1932	552 704 541 1078 1044 1004	Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Th Rt 217 903 281 933 416 858 348 401 401 396 451 457 2114 3948	53	1 E 1165 1267 1316 794 849 955 6346	-W 1717 1971 1857 1872 1893 1959	Ped Sch 45 35 60 10 64 4 0 66 28 47 66 12 263 174	Ped Sch 19 9 27 0 41 1 0 3 21 6 48 1

ST LOS ANGEN

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth		La Brea	a					
East/West		Jefferso	n					
Day:	Thursday, May 24, 2018		Weather Sun	ny				
Hours:								
School Day: Ye	s District		I/S CODE					
	N/B	S/B	E/B	W/B				
DUAL- WHEELED	738	552	344	344				
BIKES BUSES	0 93	0 85	0 43	0 64				
	N/B TIME	S/B	TIME			W/B TIME		
AM PK 15 MIN	700 7:00:00 AM		375 8:15:00 AM		8:30:00 AM	380 9:00:00 AM		
PM PK 15 MIN	568 5:15:00 PM		453 4:15:00 PM	313	3:30:00 PM	306 5:30:00 PM		
AM PK HOUR	2591 7:00:00 AM		1412 7:45:00 AM	758	7:45:00 AM	1435 8:45:00 AM		
PM PK HOUR	2089 4:45:00 PM		1676 5:00:00 PM	1123	3:15:00 PM	982 5:00:00 PM		
NORTHBOUND App	roach		SOUTHBOUND	Approach		TOTAL	XING S/L	XING N/L
Hours L		Total		Lt Th	Rt Total	N-S	Ped Sch	Ped Sch
7-8 8-9	420 2021 151 393 2026 154	2591 2572	7-8 8-9	41 1169 44 1231	101 1311 120 1395		0 0	0 0
9-10	306 1798 126 182 1640 175	2230 1997	9-10 3-4	40 1055 50 1457	153 1247 65 1572		0 0	0 0
3-4 4-5	195 1580 239	2014	4-5	61 1559	43 1663	3569 3677	0 0	0 0
5-6	168 1632 244	2043	5-6	41 1594	42 1676		0 0	0 0
TOTAL	1663 10695 1088	13446	TOTAL	276 8064	523 8862	22308	0 0	0 0
EASTBOUND Appro	ach		WESTBOUND A	Approach		TOTAL	XING W/L	XING E/L
Hours Lt	Th Rt To		Hours Lt		Rt Total	E-W	Ped Sch	Ped Sch
7-8	78 296 215	588	7-8	229 933	50 1211		0 0	0 0
8-9 9-10	73 371 296 63 272 241	739 575	8-9 9-10	294 964 434 898	56 1313 45 1377	2052 1951	0 0	0 0
3-4	111 578 427	1116	3-4	364 413	48 824	1939	0 0	0 0
4-5	68 607 413	1087	4-5	412 410	56 877		0 0	0 0
5-6	71 556 408	1035	5-6	464 469	49 982	2016	0 0	0 0
TOTAL	463 2678 1998	5138	TOTAL	2195 4084	303 6582	11720	0 0	0 0
					•			

INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AimTD LLC. tel: 714 253 7888 cs@aimtd.com

	DATE: Thu, May 24, 18	LOCATION NORTH & EAST & W	SOUTH:		LA Rancho La Brea Obama)				PROJECT : LOCATION CONTROL:	I#:	SC1748 4 SIGNAL						
	NOTES:										AM PM MD OTHER OTHER	⋖ W	N S V	E▶		Add	l U-Turns to	Left Turns
		NORTHBOUND SOUTHBOUND La Brea La Brea						EASTBOUN Obama				D	U-TURNS					
	LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 1	EL 1	ET 3	ER 0	WL 1	WT 2	WR 1	TOTAL	NB SB	EB 0	WB 0	TTL
AM	7:00 AM 7:15 AM 7:30 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	36 33 28 51 36 34 27 44 43 47 27 21 427 9% 4,944	357 373 374 357 390 308 434 366 397 270 4,439 90% / 8:00 AM 1,489 90% 0.846	2 0 2 7 7 3 1 1 7 10 9 11 12 14 7 8 6,627	34 54 52 63 50 54 65 54 46 47 49 48 616 13% 4,878	203 258 241 331 391 320 324 307 284 308 283 3,583 73% (0.929	72 44 69 71 50 30 38 56 32 107 60 50 50 4,334	33 77 81 91 47 76 55 44 55 47 67 64 737 84% 2,139	44 95 80 106 149 104 120 96 117 70 102 106 1,189 56% /	9 14 18 26 32 27 17 20 16 11 10 13 213 213 10% 1,883	24 43 60 40 51 40 41 55 46 39 56 43 11% 4,932	310 269 262 195 278 189 248 264 213 261 279 175 2,943 60% 7	138 119 139 125 165 114 165 112 102 98 107 67 1,451 29% 4,049 556 32%	1,341 1,363 1,405 1,480 1,551 1,450 1,411 1,513 1,352 1,419 1,454 1,154 16,893 0 5,925 0,955	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
Md	03:00 PM 3:15 PM 3:30 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	1,631 24 18 20 21 22 16 29 20 21 22 10 30 21 22 4,547 83 5%	355 317 328 360 334 355 286 360 350 350 350 350 360 4,091 90% 7 5:00 PM 1,394 91% 0,962	222 22 25 21 15 12 21 21 16 13 11 17 12 18 203 4% 5,999	62 64 87 73 84 64 74 71 62 74 69 72 856 13% 6,620	406 401 416 473 414 467 382 444 406 503 389 487 5,188 78% 76% 0,897	35 44 34 34 38 37 41 36 63 78 61 85 576 9% 6,069	787 100 99 82 73 75 90 97 95 105 75 103 78 1,072 25% 4,331	245 2265 2261 2258 329 228 290 226 261 214 256 210 3,043 70% 7	19 19 17 17 19 15 18 14 24 12 19 11 26 4,102 78 6%	1,722 42 49 44 46 62 31 58 38 67 70 72 76 56 665 20% 3,249 274 22%	134 116 1112 124 131 123 149 146 182 142 228 160 1,747 54% 7	1,274 80 80 88 70 62 74 73 74 63 64 60 72 57 837 26% 2,577	1,524 1,503 1,494 1,560 1,562 1,546 1,505 1,505 1,625 1,625 1,626 18,747 0 6,503 0.988	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

La Brea NORTH SIDE

Obama WEST SIDE

SOUTH SIDE

EAST SIDE **O**bama

La Brea

Н	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
	8:00 AM
5	8:15 AM
AM	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
PM	4:15 PM
۵	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

		PED AND		
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
17	5	27	11	60
20	10	26	5	61
11	14	24	15	64
15	6	22	11	54
16	4	25	10	55
20	7	26	19	72
8	11	17	8	44
9	7	19	16	51
11	11	25	17	64
9	14	29	12	64
11	23	22	19	75
11	6	8	9	34
158	118	270	152	698
12	28	34	33	107
32	32	39	36	139
19	27	42	23	111
23	27	35	43	128
21	39	32	46	138
25	34	42	40	141
29	31	49	28	137
34	26	60	30	150
13	38	29	38	118
15	30	41	44	130
22	26	37	22	107
11	26	33	22	92
256	364	473	405	1,498

N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
12	3 3 DE	20	W 31DE	44
17	10	24	4	55
11	10	20	11	52
15	4	22	8	49
16	4	23	10	53
20	6	22	19	67
8	10	17	8	43
9	7	14	16	46
9	10	21	13	53
7	12	26	12	57
11	20	21	19	71
11	6	7	9	33
146	103	237	137	623
10	25	30	29	94
25	26	34	19	104
16	19	37	13	85
17	22	32	28	99
19	31	28	31	109
25	30	36	35	126
27	26	42	22	117
30	22	41	25	118
13	36	27	35	111
10	25	34	34	103
22	23	36	19	100
11	22	33	16	82
225	307	410	306	1,248

		USSIN	103
SS	ES	WS	TOTAL 5
1	2		5
			1
	0	0	0
	0	0	0
	2	0	2
1	1	0	2 2 1
1	0	0	1
	1	0	1
0	1	1	4
0	2	0	4
2	0	0	2
0	1	0	1
5	10	2	23 10
	2		
	2	3	6
	2	1	5
		2	6 7 5
	3	1	7
1	3		5
	3	1	7
2	0	1	4
	2		2
0	2	0	3
1	1	3	5
1		4	5
12	21	20	65
	SS 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	SCHOOL AGE PED											
NS	SS	ES	WS	TOTAL								
4	0	5	2	11								
2	0	2	1	5								
0	4	4	4	12								
0	2	0	3	5								
0	0	0	0	0								
0	0	3	0	3								
0	0	0	0	0								
0	0	4	0	4								
0	1	3	3	7								
0	2	1	0	3								
0	1	1	0	2								
0	0	0	0	0								
6	10	23	13	52								
0	0	2	1	3								
6	6	3	14	29								
2	7	3	9	21								
4	4	2	13	23								
0	7	1	14	22								
0	3	3	4	10								
0	3 4	3	4 5	10 13								
0 0 3	3 4 2	3 4 19	4 5 4	10 13 28								
0	3 4 2 2	3 4 19 0	4 5	10 13 28 5								
0 0 3	3 4 2 2 5	3 4 19	4 5 4	10 13 28 5 24								
0 0 3 0	3 4 2 2 5	3 4 19 0	4 5 4 3 10 0	10 13 28 5 24 2								
0 0 3 0 4	3 4 2 2	3 4 19 0 5	4 5 4 3 10	10 13 28 5 24								

1809 4232

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

TOTAL

STREET:	PREPARED BY: AimTD L	LC. tel: 714 253 7888 cs@	aimtd.com					
North / Sounth		La Brea						
East/West		Obama						
Day:	Thursday, May 24, 2018	Weather	Sunny					
Hours:								
School Day Yes	District	I/S CODE						
DUAL-	N/B S	B E/B	W/B					
WHEELED BIKES	588	683 286 22 17						
BUSES	31 75	22 17 124 79						
	N/B TIME	S/B TIME	E/B T	ГІМЕ	W/B	TIME		
AM PK 15 MIN	488 8:45:00 AM	475 8:15:00 AM	228	8:00:00 AM	494	8:00:00 AM		
PM PK 15 MIN	401 5:45:00 PM	655 5:15:00 PM	422	4:00:00 PM	376	5:30:00 PM		
AM PK HOUR	1777 8:45:00 AM	1796 7:45:00 AM	850	7:45:00 AM	1746	7:15:00 AM		
PM PK HOUR	1535 5:00:00 PM	2349 5:00:00 PM	1511	3:45:00 PM	1242	4:45:00 PM		
NORTHBOUND Approa	ch	SOUTHBOL	JND Approach		•	TOTAL	XING S/L	XING N/L
Hours Lt 7-8 148	Th Rt To	tal Hours 1699 7-8	Lt Th	Rt 256	Total 1492	N-S 3191	Ped Sch 28 6	Ped Sch 55 6
8-9 141 9-10 138	1489 21 1410 46	1651 8-9 1594 9-10	223 1368 190 1182	174 249	1765 1621	3416 3215	27 0 48 4	53 0 38 0
3-4 83 4-5 87	1360 83 1337 62	1526 3-4 1486 4-5	286 1696 293 1707	137 152	2119 2152	3645 3638	92 17 109 16	68 12 101 3
5-6 83		1535 5-6	277 1785	287	2349	3884	106 12	56 4
TOTAL 680	8530 281	9491 TOTAL	1472 8771	1255	11498	20989	410 55	371 25
EASTBOUND Approach		WESTBOU	ND Approach			TOTAL	XING W/L	XING E/L
Hours Lt 7-8 282	Th Rt Total 325 67	Hours 7-8	Lt Th F	Rt T		E-W 2398	Ped Sch	Ped Sch
8-9 222	469 96	787 8-9	187 979	556	1724 1722	2509	31 10 53 0	86 11 76 7
9-10 <u>233</u> 3-4 <u>354</u>	395 50 1029 70	678 9-10 1453 3-4	184 928 197 486	374 300	1486 983	2164 2436	53 3 89 37	75 5 133 10
4-5 357 5-6 361	1073 68 941 78	1498 4-5 1380 5-6	194 549 274 712	284 253	1027 1239	2525 2619	113 27 104 15	147 27 130 5

14651 443

92 647

105 AND 105 AN

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth		La Brea						
East/West		Obama						
Day:	Thursday, May 24, 2018		Weather Sur	nny				
Hours:								
School Day: Yes	District		I/S CODE					
DUAL-	N/B	S/B	E/B	W/B				
WHEELED	588	683	286	341				
BIKES BUSES	0 75	0 124	0 79	0 89				
AM PK 15 MIN	N/B TIME 515 8:45:00 AM	S/B	TIME 497 8:15:00 AM		TIME 7:45:00 AM	W/B TIME 516 8:00:00 AM		
PM PK 15 MIN	417 5:45:00 PM		682 5:15:00 PM	438	4:00:00 PM	385 5:30:00 PM		
AM PK HOUR	1856 8:45:00 AM		1878 7:45:00 AM	882	7:45:00 AM	1811 7:15:00 AM		
PM PK HOUR	1575 3:00:00 PM	:	2430 5:00:00 PM	1564	3:15:00 PM	1269 4:45:00 PM		
NORTHBOUND Appro	ach		SOUTHBOUND	Approach		TOTAL	XING S/L	XING N/L
8-9 9-10 3-4 4-5 5-6	Th Rt 157 1618 12 148 1585 24 148 1466 49 88 1402 85 89 1363 64 83 1424 59 712 8856 292	Total 1787 1756 1662 1575 1515 1566 9860	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Lt Th 213 1084 235 1431 202 1234 294 1760 302 1776 285 1854 1529 9138	182 18 256 16 143 21 156 22	366 3353 347 3603 392 3354 96 3771 33 3748 30 3995	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EASTBOUND Approac	h		WESTBOUND	Approach		TOTAL	XING W/L	XING E/L
Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6	Th Rt Total 297 339 70 228 489 99 244 416 52 369 1066 74 365 1111 70 365 962 80 368 4381 444	706 816 712 1509 1545 1406	Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL		575 17 385 15 312 10 288 10 261 12	88 2494 90 2605 335 2247 115 2523 151 2596 163 2669 441 15133	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AImTD LLC. tel: 714 253 7888 cs@aimtd.com

	DATE: Thu, May 24, 18	LOCATION NORTH & EAST & W	SOUTH:		LA Rancho Martin Luti Obama					PROJECT : LOCATION CONTROL	I#:	SC1748 5 SIGNAL						
	NOTES:										AM PM MD OTHER OTHER	◀ W	N S V	E▶		_ ,	Add U-Tums to	o Left Turns
			NOR THBOUN			OUTHBOUT			EASTBOUN Obama	ID		WESTBOUN Obama	D			U-	TURNS	
	LANES:	NL 3	NT X	NR 1	SL X	ST X	SR X	EL X	ET 1.5	ER 1.5	WL 1	WT 2	WR X	TOTAL			EB WB	TTL
WA	7:00 AM 7:15 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:31 AM 8:35 AM 9:00 AM 9:15 AM 9:10 A	336 310 275 287 343 265 338 256 241 212 252 204 3,320 97% 3,411 1,202 96%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 5 1 11 11 11 18 12 7 8 6 6 6 91 3% 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 54 54 55 89 86 71 86 83 68 78 80 78 80 77 39% 7	58 94 109 122 133 128 142 114 101 104 116 1,335 61% 934 517 61%	1 1 4 3 4 4 6 1 1 6 4 3 41 2,127	180 144 218 163 159 184 166 159 141 174 177 2,083 98% /	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	619 605 665 627 739 678 741 628 589 614 619 586 7,714 0	0 0 0 0 0 0 0 0		0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0	1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Md	APP/DEPART 03:00 PM 3:15 PM 3:30 PM 3:35 PM 4:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:15 PM 5:45 PM VOLUMES APP/DEPART BEGIN PEAK HR VOLUMES APPROACH % PEAK HR FACTOR PEAK HR FACTOR	1,254 128 134 159 167 140 155 144 160 141 135 178 160 1,801 1,965 614 89%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10 12 13 6 19 7 7 7 10 18 17 21 23 163 8% 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	532 0 0 0 0 0 0 0 0 0 0 0 0 0	849 0 0 0 0 0 0 0 0 0 0 0 0 0	/ 115 131 135 157 153 144 133 137 134 143 171 1,691 37% / 585 39% 0,959	384 226 240 243 256 297 247 256 263 214 232 246 219 2,939 1,854	683 111 10 9 15 14 19 16 8 17 22 16 29 186 10% 84 10%	/ 131 102 1111 114 93 128 127 146 183 198 191 145 1,669 90% / /	1,870 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 629 670 715 716 700 683 725 710 738 795 747 8,450 0	0 0 0 0 1 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 0 0 0 0

Martin Luther King NORTH SIDE

Obama WEST SIDE EAST SIDE **O**bama

SOUTH SIDE

Martin Luther King

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
	8:00 AM
ΑM	8:15 AM
A	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
PM	4:15 PM
Ь	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

ALL PED AND BIKE										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL						
0	4	7	1	12						
0	10	4	0	14						
1	1	2	0	4						
0	3	4	0	7						
0	3	3	0	6						
0	7	7	0	14						
0	7	4	0	11						
0	5	6	0	11						
0	0	0	0	0						
0	5	4	0	9						
0	2	1	0	3						
0	1	1	0	2						
1	48	43	1	93						
0	7	3	0	10						
0	12	5	1	18						
0	6	6	0	12						
0	5	3	0	8						
0	7	5	0	12						
0	4	1	2	7						
0	8	6	0	14						
0	17	16	0	33						
0	12	10	0	22						
0	12	10	0	22						
0	12	15	0	27						
0	18	11	0	29						
0	120	91	3	214						

	PEDESTRIAN CROSSINGS										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL							
0	4	5	1	10							
0	8	4	0	12							
0	0	2	0	2							
0	3	3	0	6							
0	3	3	0	6							
0	3	6	0	9							
0	6	4	0	10							
0	5	6	0	11							
0	0	0	0	0							
0	5	3	0	8							
0	2	1	0	3							
0	1	1	0	2							
0	40	38	1	79							
0	3	2	0	5							
0	5	3	1	9							
0	6	6	0	12							
0	4	3	0	7							
0	4	4	0	8							
0	2	1	1	4							
0	7	5	0	12							
0	- 11	9	0	20							
0	9	5	0	14							
0	9	8	0	17							
0	8	6	0	14							
0	17	- 11	0	28							
0	85	63	2	150							

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
SS	ES	WS	TOTAL
0	2		2
			1
			1
			0
2			3
			1
			0
0		0	0
			1
0	0	0	0
0	0	0	0
3	5	0	9
			4
			2
			0
			0
1	1	0	2
1			2 3 4
	2		3
2	2		
		0	0
2	3	0	5
1	0	0	1 24
1.0	11	1	24
	SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SS ES ES O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	SCHOOL AGE PED											
NS	SS	ES	WS	TOTAL								
0	0	0	0	0								
0	2	0	0	2								
0	1	0	0	1								
0	0	0	0	0								
0	0	0	0	0								
0	2	0	0	2								
0	0	0	0	0								
0	0	0	0	0								
0	0	0	0	0								
0	0	0	0	0								
0	0	0	0	0								
0	0	0	0	0								
0	5	0	0	5								
0	1	0	0	1								
0	6	1	0	7								
0	0	0	0	0								
0	1	0	0	1								
0	2	0	0	2								
0	2	0	0	2								
0	0	0	0	0								
0	5	5	0	10								
0	1	3	0	4								
0	3	2	0	5								
0	2	6	0	8								
0	0	0	0	0								
0	23	17	0	40								

City Of Los Angeles **Department Of Transportation**

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth	PREPARED BY: AimTD LL	.C. tel: 714 253 7888 cs	@aimtd.com					
East/West		Obama						
Day:	Thursday, May 24, 2018	Weather	Sunny					
Hours:								
School Day Yes	District	I/S CODE						
DUAL- WHEELED BIKES BUSES	N/B S/l 201 16 81	0 3	W/B 309 135 15 1 83 16					
AM PK 15 MIN	N/B TIME 356 8:30:00 AM	S/B TIME 0	<u>E/B</u> T	8:00:00 AM	W/B TIM	7:30:00 AM		
PM PK 15 MIN	199 5:30:00 PM	0	450	4:00:00 PM	220	5:15:00 PM		
AM PK HOUR	1274 7:45:00 AM	0	849	8:00:00 AM	741	7:30:00 AM		
PM PK HOUR	693 5:00:00 PM	0	1643	3:45:00 PM	801	5:00:00 PM		
NORTHBOUND Approx Hours Lt 7-8 1200 8-9 1200 9-10 911 3-4 581 4-5 599 5-6 61 TOTAL 512	Th Rt Tot 8 0 12 2 0 52 0 0 27 8 0 41 9 0 43 4 0 79		UND Approach Lt Th 0	Rt Total 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	N-S 1220 1254 937 629 642 693	XING S/L Ped Sch 15 3 17 2 8 0 18 8 0 18 8 24 9 43 6 125 28	XING N/L Ped Sch 0
EASTBOUND Approac	h	WESTBO	OUND Approach		то	TAL	XING W/L	XING E/L
9-10 () 3-4 () 4-5 () 5-6 ()	Th Rt Total 0 199 383 0 332 517 0 339 435 0 538 965 0 568 1063 0 585 911 0 2531 4274	Hours 582 7-8 849 8-9 744 9-10 1503 3-4 1631 4-5 1496 5-6 6805 TOTAL	Lt Th R 9 705 15 668 17 710 45 458 57 494 84 717 227 3752	t Total 0 71 0 66 0 75 0 55 0 56 0 56 0 86	33 27 03 51	1296 1532 1471 2006 2182 2297	Ped Sch 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0	Ped Sch 14 0 19 0 5 0 14 1 19 5 30 11 101 17

TO SANGE OF THE PROPERTY OF TH

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth		Martin Luther King					
East/West		Obama					
Day:	Thursday, May 24, 2018	Weather	Sunny				
Hours:							
School Day: Yes	District	I/S CODE					
DUAL- WHEELED BIKES BUSES	N/B S/E 201 0 81	0 3	W/B 09 135 0 0 83 16				
AM PK 15 MIN	N/B TIME 369 8:30:00 AM	S/B TIME 0		TIME 8:00:00 AM	W/B TIME 228 7:30:00 AM		
PM PK 15 MIN	201 5:30:00 PM	0	472	4:00:00 PM	221 5:15:00 PM		
AM PK HOUR	1313 7:45:00 AM	0	886	8:00:00 AM	760 7:30:00 AM		
PM PK HOUR	708 5:00:00 PM	0	1706	3:45:00 PM	808 5:00:00 PM		
NORTHBOUND Approar	ch	SOUTHB	OUND Approach		TOTAL	XING S/L	XING N/L
Hours Lt 7-8 122 8-9 122 9-10 99 3-4 66 4-5 6 5-6 62 TOTAL 528	50 0 53 50 0 27 99 0 42 16 0 45 29 0 80	al Hours 1259 7-8 1303 8-9 977 9-10 651 3-4 6661 4-5 708 5-6 5557 TOTAL	Lt Th 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	N-S 1259 1303 977 651 661 708	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EASTBOUND Approach		WESTBO	OUND Approach		TOTAL	XING W/L	XING E/L
Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Th Rt Total 0 205 406 0 342 544 0 324 458 0 552 1001 0 584 1106 0 591 931 0 2598 4445	Hours 611 7-8 886 8-9 782 9-10 1553 3-4 1690 4-5 1522 5-6 7043 TOTAL	Lt Th 10 727 16 683 18 730 45 467 59 502 86 723 3830	Rt Total 0 737 0 699 0 748 0 512 0 561 0 808	E-W 1348 1584 1529 2065 2250 2330	Ped Sch 0	Ped Sch 0

INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AImTD LLC. tel: 714 253 7888 cs@aimtd.com

	<u>DATE:</u> Thu, May 24, 18	NORTH & EAST & W	SOUTH:		LA Rancho Farmdale Obama					PROJECT # LOCATION CONTROL:	#:	SC1748 6 SIGNAL						
	NOTES:										AM PM MD OTHER OTHER	⋖ W	N S V	E▶	E	Add U-Tu	ıms to Left	t Turns
Ī		l V	IOR I HBOU!	ND	S	OUTHBOUI Farmdale	ND		EASTBOUN Obama		1	WESTBOUN Oban				U-TURN	S	
İ	LANES:	NL 0	NT 1	NR 0	SL 0	ST 1	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL	NB SE		WB 0	TTL
Ť	7:00 AM	3	2	13	9	1	6	12	48	2	0	189	44	329	0 0	0	0	0
I	7:15 AM	3	1	10	13	1	10	11	42	0	2	159	57	309	0 0	0	0	0
I	7:30 AM	2	7	20	23	1	9	10	47	0	3	153	63	338	0 0		0	0
I	7:45 AM	4	3	17	35	1	24	9	55	0	0	135	66	349	0 0		0	0
ŀ	8:00 AM	4	4	20	21	2	17	16	80	0	5	131	52	352	0 0		1	2
ŀ	8:15 AM	0	3	8	16	2	14	16	73	3	2	177	65	379	0 0		0	1
ŀ	8:30 AM 8:45 AM	5	0	9	16 16	0	13 13	20 21	69 75	0	4 2	166 136	51 33	354 303	0 0		0	0
ŀ	9:00 AM	+ +	0	8	7	0	13	11	75	1	4	136	22	271	0 0		0	0
ŀ	9:15 AM	3	1	7	4	1	21	10	65	2	1	197	17	329	0 0		0	0
ŀ	9:30 AM	1	0	7	8	0	13	10	74	1	l i	190	19	324	0 0		0	0
ŀ	9:45 AM	1	0	6	8	1	14	11	74	0	0	159	15	289	0 0		0	0
ŀ	VOLUMES	28	21	131	176	11	167	157	773	9	24	1.925	504	3.926	0 0		1	3
	APPROACH %	16%	12%	73%	50%	3%	47%	17%	82%	1%	1%	78%	21%	-,				_
t	APP/DEPART	180	/	680	354	-/	43	939	/	1.081	2,453	/	2.122	0				
ı	BEGIN PEAK HR		7:45 AM															
ľ	VOLUMES	13	10	54	88	6	68	61	277	3	11	609	234	1,434				
	APPROACH %	17%	13%	70%	54%	4%	42%	18%	81%	1%	1%	71%	27%					
	PEAK HR FACTOR		0.688			0.675			0.888			0.875		0.946				
ļ	APP/DEPART	77	/	303	162	/	19	341	/	420	854	/	692	0				
I	03:00 PM	0	0	2	33	1	28	19	107	2	2	99	3	296	0 0		0	0
L	3:15 PM	3	0	10	24	3	30	14	133	1	2	79	18	317	0 0		0	0
L	3:30 PM	0	1	5	32	2	31	16	139	2	0	85	7	320	0 0		0	0
Ļ	3:45 PM	1	0	9	19	2	28	18	129	4	2	99	12	323	0 0		0	0
ŀ	4:00 PM	7	0	5 9	30 36	2	17 44	22 20	149 135	1	1	88	11	327	0 0		0	0
ŀ	4:15 PM 4:30 PM	4	0	8	38	3	34	14	135	2	2	96 96	12 18	366 348	0 0		0	0
ŀ	4:30 PM 4:45 PM	1	0	9	38	1	43	10	128	2	3	116	8	358	0 0		0	0
ŀ	5:00 PM	2	0	7	33	2	74	20	125	0	4	126	9	402	0 0		0	0
ŀ	5:15 PM	0	1	8	29	2	74	8	132	0	1	143	13	411	0 0		0	0
ŀ	5:30 PM	0	0	9	44	1	75	15	113	3	4	129	9	402	0 0		0	1
f	5:45 PM	4	0	5	31	3	48	13	150	4	1	116	16	391	0 0		ŏ	0
۱	VOLUMES	23	3	86	386	24	526	189	1,571	22	23	1,272	136	4,261	0 0	1	0	1
l	APPROACH %	21%	3%	77%	41%	3%	56%	11%	88%	1%	2%	89%	10%					
ļ	APP/DEPART	112	/	327	936	/	69	1,782	/	2,043	1,431	/	1,822	0				
ı	BEGIN PEAK HR	1	5:00 PM															
	VOLUMES	6	1	29	137	8	271	56	520	7	10	514	47	1,606				
	APPROACH %	17%	3%	81%	33%	2%	65%	10%	89%	1%	2%	90%	8%					
	PEAK HR FACTOR	1	1.000		<u> </u>	0.867			0.873			0.909		0.977				
ſ	APP/DEPART	36		103	416	-	25	583	- /	686	571		792	0				

Farmdale NORTH SIDE

Obama WEST SIDE EAST SIDE Obama

SOUTH SIDE

Farmdale

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
	8:00 AM
_	8:15 AM
AM	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
PM	4:15 PM
Ы	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM

	ALL PED AND BIKE						
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL			
0	1	7	4	12			
3	2	3	9	17			
3	11	11	19	44			
7	22	6	30	65			
16	15	12	40	83			
6	7	4	12	29			
9	6	2	8	25			
0	1	2	1	4			
3	3	1	5	12			
1	1	4	1	7			
2	1	5	2	10			
1	1	1	2	5			
51	71	58	133	313			
63	8	58	21	150			
8	10	23	9	50			
5	4	6	5	20			
5	0	6	5	16			
33	6	32	10	81			
2	4	8	7	21			
5	2	12	4	23			
5	0	10	1	16			
3	5	12	2	22			
2	0	11	6	19			
6	1	4	2	13			
2	0	7	6	15			
139	40	189	78	446			

	PEDESTRIAN CROSSINGS									
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL						
0	1	3	2	6						
2	0	0	4	6						
2	1	4	1	8						
0	0	2	1	3						
0	0	0	0	0						
5	2	0	1	8						
8	4	2	3	17						
0	0	0	0	0						
0	0	0	0	4						
	0	1		1						
0	0	3	0	3						
1	1	1	2	5						
20	9	16	16	61						
3	0	2	5	10						
0	0	0	0	0						
1	4	1	4	10						
3	0	3	5	11						
2	0	0	3	5						
1	2	2	0	5						
3	0	4	3	10						
3	0	1	0	4						
2	4	3	0	9						
2	0	9	3	14						
4	1	3	2	10						
0	0	3	3	6						
24	11	31	28	94						

0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1				OSSIN	
1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 3 3 1 0 1 1 0 1 1 3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	NS	SS	ES	WS	TOTAL
0 0 0 0 0 0 0 1 1 1 1 1 3 10 0 0 0 0 0 0					0
1 1 0 1 3 3 0 1 1 3 1 1 0 0 1 1 2 0 1 1 2 0 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 3 1 1 0 1 0					
1 0 1 1 3 1 0 0 1 1 3 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	1				3
1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1				3
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1				2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0				
2 1 0 0 0 3 1 0 1 0 2 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0	0	0	0		0
1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0	5	1	1	3	10
1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0	2				3
1 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1				2
0 0 0 0 0 1 0 2 0 3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0	1				
1 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0	1				
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 2 0 0 0 0 2 2 0	0				
0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0	1		2		3
1 0 1 0 2 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0					
0 0 0 0 0 2 0 0 0 2 0 0 0 0 0	0				0
2 0 0 0 2 0 0 0 0 0	1				2
0 0 0 0 0	0	0	0		
0 0 0 0 0	2				
	0				0
9 1 4 0 14	9	1	4	0	14

SCHOOL AGE PED										
NS	SS	ES	WS	TOTAL						
0	0	4	2	6						
0	2	3	5	10						
1	10	7	18	36						
6	21	4	28	59						
16	15	12	40	83						
0	5	3	10	18						
0	2	0	4	6						
0	1	2	1	4						
0	3	1	3	7						
1	1	3	1	6						
2	1	2	2	7						
0	0	0	0	0						
26	61	41	114	242						
58	7	56	16	137						
58 7	7 10	56 22	16 9	137 48						
58 7 3	7 10 0	56 22 5	16 9 1	137 48 9						
58 7 3	7 10 0	56 22 5 3	16 9 1 0	137 48 9 4						
58 7 3 1 31	7 10 0 0 6	56 22 5 3	16 9 1 0 7	137 48 9 4 76						
58 7 3	7 10 0 0 6	56 22 5 3 32 4	16 9 1 0 7	137 48 9 4 76 13						
58 7 3 1 31 0	7 10 0 0 6	56 22 5 3 32 4	16 9 1 0 7 7	137 48 9 4 76 13						
58 7 3 1 31 0 2	7 10 0 0 6 2 2	56 22 5 3 32 4 8	16 9 1 0 7 7 1	137 48 9 4 76 13 13						
58 7 3 1 31 0 2 2	7 10 0 0 6 2 2 0	56 22 5 3 32 4 8 9	16 9 1 0 7 7 1 1	137 48 9 4 76 13 13 12						
58 7 3 1 31 0 2 2 0 0	7 10 0 0 6 2 2 0 1	56 22 5 3 32 4 8 9	16 9 1 0 7 7 1 1 2	137 48 9 4 76 13 13 12 11						
58 7 3 1 31 0 2 2 0 0	7 10 0 0 6 2 2 2 0 1	56 22 5 3 32 4 8 9 8	16 9 1 0 7 7 1 1 2 3	137 48 9 4 76 13 13 12 11 5						
58 7 3 1 31 0 2 2 0 0	7 10 0 0 6 2 2 0 1	56 22 5 3 32 4 8 9	16 9 1 0 7 7 1 1 2	137 48 9 4 76 13 13 12 11						

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth	FEFARED BT: AIIITD LLC. (e)	armdale	_			
East/West		Dbama	_			
Day:	Thursday, May 24, 2018	Weather Sunny				
Hours:						
School Day. Yes	District	I/S CODE				
DUAL-		E/B W/B	_			
WHEELED BIKES	16 39 5 3		35 14			
BUSES	2 33		 17			
AM PK 15 MIN	N/B TIME 29 7:30:00 AM	S/B TIME E/B 60 7:45:00 AM	TIME 96 8:45:00 AM	W/B TIME 244 8:15:00 AM		
PM PK 15 MIN	17 4:15:00 PM	120 5:30:00 PM 17		157 5:15:00 PM		
AM PK HOUR	95 7:15:00 AM	165 7:30:00 AM 37	73 8:00:00 AM	871 7:00:00 AM		
PM PK HOUR	48 4:15:00 PM	416 5:00:00 PM 63	37 3:30:00 PM	571 5:00:00 PM		
NORTHBOUND Appro	pach	SOUTHBOUND Approach		TOTAL	XING S/L	XING N/L
Hours Lt 7-8	Th Rt Total	Hours Lt Th 5 7-8 80	Rt Total 4 49 133	N-S 218	Ped Sch 2 33	Ped Sch 7
8-9 1 9-10	10 7 43 60 6 1 28 33	9-10 27	5 57 131 2 61 90	125	6 23 1 5	13 16 3 3
3-4 4-5	4 1 26 3 13 1 31 4	5 4-5 141	8 117 233 8 138 287		4 17 2 10	7 69 9 35
5-6	6 1 29 3	<u> </u>	8 271 416	·	5 1	8 2
TOTAL 5	51 24 217 29	2 TOTAL 562 3	693 1290	1582	20 89	44 132
EASTBOUND Approa	ch	WESTBOUND Approach		TOTAL	XING W/L	XING E/L
Hours Lt 7-8	Th Rt Total 42 192 2 236	Hours <u>Lt Th</u>	Rt Total 36 230 871	E-W 1107	Ped Sch P 8 53	Ped Sch 9 18
8-9	73 297 3 373	8-9 13 61	10 201 824	1197	4 55	2 17
	42 284 4 330 67 508 9 584			1088 992	4 6 14 26	5 6 6 86
	66 543 6 613 66 520 7 583			1067 1154	6 16 8 8	7 53 18 15
	46 2344 31 272				44 164	47 195
101AL	10 2014 31 212	101AL 47 318	71 040 3004	6603	44 104	47 195

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth		Farmdale					
East/West		Obama					
Day:	Thursday, May 24, 2018	Weather	Sunny				
Hours:							
School Day: Yes	District	I/S CODE					
DUAL-	N/B S/B	E/B	W/B				
WHEELED BIKES BUSES	16 0 2	35 112 0 0 33 11	135 0 17				
AM PK 15 MIN	N/B TIME 30 7:30:00 AM	S/B TIME 62 7:45:00 AM		FIME \(\frac{1}{2}\) 8:45:00 AM	W/B TIME 250 8:15:00 AM		
PM PK 15 MIN	18 4:15:00 PM	121 5:30:00 PM	177	5:45:00 PM	158 5:15:00 PM		
AM PK HOUR	97 7:15:00 AM	172 7:30:00 AM	384	8:00:00 AM	901 7:00:00 AM		
PM PK HOUR	50 4:15:00 PM	426 5:00:00 PM	653	3:30:00 PM	575 5:00:00 PM		
NORTHBOUND Approact	h	SOUTHBOU	ND Approach		TOTAL	XING S/L	XING N/L
Hours Lt 7-8 12 8-9 11 9-10 6 3-4 4 4-5 14 5-6 6	7 44 6 1 30 4 1 29 4 1 32	87 7-8 61 8-9 9-10 37 4-5 37 5-6	Lt Th 87 6 73 5 29 2 116 10 153 8 143 8	Rt Total 50 143 58 136 61 92 120 245 140 300 275 426	N-S 230 197 129 279 347 462	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL 52	2 24 227	302 TOTAL	600 38	703 1341	1643	0 0	0 0
EASTBOUND Approach		WESTBOUN	D Approach		TOTAL	XING W/L	XING E/L
Hours Lt 7-8 43 8-9 77 9-10 44 3-4 77 4-5 66 5-6 57 TOTAL 353	4 307 3 4 297 4 5 517 9 7 557 6 7 528 7	Hours 244 7-8 384 8-9 344 9-10 596 3-4 630 4-5 592 5-6 2788 TOTAL	14 Th 5 659 14 626 6 696 6 369 7 403 10 517 48 3268	Rt Total 237 901 202 841 77 779 40 415 50 460 48 575 654 3969	E-W 1145 1224 1123 1010 1089 1166	Ped Sch	Ped Sch 0

INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AimTD LLC. tel: 714 253 7888 cs@aimtd.com

	<u>DATE:</u> Thu, May 24, 18	LOCATION NORTH & EAST & W	SOUTH:		LA Ranche Crenshaw Obama					PROJECT LOCATION CONTROL	l#:	SC1748 7 SIGNAL							
	NOTES:	AM NB qu	eue								AM PM MD OTHER OTHER	⋖ W	N S V	E▶			Add	U-Turns to	Left Turns
		N	ORTHBOUN Crenshaw	ND	,	Crenshaw	ND		EASTBOUN Obama	ט		WESTBOUN Obama	D			ι	J-TUR	:NS	
	LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL		SB 0	EB 0	WB 0	TTL
AM	7:00 AM 7:15 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:15 AM 9:30 AM 9:15 AM 9:30 AM 9:45 AM 9:00 AM 9:45 A	8 7 6 4 6 14 9 3 15 7 4 9 9 2 3% 2,778	189 237 209 202 217 262 226 258 197 242 206 188 2,633 95% 7 8.00 AM 963 95% 0,902	3 4 3 3 3 4 6 5 5 8 8 0 5 5 4 5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 10 13 17 18 20 15 16 14 14 14 8 13 166 6% 69 7%	112 136 145 190 218 199 189 225 1772 183 166 197 2,132 79% /	20 27 18 29 26 48 32 33 31 47 33 47 391 15% 2,458	19 22 31 16 28 31 25 29 33 27 26 36 36 323 28% 1,157	53 54 49 86 77 58 81 70 56 55 58 46 743 64% /	3 5 8 7 4 112 8 5 5 5 9 114 111 91 8% 962	11 21 18 18 17 22 33 39 30 11 9 6 2,695	176 119 114 112 115 121 136 114 111 111 111 138 145 98 1,499 56% /	115 102 85 131 106 95 86 69 52 44 36 40 961 36% 1,982	717 744 699 815 836 888 845 869 724 777 710 695 9,319 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
PM	APP/DEPART 03:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:35 PM 4:45 PM 5:30 PM 5:35 PM 5:35 PM 5:35 PM 5:45 PM VOLUMES APP/DEPART	1,018 9 16 16 19 9 14 11 13 14 12 11 18 152 59 4 50 59 975	/ 213 254 192 254 192 255 262 196 227 200 210 224 220 2,741 929 7 4:45 PM 893 929 0.877	1,432 111 6 5 8 7 10 6 8 8 5 11 6 91 3% 3,643 1,186	1,039 17 16 33 17 28 18 14 27 24 19 25 257 7% 3,756	/ 266 282 244 244 272 259 304 236 275 267 275 275 273 275 277 3,210 85% / 1,090 85% 0.980	971 23 25 24 17 18 25 32 25 21 25 32 22 29 8% 3,546	428 45 58 56 40 64 55 54 46 56 53 45 51 623 30% 2,103	/ 78 89 1115 88 120 107 129 87 122 137 115 106 1,293 61% / 461 65% 0,902 / /	378 16 17 17 11 19 17 17 18 16 19 19 19 19 19 18 10 19 18 1,640	953 10 12 9 13 4 12 17 9 14 19 15 15 15 12% 1,255	/ 57 53 70 55 54 56 67 78 79 102 82 74 827 66% 79 341 70% 0.875	657 25 16 25 24 18 25 28 17 19 28 30 279 22% 1,269 494	0 770 844 800 828 859 898 805 869 843 884 865 833 10,098 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1	1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crenshaw NORTH SIDE

Obama WEST SIDE EAST SIDE **O**bama

SOUTH SIDE

Crenshaw

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
AM	8:00 AM
	8:15 AM
A	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
PM	4:15 PM
Ь	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

		PED AND BIKE						
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL				
0	0	0	0	0				
0	0	0	3	3				
0	1	0	2	3				
0	0	0	4	4				
0	3	2	7	12				
0	2	0	8	10				
0	0	0	11	11				
0	1	1	4	6				
0	0	0	6	6				
0	0	0	3	3				
0	1	0	8	9				
0	0	0	2	2				
0	8	3	58	69				
1	2	1	5	9				
0	0	0	4	4				
0	3	0	7	10				
0	0	0	2	2				
0	2	0	22	24				
0	6	1	8	15				
0	2	0	4	6				
0	1	0	6	7				
0	0	0	7	7				
0	2	0	3	5				
0	2	0	0	2				
0	0	0	4	4				
1	20	2	72	95				

	PEDESTRIAN CROSSINGS										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	1	1							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	1	1							
0	0	0	2	2							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							

		LL OIL	ossin	lG3
NS	SS	ES	WS	TOTAL
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

	SC	HOOL AGE	PED	
NS	SS	ES	WS	TOTAL
0	0	0	0	0
0	0	0	3	3
0	1	0	2	3
0	0	0	3	3
0	3	2	7	12
0	2	0	8	10
0	0	0	11	11
0	1	1	4	6
0	0	0	6	6
0	0	0	3	3
0	1	0	8	9
0	0	0	1	1
0	8			
		3	56	67
1	2	1	5	9
1 0	0	0	5 4	9 4
1 0 0	0 3	1 0 0	5 4 7	9 4 10
1 0 0	2 0 3 0	1 0 0	5 4 7 2	9 4 10 2
1 0 0 0	2 0 3 0 2	1 0 0 0	5 4 7 2 22	9 4 10 2 24
1 0 0 0 0	2 0 3 0 2 6	1 0 0 0 0	5 4 7 2 22 8	9 4 10 2 24 15
1 0 0 0 0 0	2 0 3 0 2 6	1 0 0 0 0 0	5 4 7 2 22 8 4	9 4 10 2 24 15 6
1 0 0 0 0 0	2 0 3 0 2 6 2	1 0 0 0 0 1 0	5 4 7 2 22 8 4 6	9 4 10 2 24 15 6
1 0 0 0 0 0 0 0	2 0 3 0 2 6 2 1	1 0 0 0 0 1 0 0	5 4 7 2 22 8 4 6 7	9 4 10 2 24 15 6 7
1 0 0 0 0 0 0 0 0	2 0 3 0 2 6 2 1 0	1 0 0 0 0 1 0 0 0	5 4 7 2 22 22 8 4 6 7	9 4 10 2 24 15 6 7 7
1 0 0 0 0 0 0 0 0	2 0 3 0 2 6 2 1 0 2	1 0 0 0 0 1 1 0 0 0	5 4 7 2 22 8 4 6 7 3 0	9 4 10 2 24 15 6 7 7 5
1 0 0 0 0 0 0 0 0	2 0 3 0 2 6 2 1 0	1 0 0 0 0 1 0 0 0	5 4 7 2 22 22 8 4 6 7	9 4 10 2 24 15 6 7 7

City Of Los Angeles **Department Of Transportation**

MANUAL TRAFFIC COUNT SUMMARY

STREET: North / Sounth		RED 61. AIIIII	Crenshaw	3 7000 C3@aii	ma.com					
East/West			Obama							
Day:	Thursd	lay, May 24, 2018		Weather Si	unny					
School Day	Yes	District		I/S CODE						
DUAL- WHEELED BIKES BUSES	N/B 344 (111)	S/B 366 0 100	E/B 138 0 29	W/B 183 0 12					
AM PK 15 MIN PM PK 15 MIN AM PK HOUR	1 286	TIME 2 8:15:00 AM 3 4:15:00 PM 3 8:00:00 AM	3	TIME 74 8:45:00 AM 47 4:15:00 PM 39 8:00:00 AM	E/B TII 114 201 433	8:30:00 AM 4:30:00 PM 7:45:00 AM	W/B 30 14	40 5:15:00 PM		
PM PK HOUR		3 3:45:00 PM	12	82 4:45:00 PM SOUTHBOUNI	745 D Approach	4:30:00 PM	49	5:00:00 PM	XING S/L	XING N/L
7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Lt Th 25 83: 32 96: 35 83: 60 91: 47 97: 45 85: 244 537-	3 23 3 17 5 30 0 31 6 30	875 1018 885 1005 1048 931 5762	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Lt Th 48 583 69 831 49 718 83 1064 87 1074 87 1072 423 5342	Rt 94 139 158 89 100 100 680	Total 725 1039 925 1236 1261 1259	N-S 1600 2057 1810 2241 2309 2190 12207	Ped Sch 0 1 0 6 0 1 0 5 0 1 4 0 28	Ped Sch 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
EASTBOUND	Approach			WESTBOUND	Approach			TOTAL	XING W/L	XING E/L
Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Th 88 24/ 113 28/ 112 21/ 199 37/ 219 44/ 205 48/ 946 203/	5 29 5 39 0 63 3 68 0 56	353 428 376 632 730 741	Hours Lt 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL	Th Rt 68 521 1111 486 56 492 44 235 42 255 63 337 384 2326	T 433 356 172 90 95 94	1022 953 720 369 392 494	E-W 1375 1381 1096 1001 1122 1235	Ped Sch 1 8 0 30 1 1 18 0 18 0 40 0 14 2 128	Ped Sch 0 0 0 0 3 0 0 1 0 1 0 1 0 0 1

TOS AND THE PROPERTY OF THE PR

City Of Los Angeles Department Of Transportation

MANUAL TRAFFIC COUNT SUMMARY

North / Sounth			Crensha	ıw					
East/West			Obama	1					
Day:	Thursda	ay, May 24, 2018		Weather	Sunny				
Hours:									
School Day:	Yes	District		I/S CODE					
DUAL-	N/B		S/B	E/B	W/B				
WHEELED	344		366	138	183				
BIKES BUSES	0 112		0 100	0 29	0 12				
AM PK 15 MIN	N/B 298	8:15:00 AM	S/B	TIME 289 8:45:00 AM		TIME 8:30:00 AM	W/B TIME 310 7:00:00 AM		
PM PK 15 MIN	298	4:15:00 PM		359 4:15:00 PM	210	4:00:00 PM	141 5:15:00 PM		
AM PK HOUR	1077	8:00:00 AM		1093 8:00:00 AM	444	7:45:00 AM	1056 7:00:00 AM		
PM PK HOUR	1096	3:45:00 PM		1315 4:45:00 PM	766	4:30:00 PM	500 5:00:00 PM		
NORTHBOUND Hours	Lt Th	Rt	Total	Hours	ND Approach	Rt Tota		XING S/L	XING N/L Ped Sch
Hours 7-8		14	Total 936 1077			101 7 144 10			Ped Sch
Hours 7-8 8-9 9-10	Lt Th 26 896 33 1017 37 880	14 28 18	936 1077 934	Hours 7-8 8-9 9-10	Lt Th 52 627 72 878 52 766	101 7 144 10 165 9	N-S 780 1716 993 2170 982 1916	Ped Sch 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0
Hours 7-8 8-9 9-10 3-4 4-5	Lt Th 26 896 33 1017	14 28 18 32	936 1077	Hours 7-8 8-9	Lt Th 52 627 72 878	101 7 144 10 165 9 92 12 102 13	N-S 780 1716 093 2170	Ped Sch 0 0 0	Ped Sch 0 0 0 0 0
Hours 7-8 8-9 9-10 3-4 4-5 5-6	Lt Th 26 896 33 1017 37 880 63 951 48 1014	14 28 18 32 32 32 31	936 1077 934 1045 1094	Hours 7-8 8-9 9-10 3-4 4-5	Lt Th 52 627 72 878 52 766 86 1101 91 1110	101 7 144 10 165 9 92 12 102 13 100 12	il N-S 780 1716 093 2170 982 1916 279 2324 302 2396	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hours 7-8 8-9 9-10 3-4 4-5 5-6	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643	14 28 18 32 32 32 31	936 1077 934 1045 1094 961	Hours 7-8 8-9 9-10 3-4 4-5 5-6	Lt Th 52 627 72 878 52 766 86 1101 91 1110 91 1102 443 5583	101 7 144 10 165 9 92 12 102 13 100 12	N-S 1716 1933 2170 382 1916 279 2324 302 2396 293 2254	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND A	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643	14 28 18 32 32 32 31 153	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN	Lt Th 52 627 72 878 52 766 86 1101 91 1110 91 1110 443 5583	101 7 144 1165 9 92 12 102 13 100 12 703 67	N-S 780 1716 193 2170 193 2170 1942 1916 1979 2324 1902 2396 1923 2254 12774 TOTAL E-W	Ped Sch	Ped Sch
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND A	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643 pproach Th 92 245	14 28 18 32 32 32 31 153 FX Total	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN Hours 7-8	Lt Th 52 627 72 878 52 766 86 1101 91 11102 443 5583 ID Approach Lt Th 73 537	101 7 144 105 8 192 11 100 12 100 12 703 67	N-S 780 1716 193 2170 182 1916 279 2324 302 2396 2254 728 12774 TOTAL E-W 056 1419	Ped Sch	Ped Sch
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND AI Hours Lt 7-8 8-9 9-10	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643 pproach Th 92 245 120 291 128 224	14 28 18 32 32 31 153 153 153 153 153 153 153 153 153	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN Hours 7-8 8-9 9-10	Lt Th	101 7 144 10 145 165 5 5 5 5 5 5 5 5 5	N-S 780 1716 193 2170 193 2270 2170 2224 2396 2293 2254 TOTAL E-W 0566 1419 776 1416 1140	Ped Sch	Ped Sch
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND April Hours Lt 7-8 8-9 9-10 3-4	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643 pproach Th 92 245 120 291 128 228 208 377	14	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN Hours 7-8 8-9 9-10 3-4	Lt Th 52 627 72 878 52 766 86 1101 91 11102 443 5583 ID Approach Lt Th 73 537 114 496 61 504 48 241	101 7 144 116 15	N-S 780 1716 993 2170 982 1916 279 2324 302 2396 2293 2254 728 12774 TOTAL E-W 956 1419 976 1416 746 1140 380 1030	Ped Sch 0 XING W/L Ped Sch 0 0 0 0 0 0 0 0 0	Ped Sch
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND At Hours Lt 7-8 8-9 9-10 9-3-4 4-5 5-6 1-7 10 10 10 10 10 10 10 10 10 10 10 10 10	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643 pproach Th 92 245 120 291 128 224 208 377 226 457	14 28 18 32 32 31 153 153 164 27 30 42 66 75	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN Hours 7-8 8-9 9-10 3-4 4-5	Lt Th 52 627 72 878 52 766 86 1001 91 1110 91 1110 443 5583 ID Approach Lt Th 73 537 114 496 61 504 48 241 43 259	101 7 144 10 145	N-S 780 1716 193 2170 193 2170 1982 1916 279 2324 302 2396 223 2254 228 12774 TOTAL E-W 1056 1419 176 1416 1746 1140 1800 1030 1938 1155	Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XING W/L Ped Sch 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ped Sch
Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL EASTBOUND A	Lt Th 26 896 33 1017 37 880 63 951 48 1014 46 885 251 5643 pproach Th 92 245 120 291 128 228 208 377	14 28 18 32 32 31 153	936 1077 934 1045 1094 961 6046	Hours 7-8 8-9 9-10 3-4 4-5 5-6 TOTAL WESTBOUN Hours 7-8 8-9 9-10 3-4	Lt Th 52 627 72 878 52 766 86 1101 91 11102 443 5583 ID Approach Lt Th 73 537 114 496 61 504 48 241	101 7 144 10 144 10 145 155 5 102 11 100 12 100 12 100 12 100 12 100 12 100 12 100 10 1	N-S 780 1716 993 2170 982 1916 279 2324 302 2396 2293 2254 728 12774 TOTAL E-W 956 1419 976 1416 746 1140 380 1030	Ped Sch 0 XING W/L Ped Sch 0 0 0 0 0 0 0 0 0	Ped Sch

ATTACHMENT C

LADOT LEVEL OF SERVICE WORKSHEETS (All Scenarios)

- Existing Conditions
- Existing plus Project Construction
- Future pre-Project Conditions
- Future with Project Construction

I/S #:	North-South Street:	La Brea	Avenue			Yea	r of Count	2018	Amb	ient Grov	vth: (%):	1	Condu	cted by:	KΩΔ	Corp	Date:		3/12/19	
1	East-West Street:		n Boulevard				ction Year				ak Hour:	AM		wed by:		Lu	Project:	Ranch	o Cienega R	ec. Ctr.
	No. (of Phases			4	,		4				4	110111			4			<u> </u>	4
Ор	posed Ø'ing: N/S-1, E/W-2 o	r Both-3?			0			0		_	_	0				0				0
Right	Turns: FREE-1, NRTOR-2 o	r OLA-3?	NB 0 EB 3	SB WB	0	NB EB	0 SE 3 W		NB EB	0 3	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC-	ATCS-2?		112	2			2			112	2		U	112	2		U	112	2
	Override	Capacity			0			0				0				0				0
	MOVEMENT		EXISTI	NG CONDI			ING PLUS P			E CONDITION	1			RE CONDIT	ı	1		W/ PROJE	ī	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	↑ Left		378	1	378	0	378	378	6	395	1	395	0	395	1	395	0	395	1	395
N	← Left-Through			0	0.0		0.0	0.0		000	0	333		000	0			333	0	333
NORTHBOUND	↑ Through		1937	2	697	5	1942	698	86	2082	2	747	5	2087	2	748	0	2087	2	748
	Through-Right		450	1	450		450	450	0	450	1	450		450	1	450		450	1	450
OR.			153	0 0	153	0	153	153	0	158	0	158	0	158	0	158	0	158	0	158
Ž	← Left-Right			0							0				0				0	
					-															
9			40	1 0	40	5	45	45	0	41	1 0	41	5	46	1	46	0	46	1	46
l S	Through		1211	2	440	2	1213	441	102	1350	2	487	2	1352	2	488	0	1352	2	488
HB	← Through-Right			1							1				1				1	
OUTHBOUND	→ Right		109	0	109	0	109	109	0	112	0	112	0	112	0	112	0	112	0	112
SO				0							0				0				0	
	→ Left →		68	1	68	0	68	68	0	70	1	70	0	70	1	70	0	70	1	70
	→ Left-Through→ Through		349	0 2	175	0	349	175	125	485	0 2	243	0	485	0	243	0	485	0 2	243
STBOUND	→ Through-Right		343	0	173		343	173	120	400	0	240		400	0	240		400	0	240
	Right		308	1	0	0	308	0	0	317	1	0	0	317	1	0	0	317	1	0
1	Left-Through-Right			0 0							0				0				0	
	-			U							U				U				U	
	√ Left		294	1	294	0	294	294	0	303	1	303	0	303	1	303	0	303	1	303
STBOUND			005	0	400		005	400	100	1004	0	E 47		1004	0	F 47		1004	0	E 47
BOI	← Through ← Through-Right		905	1 1	482	0	905	482	102	1034	1	547	0	1034	1	547	0	1034	1	547
ST	Right		58	0	58	0	58	58	0	60	0	60	0	60	0	60	0	60	0	60
WE	Left-Through-Right			0							0				0				0	
			Nor	0 th-South:	818	No	orth-South:	819		Nor	0 th-South:	882		Nor	th-South:	883	 	Nor	th-South:	883
				550		East-West:	550			ast-West:	617			ast-West:				ast-West:	617	
				SUM:	1368		SUM:	1369			SUM:	1499			SUM:				SUM:	1500
	VOLUME/CAPACITY (V/C	C) RATIO:			0.995			0.996				1.090				1.091				1.091
V/0	C LESS ATSAC/ATCS ADJU	STMENT:			0.895			0.896				0.990				0.991				0.991
	LEVEL OF SERVI	LEVEL OF SERVICE (LOS):						D				E				E	<u> </u>			E
	RI															<u> </u>				

Version: 1i Beta; 8/4/2011 <u>EXISTING + PROJECT IMPACT</u>

Change in v/c due to project: 0.001
Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.001

Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.001 Fully mitigated? N/A

1/0 #.	North-South Street:	La Brea	Ανορμο					0040	Amb	ient Grow	uth: (9/):	4	01	-4	1/04	0	D. (0/40/40	
I/S #:	East-West Street:		n Boulevard	 I			r of Count ction Year		Allib		ak Hour:	PM		cted by:		Corp Lu	Date:	Danish a Ois	3/12/19	4
		Phases	ii boulevalu		4	Proje	ction real	2021		F 60	ak Hour.	Γ IVI	Revie	wed by:	K	<u> </u>	Project:	Rancho Cie	nega Rec. C	tr.
Ор	posed Ø'ing: N/S-1, E/W-2 or				0			0				0				0				0
	Turns: FREE-1, NRTOR-2 or		NB 0	SB	0	NB	0 SI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
			EB 3	WB	0	EB	3 W	B 0	EB	3	WB	0	EB	3	WB	0	EB	3	WB	0
	ATSAC-1 or ATSAC+ <i>F</i> Override (0			0				0				0				0
		- apacity	EXISTI	NG CONDIT		EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUF	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
Ω	Left		165	1	165	0	165	165	0	170	1	170	0	170	1	170	0	170	1	170
N O	← Left-Through		4007	0	600	7	4004	004	444	4700	0	005	_	4707	0	000		4707	0	000
BO	↑ Through ↑ Through-Right		1627	2 1	628	'	1634	631	114	1790	∠ 1	685	/	1797	∠ 1	688	0	1797	∠ 1	688
NORTHBOUND	Right		257	0	257	2	259	259	0	265	0	265	2	267	0	267	0	267	0	267
l Ö	← Left-Through-Right			0							0				0				0	
	← Left-Right			0							0				0				0	
	→ Left		49	1	49	2	51	51	0	50	1	50	2	52	1	52	0	52	1	52
ND	Left-Through		49	0	49	2	31	51	U	50	0	50	2	52	0	52		52	0	52
OUND	Through		1526	2	522	2	1528	523	105	1677	2	573	2	1679	2	573	0	1679	2	573
UTHB	← Through-Right — Through-Righ — Through-Righ — Through-Righ — Through-Righ — Through-Right — Through-Right — Thr			1		_					1				1				1	
100	Right		40	0	40	0	40	40	0	41	0	41	0	41	0	41	0	41	0	41
SO	← Left-Through-Right ↓ Left-Right			0							0				0				0	
	Left		73	1	73	0	73	73	0	75	1	75	0	75	1	75	0	75	1	75
∥ N			570	0 2	285	0	570	285	146	733	0 2	367	0	733	0	367	0	733	0	367
STBOUND	→ Through-Right		370	0	203		370	203	140	733	0	307		733	0	307		733	0	307
	Right		397	1	232	0	397	232	5	414	1	244	0	414	1	244	0	414	1	244
EA	Left-Through-Right			0							0				0				0	
	-			0							U				U				U	
_	√ Left		427	1	427	0	427	427	0	440	1	440	0	440	1	440	0	440	1	440
STBOUND				0			_				0				0				0	
301	← Through		433	1	241	0	433	241	167	613	1	331	0	613	1	331	0	613	1	331
STE	Through-Right Right		48	0	48	0	48	48	0	49	0	49	0	49	0	49	0	49	0	49
WE	Left-Through-Right			0	.0		.0	.0		. •	0	.0		.0	0	.0		.0	0	.0
				0						_	0			_	0			_	0	- 1
			687 712		orth-South: East-West:	688 712			th-South: ast-West:	743 807			th-South: ast-West:				th-South: ast-West:	743 807		
	CITIOAL VO	LOHILO		SUM:		1	east-west: SUM:	1400		Eč	SUM:	1550		E	SUM:			E	ast-west: SUM:	
	VOLUME/CAPACITY (V/C)	RATIO:			1.017			1.018				1.127				1.127				1.127
V/0	C LESS ATSAC/ATCS ADJUS	TMENT:			0.917			0.918				1.027				1.027				1.027
	LEVEL OF SERVICE (LOS):				E			E				F				F				F
[REI	<u> </u>		_	<u> </u>		_	<u> </u>				<u> </u>			•				-	

EXISTING + PROJECT IMPACT Version: 1i Beta; 8/4/2011

> Change in v/c due to project: 0.001 Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.000 Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.000 Fully mitigated? N/A

I/S #:	North-South Street:	La Brea	Avenue			Yea	r of Count	: 2018	Amb	ient Grov	/th: (%):	1	Cond	ucted by:	ΚO	A Corp	Date:		3/12/19	
<i>γ</i> σ π.	East-West Street:	Obama					ction Year		7 11110		ak Hour:	AM		wed by:		Lu		Rancho Cie		
		of Phases			4	, .		4				4	TOTIC	wed by.		4	1 10,000	Nancho Ole	nega ivec. o	4
Op	posed Ø'ing: N/S-1, E/W-2 o	or Both-3?			0			0				0				0				0
Right	Turns: FREE-1, NRTOR-2 o	or OLA-3?	NB 0 EB 0	SB WB	3	NB EB	0 SI 0 W		NB EB	0 0	SB WB	3	NB EB	0 0	SB WB	3	NB EB	0	SB WB	3
	ATSAC-1 or ATSAC-	+ATCS-2?	LB	VV <i>D</i>	2	LB	O VV	2		U	VV D	2		U	VV D	2		U	WD	2
	Override	Capacity			0			0				0				0				0
			EXISTI	NG CONDI			ING PLUS P	ROJECT		E CONDITION	1			RE CONDIT				W/ PROJE	1	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		141	1	141	0	141	141	0	145	1	145	0	145	1	145	0	145	1	145
9	← Left-Through			0	• • • •					0	0	1 10		0	0	1 10		1 10	0	1 10
NORTHBOUND	Through		1489	2	503	0	1489	504	0	1534	2	519	0	1534	2	519	0	1534	2	519
	Through-Right		04	1	04		00	00	_	00	1	00	4	00	1	00		00	1	00
OR			21	0 0	21	1	22	22	0	22	0	22	1	23	0	23	0	23	0	23
Ž	← Left-Right			0							0				0				0	
					=															
9			223	1 0	223	2	225	225	102	332	1 0	332	2	334	1	334	0	334	1	334
	↓ Through		1368	3	456	0	1368	456	0	1409	3	470	0	1409	3	470	0	1409	3	470
H Ä	← Through-Right			0							0				0				0	
OUTHBOUND	→ Right		174	1	0	0	174	0	0	179	1	0	0	179	1	0	0	179	1	0
SO				0							0				0				0	
	Left		222	1	222	0	222	222	0	229	1	229	0	229	1	229	0	229	1	229
	→ Left-Through→ Through		469	0 2	188	1	470	189	82	565	0 2	221	1	566	0	222	0	566	0	222
STBOUND	→ Through-Right		400	1	100	'	470	100	02	303	1	221	· '	300	1			300	1	
NST	Right		96	0	96	0	96	96	0	99	0	99	0	99	0	99	0	99	0	99
1	Left-Through-Right			0 0							0				0				0	
			1	U							U				0				U U	
	√ Left		187	1	187	0	187	187	0	193	1	193	0	193	1	193	0	193	1	193
STBOUND			979	0 2	490	0	979	400	69	1078	0 2	E20	0	1078	0	E20	0	1078	0	539
BO	← Through ← Through-Right		919	0	490		919	490	09	1070	0	539		1070	0	539		1076	0	539
ST	Right		556	1	333	7	563	338	86	659	1	327	7	666	1	332	0	666	1	332
WE	Left-Through-Right Left-Right			0 0							0				0				0	
	↓ Leit-Right		Nor	th-South:	726	No	orth-South:	729		Nor	th-South:	851		Nor	th-South:	853		Nor	th-South:	853
				712		East-West:	712			ast-West:	768			ast-West:	768			ast-West:	768	
				SUM:	1438		SUM:	1441			SUM:	1619			SUM:	1621			SUM:	1621
	VOLUME/CAPACITY (V/	•			1.046			1.048				1.177				1.179				1.179
V/0	//C LESS ATSAC/ATCS ADJUSTMENT:				0.946 E			0.948				1.077				1.079				1.079
	LEVEL OF SERVICE (LOS):							Е				F				F				F
	REMARKS:																			

Version: 1i Beta; 8/4/2011 <u>EXISTING + PROJECT IMPACT</u>

Change in v/c due to project: 0.002
Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.002

Significant impacted? NO

 $\triangle v/c$ after mitigation: 0.002 Fully mitigated? N/A

I/S #:	North-South Street:	La Brea	Avenue			Vos	r of Count	: 2018	Δmb	ient Grov	vth: (%):	1	Condu	cted by:	KOA	Corp	Date:		3/12/19	
1/3 #. 2	East-West Street:	Obama					ction Year		Aine		ak Hour:	PM		ewed by:		Lu		Rancho Cie		
		of Phases]		4	110,0	otion real	4		. 00	ak Hour.	4	IVEAIC	wed by.	- 10	4	i iojeci.	Rancho Cle	lega Rec. Ci	4
Ор	posed Ø'ing: N/S-1, E/W-2 o				0			0				0				0				0
Right	Turns: FREE-1, NRTOR-2 o	or OLA-3?	NB 0	SB	3	NB	0 SE		NB	0	SB	3	NB	0	SB	3	NB	0	SB	3
	ATSAC-1 or ATSAC-	+ATCS-2?	<i>EB</i> 0	WB	3	EB	0 W	B 3	EB	0	WB	3	EB	0	WB	3 2	EB	0	WB	3
		Capacity			0			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS PI	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUI	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	6 1 "		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
9			83	1 0	83	0	83	83	0	86	1 0	86	0	86	1	86		86	1 0	86
l nc	↑ Through		1394	2	484	0	1394	484	0	1436	2	499	0	1436	2	499	0	1436	2	499
HB(↑ Through-Right			1							1				1				1	
NORTHBOUND	→ Right		58	0	58	0	58	58	0	60	0	60	0	60	0	60	0	60	0	60
8	Left-Through-Right			0							0				0				0	
				0							0				0				0	
	→ Left		277	1	277	2	279	279	105	390	1	390	2	392	1	392	0	392	1	392
OUTHBOUND	Left-Through			0							0				0				0	
301	Through		1785	3	595	0	1785	595	0	1839	3	613	0	1839	3	613	0	1839	3	613
∥ ¥ ∣	←		287	0	0	0	287	0	0	296	0 1	0	0	296	0	0	0	296	0	0
.no	Left-Through-Right		201	0	U		201	U		290	0	U	U	290	0	U		290	0	U
Ś	Left-Right			0							0				0				0	
	1 1		004				004			070	4			070				070		
	J Left→ Left-Through		361	1 0	361	0	361	361	0	372	1 0	372	0	372	1	372	0	372	1	372
N S	→ Through		941	2	340	0	941	340	84	1054	2	378	0	1054	2	378	0	1054	2	378
STBOUND	_ → Through-Right			1							1				1				1	
4ST	Right		78	0	78	0	78	78	0	80	0	80	0	80	0	80	0	80	0	80
E/	Left-Through-Right			0 0							0				0				0	
				U							U				U				U	
	√ Left		274	1	274	1	275	275	0	282	1	282	1	283	1	283	0	283	1	283
STBOUND			740	0			710		0.1	005	0	4.4.0		000	0	4.4.5		000	0	4.4.5
301	← Through ← Through-Right		712	2 0	356	1	713	357	91	825	2	413	1	826	0	413	0	826	2	413
STI	Right		253	1	0	7	260	0	114	375	1	0	7	382	1	0	0	382	1	0
WE	Left-Through-Right			0						-	0				0			-	0	
				0	701			700			0	202			0	001			0	00.4
				761 717		orth-South: East-West:	763 718			th-South: ast-West:	889 785			th-South: ast-West:	891 785			th-South: ast-West:	891 785	
				1478	l '	SUM:	1481			SUM:	1674		L	SUM:				SUM:	1676	
	VOLUME/CAPACITY (V/	C) RATIO:			1.075			1.077				1.217				1.219				1.219
V/C	C LESS ATSAC/ATCS ADJU	JSTMENT:			0.975			0.977				1.117				1.119				1.119
	LEVEL OF SERVI							E				F				F				F
<u> </u>	Ri	Е				<u> </u>				<u> </u>										

Version: 1i Beta; 8/4/2011 <u>EXISTING + PROJECT IMPACT</u>

Change in v/c due to project: 0.002
Significant impacted? NO

Change in v/c due to project: 0.002 $\Delta v/c$ after mitigation: 0.002 Significant impacted? NO Fully mitigated? N/A

I/S #:	North-South Street: MLK, Jr.	Boulevard		Vos	or of Count	2040	Δmb	ient Grov	vth: (%):	4	Condu	atad by	VOA	Com	Deter		2/42/40	
3	East-West Street: Obama I				ar of Count ection Year		AIIID		ak Hour:	AM		cted by:		Corp Lu	Date:		3/12/19	4
3	No. of Phases	Jiva	2	110,6	ction real	2021		1 66	ak Hour.	2	Revie	wed by.	IX	2	Project.	Rancho Cie	nega Rec. C	tr. 2
Op	posed Ø'ing: N/S-1, E/W-2 or Both-3?		0			0				0				0				0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 SB-		NB	0 SI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+ATCS-2?	<i>EB</i> 3 <i>WB</i>	0	EB	3 W	B 0	EB	3	WB	0	EB	3	WB	0	EB	3	WB	0
	Override Capacity		0			0				0				0				0
		EXISTING CO	IDITION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUI	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT	No.	f Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
		Volume Lane			Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left	1202 3	421	2	1204	421	154	1392	3	487	2	1394	3	488	0	1394	3	488
S	← Left-Through	0	0		0	0		0	0	0		0	0	0		0	0	0
BO	↑ Through ♪ Through-Right	0 0	0	0	0	0	0	U	0	0	0	U	0	0		0	0	0
NORTHBOUND	Right	52 1	45	2	54	47	0	54	1	47	2	56	1	49	0	56	1	49
l Ö	← Left-Through-Right	0			-				0			-	0				0	
	← Left-Right	0							0				0				0	
	1.56								0									
9	→ Left→ Left-Through	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
OUND	↓ Through	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H H	← Through-Right	0			_			-	0	_			0			_	0	
UTHB	→ Right	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO	← Left-Through-Right	0							0				0				0	
	↓ Left-Right	U							U				U				U	
	ار Left	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N S	-Ĵ→ Left-Through	0							0				0				0	
	→ Through	332 1	283	4	336	284	0	342	1	342	4	346	1	346	0	346	1	346
STBOUND	→ Through-Right → Right	517 1	0	0	517	0	184	717	1	0	0	717	1	0	0	717	1	0
EAS	Left-Through-Right	0			011		101		0				0	· ·			0	· ·
	- day	0							0				0				0	
	√ Left	15 1	15	0	15	15	0	15	1	AE	^	15	1	AE		15	1	AE
9	↓ Left Left-Through	15 1	15	U	15	15		15	0	15	0	15	0	15	0	15	0	15
STBOUND	← Through	668 2	334	5	673	337	0	688	2	344	5	693	2	347	0	693	2	347
IB(Through-Right	0							0				0				0	
ĘŞ.	Right	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WE		0							0				0				0	
	γ = 3	North-Sou	th: 421	No	orth-South:	421		Nor	th-South:	487		Nor	th-South:	488		Nor	th-South:	488
	CRITICAL VOLUMES	East-We	st: 334		East-West:	337			ast-West:	357			ast-West:	361			ast-West:	361
		SU			SUM:	758			SUM:	844			SUM:				SUM:	
	VOLUME/CAPACITY (V/C) RATIO:		0.503			0.505				0.563				0.566				0.566
V/	C LESS ATSAC/ATCS ADJUSTMENT:		0.403			0.405				0.463				0.466				0.466
	LEVEL OF SERVICE (LOS):		Α			Α				Α				Α				Α
	REMARKS:			_			_	_		_	_	_		_	_	_	_	_

EXISTING + PROJECT IMPACT Version: 1i Beta; 8/4/2011

> Change in v/c due to project: 0.002 Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.003 $\Delta v/c$ after mitigation: 0.003 Significant impacted? NO Fully mitigated? N/A

						1			1	_			1				<u> </u>			
I/S #:			Boulevard				r of Count		Amb	ient Grov		1	Condu	cted by:		Corp	Date:		3/12/19	
3		Obama E	Blvd			Proje	ction Year			Pea	k Hour:	PM	Revie	wed by:	R	Lu	Project:	Rancho Cier	nega Rec. C	tr.
		Phases			2			2				2				2				2
Ор	posed Ø'ing: N/S-1, E/W-2 or ∣	Both-3?	NB 0	SB	0	NB	0 SI	3 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
Right	Turns: FREE-1, NRTOR-2 or	OLA-3?	NB 0 EB 3	3 <i>B</i> WB	0	NB EB	3 W		NВ EВ	3	3 <i>B</i> WB	0	NВ EВ	3	3 <i>B</i> WB	0	NB EB	3	3 <i>B</i> WB	0
	ATSAC-1 or ATSAC+A	ATCS-2?			2		0 111	2			2	2			2	2			2	2
	Override C	Capacity			0			0				0				0				0
			EXISTI	NG CONDIT	ΓΙΟΝ	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUF	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
۵	Left		614	3	215	0	614	215	205	838	3	293	0	838	3	293	0	838	3	293
OUND	← Left-Through			0	0		0	0		0	0	0		0	0	0		0	0	0
ВО	↑ Through		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l 프	↑ Through-Right		79	1	37	0	79	37	0	81	1	38	0	81	1	38	0	81	1	38
NORTHB	←		, ,	0	37		7.5	01		01	0	30		01	0	30		01	0	00
Z	← Left-Right			0							0				0				0	
٥	→ Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OUND	↓ Left-Through			0		•	•			•	0			•	0				0	
ВО			0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
푸	← Through-Right ← Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOUTHB	Left-Through-Right			0	Ŭ		U	O .		O .	0	O .		O	0	U	Ĭ	O	0	U
S	Left-Right			0							0				0				0	
	Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	→ Left-Through→ Through		585	0 1	499	2	587	499	0	603	1	577	2	605	1	578	0	605	1	578
STBOUND	→ Through-Right		303	1	433		307	433		003	1	377		003	1	370		003	1	370
STI	Right		911	1	0	0	911	0	190	1129	1	0	0	1129	1	0	0	1129	1	0
EA	Left-Through-Right			0							0				0				0	
				0							0				0				0	
	√ Left		84	1	84	0	84	84	0	87	1	87	0	87	1	87	0	87	1	87
9	τ Left-Through		04	0	04		04	04		01	0	01		01	0	01		07	0	01
STBOUND	← Through		717	2	359	9	726	363	0	739	2	370	9	748	2	374	0	748	2	374
BC	Through-Right			0							0				0				0	
ESI	Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WE	Left-Through-Right			0 0							0				0				0	
			Non	_	215	N/o	rth-South:	215		Non	th-South:	293		Nor	th-South:	293	 	Nor	th-South:	293
				583		East-West:	583			ast-West:	293 664			ast-West:	665			ast-West:		
				SUM:	798		SUM:	798			SUM:	957			SUM:				SUM:	
	VOLUME/CAPACITY (V/C)	RATIO:			0.532			0.532				0.638				0.639				0.639
V/0	C LESS ATSAC/ATCS ADJUS				0.432			0.432				0.538				0.539				0.539
					0.432 A			0.432 A				Α				Α				Α
	LEVEL OF SERVICE (LOS): REMARKS:				^			A								^	<u> </u>			
	REN	MAKKS:																		

EXISTING + PROJECT IMPACT Version: 1i Beta; 8/4/2011

> Change in v/c due to project: 0.000 Significant impacted? NO

PROJECT IMPACT

Change in v/c due to project: 0.001 Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.001 Fully mitigated? N/A

I/S #:	North-South Street:	Farmdal	e Avenue			Voc	or of Count	2040	Δmb	ient Grov	vth: (%):	4	Condu	atad by	VOA	Com	Deter		2/42/40	
1/3 #. 4	East-West Street:	Obama					r of Count ection Year		Ailib		ak Hour:	AM		cted by:		Corp Lu	Date:	Rancho Cie	3/12/19	fr.
		of Phases			3	110,0	Jonon Tear	3			an Hour.	3	IVEALE	wed by.	- 1	3	i ioject.	Rancho Cle	nega Rec. Ci	3
Ор	posed Ø'ing: N/S-1, E/W-2 o				1			1				1				1				1
Right	Turns: FREE-1, NRTOR-2 o	or OLA-3?	NB 0	SB	0	NB	0 SI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC-	ATCS-2?	<i>EB</i> 0	WB	0 2	EB	0 W	B 0 2	EB	0	WB	2	EB	0	WB	0	EB	0	WB	2
		Capacity			0			0				0				0				0
			EXISTI	NG CONDIT	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 104		Volume 13	Lanes	Volume 13	Traffic 0	Volume 13	Volume 13	Volume 0	Volume 13	Lanes	Volume 13	Volume 0	Volume 13	Lanes 0	Volume 13	Volume	Volume 13	Lanes 0	Volume 13
Ð			13	0 0	13		13	13	0	13	0	13	U	13	0	13		13	0	13
	↑ Through		10	0	77	0	10	77	0	10	0	79	0	10	0	79	0	10	0	79
Η̈́Β	Through-Right			0							0				0				0	
NORTHBOUND	Right		54	0	0	0	54	0	0	56	0	0	0	56	0	0	0	56	0	0
N N	← Left-Through-Right ← Left-Right			1 0							1				1 0				1	
	Leit-Niglit		<u> </u>	U							U				U				U	
Ω	→ Left		88	0	88	0	88	88	0	91	0	91	0	91	0	91	0	91	0	91
OUND	Left-Through			0	400		0	40=		0	0	407		0	0	470		0	0	0
ВО	↓ Through ↓ Through-Right		6	0 0	162	0	6	167	0	6	0	167	0	6	0	172	0	6	0	6
ОТНВ	✓ Right		68	0	0	5	73	0	0	70	0	0	5	75	0	0	0	75	1	75
SOL	Left-Through-Right			1							1				1				1	
0,	→ Left-Right			0							0				0				0	
	ے Left		61	1	61	0	61	61	0	63	1	63	0	63	1	63	0	63	1	63
	→ Left-Through			0	Ŭ.		01	O.		00	0	00		00	0	00		00	0	00
STBOUND	→ Through		277	1	140	2	279	141	0	285	1	144	2	287	1	145	0	287	1	145
TB	▼ Through-Right		3	1 0	3	0	3	3	0	3	1 0	3	0	3	1	3	0	3	1	3
EAS	Right Left-Through-Right		3	0	3		3	3		3	0	3	U	3	0	3	"	3	0	3
	- Left-Right			0							0				0				0	
	, , , , , , , , , , , , , , , , , , ,					_	4.4	4.4		4.4	4	4.		4.4		4.1		4.4		
<u>□</u>			11	1 0	11	0	11	11	0	11	1 0	11	0	11	1 0	11	0	11	1 0	11
STBOUND	← Through		609	1	422	4	613	424	0	627	1	434	4	631	1	436	0	631	1	436
	Through-Right			1							1				1				1	
WES	Right		234	0	234	0	234	234	0	241	0	241	0	241	0	241	0	241	0	241
>	Left-Through-Right Left-Right			0 0							0				0				0	
	·		Nor	th-South:	239	No	orth-South:	244		Nor	th-South:	246		Nor	th-South:	251		Nor	th-South:	1027
	CRITICAL V	OLUMES	Ea	ast-West:	483	1	East-West:	485		E	ast-West:	497		E	ast-West:			E	ast-West:	884
	VOLUME/CADACITY /V/	^\ DATIO-		SUM:			SUM:	729			SUM:	743			SUM:		-		SUM:	
1//	VOLUME/CAPACITY (V/C				0.507			0.512				0.521				0.526				0.000
V/	C LESS ATSAC/ATCS ADJU				0.407			0.412				0.421				0.426				0.000
	LEVEL OF SERVI				Α			Α				Α				Α				0
	RI	EMARKS:																		

EXISTING + PROJECT IMPACT Version: 1i Beta; 8/4/2011

> Change in v/c due to project: 0.005 Significant impacted? NO

Change in *v/c* due to project: 0.005 Significant impacted? NO

 $\Delta v/c$ after mitigation: -0.421 Fully mitigated? N/A

I/S #:	North-South Street:	Farmdal	e Avenue			Vos	ar of Count	: 2018	Δmb	ient Grov	vth: (%):	1	Condu	cted by:	KOA	Corp	Date:		3/12/19	
1/3 #. <u>4</u>	East-West Street:	Obama					ection Year		Ame		ak Hour:	PM		wed by:		Lu		Rancho Cie		tr.
		of Phases			3	110,0	otion real	3			an Hour.	3	IVEAIC	wed by.		3	i iojeci.	Rancho Cle	nega Rec. C	3
Ор	posed Ø'ing: N/S-1, E/W-2 o				1			1				1				1				1
Right	Turns: FREE-1, NRTOR-2	or OLA-3?	NB 0	SB	0	NB	0 SI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC	+ATCS-2?	<i>EB</i> 0	WB	0	EB	0 W	B 0	EB	0	WB	2	EB	0	WB	0	EB	0	WB	2
		Capacity			0			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUI	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 1.4		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume 6	Lanes	Volume	Volume	Volume	Lanes	Volume
9	ົ່ Left ≺ Left-Through		6	0 0	6	0	6	6	0	6	0	6	0	6	0	6	"	6	0	6
NORTHBOUND	↑ Through		1	0	36	0	1	36	0	1	0	37	0	1	0	37	0	1	0	37
Η̈́	Through-Right			0							0				0				0	
==	Right		29	0	0	0	29	0	0	30	0	0	0	30	0	0	0	30	0	0
N N	Left-Through-Right			1							1				1				1	
				0							U				U				U	
	→ Left		137	0	137	0	137	137	0	141	0	141	0	141	0	141	0	141	0	141
OUTHBOUND	Left-Through			0							0		_		0			_	0	
BO			8	0 0	416	0	8	418	0	8	0	428	0	8	0	430	0	8	2	8
E	← Through-Right → Right		271	0	0	2	273	0	0	279	0	0	2	281	0	0	0	281	1	281
	Left-Through-Right			1	· ·	_	2.0	· ·		0	1		_	_0.	1	J		20.	1	20.
Ø	↓ Left-Right			0							0				0				0	
	Left		56	1	56	0	56	56	0	58	1	58	0	58	1	58	0	58	1	58
	Left-Through		30	0	30		30	30		30	0	30		30	0	30		30	0	30
l jo	→ Through		520	1	264	6	526	267	0	536	1	272	6	542	1	275	0	542	1	275
STBOUND	Through-Right		_	1	_		_	_		_	1	_		_	1	-		_	1	-
d	Right Left-Through-Right		7	0 0	7	0	7	7	0	7	0	7	0	7	0	7	0	/	0	/
E E	Left-Right			0							0				0				0	
	•				-															
	✓ Left		10	1	10	0	10	10	0	10	1	10	0	10	1	10	0	10	1	10
STBOUND			514	0 1	281	2	516	282	0	530	0 1	289	2	532	1	290	0	532	1	290
B 0	Through-Right			1		_	010			550	1	_55	_	30 <u>2</u>	1	230		30 <u>2</u>	1	230
EST	Right		47	0	47	0	47	47	0	48	0	48	0	48	0	48	0	48	0	48
WE	Left-Through-Right Left-Right			0 0							0				0				0	
	, reπ-viðiπ		Non	th-South:	452	No	orth-South:	454		Nor	th-South:	465	 	Nor	th-South:	467		Nor	th-South:	1091
				337		East-West:	338			ast-West:	347			ast-West:				ast-West:	647	
				SUM:	789		SUM:	792			SUM:	812			SUM:	815			SUM:	1738
	VOLUME/CAPACITY (V/	•			0.554			0.556				0.570				0.572				0.000
V/C	C LESS ATSAC/ATCS ADJU	JSTMENT:			0.454			0.456				0.470				0.472				0.000
	LEVEL OF SERVI							Α				Α				Α				0
-	LEVEL OF SERVICE (LOS): REMARKS:																			

Version: 1i Beta; 8/4/2011 <u>EXISTING + PROJECT IMPACT</u>

Change in v/c due to project: 0.002
Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.002
Significant impacted? NO

 $\triangle v/c$ after mitigation: -0.470 Fully mitigated? N/A

I/S #:	North-South Street:	Crensha	naw Boulevard			Veer of County 2019			Ambient Growth: (%):		4	Conducted by		VOA	Corp	Data	Date: 3/12/19			
	5 East-West Street: Obama Blvd			Year of Count: 2018 Projection Year: 2021			Peak Hour:		AM	Conducted by: K0 Reviewed by:			Lu Lu	Date: 3/12/19 Project: Rancho Cienega Rec. Ctr.						
	No. of Phases		3	3			r car riour.		3	Reviewed by.		3	3		nega Rec. C	3				
Op	Opposed Ø'ing: N/S-1, E/W-2 or Both-3?				0			0				0				0				0
Right	Right Turns: FREE-1, NRTOR-2 or OLA-3?		NB 0	SB	0	NB	0 SI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+ATCS-2?		EB 2	WB	2	EB	2 W	B 2	EB	2	WB	2	EB	2	WB	2	EB	2	WB	2
	Override Capacity				0			0				0				0				0
	MOVEMENT		EXISTING CONDIT		TION	EXISTING PLUS PR		ROJECT	FUTUR	FUTURE CONDITION W/O PRO		OJECT	FUTUF	FUTURE CONDITION W/ PRO-		OJECT	FUTURE	FUTURE W/ PROJECT W/ MITI		IGATION
				No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 1.4		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	_	Volume	Lanes	Volume
9			32	0	32	0	32	32	0	33	0	33	0	33	0	33	0	33	0	33
	↑ Through		963	1	493	0	963	493	429	1421	1	723	0	1421	1	723	0	1421	1	723
Ř	Through-Right			1							1				1				1	
NORTHBOUND	Right		23	0	23	0	23	23	0	24	0	24	0	24	0	24	0	24	0	24
N S	Left-Through-Right			0							0				0				0	
	← Left-Right		I	0							U				U				U	
	→ Left		69	1	69	0	69	69	0	71	1	71	0	71	1	71	0	71	1	71
OUND	Left-Through			0		_					0		_		0				0	
BO			831	1	485	0	831	487	515	1371	1	757	0	1371	1	759	0	1371	1	759
Ӗ	← Through-Right → Right		139	0	139	3	142	142	0	143	0	143	3	146	0	146	0	146	0	146
SOUTHB	Left-Through-Right			0	.00						0	0			0				0	
0)	→ Left-Right			0							0				0				0	
	ے Left		113	1	113	2	115	115	0	116	1	116	2	118	1	118	0	118	1	118
9	Left-Through			0	110	_	110	113		110	0	110	_	110	0	110		110	0	110
	→ Through		286	1	158	0	286	158	0	295	1	163	0	295	1	163	0	295	1	163
STBOUND	Through-Right		00	1	00	0	20	20		20	1	20	0	20	1	20		20	1	20
EAS	Right Classification Right		29	0 0	29	0	29	29	0	30	0	30	0	30	0	30	0	30	0	30
"	Left-Right			0							0				0				0	
۵			111	1 0	111	0	111	111	0	114	1 0	114	0	114	1	114	0	114	1	114
	← Through		486	1	421	2	488	422	0	501	1	434	2	503	1	435	0	503	1	435
STBOUND	Through-Right			1							1		_		1				1	
ESI	Right		356	0	356	0	356	356	0	367	0	367	0	367	0	367	0	367	0	367
WE	Left-Through-Right Left-Right			0 0							0				0 0				0 0	
	CRITICAL VOLUMES				562	North-South: 562		North-South:		794	794 North-Sout		th-South:	794	North-Sout		th-South:	794		
				ast-West:	534		East-West:	537			ast-West:	550			ast-West:	553			ast-West:	553
	VOLUME IO AD A OUT VIVIOU D'ATTO			SUM:			SUM:	1099			SUM:	1344			SUM:				SUM:	
	VOLUME/CAPACITY (V/C) RATIO:				0.769			0.771				0.943				0.945				0.945
V/	V/C LESS ATSAC/ATCS ADJUSTMENT:				0.669			0.671				0.843				0.845				0.845
	LEVEL OF SERVI				В			В				D				D				D
	RI	EMARKS:																		

EXISTING + PROJECT IMPACT Version: 1i Beta; 8/4/2011

> Change in v/c due to project: 0.002 Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.002 $\Delta v/c$ after mitigation: 0.002 Significant impacted? NO Fully mitigated? N/A

I/S #:	North-South Street:	Crensha	naw Boulevard			Year of Count: 2018			Ambient Growth: (%):			1	1 Conducted by:		KOA Corp		Date: 3/12/19			
5	East-West Street:				Projection Year: 2021			Peak Hour:			PM	Reviewed by:			R Lu		Project: Rancho Cienega Rec. Ctr.			
No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2?		NB 0 EB 2	SB WB	3 0 0 2 2	NB EB	0 SE 2 W	3 0 0	NB EB	0 2	SB WB	3 0 0 2 2	NB EB	0 2	SB WB	3 0 0 2 2	NB EB	0 2	SB WB	3 0 0 2 2	
	Override Capacity		EVICTING CONTE		0						0	FUTUE			0				0	
	MOVEMENT		EXISTING CONDIT		Lane		Project Total Lane		FUTURE CONDITION W/O PROJECT						No. of	Lane	FUTURE W/ PROJECT W/ MITIGATION Added Total No. of		Lane	
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NORTHBOUND	Left Left-Through ↑ Through-Right ↑ Right ↓ Left-Through-Right ↑ Left-Right		50 893 32	1 0 1 1 0 0	50 463 32	0 0	50 893 32	50 463 32	0 574 0	52 1494 33	1 0 1 1 0 0	52 764 33	0 0	52 1494 33	1 0 1 1 0 0	52 764 33	0 0	52 1494 33	1 0 1 1 0 0	52 764 33
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right Left-Right		89 1090 103	1 0 1 1 0 0	89 597 103	0 2 2	89 1092 105	89 599 105	0 528 0	92 1651 106	1 0 1 1 0 0	92 879 106	0 2 2	92 1653 108	1 0 1 1 0 0	92 881 108	0 0	92 1653 108	1 0 1 1 0 0	92 881 108
EASTBOUND	 ✓ Left ✓ Left-Through ✓ Through ✓ Through-Right ✓ Right ✓ Left-Through-Right ✓ Left-Right 		200 461 53	1 0 1 1 0 0	200 257 53	3 2 2	203 463 55	203 259 55	0 0	206 475 55	1 0 1 1 0 0	206 265 55	3 2 2	209 477 57	1 0 1 1 0 0	209 267 57	0 0	209 477 57	1 0 1 1 0 0	209 267 57
WESTBOUND	Left ✓ Left-Through ← Through-Right ← Right Left-Through-Right Left-Right		57 341 92	1 0 1 1 0 0	57 217 92	0 0	57 341 92	57 217 92	0 0	59 351 95	1 0 1 1 0 0	59 223 95	0 0	59 351 95	1 0 1 1 0 0	59 223 95	0 0	59 351 95	1 0 1 1 0 0	59 223 95
	CRITICAL VOLUMES			th-South: ast-West: SUM:	647 417 1064		orth-South: East-West: SUM:	649 420 1069			th-South: ast-West: SUM:	931 429 1360			th-South: ast-West: SUM:	933 432 1365			th-South: ast-West: SUM:	933 432 1365
	VOLUME/CAPACITY (V/C) RATIO:				0.747			0.750				0.954				0.958				0.958
V/	V/C LESS ATSAC/ATCS ADJUSTMENT:				0.647			0.650				0.854				0.858				0.858
	LEVEL OF SERVIC	EMARKS:			В			В				D				D				D

Version: 1i Beta; 8/4/2011 <u>EXISTING + PROJECT IMPACT</u>

Change in v/c due to project: 0.003
Significant impacted? NO

PROJECT IMPACT

Change in *v/c* due to project: 0.004
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.004 Fully mitigated? N/A